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Generalized k-core percolation on correlated and uncorrelated multiplex networks

Yilun Shang
Department of Computer and Information Sciences,

Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

It has been recognized that multiplexes and inter-layer degree correlations can play a crucial
role in the resilience of many real-world complex systems. Here we introduce a multiplex pruning
process that removes nodes of degree less than ki and their nearest neighbors in layer i for i =
1, · · · , m, and establish a generic framework of generalized k-core (Gk-core) percolation over inter-
layer uncorrelated and correlated multiplex networks of m layers, where k = (k1, · · · , km) and m
is the total number of layers. Gk-core exhibits a discontinuous phase transition for all k owing to
cascading failures. We have unraveled the existence of a tipping point of the number of layers, above
which the Gk-core collapses abruptly. This dismantling effect of multiplexity on Gk-core percolation
shows a diminishing marginal utility in homogeneous networks when the number of layers increases.
Moreover, we have found the assortative mixing for inter-layer degrees strengthens the Gk-core but
still gives rise to discontinuous phase transitions as compared to the uncorrelated counterparts. Inter-
layer disassortativity on the other hand weakens the Gk-core structure. The impact of correlation
effect on Gk-core tends to be more salient systematically over k for heterogenous networks than
homogeneous ones.

PACS numbers: 64.60.Ak, 64.60.Fr, 02.10.Ox, 02.50.-r

I. INTRODUCTION

In the last two decades, network science has emerged as
a powerful framework to analyze numerous diverse com-
plex systems such as brains, global infrastructures, social
networks, and climate systems [1–3]. The resilience (ro-
bustness) of such systems is often studied by percolation
theory, where the existence of a giant connected compo-
nent plays a pivotal role in maintaining network structure
and functionality when a fraction of nodes and edges are
randomly removed from the network [4, 5].

As an important variant of classical percolation mech-
anism, the k-core percolation [6, 7] progressively removes
nodes of degree less than k, i.e. k-leaves, from the net-
work leading to the k-core structure, which is the largest
subgraph whose nodes have degree at least k. To quan-
tify the robustness of networks under spreading damage,
Azimi-Tafreshi et al. [8] recently proposed a modified
leaf pruning algorithm, where k-leaves are recursively re-
moved together with their neighbors and incident edges.
The residual network surviving the removal process is re-
ferred to as the generalized k-core or Gk-core. The case
of k = 2 corresponds to the graph-theoretic core notion,
which is related to problems of controllability [9], vertex
cover and maximum matching [10, 11]. For k ≥ 2, the
Gk-core percolation displays hybrid phase transitions at
the critical points of Gk-core in single networks. The
attack robustness and stability of Gk-core under various
random and intentional attacks have been studied in [12].

Multiplexity, however, has shaken the network perco-
lation theory and gained increasing relevance in the past
few years as real-life complex systems are rarely found to
be a single network but often an interdependent multi-
layer structure, where dysfunction of nodes in one layer
can lead to failure of dependent nodes in other layers
[13–15]. As a result, percolation properties of multiplex

networks are drastically different from those of single net-
works. Multiplex networks, for example, are much more
fragile than single networks under random as well as tar-
geted attacks, shifting from continuous to abrupt perco-
lation transitions [13]. The k-core decomposition algo-
rithm has been extended to uncorrelated multiplex net-
works and intriguing hybrid percolation transitions have
been reported in [16, 17].

On top of multiplexity, recent works on classical perco-
lation reveal the profound effect of inter-layer degree cor-
relations [18, 19] and edge overlap [20, 21] in multiplex
networks. Such correlations have been observed in many
empirical networks. For example, big cities tend to be
highly accessible through both highways and airline con-
nections; two friends in social networks are most likely
to communicate via both email and cell phone. Albeit of
salient relevance, the influence of correlated multiplexity
on core based percolation so far has not been adequately
understood.

