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Abstract
The transmission and storage of global navigation satellite system (GNSS) data places very 
high demands on mobile networks and centralised data processing systems. GNSS applica-
tions including community based navigation and fleet management require GNSS data to 
be transmitted from a vehicle to a centralised system and then processed by a map-matching 
algorithm to determine the location of a vehicle within a road segment. Various data com-
pression techniques have been developed to reduce the volume of data transmitted. There 
is also an independent literature relating to map-matching algorithms. However, no previ-
ous research has integrated data compression with a map-matching algorithm that accepts 
compressed data as an input without the need for decompression. This paper develops a 
novel GNSS data reduction algorithm with deterministic error bounds, which was seam-
less integrated with a specifically designed map-matching algorithm. The approach signifi-
cantly reduces the volume of GNSS data communicated and improves the performance of 
the map-matching algorithm. The data compression extracts critical points in the trajectory 
and velocity–time curve of a vehicle. During the process of selecting critical points, the 
error of restoring vehicle trajectories and velocity–time curves are used as parameters to 
control the number of critical points selected. By setting different error bound values prior 
to the execution of the algorithm, the accuracy and volume of reduced data is controlled 
precisely. The compressed GNSS data, particularly the critical points selected from the 
vehicle’s trajectory is directly input to the map-matching algorithm without the need for 
decompression. An experiment indicated that the data reduction algorithm is very effective 
in reducing data volume. This research will be useful in many fields including community 
driven navigation and fleet management.
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1  Introduction

Big data business analytics can improve the visibility, flexibility and integration of global 
supply chains and logistics processes, whilst effectively managing demand volatility and 
cost fluctuations (Genpact 2015; Wang et al. 2016). Big data arises from the widespread 
adoption of technologies such as GNSS, cell phones, sensors, RFID, social media, video 
and photos (Wamba et al. 2015). It is characterised by volume, variety and velocity (the 
‘Three Vs’). There is a tendency for organisations to store vast volumes of data that is 
too large to be captured, stored or analysed by typical databases (Manyika et  al. 2011). 
There is a variety—data often does not have a fixed structure that is sufficiently ordered for 
immediate processing. Velocity refers to the dynamic creation of streams of data that may 
need to be processed in real time (Emani et al. 2015). The major challenge arising from 
big data is the huge volume of data that leads to the difficulties in data storage, transmis-
sion, and processing. Data reduction involves finding useful features to reduce the effective 
number of variables under consideration, whilst still achieving the goal of the task (Fayyad 
et al. 1996). Data reduction may be either: lossless, where no information is lost—the com-
pression identifies and eliminates redundancy; or lossy, where some information is lost 
(Pujar and Kadlaskar 2010). Data reduction may be one of the most effective approaches to 
resolve difficulties associated with big data since it can reduce the data volume whilst pre-
serving sufficient accuracy to achieve the intended purpose. In this study, data reduction for 
global navigation satellite system (GNSS) data, which is a very common type of big data 
was investigated.

The GNSSs currently in operation include the GPS, GLONASS, Galileo, Beidou and 
other regional systems (European Space Agency 2011). GPS/GNSS has become very 
affordable and reached the mass market through its use in mobile phones, car navigation, 
etc. (Stempfhuber and Buchholz 2011). As a result, the amount of GNSS data generated 
by these systems has become enormous which is causing great difficulties in data transfer, 
storage and processing. GNSS navigation systems require a GNSS receiver, a digital map 
and software that can match the user’s position with a location on the digital map (Green-
feld 2002). Some approaches match the user’s location to the nearest street node, whereas 
others match the location to a specific location on the travelled street (Greenfeld 2002). 
Quddus (2006) classified map-matching algorithms into three groups: (i) geometric, which 
consider the shape of the road centre lines (neglecting connections). These algorithms may 
use point-to-point, point-to-curve or curve-to-curve matching; (ii) topological, which takes 
into account the connectivity of road segments and road attributes such as width and turn-
ing restrictions; (iii) advanced, which use statistical, mathematical or artificial intelligence 
approaches. Map-matching is not an easy task as large volumes of data need to be pro-
cessed in real time.

