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Abstract: We propose and demonstrate a scalable mode division multiplexing scheme based 
on orbital angular momentum modes in ring core fibers. In this scheme, the high-order mode 
groups of a ring core fiber are sufficiently de-coupled by the large differential effective 
refractive index so that multiple-input multiple-output (MIMO) equalization is only used for 
crosstalk equalization within each mode group. We design and fabricate a graded-index ring 
core fiber that supports 5 mode groups with low inter-mode-group coupling, small intra-
mode-group differential group delay, and small group velocity dispersion slope over the C-
band for the high-order mode groups. We implement a two-dimensional wavelength- and 
mode-division multiplexed transmission experiment involving 10 wavelengths and 2 mode 
groups each with 4 OAM modes, transmitting 32 GBaud Nyquist QPSK signals over all 80 
channels. An aggregate capacity of 5.12 Tb/s and an overall spectral efficiency of 9 bit/s/Hz 
over 10 km are realized, only using modular 4x4 MIMO processing with 15 taps to recover 
signals from the intra-mode-group mode coupling. Given the fixed number of modes in each 
mode group and the low inter-mode-group coupling in ring core fibres, our scheme strikes a 
balance in the trade-off between system capacity and digital signal processing complexity, 
and therefore has good potential for capacity upscaling at an expense of only modularly 
increasing the number of mode-groups with fixed-size (4x4) MIMO blocks. 
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1. Introduction  
Recently, multiplexing techniques utilizing the spatial or mode domain of light over multi-
core fibers (MCFs) or multi-mode fibers (MMFs) have been intensively investigated aiming 
at breaking the nonlinear Shannon limit of the single mode fiber (SMF) capacity [1, 2].  
Compared with the schemes implemented over MCFs where multiple single-mode cores must 
be sufficiently spaced to suppress crosstalk (XT) [3], techniques based on MMFs can increase 



the number of transmission channels within a limited aperture and thus increase the capacity 
density of optical fibers [4].  

Conventional approaches based on MMFs are divided into two categories: the multi-input 
multi-output (MIMO) digital signal processing (DSP) based approaches and the MIMO-free 
approaches. MIMO-based approaches include both space division multiplexing (SDM) and 
mode division multiplexing (MDM) implemented using few-mode fibers (FMFs) or MMFs [4, 
5]. The main concern over their scalability is the complexity of MIMO DSP which increases 
with the square of the number of channels and with the differential group delay (DGD) 
among channels. For instance, in a 10-mode-multiplexed FMF transmission system, 20x20 
MIMO signal processing at the receiver was required to compensate the mode coupling [5]. 
The ever-growing DSP complexity would be impractical in real-time implementations due to 
high hardware cost and power consumption, and would force frequent hardware upgrades to 
systems as channel count increases. 

MIMO-free approaches mainly include mode-group multiplexing [6, 7] and orbital 
angular momentum (OAM) mode multiplexing [8-11]. They aim to suppress crosstalk among 
all channels with large differential effective refractive indices (Δneff) between modes or mode 
groups (MGs). MG multiplexing [6, 7] in graded index fibers (GIFs) typically employs all 
modes in each near-degenerate MG as one channel, therefore the capacity resource is under-
utilized. In addition, the intra-MG DGD would also cause performance degradation. OAM 
multiplexed communications are typically implemented over ring core fibers (RCFs). RCFs 
supporting single-radial-order modes were initially proposed in the 1970s [12]. The principal 
strategy in OAM RCF design is to increase Δneff between OAM modes in the same MG to 
achieve MIMO-free transmission, typically using high contrast (such as air core [13]) fibers.  
To suppress modal XT over km-scale propagation, Δneff > 1x10-4 is typically required [9], and 
this requirement should become more critical when the distance is further increased. The most 
successful demonstrations of OAM-MDM based MIMO-free data transmission so far are 
realized over the distances of 1-2 km [9-11].  Recently, an air core fiber that supports good 
quality OAM mode transmission has been demonstrated, in which the intra-MG Δneff  of up to 
1.7x10-4 is achieved [14]. However, the coupling between spin-orbit aligned and anti-aligned 
modes in the same MG generally > -10 dB after 13.4 km transmission. To further increase the 
separation and consequently the MIMO-free transmission distance would be technically 
challenging.   