Motivating the above consideration, in this paper we
first develop a framework for understanding Gk-core of
uncorrelated multiplex networks with m layers, where
k = (k1, k2, · · · , km) and ki ≥ 2 for any layer i. By
applying a multi-scale pruning algorithm, the Gk-core
can be seen as a natural extension of Gk-core over mul-
tiplex networks (see Section II). We find that Gk-core
percolation displays a first-order phase transition for all
k, and uncover the existence of a tipping point in multi-
plexes. When the number of layers is above the tipping
point, a sudden collapse of Gk-core occurs. We stress
that this phenomenon is not implied by the first-order
phase transition of Gk-core percolation. Next, we in-
troduce a correlated multiplex network formalism, which
is amenable to analytical treatment of Gk-core perco-
lation. We show the different effect of correlation in ho-
mogeneous (Erdős-Rényi) and heterogenous (log-normal)
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multiplex networks. We observe that the assortative mix-
ing of inter-layer degrees tends to build up the Gk-core
but still gives rise to first-order phase transition for all k.
Inter-layer disassortative mixing on the other hand weak-
ens the Gk-core structure. Finally, we apply our Gk-core
percolation algorithms to some real multiplex networks
in social interaction, technology and economics.

It is worth noting that our application of pruning pro-
cess of Gk-core to uncorrelated multiplex networks is
analogous to [16], where k-core percolation is investi-
gated in uncorrelated multiplex networks. Similarly, the
work [17] examined a heterogeneous k-core percolation
over interdependent networks with a focus on inter-layer
node interdependency. Inter-layer degree distributions,
however, are not correlated in these works.

II. ANALYTICAL RESULTS

A. Gk-core of uncorrelated multiplex networks

Recall that in multiplex networks, different layers share
the same set of nodes [13]. Consider a multiplex network
formed by m layers with an arbitrary joint degree dis-
tribution P (q) with q = (q1, q2, · · · , qm), meaning the
probability that a random node has qi neighbors in layer
i for i = 1, · · · ,m. Given vector k = (k1, k2, · · · , km), de-
fine k-leaf as a node which has intra-layer i degree qi < ki

for at least one i. We consider the following pruning pro-
cess: we randomly choose a k-leaf node and delete it to-
gether with its neighbors and all incident edges in layer
i if qi < ki. Note that all layers share the same nodes
and hence the removal of a node affects all layers and
edges incident to it in all layers will be removed accord-
ingly. The process continues until no k-leaves remain in
the network. The resulting network is referred to as the
Gk-core, which is a natural extension of the isolated net-
work version [8, 12]: In the context of disease spreading,
a virus is prone to tracking the neighbors of a weak node
in each layer. In Fig. 1 we show an example of a duplex
network and its G(2, 2)-core (i.e., k = (2, 2)) after the
removal process. Note that two components in k are not
symmetric in general unless the two corresponding layers
have the same topology and they are uncorrelated.

FIG. 1: Schematic illustration of a G(2, 2)-core percolation
on a multiplex network with m = 2 layers. White nodes are
removed during the cascading removal process.

Our goal is to derive the size of Gk-core as a function
of the network degree distribution. For i = 1, · · · ,m, let
ei be the i-th unit vector with only the i-th element be-
ing one. We divide the nodes into three classes. A node
is categorized as α-removable if it is a (k− ei)-leaf for at
least one i; a node is β-removable if it is a neighbor of a
k-leaf node; the rest of the nodes are non-removable and
belongs to Gk-core. Note that the network has a locally
treelike structure as the network size tends to infinity [2].
Given 1 ≤ i ≤ m, denote by αi, βi, and 1 − αi − βi, re-
spectively, the probabilities that a random neighbor in
layer i of a randomly chosen node, say v, is α-removable,
β-removable, and non-removable in the network remov-
ing node v. Observe that an end node of an edge of
layer i extracted at random belongs to the Gk-core if it
has at least ki − 1 intra-layer i neighbors in the Gk-core,
at least kj intra-layer j neighbors in the Gk-core for all
j 6= i, and has no α-removable neighbors. Hence, we
derive the self-consistency equation:

1 − αi − βi

=
∑
q≥k

qiP (q)
〈qi〉

[ qi−1∑
si=ki−1

(
qi − 1

si

)
(1 − αi − βi)siβqi−1−si

i

]

×
m∏

j=1
j 6=i

[ qj∑
sj=kj

(
qj

sj

)
(1 − αj − βj)sj β

qj−sj

j

]
, (1)

where 〈qi〉 is the average degree of layer i and q ≥ k
means qj ≥ kj for all 1 ≤ j ≤ m. In (1), qiP (q)

