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ABSTRACT The natural neuromuscular model has greatly inspired the development of control mechanisms
in addressing the uncertainty challenges in robotic systems. Although the underpinning neural reaction of
posture control remains unknown, recent studies suggest that muscle activation driven by the nervous system
plays a key role in human postural responses to environmental disturbance. Given that the human calf is
mainly formed by two muscles, this paper presents an integrated calf control model with the two comprising
components representing the activations of the two calf muscles. The contributions of each component
towards the artificial control of the calf are determined by their weights, which are carefully designed to
simulate the natural biological calf. The proposed calf modelling has also been applied to robotic ankle
exoskeleton control. The proposed work was validated and evaluated by both biological and engineering
simulation approaches, and the experimental results revealed that the proposed model successfully performed
over 92% of the muscle activation naturally made by human participants, and the actions led by the simulated

ankle exoskeleton wearers were overall consistent with that by the natural biological response.

INDEX TERMS Muscle stretch reflex, calf muscle activation, standing control, exoskeleton control.

I. INTRODUCTION

The neuromuscular model provides an effective mechanism
to support robust robotic control in addressing the uncer-
tainty led by the environment, which forms an integral part
of robotic bionic control research. Despite the increasingly
intensive attention [1]-[3], the neural control mechanisms
responsible for the formation and adaptation of calf muscle
activation for human upright standing balance control are still
not well understood [4]. Muscle activation change mecha-
nisms have been developed to respond to variations in support
surface perturbations through descriptive measures [5], [6].
However, it is difficult to interpret the recorded changes
in muscle activation concerning neural control mechanisms,
as the relationship between sensory inflow led by the upright
standing perturbation and resulting muscle activation is still
not well comprehended.

There are generally three groups of approaches to sim-
ulate the control mechanisms in the human neural system
to respond to the perturbation in a standing position. The
first group of approaches focus on fast responses using the
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muscle stretch reflex model in postural control [7], due to
the short reflex loop and thus accordingly prompt response
to unexpected external perturbations [8]. The muscle stretch
reflexes can be encoded by the muscle spindle information,
and the key mechanical behaviour can then be effectively
explained by a positive feedback scheme [9], as demon-
strated by the simulated walking gait without parameter inter-
ventions in the work of [10]. Regarding standing control,
the angle and velocity of the ankle sway are the two most
important inputs to the muscle stretch reflex model, as the calf
muscle activation is mainly driven by these two factors [11].
Despite its rapid responses, the muscle stretch reflex model
does not always generate accurate muscle activation signals,
as reported in [12].

The second group of approaches use a feedback law on
the centre of mass (CoM) to simulate the nervous system to
generate the muscle activation value during human postural
responses [5], [6]. In this case, the human body is modelled
as a single-link inverted pendulum, with the CoM being the
centre of the body, and the link length being the height of the
body in a natural standing position. The inputs of the CoM-
based feedback control include the displacement, velocity,
and acceleration of the CoM, which are weighted by a
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feedback gain. Several temporal muscle activation generation
approaches have been proposed using this system with a care-
fully designed signal-propagation time delay [5], [6], [13].
However, the experiments in real-world situations demon-
strated a significant time delay of the CoM kinematics, due to
the dynamic and uncertain environment, which forms a main
challenge for the CoM-based feedback control approach [13].

The third group of approaches apply multi-sensory mod-
els to artificially control the human upright standing in an
uncertain environment [14]. The commonly used sensors
include vestibular sensor measuring the ‘body in space’
angles, somatosensory foot pressure receptors measuring the
centre of pressure, and the ankle angle sensor measuring
the body-foot angle. The external disturbances can then be
estimated based on the sensed information through a multi-
sensory fusion function; from this, the muscle response
can be approximated based on the estimated disturbances.
This group of approaches usually require a large number of
sensors, which are sometimes very difficult to deploy in a
real-world environment, in addition to the high computational
complexity.

This paper proposes a new approach to produce accurate
and timely calf muscle activation by simulating the natural
neurological balance control system, to address the afore-
mentioned challenges. The model was developed based on a
representative situation of upright standing balance control on
a moving vehicle. It is well accepted that the orientation and
motion information derived from sensory systems are used
by the musculoskeletal system to generate corrective actions
by humans, in an effort to respond to the destabilizing effects
of gravity and external perturbations to maintain the desired
body orientation [15], [16]. Informed by the research in
anatomy, this study artificially simulates a simplified version
of natural neurological balance control consisting of only the
lower central nervous system (LCNS) and advanced central
nervous system (ACNS). Then, the CoM-based feedback
model is adapted to act as the ACNS, and the muscle stretch
reflex control serves as the LCNS, which jointly ensure the
timeliness and accuracy of the proposed system. The outputs
of these subsystems are combined through an aggregation
function to simulate its biological peer.

The proposed approach was validated and evaluated by
both biological and engineering simulation approaches. The
biological approach recorded both the kinematic and calf
muscle Electromyographic (EMG) signals, and then an opti-
mization algorithm was employed to the kinematic data
in order to find the optimal feedback gain and time delay
to enable the model to optimally match the records from
EMBG. In the engineering simulation approach, the proposed
integrated control model was applied to a robotic ankle
exoskeleton control implemented using the OpenSim plat-
form with the results compared with those led by the conven-
tional muscle-tendon complex (MTC) model. The proposed
integrated control model provides an effective approach to
support robust exoskeleton control in addressing the uncer-
tainty led by the environment. Both experiments confirm the
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effectiveness and efficiency of the proposed approach. The
main contributions of this work are three fold: 1) proposing
an integrated calf muscle activation model, 2) developing an
artificial human balance control approach, and 3) applying
the proposed model to robotic ankle exoskeleton control.