This research proposes a novel approach that significantly reduces the volume of 
GNSS data transmitted and processed by the map-matching algorithm. The reduced data 
is a direct input to a new map-matching algorithm that processes the reduced data with-
out decompression, thus reducing the volume of data transmitted and saving processing 
time on the centralised server. There are many possible applications of our research, for 
example:

(1)	 community-based traffic and navigation systems such as WAZE (http://www.waze.
com), a smart phone app that allows drivers to share real-time traffic and road informa-
tion, allowing users to save time and avoid congestion. In this sort of navigation system, 

http://www.waze.com
http://www.waze.com
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GNSS technology is an important way to collect real-time link travel time between 
nodes from WAZE users; the collected real-time link travel time is then shared with 
other users. Travel time estimation is difficult in an urban environment because travel 
times are inherently uncertain due to fluctuations in traffic volumes, stochastic arriv-
als at junctions, traffic signals etc. (Zheng and Van Zuylen 2013). The collection of 
link travel time involves the collection of each user’s vehicle trajectory, velocity, and 
subsequent processing by a map-matching algorithm. WAZE has 90 million active 
users located throughout the world (https​://www.waze.com/brand​s/drive​rs/). The com-
putation of individual WAZE user’s link travel time requires appropriate data to be 
transferred, stored and processed by map-matching algorithms in real time. This poses 
significant challenges in terms of communication, storage and processing;

(2)	 vehicle tracking for large fleets online e-retailing companies such as AMAZON or 
jd.com in China need to deliver a large volume of products from their warehouses to 
customers every day over a very large geographical areas. They may have tens of thou-
sands of vehicles in transit. To track the vehicles with GNSS, information including the 
longitude, latitude and velocity of each vehicle needs to be transmitted to a centralised 
system in real time. A huge amount of data would be generated if data is transmitted 
at a frequency of 1, which is commonly used for high frequency GNSS applications 
(Quddus and Washington 2015). The centralised system would then have to process the 
data using map-matching algorithms to identify the real-time locations of the vehicles. 
Furthermore, if a historical record was required for answering queries or for auditing 
purposes it would be necessary to store the original GNSS data, as well as the output 
of map-matching algorithm, which would require a massive amount of data storage. It 
would be very desirable to reduce unnecessary data transmission and storage for the 
sake of cost-effectiveness.

Reducing the sampling frequency, for example, from 1 to 0.5  Hz could reduce the 
amount of data transmitted, processed and stored. It would be possible to adapt current 
map-matching methods to use such compressed GNSS data if the sample interval was not 
too long; however, one definite disadvantage could be that the error may not have deter-
ministic bounds (Cao et al. 2006) The error would also vary for different GNSS datasets. If 
the sampling frequency was reduced the error would be quite different for a vehicle travel-
ling at constant velocity compared to one accelerating or decelerating frequently. A field 
experiment carried out by Quiroga and Bullock (1998) indicated that with a speed varia-
tion of 5%, the sampling period for a freeway that they observed needed to be around 4 s, 
but only 2 s for another highway. Another disadvantage is that crucial GNSS information 
such as the turning points of vehicles would be more likely to be lost with reduced sam-
pling, which could be problematic for map-matching algorithms.

In light of the above considerations, it is important that data compression methods 
are perfectly linked with an appropriate map-matching algorithm. Although various 
generic data compression methods, such as wavelet compression (Hilton et  al. 1994) 
have been well developed and widely used for reducing image, video and audio data, 
their suitability for GNSS data in a navigation system is poor due to the compressed 
data for being inappropriate for map-matching. This is because these data compression 
approaches have not considered the requirements of map-matching algorithms. Even if 
such methods could be used for GNSS data, a decompression process would be required 
to restore the GNSS data to its original frequency of 1 Hz in order to satisfy the fre-
quency requirement of current map-matching algorithms (Quddus et al. 2007). In other 

https://www.waze.com/brands/drivers/
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words, the GNSS data would first need to be compressed by in-vehicle equipment and 
then decompressed to 1 Hz GNSS data by a centralised system for processing by a map-
matching algorithm. A disadvantage of this approach would be that the decompression 
procedure would require considerable CPU time.