〈qi〉 represents
the probability that the end node of a random edge in
layer i has degree q, the combinatorial multiplier

(
qi−1

si

)
counts the number of ways that one can choose si non-
removable neighbors among qi − 1 neighbors following
intra-layer i edges, and similarly,

(
qj

sj

)
counts the choices

of sj non-removable neighbors from qj neighbors follow-
ing intra-layer j edges for every j 6= i. A random neigh-
bor, say v, in layer i of a random node is β-removable if
v has at least one neighbor which is α-removable. Hence,

βi = 1 −
∑
q≥ei

qiP (q)
〈qi〉

(1 − αi)qi−1
m∏

j=1
j 6=i

(1 − αj)qj , (2)

where we recall that ei = (0, · · · , 0,
i-th
1 , 0, · · · , 0) is the

i-th unit vector.
Using the expressions (1), (2) and the binomial theo-

rem, we calculate the probability αi as

αi =
∑
q≥ei

qiP (q)
〈qi〉

{
(1 − αi)qi−1

m∏
j=1
j 6=i

(1 − αj)qj

−
[ qi−1∑

si=ki−1

(
qi − 1

si

)
(1 − αi − βi)siβqi−1−si

i

]

×
m∏

j=1
j 6=i

[ qj∑
sj=kj

(
qj

sj

)
(1 − αj − βj)sj β

qj−sj

j

]}
. (3)
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The relative size of the Gk-core, denoted by nkc, can
be viewed as the probability that a randomly selected
node belongs to the Gk-core. This event happens if the
random node has at least ki neighbors in layer i for every
1 ≤ i ≤ m according to the pruning process. Hence, we
arrive at the expression:

nkc =
∑
q≥k

P (q)

×
m∏

i=1

[ qi∑
si=ki

(
qi

si

)
(1 − αi − βi)siβqi−si

i

]
. (4)

If we assume that there is no correlation for inter-layer
degrees, we write P (q) = P1(q1)P2(q2) · · ·Pm(qm), where
Pi(qi) is the marginal degree distribution in layer i [16].
Define the generating function for the degree of layer i
as Gi(x) =

∑∞
qi=0 Pi(qi)xqi , and its si-th derivative as

G
(si)
i (x) =

∑
qi

qi!
(qi−si)!

Pi(qi)xqi−si ; see e.g. [2]. It fol-
lows from (2) and (3) that

αi =
1

〈qi〉

{
G

(1)
i (1 − αi)

m∏
j=1
j 6=i

Gj(1 − αj)

−
[
G

(1)
i (1 − αi) −

ki−2∑
si=0

(1 − αi − βi)si

si!
G

(si+1)
i (βi)

]

×
m∏

j=1
j 6=i

[
Gj(1 − αj)

−
kj−1∑
sj=0

(1 − αj − βj)sj

sj !
G

(sj)
j (βj)

]}
(5)

and

βi = 1 − G
(1)
i (1 − αi)

〈qi〉

m∏
j=1
j 6=i

Gj(1 − αj). (6)

With these expressions, the relative size of the Gk-core
(4) can be rewritten as

nkc =
m∏

i=1

[
Gi(1 − αi)

−
ki−1∑
si=0

(1 − αi − βi)si

si!
G

(si)
i (βi)

]
. (7)

By solving the self-consistency equations (5), (6) and (7),
we can obtain the relative size nkc.

Moreover, the number of layer i edges in the Gk-core
can be calculated as (1 − αi − βi)2Ei, where Ei means
the total number of edges in layer i. If rescaling this edge
number by dividing the total number of nodes, we obtain
(1 − αi − βi)2

〈qi〉
2 . Hence, the rescaled number of edges

in the Gk-core, denoted by lkc, can be calculated as

lkc =
1
2

m∑
i=1

(1 − αi − βi)2〈qi〉. (8)

B. Gk-core of assortatively correlated multiplex
networks

In this section, following the convention of network per-
colation, we propose a minimalist model of correlated
multiplex network by introducing only one additional
parameter r. Recall that the joint degree distribution
P (q) = P (q; r) is the joint probability that a random
node has degree qi in layer i for 1 ≤ i ≤ m. Given
1 ≤ r ≤ m, the intra-layer degree distributions for layers
i (i = 1, · · · , r) are the same, while other layers (if exist)
have independent degrees. In other words, the inter-layer
degrees are correlated in an assortative mixing manner
[22]. Let δa,b be the Kronecker’s delta function. The
joint degree distribution of the correlated multiplex net-
work model is described by

P (q; r)
=P1(q1)δq2,q1 · · · δqr,q1Pr+1(qr+1) · · ·Pm(qm). (9)

Clearly, the case of r = 1 reduces to the uncorrelated
multiplex network model discussed in Section II.A. Fur-
thermore, with the degree distribution (9), the expres-
sions (1)-(4) still apply.