The rest of the paper is organized as follows. Sec. Il reviews
the technical background about the natural neurological con-
trol system, muscle stretch reflex, and CoM-based feedback
model. Sec. III details the proposed integration feedback
model. Sec. IV applied the proposed model to robotic ankle
exoskeleton and assessed the proposed model with results
analyzed. The paper is concluded in Sec. V with future work
discussed.

Il. BACKGROUND

The underpinning technical backgrounds, including the natu-
ral neurological balance control system, muscle stretch reflex
model, and CoM-based feedback model, are reviewed in this
section.

A. NEUROLOGICAL BALANCE CONTROL
The natural central nervous system (CNS) includes two major
structures: the brain and spinal cord [17]. The brain consists
of the cerebrum, the brain-stem, and the cerebellum, which
are usually jointly referred to as the ACNS. It controls most
of the activities of the body, by interpreting, integrating,
and coordinating the information it receives from the sense
organs, and making decisions as to the instructions sent to the
rest of the body. The spinal cord is also often referred to as the
LCNS, which is the centre for coordinating many reflexes and
contains reflex arcs that can independently control reflexes.
Based on the neurological research, the ACNS and LCNS
work together to jointly produce human balance control [18].
The sense organs of the ACNS combine all the inputs
provided by the proprioceptive system, visual system and
vestibular system, and the sensory receptors feedback which
effectively estimates the human body motion states; then
the ACNS produces the stimulus signals which are transmit-
ted to muscle through efferent neurons for effective muscle
actions. The main function of ACNS control in human postu-
ral responses is reinforcing the activation of calf muscle [19].
Specific to the calf muscle, the ACNS has long signal trans-
mission time delays and thus a long control loop [5], [6].
The LCNS is mainly implemented through the muscle
stretch reflex in human balance control. The sense organs of
the muscle stretch reflex involve spindle organs and Golgi
tendon organ. These organs detect the muscle spindle length
offset, spindle contraction velocity, and muscle force infor-
mation, which collectively produce the action instructions by
the spinal cord. Efferent neurons transmit action instructions
to the effector organ, i.e., the calf muscle for human standing
control. In contrast to the ACNS, the LCNS is inherently short
control loop [7], which can activate the calf muscle imme-
diately after any perturbations taking in effect for human
balance control [19].
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The ACNS and LCNS control subsystems effectively work
together for accurate and timely human balance control, and
their contributions are governed by the sense organs [20].
In specific, the contributions from the two subsystems have
a strong linear correlation; the reduction in the contribution
from one subsystem will be accompanied by a corresponding
increase in the contribution from the other subsystem.

B. MUSCLE STRETCH REFLEX MODEL

The muscle stretch reflex is a fast muscle contraction gen-
eration mechanism, in response to the stretch of the muscle
that involves an afferent signal into the spinal cord and an
efferent signal out to the muscle [21]. It is a monosynaptic
reflex which provides automatic regulation of muscle spindle
length. As for calf muscles, the stretch reflex links sensory
information about ankle mechanics directly to the activation
of the calf muscles via alpha motoneurons, bypassing the
spinal inputs. The key mechanical behaviour can be effec-
tively represented as a positive feedback reflex scheme.

1) SENSORY INFORMATION

The sensory information is motivated by the signals based on
the muscle spindle length change and its contraction veloc-
ity [22]. This sensory information can be computed using
the human ankle angle 6y, which is defined as the angle
between the foot and the shank segment [23], as illustrated
in Fig. 1(b). In particular, the calf muscle spindle length 7, is
computed as:

I ()= Tfoot p(Sin(ef(mt () —Omax) — Sin(eref —6max)) + lopt >
ey

where rf,,, describes the attachment radius of calf muscle,
p is a scaling factor representing the pennation angle of
the muscle fiber, /,); is an optimal length of the muscle
spindle, /,,,, at which the muscle can provide the maximum
isometric force, Oy, stands for the ankle reference angle at
which [, = lop, and Oyax is a constant ankle angle value
subject to max(Yam) = Tfoo1€0SOfoor — Omax) With (Ofp0r)

Calf
Muscle

\ rﬁmt

(b)

FIGURE 1. The ankle model (a) The ankle musculoskeletal model. (b) The
simplified geometry of the muscle model skeletal attachment.
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being the human ankle angle and rg,, being the moment
arm of calf muscle contractile force. From this, the muscle
spindle contraction velocity, v;,, can be obtained via the time
derivative of muscle spindle length value /,,.