Many studies relating to GNSS data compression and map-matching have been 
reported in the literature (Fitriya et al. 2017; Quddus et al. 2007). However, the work 
relating to GNSS data compression does not consider map-matching and vice versa. In 
the domain of GNSS data reduction, Cao et al. (2006) first proposed a lossy compres-
sion method for spatio-temporal data reduction with deterministic error bounds. Their 
study demonstrated significant savings in storage. The method begins by formulating the 
ith GNSS data point represented as 

(
xi, yi, ti

)
 . Thus, a vehicle trajectory can be viewed 

as a function of three variables: coordinates x, y and time t. Then, the vehicle trajectory 
can be simplified by the Douglas–Peucker line simplification algorithm (Douglas and 
Peucker 1973). With such a method some GNSS data points crucial for map-matching, 
such as a vehicle’s turning points, are not intentionally identified or preserved. As a 
consequence, if the compressed data were to be used as an input to a map-matching 
algorithm, a decompression method would probably be needed as is the case for other 
generic data compression methods. Gudmundsson et al. (2009) improved the approach 
developed by Cao et  al. (2006) by reducing the computational time required by the 
data reduction algorithm whilst increasing the number of queries that the compressed 
GNSS data could support. Both Gudmundsson et al. (2009) and Cao et al. (2006) used 
the Douglas–Peucker algorithm directly or in modified form with worst case O(NlogN) 
time complexity improving to O

(
N2

)
 for a straightforward implementation (Saalfeld 

1999). Chen et  al. (2012) devised a bottom–up multiresolution algorithm with poly-
nomial time complexity O(N) . Cao and Li (2017) proposed a Directed acyclic graph 
based Online Trajectory Simplification (DOTS) which has better performance than the 
Douglas–Peucker algorithm in terms of time complexity and reduced error. The time 
complexity for DOTS is O(N2/M) with a cascaded version which has time complexity of 
O(N). For a comprehensive review of trajectory simplification methods refer to Zhang 
et al. (2018). There has been no previous research that has considered map-matching in 
the GNSS data reduction process. This paper addresses this research gap.

There have been many studies related to map-matching including: Zhao (1997), Pyo 
et  al. (2001), Shin and Sung (2001), Taylor et  al. (2001), Greenfeld (2002), Gustafsson 
et al. (2002), Cui and Ge (2003), Ochieng et al. (2003), Yang et al. (2003), Fu et al. (2004), 
Syed and Cannon (2004), Blazquez and Vonderohe (2005), Chen et  al. (2005), El Naj-
jar and Bonnifait (2005), Quddus et al. (2005, 2006), Zhou and Golledge (2006), Velaga 
et al. (2009), Ochieng et al. (2003), Abdallah et al. (2011), Bierlaire et al. (2013), Li et al. 
(2013), Knapen et al. (2016) and Knapen et al. (2018). Quddus et al. (2007) pointed out 
that sampling frequency (termed ‘continuity’) should be chosen as an important perfor-
mance parameter. However, most of the current algorithms have not taken it into consid-
eration. None of the map-matching algorithms have considered the use of compressed 
GNSS data or simplified vehicle trajectories as an input. Thus, there is a no research that 
has considered the transmission, storage and map-matching in an integrated way. This 
paper addresses this research gap to provide an approach that: (1) reduces the volume of 
GNSS data that needs to be transmitted to a centralised system; (2) ensures that the data 
received at centralised system can be used as an input for a map-matching without the need 
of data decompression or restoration; (3) enhances the performance of map-matching in 
terms of running speed and accuracy, whilst simultaneously minimising computing time 
on the server. The development of an integrated approach that compresses GNSS data 
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which is directly input into a map-matching algorithm without decompression is a novel 
contribution.

The work flow used by most current navigation or tracking systems is shown in Fig. 1a. 
There is no data compression so the volume of data transmitted and processed by the cen-
tralised system is relatively high. Figure 1b illustrates the work flow where generic data 
compression methods or current GNSS data compression methods are used. In this situa-
tion, data decompression is required on the centralised system prior to map-matching. The 
proposed approach, which eliminates decompression is shown in Fig. 1c.

The paper is organised as follows. In the Sect.  2, the data compression method is 
explained in detail. Then, the development of a specifically designed map-matching algo-
rithm that utilises compressed data in map-matching is outlined. Finally, a field experiment 
is reported that illustrates the efficiency of the data compression method.