To solve the relative size nkc of the Gk-core, we intro-
duce a version of high dimensional generating function
as

G(x1, x2, · · · , xm)

=
∞∑

q1=0

∞∑
qj=0

j=r+1,··· ,m

P1(q1)Pr+1(qr+1) · · ·Pm(qm)

× (x1x2 · · ·xr)q1 · xqr+1
r+1 · · ·xqm

m , (10)

which is a generalization of single variable generating
functions [19, 23, 24] and some other versions have al-
ready been studied in the study of, e.g., network perco-
lation with community structure [5]. By using (2), (3)
and some algebra, we can derive in a similar manner as
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in (5):

αi =
1

〈qi〉

{
kj−1∑
sj=0

j 6=i,j=1,··· ,m

(1 − αj − βj)sj

sj !

× G(s1,··· ,sj−1,1,sj+1,··· ,sm)(β1, · · · , βj−1, 1 − αj ,

βj+1, · · · , βm)

+
ki−2∑
si=0

(1 − αi − βi)si

si!
G(0,··· ,0,

i-th
si+1,0,··· ,0)(1 − α1,

· · · , 1 − αi−1, βi, 1 − αi+1, · · · , 1 − αm)

−
ki−2∑
si=0

kj−1∑
sj=0

j 6=i,j=1,··· ,m

(1 − αi − βi)si

si!

×
m∏

j=1
j 6=i

(1 − αj − βj)sj

sj !

× G(s1,··· ,si−1,si+1,si+1,··· ,sm)(β1, · · · , βm)

}
(11)

and

βi = 1 − G(0,··· ,0,
i-th
1 ,0,··· ,0)(1 − α1, · · · , 1 − αm)

〈qi〉
, (12)

where (in the light of (10))

G(s1,··· ,sm)(x1, · · · , xm)

=
[ ∞∑

q1=0

(q1!)rP1(q1)
r∏

j=1

x
q1−sj

j

(q1 − sj)!

]

×
m∏

j=r+1

[ ∞∑
qj=0

qj !Pj(qj)
(qj − sj)!

x
qj−sj

j

]
, (13)

describes the mixed (s1, · · · , sm) partial derivative of the
generating function. As the inter-layer degrees are cor-
related, the fiddly application of mixed derivatives above
is essential.

In view of (4) and (13), the relative size of the Gk-core
becomes

nkc =G(1 − α1, · · · , 1 − αm)

−
ki−1∑
si=0

i=1,··· ,m

[ m∏
i=1

(1 − αi − βi)si

si!

]
· G(s1,··· ,sm)(β1, · · · , βm). (14)

The rescaled number of edges in the Gk-core can be de-
rived in a similar manner as in (8).

C. Gk-core of disassortatively correlated multiplex
networks

In a disassortatively correlated multiplex network, a
node of certain degree tends to connect to a node in an-

other layer with dissimilar degree. Some different mech-
anisms of disassortative correlation have been studied in
the literature, e.g. [25–28]. By convention, we consider a
duplex network with m = 2 and we here adopt a philos-
ophy akin to Section II.B by specifying the joint degree
distribution as

P (q) = P1(q1)δq2,∆−q1 , (15)

where ∆ is the maximum degree of the layer 1 network.
We define the associated generating function as

H(x1, x2) =
∆∑

q1=0

P1(q1)x
q1
1 x∆−q1

2 . (16)

For i = 1, 2, it can be shown that the parameters αi,
βi, nkc, and lkc are given by (11), (12), (14), and (8)
respectively, with m = 2 and G replaced by H.

