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Improving the melting performance of PCM thermal energy storage with 
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M. E. Nakhchia, J. A. Esfahania,1 

a Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran 

Abstract 

Numerical investigation on latent heat thermal energy storage (LHTES) systems with phase 

change materials (PCMs) vertically heated from one side with novel stepped fins is presented. 

Transient numerical simulation by using the enthalpy-porosity method is performed to 

investigate the heat transfer rate and melting behaviors, while the natural convection is 

considered. To improve the PCM melting process, different upward and downward stepped fins 

with the step ratios (b/c) of 0.66, 1, 1.5, 2.33 and 4 are employed. The melt fraction and 

temperature contours by consideration the natural convection effects are presented. The results 

show that at the beginning of the melting process, the fins in the downward direction with 

b/c=0.66 improve the PCM melting rate than the other cases, as the part of the heat is well 

transferred to the bottom of container along the fins and heat is trapped between the heated wall 

and the fins. The results show that the melting process in all of the tested stepped fins is faster 

than the conventional horizontal fins. The results show that by using downward stepped fins 

(b/c=0.4) instead of conventional horizontal fins, the melting process could be enhanced up to 

56.3% at t=800sec and 65.5% at t=3600sec. 

Keywords: phase change materials; thermal energy storage; stepped fins; liquid fraction; melting 

process 
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1. Introduction 

In the past years, the latent heat thermal energy storage (LHTES) systems using phase change 

materials (PCMs) have been numerically and experimentally investigated by several researchers 

in different thermal systems such as shell and tube energy storage units [1], heat recovery 

systems [2], thermal transport [3] and solar energy systems [4, 5]. Using PCMs in thermal 

systems have many benefits, such as high storage capacity, excellent heat transfer performance, 

and constant operating temperature. The primary defect of PCMs is their low conduction heat 

transfer coefficient, which increases the melting time and reduces the efficiency of the energy 

storage system. Accordingly, performance enhancement methods such as using different types of 

fins [6], using metal foams in PCMs [7], coil inserts [8] and using nanoparticles with high 

thermal conductivity [9-11] are developed to improve the efficiency of the thermal energy 

storage systems.  

Using different types of fins as thermal performance enhancers are very popular in design of the 

LHTES units due to low cost, simple installation and high thermal conductivity [12]. Several 

investigations are conducted to investigate the effect of straight fins on the overall PCM melting 

process. Bhagat et al. [13] numerically investigated the thermal performance of multi tube latent 

heat thermal energy storage units fitted with straight fins. It was observed that using larger fins 

doesn’t have considerable effect on PCM heat transfer augmentation. They also performed 

geometrical optimization to improve the performance of thermal energy storage units. Abdi et al. 

[14] numerically investigated the impact of straight vertical fins, on the heat transfer rate and 

energy storage capacity of a latent heat thermal energy storage system. They concluded that 

extending the length of the fins has better effects on the melting process than increasing the 

number of fins. Lacroix and Benmadda [15] performed a numerical analysis to examine the 
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impact of the length and the number of horizontal fins in an enclosure with heated sidewall. It 

was concluded that the fin length is more effective on the melting performance rather than the 

number of fins. It means that using a small number of long fins had a better melting performance 

as compared to many of the small fins. Sheikholeslami et al. [16] analyzed the effects of 

nanoparticles and straight fins on the solidification performance of a heat storage unit. They 

observed that increasing the length of fins accelerates the solidification process. Sharifi et al. [17] 

numerically investigated the PCM melting in a square cavity with equipped with horizontal fins. 

It was concluded that using the straight horizontal fins initially enhanced the melting rate and 

then it slows down as the PCMs in the regions between the fins were melted. Kalbasi et al. [18] 

performed a numerical investigation to find the optimum number of fins in a PCM heat sink. 

They concluded that an increase in heat flux increases the number of optimal fins. Mahdi et al. 

[19] developed a novel configuration of fins ( 1 2 3 25.3L L L mm   , 3 4 38L L mm  ) with a 

constant width  1w mm  in the triples-tube heat exchangers to enhance the PCM melting in 

energy storage systems.  

Using inclined upward and downward enclosures and fins in LHTES systems become popular in 

recent years. Siyabi et al. [20] performed experimental and numerical investigation on the effects 

of inclination angle of PCM thermal energy storage unit. Their results revealed that the melting 

performance of PCMs in the energy storage is maximum for the inclination angle of 45°. Ji et al. 

[21] investigated the effects of upward and downward straight fins on the melting performance 

of the PCM filled thermal energy storage unit heated vertically from one side. They concluded 

that the inclined fins with a downward inclination angle of −15°give the best melting 

performance among tested geometries. Bondareva et al. [22] numerically investigated the heat 

transfer and thermal performance factor of nano-PCM materials inside an inclined finned 
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enclosure. The effects of the inclination angle on the natural convection were also investigated. 

They observed that the nano enhanced PCM melts much faster for the slant angles higher than 

90° at higher Rayleigh numbers.  Avci et al. [23] experimentally studied the effects of inclination 

angle on the thermal performance of a flat type heat sink filled with PCM. Their results revealed 

that the melting time is increased about 5.5 times as the inclination angle increased from 0° to 

90°. Karami and Kamkari [24] numerically investigated the melting process of PCM in inclined 

rectangular enclosures under the inclination angle varied from 0° to 180°. They also investigated 

the effect of natural convection on temperature and liquid fraction contours in inclined 

enclosures equipped with 1-3 straight fins. They concluded that that the maximum melting time 

reduction compared to the vertical enclosure without fins is about 72% obtained for the case of 

3-fin enclosure with no inclination. This thermal behavior was also experimentally studied by 

Kamkari and Groulx [25]. They observed that decreasing the inclination is more efficient on 

melting process enhancement than adding more fins. The effect of other fin types, such as 

stepped fins on the melting process of PCM filled LHTES systems heated from side walls was 

not considered in previous numerical or experimental investigations. 