2 � Data compression and extraction of critical point

This section proposes a new GNSS data compression method. GNSS data is compressed 
by selecting critical points on velocity–time curve and spatial vehicle trajectory. Critical 
points can be defined as the points that have significant impact on the compression error 
and the performance of map-matching. In other words, two criteria will be considered 
when selecting critical points among all the GNSS fixings; one is that the average error is 
limited to a pre-determined bound and the other is that the data compression algorithm can 
facilitate map-matching or enhance its performance.

In general, each GNSS positioning fixing comprises two kinds of important informa-
tion: time-varying spatial location and velocity. Although the velocity information of 
a vehicle can be inferred with time-varying location information, it cannot be viewed as 
redundant information because the velocity is detected based on Doppler Effect, which is 
more accurate than when inferred from coordinates and time. Therefore, spatial and veloc-
ity information will be considered respectively in the study. This part will focus on: (i) the 
determination of critical points in velocity–time curves, which are termed velocity critical 

GPS

Data Compression

Data Transmission

Map-Matching

GPS

Data Compression

Data Transmission

Decompression

Map-Matching

GPS

Data Transmission

Map-Matching

(a) No data compression used (b) Generic data compression used (c) The method proposed
in the paper 

Fig. 1   Data compression and map-matching
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points in this study; and (ii) the criteria used for determining the critical points in a spatial 
curve termed critical spatial points.

2.1 � Determination of velocity critical points

Normally, a vehicle’s velocity is detected every second by a GNSS receiver, which creates 
an original velocity–time curve. As mentioned before, the transmission of all the data at 
such a frequency to a computing centre via wireless communication network is not cost-
effective; therefore our task is to reduce the communication volume as much as possible 
within pre-defined error bounds. More specifically, it is necessary to select some of the 
GNSS points as critical points that can approximate the original time–velocity curve; only 
these selected critical points will be transmitted to computing centre.

In the study, the sampling error is evaluated based on the difference the average speeds 
calculated by the original GNSS data and the reduced GNSS data. In order to formulate the 
error, the following variables are defined. Let i denotes the ith GNSS fixings counted from 
the previous velocity critical point, thus i = 1 denotes the first GNSS fixing, which is also 
the critical point determined by the previous step. Assume that the Nth GNSS fixing is the 
next critical point to be extracted, there would be N-2 original GNSS fixings that would 
not be sent to computing centre. In order to distinguish critical points and inferred points 
based on the critical points from the original GNSS data points, an apostrophe will be used 
as a superscript for variables relating to critical points. Let v′

1
 denote the velocity of the 

previous critical point, v′
N

 denote the velocity of the next critical point to be determined, 
vi denotes the velocity of ith original GNSS fixing, and v′

i
 denotes the inferred velocity of 

GNSS fixing based on the two consecutive critical points Fig. 2 illustrates the sampling 
of the velocity time curve, for fixings 1 to N. It should be noted that v�

1
= v1 and v�

N
= vN 

in this case because GNSS fixings 1 and N are assumed to be velocity critical points, but 
v�
i
≠ vi(i ≠ 1,N) because the ith (i ≠ 1 or N) GNSS fixing are not a critical points. There-

fore, the sampling error can be calculated as follows:

For the sake of simplicity, v′
i
 is inferred using a linear interpolation method. It can be deter-

mined as follows.

(1)�v =

∑N

i=1

���v�i − vi
���

N

Fig. 2   Sampling of time–veloc-
ity curve
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If an arbitrary GNSS fixing is selected as a velocity critical point, according to the above 
equations, the sampling error associated with the selection can be calculated with the follow-
ing equation:

Suppose that the allowed maximum sampling error is �◦

v
 , then the criteria to decide if a 

GNSS fixing is a critical point can be formulated as follows:

The above formulation implies that a GNSS fixing should be selected as a velocity critical 
point if the sampling error caused by not sending the GNSS fixings from previous velocity 
critical point to current point exceeds the pre-defined error bounds.