III. SYNTHETIC NETWORKS

In this section, we perform numerical simulations for
some benchmark models with Erdős-Rényi (ER) mul-
tiplex networks and heavy tailed log-normal multiplex
networks. In the simulations, networks have node size
N = 107 to 5 × 107 to approximate the thermodynamic
limit. Note that scale-free networks only have trivial
cores even for a single layer [10].

A. Multiplex Erdős-Rényi networks

1. Uncorrelated layers

We first consider the uncorrelated duplex ER networks
with m = 2 and marginal Poisson degree distributions.
The combined degree distribution is given by P (q) =
P1(q1)P2(q2) = e−(λ1+λ2) λ

q1
1 λ

q2
2

q1!q2!
for q1, q2 ≥ 0, where λi

is the average degree of layer i for i = 1, 2. For simplicity,
we assume the symmetric case with λ := λ1 = λ2 and
hence G1(x) = G2(x) = eλ(x−1).

Fig. 2 shows the relative size nkc and the rescaled num-
ber of edges lkc of the Gk-core in duplex ER networks
as well as their counterparts in single ER networks. The
simulations agree well with the theoretical predictions in
all cases. We observe that for all degrees k, the Gk-core
percolation displays a discontinuous phase transition in
duplex ER networks. This differs from single network
scenarios, where G2-core has a continuous percolation
transition while Gk-core (k ≥ 3) has first-order tran-
sitions. The catastrophic failure of Gk-core caused by
interdependent multiplex structure echoes those previ-
ously discovered for k-core percolation [16, 17] as well as
classical ones [13, 29].

As one would expect, the rescaled number of edges in
the Gk-core of duplex networks asymptotically doubles
that in the single networks as the ER network becomes
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FIG. 2: The relative fraction nkc of Gk-core and rescaled
number of edges lkc of Gk-core in single and uncorrelated du-
plex ER networks for k = 2 (cyan diamonds), k = 3 (magenta
stars), k = 4 (yellow right triangles), k = (2, 2) (red squares),
k = (2, 3) (blue upper triangles), k = (3, 3) (green circles).
The lines are theoretical results and data points are based on
simulations averaged over 40 realizations of networks with 107

nodes and mean degree λ.

dense (i.e., when λ grows); see Fig. 2(b). When com-
paring Fig. 2(a) with Fig. 2(b), it can be seen that the
critical values of connectivity λ coincide for nkc and the
corresponding lkc.

The influence of multiplex architecture can be better
appreciated in Fig. 3, where nkc is plotted as a function
for a range of m, the number of layers. A couple of in-
teresting observations are in order. Firstly, the tipping
point, where the Gk-core is suddenly fragmented, can be
identified for ER networks with any given λ. For exam-
ple, the tipping point of G(2, 2, · · · , 2)-core percolation
for ER networks having λ = 10 is m = 4 (see Fig. 3(a)),
and that of G(3, 3, · · · , 3)-core percolation is m = 2 (see
Fig. 3(b)). Notice that this dramatic drop of nkc with
respect to m is not implied by the first-order percolation
for a given multiplex network (with fixed m) as observed
in Fig. 2. Secondly, although the more layers the more
fragile the network becomes, the effect of multiplexity
on Gk-core tends to decrease as m grows — a multiplex
network version of ‘diminishing marginal utility’. This
phenomenon is demonstrated by the increasing gaps be-
tween lines in Fig. 3 when m increases steadily.

2. Correlated layers

We next consider the correlated duplex ER networks
with r = m = 2. For the assortatively correlated
network, the network has degree distribution P (q) =
P1(q1)δq2,q1 with Poisson distribution P1(q1) = e−λ λq1

q1!
.

The joint generating function is given by G(x1, x2) =
eλ(x1x2−1).

In Fig. 4, we show the relative size nkc and the
rescaled number of edges lkc of the Gk-core in both as-
sortatively correlated and uncorrelated duplex ER net-
works. The simulations are consistent with the theoret-
ical predictions in Section II.B. For all degrees k, the
Gk-cores display discontinuous transitions in both uncor-
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FIG. 3: The relative fraction nkc of Gk-core as a function of
layer number m in uncorrelated multiplex ER networks with
different mean degree: λ = 10 (crosses), λ = 11 (pluses), λ =
12 (lower triangles), λ = 13 (squares), λ = 14 (asterisks), λ =
15 (circles) for (a) k = (2, 2, · · · , 2) and (b) k = (3, 3, · · · , 3).
The lines are theoretical results and data points are based on
simulations averaged over 30 realizations of networks with 107