2) POSITIVE FEEDBACK REFLEX SCHEME

The calf muscle activation value, denoted as a,, can be gen-
erated using the positive feedback reflex scheme [24], [25].
Denote the signal-propagation time delay as 6. The current
muscle activation, (a,(¢)), at any time before § is a,o; other-
wise, a,(t) is equal to the pre-activation a,o plus a feedback
component:

) t<$
ar(t)= {“’0 N

t>94,
2

where p; is the feedback gain for muscle spindle length
offset, d, represents the feedback gain for the muscle spindle
length contraction velocity, and [, expresses the muscle
spindle length under muscle relaxation. The output muscle
activation can then effectively simulate the muscle excitation-
contraction coupling, and the resulting signal is constrained
to the range between 0 and 1 [26].

ar0+pi(n(t —81)=1,)+dyviu(t — 81),

C. CoM-BASED FEEDBACK MODEL

The CoM-based feedback model is another scheme to imitate
the nervous control system for human upright standing con-
trol [5], [6], [13]. In this model, a common set of feedback
signals related to horizontal CoM trajectories are used as the
temporal formation of muscle activation.

1) CENTER OF MASS CALCULATION

In physics, the CoM of a body in space is the unique point
where the weighted relative position of the distributed mass
sums as zero. In human postural control, when body segments
are in motion, the CoM of the body is continuously changing
along time. Therefore, it is necessary to recalculate CoM
regularly, which requires the knowledge of the trajectories of
the CoMs of body segments. The CoM coordinate of each
body segment CoM; can be expressed as:

CoM; = Xyi + Pcomi(Xpi — Xai), 3)

where i stands for the i-th body segment, X;; and X),; express
distal end coordinate and the proximal end coordinate of
the body segment, respectively, and Pc,py; is a ratio of the
distance between the CoM; and Xy ; to the length of the i-th
body segment.

By simplifying the human body as an n-segment system,
the CoM of the body can be calculated as:

Co, = 2i=1"iCoMi @
M

where M = Y7 | m; is the total mass of the body, m; and
CoM; are the mass and the CoM coordinates of the i-th body
segment, respectively.
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2) CoM-BASED FEEDBACK SCHEME

The CoM-based feedback scheme represents an explicit for-
mulation of temporal calf muscle activation (ap), with over-
lapping contributions of body CoM trajectories horizontal
displacement (p.), velocity (v.), acceleration (a.), and a
signal-propagation time delay (1) [5]. In specific, the mus-
cle activation at any time before A is approximated as the
pre-activation value (ag); otherwise, the muscle activation
(ap) is formed by the weighted summation of the kinematic
signals at time (# — 1) based on the feedback gain [k, &y, k4]
plus the pre-activation (agp):

ap07 <A
ap(t) = 1ap0 + kppc(t —A)+ kvt — 1) 5
+kgac(t — N), t> A

The values of kinematic signal feedback gain [k, ky, k4]
and the signal-propagation time delay (A) are specific to
each participant and muscle. The reconstructed muscle acti-
vation (a,) is half-wave rectified, and constrained to the range
between 0 and 1.

Ill. ARTIFICIAL CALF MUSCLE ACTIVATION

The proposed calf muscle activation model is an artificial
implementation of the neurological balance control as intro-
duced in Sec. II-A, with the human balance control on a
moving vehicle as an example throughout the paper for
description. Accordingly, the proposed model consists of
two key subsystems, including a CoM-based feedback model
simulating the ACNS in the natural subsystem, and a muscle
stench reflex model representing the LCNS. The CoM of a
distribution of mass in space is a key point to describe and
predict the human body motion, and thus it can be effectively
used to simulate the functions of sense organs in the ACNS.
The muscle stretch reflex produces fast muscle contraction
control in response to stretches within the muscle, which is
thus a representation for the LCNS subsystems. Similar to

CoM

their natural biological counterparts, the combination of
CoM-based feedback model and muscle stretch reflex com-
plement each other, in producing fast but accurate activation
signals for the calf muscle to support human standing control
in an unstable or uncertain environment.

A. MODEL OVERVIEW

The framework of the proposed artificial calf muscle activa-
tion model is illustrated in Fig. 2, with the vehicle platform
acceleration and deceleration in this work to simulate various
perturbations. In particular, there are two control loops in
parallel, with the CoM-based feedback model and the muscle
stretch reflex model being the main components of the two
loops. The two models take different information regarding
the human’s postural states as inputs; the outputs of these two
models are combined through an aggregation function, which
is then sent to the human model as the calf muscle activation
value for human standing control.

The data flow in the control loops guarantees the strong
complementarity of the proposed model in producing accu-
rate and fast actions. The inputs of the CoM-based feedback
model are human kinematic information collected using a
motion capture system; and it firstly calculates the CoM
displacement, velocity, and acceleration [p,, v., a.] which are
subject to a time delay () to simulate the neural transmission
and processing time. The output of the CoM-based feedback
model is the reconstructed muscle activation (a,), which is a
weighted linear combination of the delayed CoM signals with
the feedback gain [k, k,, k,] used as the weights.

The muscle stretch reflex model takes the ankle angle
deviation and its change rate [A6, Aé] as inputs, which
are also collected by a motion capture system. The model
first calculates the muscle spindle length and its contraction
velocity [/, vin]- Subject to a time delay §, the intermediate
outputs are weighted by the reflex gains [Gy, G,] on each
channel to reconstruct the subsystem output, i.e., the muscle

calculation

—_——— e —

| Muscle stretch reflex model

[k, k, k] -

A

o}
3
(¢}
o
o,
S
<
-
A 4

CoM-based feedback gains

[ .
AG, AO Geometric Ly Ve R

| attachment

(G, G,]

A 4

Time delay &

Reconstructed muscle activation (a)

Muscle reflex gains

A

—

FIGURE 2. The framework of artificial calf muscle activation model for human upright standing control on a moving vehicle.
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activation (a;). Form this, the overall reconstructed muscle
activation (a) is the aggregated output of a, and a;.