2.2 � Determination of spatial critical points

The representation of spatial trajectory mainly involves four types of data: longitude, latitude, 
heading and time, which can be denoted with (x, y, �, t) respectively. These four variables 
contain almost all the crucial information required by a map-matching algorithm, therefore 
this data should be kept. Spatial critical points are selected for the purpose of map-matching, 
therefore, the data compression algorithm should be able to identify these GNSS fixings that 
are crucial for map-matching among all the original GNSS fixings. Furthermore, it also needs 
to ensure the sampling error does not to exceed the predefined error bounds, likewise for the 
determination of velocity critical points. As a result, two categories of GNSS positioning fix-
ings will be selected as spatial critical points, one for the purpose of map-matching, the other 
for limiting errors.

For the purpose of map-matching, three categories of GNSS fixings need to be iden-
tified as critical points by the algorithm proposed in this study. The first category contains 
GNSS fixings where the heading of vehicle changes dramatically. These GNSS fixings are 
normally found at places where a vehicle turns right or left. To identify these GNSS fixings, 
the concept of approximate curvature is introduced as follows. Assume that 

(
x1, y1, �1, t1

)
 and (

x2, y2, �2, t2
)
 denote the longitude, latitude and heading of two consecutive original GNSS 

fixings respectively. Then, approximate curvature k at point 
(
x2, y2, �2, t2

)
 is defined as follows.

For the sake of simplicity, in the above formulation, the linear distance between two GNSS 
points is used to calculate approximate curvature instead of arc length. If the approximate cur-
vature of an arbitrary GNSS fixing k is greater than predefined bound k◦

s
 , then the GNSS fixing 

will be selected as a spatial critical point.

(2)v�
i
= v�

1
+

v�
N
− v�

1

N − 1
⋅ (i − 1), (i = 1⋯N)

(3)�v =

∑N

i=1

���v�1 +
v�
N
−v�

1

N−1
⋅ (i − 1) − vi

���
N

(4)𝜀v =

∑N

i=1

���v�1 +
v�
N
−v�

1

N−1
⋅ (i − 1) − vi

���
N

> 𝜀
◦

v

(5)k =
||�2 − �1

||√(
x2 − x1

)2
+
(
y2 − y1

)2
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The second category contains the first GNSS fixing found after a time period with signal 
loss. In an urban area, GNSS receivers often lose the signal, which makes it difficult for the 
map-matching procedure to identify the correct link. Therefore, keeping the first found GNSS 
location as a spatial critical point is very important to improve the performance of map-match-
ing algorithm.

The third category includes those GNSS fixings falling in some special regions where there 
is a high possibility of the map-matching algorithm failing to identify the correct road seg-
ment, e.g. fly-over regions, Y-junctions and those areas with a high-density road network.

So far, for most applications, critical GNSS fixings determined with above procedure can 
satisfy the accuracy requirement by adjusting the threshold level k◦

s
 . However, it has a defi-

ciency that the average error of data compression is not bounded (see Fig. 3). Suppose that 
a vehicle travels in a circle with a radius equal to or greater than 1∕k◦

s
 , all the GNSS fixings 

except the start and end points on the trajectory will be ignored because approximate curva-
ture is within the allowed scope. In practice, however, the approximate curvature is normally 
set to a small value, and the radius of such a circle would be very large, therefore, the probabil-
ity of a vehicle travelling on such a circle for a long time is very low.

However, some practical applications require strictly keeping the error within the prede-
fined bounds. For this purpose, another additional condition is proposed. Suppose that 

(
x′
1
, y′

1

)
 

denotes the most recent critical point. Similar to the above notation method, 
(
x′
1
, y′

1

)
 has the 

same value as 
(
x1, y1

)
 . 
(
xn, yn

)
 denotes the nth GNSS fixing counted from 

(
x′
1
, y′

1

)
 , and 

(
xi, yi

)
 

denotes the ith arbitrary GNSS fixing (1 < i < n). If 
(
xn, yn

)
 satisfy the following condition, it 

should be selected as a spatial feature point.

The above formulation implies that if the average distance from 
(
xi, yi

)
(1 < i < n) to the 

line specified by 
(
x′
1
, y′

1

)
 and 

(
xn, yn

)
 is greater than the predefined threshold value d◦ , then (

xn, yn
)
 should be selected as a spatial critical point; otherwise not.