nodes.
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FIG. 4: The relative fraction nkc of Gk-core and rescaled
number of edges lkc of Gk-core in uncorrelated duplex ER
networks for k = (2, 2) (red squares), k = (2, 3) (blue trian-
gles), k = (3, 3) (green circles) and assortatively correlated
duplex ER networks for k = (2, 2) (black squares), k = (2, 3)
(black triangles), k = (3, 3) (black circles). The lines are
theoretical results and data points are based on simulations
averaged over 40 realizations of networks with 107 nodes and
mean degree λ.

related and correlated networks. Moreover, compared to
uncorrelated counterparts, assortatively correlated net-
works have larger Gk-cores. This phenomenon can be
attributed to the lower possibility of cascading failure
due to the stringent inter-layer degree correlation. Also,
comparing Fig. 4(a) with Fig. 4(b), we observe hat the
critical values of connectivity λ coincide for nkc and the
corresponding lkc.

For the disassortatively correlated network, the net-
work has degree distribution P (q) = P1(q1)δq2,∆−q1

with Poisson distribution P1(q1) = e−λ λq1

q1!
and ∆ =

(ln lnN)−1 lnN [30]. Note that in the disassortatively
correlated model, only the layer 1 follows strictly the ER
network degree distribution. In Fig. 5 we compare the
relative size nkc and the rescaled number of edges lkc

of the Gk-core in both correlated and uncorrelated du-
plex ER networks. We similarly observed discontinuous
phase transition at critical values of λ for all degrees k as
in Fig. 4. However, the disassortativity tends to weaken
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FIG. 5: The relative fraction nkc of Gk-core and rescaled
number of edges lkc of Gk-core in uncorrelated duplex ER
networks for k = (2, 2) (red squares), k = (2, 3) (blue trian-
gles), k = (3, 3) (green circles) and disassortatively correlated
duplex ER networks for k = (2, 2) (black squares), k = (2, 3)
(black triangles), k = (3, 3) (black circles). The lines are
theoretical results and data points are based on simulations
averaged over 40 realizations of networks with 107 nodes and
mean degree λ.

the Gk-core in all cases, which is in sharp contrast to
assortatively correlated ones as one would expect.

B. Multiplex log-normal networks

1. Uncorrelated layers

As a second example, we consider the uncorrelated du-
plex networks with m = 2 and asymptotic log-normal
degree distribution P (q) = P1(q1)P2(q2) ∝ exp

(
−

(ln q1−σ1)
2+(ln q2−σ2)

2

4

)
for q1, q2 ≥ 1. The log-normal dis-

tribution P1(q1) is heavy tailed and skewed with mode
eσ1−2 and mean eσ1+1. Some growing networks such as
citation networks are found to have log-normal degree
distributions [31, 32]. For simplicity, we assume the sym-
metric case with σ := σ1 = σ2 ∈ (−∞,∞).
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FIG. 6: The relative fraction nkc of Gk-core and rescaled
number of edges lkc of Gk-core in single and uncorrelated
duplex log-normal networks for k = 2 (cyan diamonds), k = 3
(magenta stars), k = 4 (yellow right triangles), k = (2, 2) (red
squares), k = (2, 3) (blue upper triangles), k = (3, 3) (green
circles). The lines are theoretical results and data points are
based on simulations averaged over 40 realizations of networks
with 5 × 107 nodes and parameter σ.

The relative size nkc and the rescaled number of edges

lkc of the Gk-core in duplex log-normal networks as well
as their counterparts in single layer log-normal networks
are show in Fig. 6. Similarly as in the ER case, the Gk-
core percolation displays a discontinuous phase transition
for all degrees k, and Gk-core percolation for (k ≥ 3) has
discontinuous phase transitions. It is worth noting that
multiplexity causes much more harm to the structural
resilience to log-normal networks than ER networks. For
example, G(2, 2)-core is larger than G4-core for ER net-
works in Fig. 2 while G(2, 2)-core becomes much smaller
than G4-core for log-normal networks in Fig. 6. This
discrepancy can be explained by the heterogenous degree
distribution of the log-normal network, where low-degree
nodes are likely connected to hubs spreading the pruning
process farther.
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FIG. 7: The relative fraction nkc of Gk-core as a function
of layer number m in uncorrelated multiplex log-normal net-
works with different parameter σ: σ = 4 (crosses), σ = 4.5
(pluses), σ = 5 (triangles), σ = 5.5 (squares) for (a) k =
(2, 2, · · · , 2) and (b) k = (3, 3, · · · , 3). The lines are theoreti-
cal results and data points are based on simulations averaged
over 30 realizations of networks with 5 × 107 nodes.