B. MUSCLE STRETCH REFLEX MODEL SUBSYSTEM

The muscle stretch reflex model firstly calculates the muscle
spindle length /,, and the muscle spindle contraction veloc-
ity vy, as illustrated in Fig. 2. The muscle spindle length /,,
is calculated based on the ankle angle deviation, as detailed
in Sec. II-B.1. For the task of human upright balance control,
the ankle angles 0y, i.€, the swing amplitudes, are usually
small, that is sin(Bfor — Omax) ~ Gfpor — Omax- According to
Eq. 1, the calf muscle spindle length /,, can be expressed as:

Im(8) = K(efoot(t) — Omax) + C, (6)

where K = rf,p denotes a constant gain, and C =
—K sin(0ref — Omax) + lopr represents another constant. Thus,
it can be approximated that the calf muscle spindle length is
linearly correlated with the human ankle angle 6o, .

The muscle spindle contraction velocity, v,,, can be calcu-
lated by the time derivative of the muscle spindle length value
as:

Vin(t) = K6pppr (1). (7

In other words, the calf muscle spindle contraction velocity
can be calculated from the human ankle change rate, and there
is a linear correlation between them.

According to the positive feedback reflex scheme in mus-
cle stretch reflex model as discussed in Sec. II-B.2, the muscle
activation produced by the model can be expressed as:

ai(t) = piln(t — 8) = lo) + dyym(t — ), ®)

where p; and d, represent the gain for muscle spindle
length change and muscle spindle length contraction velocity,
respectively, [, describes the muscle spindle length under
muscle relaxation. The value of /, is taken as the muscle spin-
dle length during the human standing equilibrium state in this
work. By applying Eqgs. 6 and 7, Eq. 8 can be re-expressed as:

ai(t) = piK Opoor(t — 8) — 0,) + dyK(O(t — 8) — 6,)
= G;AO(t — 8) + G, AO(t — §), 9)

where G; = p/K, G, = d\,K, and AO(t—38) = o1 (t —8)—b,,
and 6, is the ankle angle in human standing equilibrium
state. In particular, G; and G, correspond to the muscle reflex
gains for ankle angle change and ankle angle change velocity,
§ is the time delay caused by the neural transmission and
information processing in muscle stretch reflex model. These
parameters can be empirically determined based on the shape
of the human body.

C. CoM-FEEDBACK MODEL SUBSYSTEM

The CoM-feedback model is used to reinforce the activation
of the calf muscle to complement the muscle reflex model
for human upright standing balance control. The inputs of the
CoM-feedback model are the sensed information regarding
the CoM trajectories, as discussed in Sec. II-C.

86736

According to the CoM-based feedback scheme, the muscle
activation led by the CoM-feedback model can be calculated
by:

aq(t) = kppc(t —A) + ket — ) + kqac(t — 1),  (10)

where p., V., and a, are the horizontal displacement, velocity,
and acceleration of the body CoM trajectories, respectively;
kp, ky, and k, correspond to the feedback gains for p, v., and
a. respectively, and X is the time delay led by the neural trans-
mission and information processing in CoM-based feedback
model. These parameters, along with the parameters G;, Gy,
and ¢ used in the muscle stretch reflex module subsystem, can
be globally optimised using a general optimisation approach,
which will be discussed in Sec. III-E.

These CoM signals can be obtained from human kinematic
markers. The kinematic markers are attached to the distal
end and proximal end of the human body segments, i.e., the
joints and ends of body segments; and the coordinate data of
the markers are usually collected by a signal receiver in the
motion capture system. The location of CoM and the mass
of human body segment can then be obtained based on the
anthropometric study [27]. From this, the CoM coordinate
of the human body can be calculated using Eqgs. 3 and 4,
as detailed in Sec. II-C.1. From this, the CoM horizontal
displacement can be calculated by:

pe(t) = CoMy(t) — CoMy, Y

where CoM;(t) is the current CoM horizontal coordinate
value, and CoM is the CoM horizontal coordinate value
during the human standing equilibrium state. The CoM hor-
izontal velocity (v.) is the first derivative of the CoM hori-
zontal displacement (p.) over time, and the CoM horizontal
acceleration (a.) is the second derivative of CoM horizontal
displacement (p,) versus time.