(6)d =
1

n − 2

n−1∑
i=2

|||
(
xn − x1

)(
y1 − yi

)
−
(
x1 − xi

)(
yn − y1

)|||√(
xn − x1

)2
+
(
yn − y1

)2 > d◦

Fig. 3   The worst situation in 
selecting spatial critical points

y
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In line with the above discussion, the criteria for selecting a spatial critical point is that 
either k > k > k◦

s
 or d > d◦.

3 � Map‑matching with compressed data

The above discussion provides an approach to compress GNSS fixings. The advantage of 
the proposed data compression method over others is that there is no need for decompres-
sion when applied to a specifically designed map-matching algorithm proposed below.

3.1 � Definition of error/confidence area

Due to errors arising from both GNSS and map databases, previous map-matching algo-
rithms generally define an error ellipse which contains a set of candidate links on which 
the vehicle might be travelling. At present, however, we cannot employ the same method to 
define the error ellipse for each critical point one-by-one. This is because, in our case, the 
distance between two consecutive critical points may be greater than the radius of the error 
eclipse, and we consequently need to generate all the possible travel routes that connect the 
two consecutive sets of candidate links. Because there may be many possible travel routes, 
this imposes difficulties when attempting to identify the only correct route that connects 
the two consecutive critical spatial points.

In light of above discussion, we propose to define a rectangular error area with two 
consecutive critical spatial points. This enables us to form candidate routes in a relatively 
small area, and facilitate the identification of the correct route for the two consecutive crit-
ical spatial points by reducing the number of candidate routes. The reason why we can 
define the error area in such a way is related to the way we select critical points and the 
characteristic of errors arising from GNSS and the digitalised map.

As discussed above, the main criterion for selecting critical points on a spatial trajectory 
is an approximate curvature, which can guarantee that the heading direction of a vehicle 
between two consecutive spatial critical points does not change dramatically. Therefore, the 
vehicle trajectory between any two spatial critical points can be assumed to be a straight 
line. If all the GNSS points between two continuous critical points use the same error vari-
ance–covariance matrix to define an error ellipse, then the boundary of the error area will 
be an external parallelogram with two borders parallel with the line formed by the two crit-
ical points (See Fig. 4). In practice, for the sake of simplicity, the map-matching algorithm 
often searches candidate links within a certain distance; it means that the error ellipse is 
assumed to be a circle with a large enough radius. Under such circumstances, the error 
area illustrated in Fig. 5 can be defined as a rectangle. In the figure, P1 and P2 are critical 
points with coordinates 

(
x1, y1

)
 and 

(
x2, y2

)
 respectively, which thus forms a vector ��������⃗P1P2 . 

Let l denote the length of ��������⃗P1P2 , ϵ the radius of error circus and α the angle between ��������⃗P1P2 
and x-axis. The vertexes of the rectangular error area are 1, 2, 3, 4 with coordinates 

(
x′
1
, y′

1

)
 , (

x′
2
, y′

2

)
 , 
(
x′
3
, y′

3

)
 , 
(
x′
4
, y′

4

)
 , respectively. According to the theory of computational geometry, 

the coordinates of the four vertexes are given as follows:

(7)
⎡⎢⎢⎣

x�
1
x�
2
x�
3
x�
4

y�
1
y�
2
y�
3
y�
4

1 1 1 1

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

1 0 x1
0 1 y1
0 0 1

⎤
⎥⎥⎦

⎡⎢⎢⎣

cos � − sin � 0

sin � cos � 0

0 0 1

⎤
⎥⎥⎦

⎡⎢⎢⎣

−� l + � l + � −�

� � −� −�

1 1 1 1

⎤⎥⎥⎦
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3.2 � Identification of correct route

Once the error area has been established, all the candidate links therein could be identified 
by judging whether or not the coordinates of the nodes of each link fall within the error area. 
Thus, various candidate routes are formed by those candidate links. The analysis in this sec-
tion demonstrates how to choose the most likely route based on the following steps:

(1)	 Filter the candidate links according to the heading of candidate links.