In Fig. 7, we display nkc as a function of the num-
ber of layers m. Like in the ER cases above, we ob-
serve the tipping points for Gk-core percolation in log-
normal multiplex networks. For instance, when σ = 4,
the tipping point of G(2, 2, · · · , 2)-core percolation for
log-normal networks is m = 4 (see Fig. 7(a)) — which is
the critical point where nkc drops to zero abruptly. The
tipping point of G(3, 3, · · · , 3)-core for the same network
reduces to m = 3 as one would expect (see Fig. 7(b)).

Note that the density of log-normal network is ex-
pressed in an exponential function of σ, roughly propor-
tional to eσ. This means the span of density is unequal,
for example, from σ = 4 to σ = 4.5 and to σ = 5 (see
Fig. 7). Hence, the effect of multiplexity (‘diminishing
marginal utility’) on Gk-core is less obvious compared to
the ER cases in Fig. 3.

2. Correlated layers

We next consider the assortatively correlated duplex
log-normal networks with r = m = 2. The network has
degree distribution P (q) = P1(q1)δq2,q1 with log-normal
distribution P1(q1) ∝ exp

(
− (ln q1−σ)2

4

)
.
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FIG. 8: The relative fraction nkc of Gk-core and rescaled
number of edges lkc of Gk-core in uncorrelated duplex log-
normal networks for k = (2, 2) (red squares), k = (2, 3)
(blue triangles), k = (3, 3) (green circles) and assortatively
correlated duplex log-normal networks for k = (2, 2) (black
squares), k = (2, 3) (black triangles), k = (3, 3) (black cir-
cles). The lines are theoretical results and data points are
based on simulations averaged over 40 realizations of networks
with 5 × 107 nodes and parameter σ.

We compare in Fig. 8 the relative size nkc and the
rescaled number of edges lkc of the Gk-core in assor-
tatively correlated duplex log-normal with uncorrelated
ones. It is found that for all degrees k, the Gk-cores show
discontinuous transitions in both uncorrelated and corre-
lated scenarios. Moreover, similarly as in ER cases, the
correlation between two layers suppresses the damage of
cascading failure as is demonstrated by larger Gk-cores
in the correlated networks. Due to the heterogeneity of
intra-layer degree distribution, this mitigation effect is
even more apparent as compared to Fig. 4. For example,
in Fig. 8 G(3, 3)-core in a assortatively correlated net-
work is considerably larger than G(2, 2)-core in an un-
correlated network. In Fig. 4, however, this relation is
seen to be inverted.
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FIG. 9: The relative fraction nkc of Gk-core and rescaled
number of edges lkc of Gk-core in uncorrelated duplex log-
normal networks for k = (2, 2) (red squares), k = (2, 3)
(blue triangles), k = (3, 3) (green circles) and disassortatively
correlated duplex log-normal networks for k = (2, 2) (black
squares), k = (2, 3) (black triangles), k = (3, 3) (black cir-
cles). The lines are theoretical results and data points are
based on simulations averaged over 40 realizations of networks
with 5 × 107 nodes and parameter σ.

For the disassortatively correlated network, it has de-
gree distribution P (q) = P1(q1)δq2,∆−q1 with log-normal

distribution P1(q1) ∝ exp
(
− (ln q1−σ)2

4

)
and ∆ = N − 1

[33]. In this model, both layer 1 and layer 2 are skewed,
having heterogeneous degree distributions. In Fig. 9 we
compare the relative size nkc and the rescaled number of
edges lkc of the Gk-core in both disassortatively corre-
lated and uncorrelated duplex log-normal networks. Sim-
ilarly as in Fig. 8, we observed discontinuous phase tran-
sition at critical values of σ for all degrees k. As in the
ER network situation, the disassortativity here again sig-
nificantly weaken the Gk-core in all cases as compared
to uncorrelated layers.