D. ACTIVATION AGGREGATION

The activation results from the two sub-systems should be
aggregated to produced the final output. Information aggre-
gation has been well studied in the literature, with many com-
plex aggregation approaches being proposed, such as, Bayes
estimation [28], fuzzy inference [29], neural network [30]
amongst others. These complex aggregation approaches all
involve uncertainty handling by introducing many parame-
ters. Given that the proposed artificial calf muscle activation
model has already included several parameters representing
the uncertainty which are globally optimised as discussed in
Sec. III-E, such as CoM-feedback gains and muscle stretch
reflex gains. In order to avoid duplicating uncertainty man-
agement, this work takes the simplest weighted summation
as the information aggregation approach, although the adap-
tation on the aggregation approaches, such as use the work
reported in [31] and [32] remain as future work. Without
losing generality, given any time ¢, the calf muscle activation
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is defined as:

aop, 0<r<$
a(t) = § apg + wyay(t), §<t<A (12)
ap +wiay(t) + waage(t), A<,

where ag represents the pre-activation value, § and A indi-
cate the signal propagation delays for the two sub-systems,
w; and w, are the weights of the results from the two
sub-systems a, and a;, respectively. The current calf mus-
cle activation (a(t)), at any time before § is equal to the
pre-activation value (ag); at the time between & and A,
a(t) equals to ag plus the weighted activation from the muscle
stretch reflex model, i.e., wya;(t); otherwise, the activation
value is the combination of the pre-activation and the acti-
vations led by both sub-systems.

The weights are determined by the sensory information
of the two sub-systems. By using the simple weighted sum-
mation, any reduction of the contribution from one subsys-
tem will be accompanied by a corresponding increase in the
contribution from the other subsystem [20], and the CoM
trajectories horizontal velocity (p,) and the muscle spindle
length (/,,) are the primary sensory information used for
weight determination in this work. Therefore, [w,, w;] are
designed to be linearly correlated with p, and [, and their
normalisations are used as the weights:

P (13)
Wg = —,
“TpP4L
L (14)
w = ——,
= PrL

where P and L represent the normalisation of the horizontal
velocity p. of CoM trajectories, and the normalization of
muscle spindle length [,,,, respectively, that is:

D
P= o (15)
Im

E. FEEDBACK GAINS OPTIMIZATION

The parameters, such as the feedback gains [Gy, Gy],
[y, kv, kq] and the signal-propagation time delay [§, ],
vary for different muscles in different environments. These
seven parameters can be globally optimised using a
generic optimisation algorithm, with the covariance matrix
adaption-evolution strategy (CMA-ES) being adopted in this
work. Briefly, the CMA-ES uses a Gaussian distribution to
sample the solution space of the optimisation problem, which
is fitted by a number of iterations of updating guided by a
fitness function [33].

The CMA-ES first initialises the parameters randomly
within their universes of discourse. For artificial calf muscle
activation, the feedback gains should be positive and the
time delays must be restricted as 20ms < § < 80ms and
60ms < A < 180ms, [4], [34]. Then, the individuals of
the first generation are sampled according to a multivariate
Gaussian distribution, characterized by a mean vector (m)

VOLUME 8, 2020

which was formed by the initialised parameters, a covariance
matrix (C) and a standard deviation (d):

O ~mD 4 N, dcD), (17)

where CD is set as the identity matrix of order seven, and d is
set to 1. Using the same approach, the population including
y individuals of the first generation can be generated.

The variance-accounted-for (VAF) is an indicator to assess
the fitness of the reconstructed muscle activation in reference
to the recorded muscle activation during the training stage [4],
which is adapted in this work for individual evaluation. The
VAF is defined as:

var(a — a)
%VAF = 100(1 — ——— )%, (18)
var(a)

where var(-) stands for the variance operation, and a is the
reconstructed or predicted muscle activation value. With the
support of this fitness function, all the individuals in the
first generation can be ranked as: x{, ..., x5, where g = 1
represents the first generation.

Then the top ranked p individuals (i.e., parameter sets)
are selected to produce the next generation mean vector by
a weighted average function:

"
m@+th = Zwixi(g), (19)
i=1

where w; denotes the positive weight coefficient. In this work,
u =y /2 and w; = 1/u. Meanwhile, the selected individuals
and the change in the mean vector are used to update the
covariance matrix of the next generation:

"
CED =3 i — m@) i —m. (20)
i=1
After update the mean vector and covariance matrix, the pop-
ulation of the next generation are sampled according to a
multivariate Gaussian distribution as expressed in Eq. 17, and
can be expressed as:

x&FD ~ @D 4 N (0, aCTD). Q1)

This process is repeated from generation to generation
to imitate the natural selection process, until a pre-defined
threshold of fitness is reached. From this, the mean of the
final calculated generation serves as the best estimate of the
optimal parameter values.

IV. EXPERIMENTATION

The proposed artificial calf muscle activation model was
evaluated in this section using a moving vehicle as the envi-
ronment, by both biological and engineering approaches. The
biological approach compared the reconstructed value of the
calf muscle activation using the humanoid kinematics signals
through the proposed model with that recorded from the pos-
tural responses of human participants. The engineering simu-
lation approach applied the proposed model with the MTC to
arobotic ankle exoskeleton control. In particular, the artificial
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calf muscle activation model was used to calculate the muscle
activation for the MTC, and then the MTC produces appro-
priate muscle force to counteract the environmental perturba-
tion. All the data was processed with Matlab in this work.

A. BIOLOGICAL APPROACH

1) PARTICIPANTS

Five healthy participants from Wuhan University of Technol-
ogy, aged 22.8 £ 1.47 years, height 1.73 £ 0.063m, weight
65 £ 7.6kg (representing mean =+ standard divination), were
recruited in this study. All participants signed an informed
consent form before participating, and all collected data are
anonymised.