Each link can be described as a vector. For example, consider the link starting from 
(x1, y1) ending at 

(
x2, y2

)
 , it can be expressed by the vector ⇀

p =
(
a1, a2

)
 where a1 = x2 − x1 , 

a2 = y2 − y1 . Let two vectors ⇀

p1 =
(
a1, a2

)
 , ⇀

p2 =
(
b1, b2

)
 denote the vectors for a candidate 

link and current segment of vehicle trajectory under consideration, respectively. The discrep-
ancy in the directions of the two can be described by the following formula:

(8)SA =

��������
⎛⎜⎜⎜⎝

a1�
a2
1
+ a2

2

−
b1�
b2
1
+ b2

2

⎞⎟⎟⎟⎠

2

+

⎛⎜⎜⎜⎝

a2�
a2
1
+ a2

2

−
b2�
b2
1
+ b2

2

⎞⎟⎟⎟⎠

2

Fig. 4   Error area formed by 
ellipse between two critical 
spatial points

Critical 

Real Point

Fig. 5   Error area formed with 
two critical points

2
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The most likely link should be chosen from the links whose heading is consistent with the 
vehicle’s trajectory, which means the following condition must be satisfied:

where S◦ is the predefined threshold value of discrepancy in the vector’s direction. The 
determination of S◦ is subject to both the sampling error bound relating to spatial critical 
points, k◦ , and the error relating to digitalised map. The discrepancy between the two nor-

malised vectors with an angle, k◦ is: 
√(

cos2 k◦ − 1
)2

+ sin
2 k◦ . Therefore, S◦ should be no 

less than 
√(

cos2 k◦ − 1
)2

+ sin
2 k◦.

This step filters the candidate links according to the heading of candidate links and thus the 
scope of the candidate links considered is narrowed.

(2)	 Identification of the start and end links among candidate links

To identify the start and end links of the vehicle trajectory between two continuous critical 
points, two constraint conditions must be satisfied. First, the start link must be connected with 
the matched route; secondly, the distance from the critical points to the possible start and end 
link should be within the pre-defined scope. Note that the start link and end link could be the 
same.

(3)	 Formation of candidate routes

When the start and the end link of the candidate route is determined, the following step 
selects links among the set of candidate links to form one or several candidate routes. In the 
implementation of the algorithm, the formation of each candidate route should start from the 
start link, and the search direction should be consistent with the heading direction of the vehi-
cle. However, a minor deviation should be allowed because system errors and compression 
error must be considered. The search stops whenever no more links can be found in the set of 
candidate links, or the next link falls into the set of end links. Note that end link and start link 
can be the same link.

(4)	 Filtering of candidate routes

Three criteria can be used to filter the candidate routes obtained in the previous step, to 
determine the most likely route for the vehicle’s trajectory. The first one is that length of a 
candidate route within the error area should be similar to that of the vehicle trajectory between 
the two critical points. The second criterion is that candidate route should be very close to the 
vehicle’s trajectory. Generally, the closer the candidate route is to the vehicle’s trajectory, the 
more likely it is that the candidate route is correct. The third criterion is that the selected route 
should be linked with the matched route.

The second criteria mentioned above involves computing the distance from candidate 
routes to the segment of vehicle’s trajectory between the current pair of spatial critical points. 
The distance from a critical point 

(
xi, yi

)
 to the candidate route with start node 

(
xA
i
, yA

i

)
 and end 

node 
(
xB
i
, yB

i

)
 is calculated based on the following formulation:

(9)SA < S◦
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For each segment of a vehicle’s trajectory between two spatial critical points, there 
might be some other critical points used to transmit the velocity curve. All these critical 
points should be used to measure the distance between candidate routes and the vehicle’s 
trajectory, and the average of these distances should be used as the distance between the 
candidate link and the segment of vehicle trajectory.

3.3 � Determination of the vehicle location on the selected link

So far, we have determined the most likely candidate routes with each consisting of a num-
ber of links for the trajectory between two continuous critical points based on the previ-
ous steps. The following step determines the link on which the vehicle is running and the 
physical location of the vehicle on that link, which is also the final aim of a general map-
matching algorithm.