IV. REAL MULTIPLEX NETWORKS

We consider some real-life multiplex networks with
characteristics summarized in Table 1 and apply the com-
putational framework of Gk-core percolation over these
networks. The first one is a guarantee market network
with nodes representing companies and edges joint lia-
bility guarantee relationships in China’s guarantee circle
[34]. Both layer 1 (for the year 2013) and layer 2 (for
the year 2014) follow scale-free degree distributions and
they are assortatively correlated with the Pearson’s coef-
ficient 0.33. The second example is a friendship network
extracted from online social media BlogCatalog (layer 1)
and Flickr (layer 2), where nodes are users and edges
are friendship connections [35]. Both layers have scale-
free structures. The third network comes from Internet
topology at the autonomous system level with layer 1 rep-
resenting IPv4 relationship and layer 2 IPv6 relationship
over autonomous system nodes [36].

In Fig. 10 we show the relative size of Gk-cores in these
multiplex networks for different k against their theoreti-
cal results based on our multiplex network models, where
the degree distribution of the empirical networks are fed
in. It can be seen that the predictions based on uncor-
related and assortatively correlated models are more ac-
curate than that using disassortatively correlated models
generally. This phenomenon is in line with the positive
Pearson coefficients for all these networks; c.f. Table 1.
On can see from Fig. 10 that, in some cases, there are
noticeable discrepancies between theory and reality. Ar-
guably, the inner layer structure such as intra-layer cor-
relation, motif and clustering also influence the Gk-cores
in real world large-scale networks [8, 12].

V. CONCLUSION

In this paper a pruning process is introduced to pro-
duce generalized k-core, i.e. Gk-core, in the context of
multiplex networks. We have presented a general ana-
lytical framework for investigating Gk-core percolation
over uncorrelated and correlated multiplex networks. It
is shown that Gk-core has a discontinuous phase transi-
tion for all degree k, different from Gk-core in single net-
works [8, 12]. We have revealed the existence of a tipping
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N E1 E2 ∆1 ∆2 dave ρ
Market [34] 4354 3618 4102 83 91 1.77 0.33
Friendship [35] 10312 333983 574802 3992 4898 88.13 0.09
Internet [36] 4819 11601 12045 306 339 4.90 0.24

TABLE I: List of three empirical multiplex networks analyzed in this paper. N : number of nodes; Ei: number of edges in layer
i; ∆i: maximum degree in layer i; dave: average degree; ρ: Pearson’s correlation coefficient.
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FIG. 10: The relative fraction nkc of Gk-core in (a) Mar-
ket network, (b) Friendship network, and (c) Internet versus
theoretical predictions via uncorrelated and correlated multi-
plex networks for k = (2, 2) (squares), k = (2, 3) (triangles),
and k = (3, 3) (circles). In assortatively and disassortatively
correlated models, layer 1 follows empirical distributions.

point of the number of layers, over which the Gk-core dis-
mantles abruptly. Interestingly, the depreciating effect
of multiplexity on Gk-core percolation in multiplex ER
networks shows an evident diminishing marginal utility.
This implies that dense homogeneous multiplex networks

are potentially able to sustain more layers under Gk-core
percolation than one might expect. We found that the
assortative mixing in inter-layer degrees strengthens the
Gk-core but still leads to discontinuous phase transition
as compared to the uncorrelated counterparts. Disas-
sortative mixing, on the contrary, gives rise to weaker
Gk-core for all k. These inter-layer degree correlation
induced effects tend to be more salient systematically in
heterogenous networks than homogeneous ones.

The depreciation caused by multiplexity in terms of
Gk-core in uncorrelated multiplex networks discovered
here is qualitatively similar to the observation for k-core
in [16, 17]. The removal of nearest neighbors of weak
nodes Gk-core percolation characterizes a specific ro-
bustness under spreading damage. Studying the mixing
of inter-layer degree distributions enhances our under-
standing on the impact of multiplexity and correlation
on robustness in real world systems, where subsequent
damage or contact infection is likely in the neighborhood
of a compromised node. The results will enable use to
design robust complex systems and optimize structural
correlation in response to virus-like attacks.
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