2) EXPERIMENTAL PROTOCOL

A Nokov motion capture system (produced by Beijing
Nokov Science & Technology Co., Ltd. China) with eight
charge-coupled device cameras was employed for the vehicle
kinematic data capturing. The camera system calibration and
three-dimensional target reconstruction were performed by
NK-cortex software (produced by Nokov, China). The vehicle
kinematics were derived from 4 markers attached on the
vehicle, and the participants kinematic were derived from
21 markers pasted on the joints of body-segments including
head-arms-trunk, thigh, and shank-foot segments. The vehi-
cle kinematic data were acquired at the frequency of 100Hz.

The calf includes two main muscles, i.e., the
Gastrocnemius (Gas) and Soleus (Sol). Muscle activation
from these two muscles was recorded using a surface
electromyography (sEmg) acquisition instrument (Datal.og
MWXS, Biometrics, Ladysmith, VA, USA) with pairs of
3.0cm surface electrodes spaced 2 ~ 4cm. The sampling
frequency of the sEmg was 1000Hz, with differential ampli-
fication (gain: 1000) and common-mode rejection (104dB).
Maximum Voluntary Contraction (MVC) tests were per-
formed before the experimentation and then used for muscle
activation signal normalization. The experimental setup is
shown in Fig. 3.

During the data collection process, the participants were
asked to maintain a standing position on a movable vehicle.
The participants were instructed to cross their arms at the
chest level, look straight ahead and react naturally while the
vehicle was moving. Note that the vehicle was only able
to move in the horizontal direction e.g. forward and back-
ward in this experiment. An example of the recorded vehicle
kinematic information (i.e., position, velocity, acceleration),
human body kinematic information (i.e., CoM position, CoM
velocity, CoM acceleration), and the calf muscle activation
(i.e., Gas and Sol) are shown in Fig. 3. This experiment
studies the participants’ responses to the vehicle backward
perturbations (the opposite direction that participants face),
and five trials were collected from each participant.

Each trial lasted 2000ms. The muscle activation was cal-
culated from the raw sEmg signals, where a high-pass filter
with a cutoff frequency of 25 Hz (fourth-order zero-lag
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FIGURE 3. The experimental protocol and an example of human upright
standing response.

Butterworth filter) was applied to remove the DC offsets, and
a low-pass filter with a cutoff frequency of 35 Hz (fourth-
order zero-lag Butterworth filter) was applied to rectify. The
process was adapted from the work reported in [4] where
more details are available. The horizontal displacements of
the participants’ CoM motion trajectories were calculated
from recorded kinematic data using a weighted sum of
the segmental centre of masses, as detailed in Sec. II-C.
In addition, the horizontal velocity and acceleration of the
CoM trajectories were obtained via the derivation and second
derivation of CoM displacement versus time, respectively.
The parameters of the proposed model for Gas and Sol were
optimised, as detailed in Sec. III-E, and the initial parameter
values were set as [G;, G,] = [0.1,0.01], [ky, &y, kq] =
[0.1, 1,0.1], [§, ] = [20, 50] in this experiment. The opti-
mised parameters settings are summarised in Figs. 4 and 5.

3) EXPERIMENTAL RESULTS

Taking one of the trails by participant A as an example,
the relationship between the ankle joint angle, the ankle joint
angular velocity, the recorded CoM displacement trajectories,
the recorded CoM velocity, the recorded CoM acceleration,
the activation of Gas muscle and the activation of Sol muscle
are illustrated in Fig. 6. Each trial was started by a participant
standing on a static vehicle with an upright position. When the
vehicle was triggered by a backward moving, the participant
leaned forward naturally (as indicated by the black solid line
in Fig. 6), and the ankle angle increased quickly along with
the ankle angular velocity, as shown in Figs. 6 (a) and (b).
It usually took about 300 ~ 400ms to terminate the leaning
forward phase and then changed to lean backward activities,
after around another 400ms, the body of the participant estab-
lished the equilibrium position. Compared with the upright
position, the peak ankle angle increased about 4° and the peak
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FIGURE 4. The variations in artificial calf muscle activation model
parameters for predicting Gas muscle activations. The abscissa values
A~E represent the results of multiple trials for participants A~E,
respectively.
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ankle angular velocity was 19°/s in the equilibrium position.
In addition, a rise of the ankle angle consequently led the
participant total CoM displacement also demonstrated,
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for participant A. Each colour denotes one trial in 2s, the black solid
straight lines denote the time point when the vehicle started to move.
(a): the ankle joint angle; (b): the ankle joint angular velocity; (c): the
recorded CoM displacement trajectories; (d): the recorded CoM velocity;
(e): the recorded CoM acceleration; (f): the activation of Gas muscle; and
(g): the activation of Sol muscle.
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FIGURE 7. The variations in VAF for predicting calf muscle activation.
Boxes delimit the middle 50% of the data, with the centre lines indicating
the median value, and whiskers delimit the full range of the VAF value.