Meanwhile, weakly-coupled FMF transmission incorporating partial MIMO processing 
has recently been proposed to decrease the DSP complexity, in which FMFs with large Δneff 
between MGs (for graded-index FMFs) or non-degenerate modes (for step-index FMFs) are 
employed to ensure low inter-MG/mode coupling, so that only smaller MIMO blocks are 
required to equalize the XT between intra-MG/degenerate modes [15-19].  However, the DSP 
simplicity of such schemes is not sustainable in FMFs supporting high-order MGs, as the 
number of near-degenerate modes in each group of the graded-index FMFs and DGD 
between degenerate modes (e.g. LP31a/b, etc.) in the step-index FMFs increases with the 
mode order. 

On the other hand, although MIMO-free transmission in RCFs over long distance is 
challenging, RCFs still have significant potential of increasing the capacity-distance product 
with low DSP complexity in fiber MDM systems [20]. In single-radial-mode RCFs, the 
number of degenerate modes in each high-order MG (and therefore the MIMO block size) is 
fixed at 4, reducing the DSP complexity significantly for high order modes. Furthermore, 
compared with the conventional MMFs that exhibit strong mode coupling among high order 
MGs [21], in RCF the coupling coefficient between adjacent MGs significantly decreases 
with the increasing azimuthal mode order due to increasing Δneff [22]. 

Therefore, in this paper, we propose a scalable fiber MDM scheme (as shown in Fig. 1) by 
utilizing high-order OAM modes in graded-index (GI) RCFs, in which MGs are de-coupled 
by the large inter-MG Δneff and only 4x4 MIMO equalization is needed to deal with intra-MG 
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3. Demonstration of proposed OAM-MDM scheme 
With the GIRCF supporting low inter-MG XT and low intra-MG DGD for high-order MGs, 
the proposed OAM-MDM scheme shows more realistic DSP scalability: only a fixed-size 
(4x4) modular MIMO equalizer with relatively low memory length is needed for the signal 
recovery of each MG, and inter-MG coupling is suppressed due to the optical isolation of 
large inter-MG Δneff. As a proof-of-principle demonstration, we show here an 8-mode OAM-
MDM (using OAM modes in MGs |l| = 4 and 5) and 10-λ WDM data transmission system 
over the 10-km GIRCF, and the system implementation is shown in Fig. 4. 10 optical carriers 
from external cavity lasers with wavelengths ranging from 1547.71 nm to 1551.31 nm with a 
0.4-nm/50-GHz channel spacing are combined by a wavelength multiplexer. Then the 10 
WDM signals are obtained by modulating the carriers with 32-GBaud Nyquist-QPSK signals 
from an arbitrary waveform generator (AWG) with an I/Q modulator. The Nyquist filter is a 
square root raised cosine electrical filter with a 3-dB bandwidth of 0.6X symbol rate and a 
roll-off factor of 0.1. The sample rate of the digital-to-analog converter (DAC) is 64 GSa/s 
and the modulated electrical data sequence is pseudo-random binary sequence (PRBS) with 
pattern length of 218 -1. Here note that due to the device limitation, all the WDM channels are 
modulated by one electrical signal. Insufficient decorrelation between WDM channels will 
overestimates the performance of the practical WDM systems with individual optical carriers 
carrying different data patterns, considering the inter-WDM-channel XT. However, this 
performance overestimation can be significantly mitigated by keeping sufficient guard band 
intervals between adjacent WDM channels (normally no less than 20% optical signal 
bandwidth/wavelength channel) [27]. In our experiment, the WDM guard gap is more than 
25% optical signal bandwidth/wavelength channel, as shown in Fig. 7(c). In addition, highly 
correlated bit patterns of optical waveforms in neighboring optical channels will also cause 
non-linear signal degradation of WDM optical signals [27], which can be neglected in 
relatively short-distance transmission system (~10km fiber length in our experiment). 

 
Fig. 4.  Experiment setup. ECL: external cavity laser; WDM: wavelength division multiplexer; 
EDFA: erbium-doped fiber amplifier; PC: polarization controller; OC: optical coupler; SMF: 
single-mode fiber; LP: linear polarizer; SLM: spatial light modulator; PBS: polarizing beam 
splitter; HWP: half-wave plate; MR: mirror; QWP: quarter-wave plate; Col.: collimator; BS: 
beam splitter; VPP: vortex phase plate; ATN: attenuator; ASE: amplified spontaneous 
emission noise; OC: optical coupler; OTF: optical tunable filter; ICR: integrated coherent 
receiver. 
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transmission distances, so that the capacity-distance product can be up-scaled while 
maintaining the low MIMO complexity.  
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