In order to reduce the error during the procedure, a vehicle’s trajectory will be trans-
lated, rotated and scaled segment by segment. Suppose that vector ⇀

AB has a start point 
A
(
xA, yA

)
 at the beginning of the start link and the end point B

(
xB, yB

)
 of the end link on 

the route identified in Sect. 3.2. Assume that P1

(
x1, y1

)
 and P2

(
x2, y2

)
 is the link to point B, 

then P1 and P2 form another vector 
⇀

P1P2 . Let ∆α denote the angle between ⇀

AB and 
⇀

P1P2 , 
and λ = 

||||
⇀

AB
||||∕

⇀||P1P2|| , then all critical points (x, y) between 
⇀

P1P2 , inclusive, should be trans-

formed with the following formula:

The number of links that comprise the route might be greater than one because the vehi-
cle might be travelling on different links between two spatial critical points. Under this sit-
uation, the vehicle trajectory should be split at some proper dividing point where a vehicle 
is travelling to another link. These dividing points are determined by constructing a per-
pendicular line to a vehicle’s trajectory through the nodes of the link, and the perpendicular 
foot of the vehicle trajectory is the dividing point.

In terms of the final results, there are two choices, either of which can be taken 
based on the purpose of the application. For some applications, such as the estima-
tion of link travel time, the final result needed is only to identify the proper link for 
each critical point. So far, the link each critical point belongs to has been determined, 
thus the link travel time can be estimated by averaging the velocity of each critical 
point corresponding to the link. For some other applications, it might be necessary 
to identify the link and the correct coordinates for a total set of GNSS data with a 

(10)d =
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frequency of 1 Hz like most map-matching algorithms do. In this situation, we should 
decompress the GNSS data first; each decompressed GNSS data point has a link based 
on the dividing points. Then, a perpendicular line to the corresponding link can be 
constructed from each new decompressed GNSS data point. The coordinates of the 
perpendicular foot is the corrected coordinate for the corresponding GNSS data point. 
A set of new GNSS data points with corrected coordinates is thus obtained. Please 
note the above decompression is required after map-matching for some special applica-
tions. This is an optional process. As a contrast, the current map-matching reported in 
the literature require data decompression before the start of map-matching and it is a 
necessary process.

4 � Experiments

The above algorithm was tested using a GNSS data set collected in Beijing, which con-
tains 44,000 s of GNSS data.

A segment of velocity curve with critical points is shown in Fig.  6. The curve in 
the figure is drawn based on 1 Hz GNSS data, the dotted points in the figure are criti-
cal points determined based on sampling strategy of velocity proposed as above. The 
allowed error was set as 0.5 m/s, and the sampling rate was 6.6%.

In Fig. 7, a segment of vehicle trajectory with spatial critical points is shown. There 
were 5082 GNSS data points originally; however, only 182 spatial critical points 
among them are needed to keep the curve when minor error is allowed. The sampling 
rate for this curve was about 3.5%.

It can be observed that only about 10.1% of GNSS data was needed to be trans-
mitted, when minor error was allowed using the proposed sampling strategy. In a 
real application, the sampling algorithm can be implemented through in-vehicle 
GNSS equipment. The potential benefits for the algorithm to reduce data communi-
cation is very large, which is beneficial when the data is transmitted via a wireless 

Fig. 6   A segment of velocity 
curve with velocity critical points

Fig. 7   A segment of vehicle 
trajectory with spatial critical 
points
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communications system. Furthermore, the compressed GNSS data was easily used in 
the map-matching without the need of decompression.

5 � Conclusion and further study

Various data compression techniques have been developed to reduce the volume of data 
transmitted. There is also an independent literature relating to map-matching algorithms. 
However, no previous research has integrated data compression with a map-matching algo-
rithm that accepts compressed data as an input without the need for decompression.

In this paper, we have presented a data reduction algorithm for GNSS data transmis-
sion. Since it is common to link GNSS data with a digitalised map in practical applications 
such as navigation or vehicle monitoring, we also designed a curve-to-curve map-match-
ing algorithm for the compressed GNSS data. It is worth mentioning, the compressed data 
does not need to be de-compressed when they are fed into map-matching algorithm. There-
fore, significant computational time could be saved. Our numerical experiment indicates 
our data compression algorithm is very efficient and it can reduce the GNSS data transmis-
sion volume by 79.9%.

Although the proposed data reduction algorithm has demonstrated good performance in 
reducing the GNSS data volume to be transmitted, our proposed algorithm is constrained 
by the precision of GNSS equipment and digitalised maps. For instance, our proposed 
algorithm may be unable to identify a vehicle’s precise position when lane changing. To 
address the issue, further work is being undertaken to improve the algorithm.
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