A: Variations in the VAF value of reconstructed Gas activation led by the
conventional muscle stretch reflex model to recorded activation;

B: Variations in VAF value of Gas activation as reconstructed under the
proposed model; C:Variations in VAF value of reconstructed Sol led by the
conventional muscle stretch reflex control model; D: Variations in the VAF
value of reconstructed Sol under the proposed model.

as confirmed by Fig. 6 (c). Unlike the CoM displacement,
which was monotonically increasing, both CoM velocity and
the CoM acceleration experienced a fluctuation in the range
of 0 ~ 0.12m/s and —0.3 ~ 0.4m/s*, as demonstrated
in Figs. 6 (d) and (e), respectively. In terms of the Gas and Sol
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reconstructed with their respective optimal model parameters. A: Gas response activation led by the
conventional muscle stretch reflex model control; B: Gas response activation under the proposed artificial calf
muscle activation model; C: Sol response activation led by the conventional muscle stretch reflex model
control; D: Sol response activation under the proposed artificial calf muscle activation model.

activation, under the control of the nervous system, the mus-
cle activation of Gas and Sol got corresponding responses
to counteract perturbation-induced postural sway, as shown
in Figs. 6 (f) and (g). This phenomenon appeared in all five
participants’ trials. The reason for this response is that the
vehicle moving brought horizontal perturbation, and the par-
ticipants leaning let the humanoid gravity get rotation torque,
then calf muscle should produce appropriate rotation torque
to let the participant recover back to the equilibrium position.

The temporal patterns of calf muscle activation response
to the vehicle moving perturbation for all five participants
were reconstructed by both the proposed model and the
conventional muscle stretch reflex model, for a comparative
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study. The comparison results are illustrated in Fig.8, where
Figs. 8 - A & C indicate the response activation led by the
conventional muscle stretch reflex model and Figs. 8 - B & D
represent the response activation generated by the proposed
model. It is clear that the muscle activation reconstructed
by the proposed model in both Gas and Sol delivered better
performances than the muscle activation reconstructed by
the conventional muscle stretch reflex control model, as the
activation generated by the proposed model better matches
the ground truth, i.e. the human participants’ natural
response. For a better illustration, the Variance-Accounted-
For (VAF) values were calculated to assess the fitness of the
reconstructed muscle activation in reference to the ground
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stretch reflex model control subsystem contributions; and the purple solid lines demonstrate the CoM-feedback model subsystem contributions.

truth. The variation of the VAF and the mean of the VAF for
both the conventional muscle stretch reflex model and the
proposed model are shown in Fig. 7. In particular, the mean
of the VAF for both Gas and Sol reconstructed by the con-
ventional muscle stretch reflex control model is 82%, and the
mean of the VAF for both Gas and Sol led by the proposed
model is 92%.

In order to enable a direct comparison, a decomposition
of the reconstructed muscle activation was performed to cal-
culate the contributions of two muscles, i.e., Gas and Sol,
as plotted in Fig. 9. The figures show that there are around
100~200ms delays between the CoM-feedback model sub-
system contributions (demonstrated in purple solid line) and
muscle stretch reflex model subsystem (shown in yellow solid
line) for all five participants. The reason is that the kinematic
trajectories of body CoM variation are later than ankle angle
variation for the vehicle moving perturbations. The influence
on human standing upright balance control from the vehicle
moving perturbation is a bottom-up process and the position
of human CoM is higher than the ankle, which led to a
long transmission distance and period between the human
CoM and the perturbation from the moving vehicle than
that between the ankle and the perturbation of the vehicle.
Therefore, there is a delay of the effect of the perturbation on
human CoM in reference to that on the ankle.

The determined weight of two subsystems for the activa-
tion aggregation (w; and w,) are also illustrated in Fig. 10.
According to this figure, the weight values for the muscle
stretch reflex model subsystem (w;) was increased to the
peak (from 0.65 to 0.95) in an initial burst stage, and then
dramatically dropped down to the trough (0.3), which indi-
cates the major burst stage. Meanwhile, the weight values
for the CoM-feedback model subsystem (w,) was, on the
contrary, decreased to 0.3 in the initial burst stage, and then
correspondingly increased to 0.7 showing the major burst
stage. This means that the muscle stretch reflex model subsys-
tem predominated the contribution in the initial burst region,
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FIGURE 10. The weighting factors of contributing subsystems within the
time course of 2s for each participant as represented in different colours.
Sub-figure (a) represents the contribution of the muscle stretch reflex
subsystem, and Sub-figure (b) represents that of the CoM-feedback
model subsystem.

whereas the CoM-feedback model subsystem mainly works
during the major burst region.

B. ENGINEERING SIMULATION APPROACH

The proposed artificial calf muscle activation model and the
conventional muscle stretch reflex model were applied to a
robotic ankle exoskeleton mounted on a human model for a
comparative study, which was simulated using the OpenSim
platform. Briefly, OpenSim is an open-source platform for
modelling, simulating, and analysing musculoskeletal nerve
control systems [35]. In this experiment, the simulated human
model with a robotic ankle exoskeleton was applied to a
standing control problem on a moving vehicle to evaluate
the efficacy of the proposed artificial calf muscle activation
model.

1) EXPERIMENTAL PROTOCOL
A 12 segment, 29 degrees-of-freedom (DOF) generic
humanoid musculoskeletal model was adopted in this
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work [15], [36]. The humanoid musculoskeletal model on a
moving vehicle is illustrated in Fig. 11(a). The robotic ankle
exoskeleton comprises two parts connected by a rotary joint,
as shown in Fig. 11(b). The exoskeleton was mounted on the
ankle of the human model as shown in Fig. 11(c) to provide
movement assistance for the wearer.

FIGURE 11. The simulated human model and the robotic ankle
exoskeleton. (a) The humanoid musculoskeletal model. (b) The robotic
ankle exoskeleton. (c) The exoskeleton mounted on the human model.

The parameters of the humanoid musculoskeletal module
are listed in Table 1, where ‘CoM’ represents the vertical
centre of the human body mass.

TABLE 1. Parameters of the human model.

Human model Weight(kg) Height(m)
Participant 75 1.75 1.09

CoM vertical(m)

In this simulation, the humanoid musculoskeletal model
stood on a moving vehicle as shown in Fig. 11 (c) to perform
upright standing control using the proposed artificial calf
muscle activation model, where the vehicle was driven by an
external force to simulate external disturbance. In particular,
the ankle exoskeleton was driven by two calf muscle-tendon
complex (MTC) models, i.e., the Gas MTC and Sol MTC,
corresponding to the two calf muscles in the human ankle.
The MTC model calculates the MTC force Fyrc according
to the muscle activation, muscle spindle length [, and its
contraction velocity v,,, as expressed below:

Fyrc = aF™ fi(l)f(Vm), (22)

where a denotes the MTC muscle activation, F™ is the
maximum MTC force, f;(l,,,) represents the force-length rela-
tionship function, f,(v,,) is the force-velocity relationship
function of the Hill-type muscle model with more details can
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be found in [15]. The muscle spindle length /,, and its con-
traction velocity v,, can be calculated using the captured ankle
angle, as detailed in Sec. III-B. Therefore, the only required
parameter in MTC is the muscle activation; this was provided
by the artificial calf muscle activation model proposed herein.
To facilitate a comparative study, the conventional muscle
stretch reflex model was also applied to provide the required
muscle activation.

In this experiment, the vehicle was driven to move back-
ward (the opposite direction of human faces) horizontally.
The displacement was ranged between 0 and 0.15m as shown
in Fig. 12(a); the velocity was ranged between 0 and 0.5m/s
as shown in Fig. 12(b); the accelerations is ranged between
—1.7m/s* and —1.7m/s* as shown in Fig. 12(c), as a simu-
lation to usual vehicle movements in people’s living environ-
ment; and the duration of vehicle moving is between 300ms
and 900ms time points, as shown in Fig. 12(a)~(c). The
vehicle acceleration effectively produced a passive force to
disturb the human upright balance in this experiment, and
the proposed artificial calf muscle activation model would
produce corresponding active force for the human model to
balance the effect of the negative disturbance.
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2) EXPERIMENTAL RESULTS
The results based on the proposed artificial calf muscle
activation model and the conventional muscle stretch reflex
model, including human body tilt angle, Gas MTC and Sol
MTC muscle activation, and the corresponding force, are
illustrated in Fig. 12 (d)~(h). Based on the muscle stretch
reflex model, after the vehicle was imposed the force at time
point 300ms, the human body leaned forward up to about
4.5° and then leaned backward to about 1.5°; the body was
gradually stabilised at around 2.0°. In contrast, when the
artificial calf muscle activation model control was applied,
the human body leaned forward to about 4.0°, and then lean
backward to about 1.9°, which is very close to the natural
stabilised point around 2.0°. The change of the humanoid
gravity led to some rotation torque; as a result, the MTC
muscle activation based on both approaches was increased to
produce corresponding MTC force to drive the robotic ankle
exoskeleton to keep the body in the upright standing position.
Compared to the results led by the conventional muscle
stretch reflex control, the leaned angle under the artificial
calf muscle activation model control, in reference to the
equilibrium position, is smaller, and the regulating process
to equilibrium position is shorter. The reason is that the
CoM-feedback subsystem in artificial calf muscle activation
model control provided compensation for the MTC muscle
activation. In specific, the calf muscle activation peak led by
artificial calf muscle activation model control is larger than
the peak under the conventional muscle stretch reflex con-
trol, as evidenced by Figs. 12 (e) and (g). Correspondingly,
the MTC force peak is also larger under the artificial calf mus-
cle activation model control, as shown in Figs. 12 (f) and (h).
This suggests that the proposed artificial calf muscle acti-
vation model outperforms the conventional muscle stretch
reflex model in controlling robotic ankle exoskeleton to assist
human upright standing control. Noticing that exoskeleton
may also be driven by the trajectories of joints, such as the
work reported in [37], one piece of future work is to perform a
comparative study between the two groups of approaches and
investigate the combination of the two approaches for better
performance.

V. CONCLUSION

This study proposed an artificial calf muscle activation model
that provides a framework for simulating calf muscle acti-
vation during human upright standing control on a moving
vehicle. The artificial calf muscle activation model is com-
prised by the muscle stretch reflex control model served as
the LCNS and the CoM-based feedback model simulating the
natural ACNS in the natural human calf. The proposed model
was applied to a robotic ankle exoskeleton to assist wear-
ers’ movements. The results demonstrated that the calf mus-
cle activation generated by natural mechanisms for human
upright balance control on a moving vehicle can be predicted
by the proposed artificial calf muscle activation model. The
application of the proposed model was validated using a
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simulated exoskeleton in this work; it is interesting to apply
the model to physical robotic exoskeleton control for more
systematic evaluation and analysis.
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