Based on the literature review, using non-straight fin types to enhance the PCM melting 

performance and heat transfer rate in rectangular thermal energy storage units is shown to be 

lacking. In the present transient numerical study, upward and downward stepped fins with five 

different step ratios are employed to make heat transfer more uniform and enhance the melting 

process of PCM (lauric acid) in a rectangular enclosure which is isothermally heated from one 

side. Three fins are used in the energy storage unit to make comparisons with previous 

experimental and numerical investigations dealing with horizontal fins. The influences of 

conduction and buoyancy-driven convection mechanisms are considered in the numerical 
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analysis based on the enthalpy porosity method. Finally, the effect of fin ratio on the wall heat 

flux and average temperature throughout the melting process is investigated to analyze the 

energy storage efficiency enhancement by using stepped fins. 

2. Physical model 

A schematic of the rectangular thermal storage system equipped with three stepped fins and 

filled with PCM is shown in Fig. 1. The enclosure has a height (L) of 120mm and a width (W) of 

50 mm. The right wall of the rectangular enclosure is isothermally heated at 333 °K, while the 

other walls are insulated. The initial temperature of PCM was assumed to be equal to the ambient 

temperature (300 °K). 3-fin enclosure is studied by using stepped fins with different step ratios 

(b/c) ranging from 0.66 to 4. The thickness    and total length of the stepped fins are 2 mm and 

50 mm, respectively. The thickness of the heated aluminum plate is assumed to be 5mm. The 

details of the investigated test cases are presented in Table 1. Lauric acid with 99% purity is 

selected as the PCM due to appropriate properties such as high latent heat of fusion and excellent 

chemical stability. Table 2 shows the physical properties of lauric acid and aluminum used in the 

present study. As the fins are generally very thin, they can easily be folded by sheet metal 

folding tools, which is an inexpensive process and common for similar works. The attachment of 

the fins to the surface needs some care to reduce the thermal resistance on the base of the fin. To 

do this, the film layer of PCM material can be used as the filling of the gap between the fin and 

the wall. A more expensive way is integrating the fin with the wall to decrease thermal 

resistance, which can be done by casting. A traditional casting, not expensive method is not 

accurate and cannot produce the thin fin. Thus, an option of eternal mold such as slush molding 

can be incorporated. 
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a) Downward stepped fins b) Upward stepped fins 

Fig. 1 Schematic view of the finned thermal storage unit 

Table 1 Specifications of different fin configurations 

Cases b (mm) c (mm) Step ratio (b/c) Step direction 
Aluminum 

volume fraction (%) 

Horizontal 
25 

 4mm  
- - - 5 

1 10 15 0.66 downward 5 
2 12.5 12.5 1 downward 5 
3 15 10 1.5 downward 5 
4 17.5 7.5 2.33 downward 5 
5 20 5 4 downward 5 
6 10 15 0.66 upward 5 
7 12.5 12.5 1 upward 5 
8 15 10 1.5 upward 5 
9 17.5 7.5 2.33 upward 5 
10 20 5 4 upward 5 
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Table 2 Thermo-physical properties of lauric acid and aluminum [26, 27] 

Properties Lauric acid Aluminum 
Melting temperature range (°C) 43.5 (Solidus) – 48.2 (Liquidus) - 

Specific heat capacity (kJ/(kg·K)) 2.18 – 2.39  0.87 
Latent heat of fusion (J/kg) 187200 - 

Density (kg/m3) 940 – 885  2719 
Thermal conductivity (W/(m·K)) 0.16 – 0.14  202.4 

Thermal expansion coefficient (1/K) 0.0008 - 

Viscosity (μ)   exp 4.25 1968 / 273.15T     - 

 

3. Mathematical model and numerical simulation 

The enthalpy-porosity method is utilized for modeling the melting process of PCM in the 

LHTES system [28]. The technique for this methodology considers different phases as a porous 

media through which porosity is equivalent to the fluid portion in that domain. Consequently, the 

porosity differs from zero to one as the PCM changes from solid to fluid. The Boussinesq 

approximation is utilized to simulate the buoyancy force term. Based on the above assumptions, 

the mathematical model for the 2D, laminar, unsteady and incompressible flow is as follows: 

 Continuity: 
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Where u and v are the velocity components in x and y directions and  is coefficient of thermal 

expansion. The terms Sx and Sy on the right sides of Eqs. (2) and (3) are source terms added to 

the momentum equations to consider the effects of phase change in the mushy zone. This source 

term is defined as: 

 

 

2

3

1
i mushy iS A V











  (4) 

where i denotes x, y and Amushy is mushy zone constant and 0.001  is a small number to avoid 

division by zero. As discussed by Karami and Kamkari [24], 65 10mushyA    gives the best 

results as compared with the experimental investigations. Therefore, 65 10mushyA    is 

employed for further numerical simulations. 

 Energy [29] 

     H uH vH T T
k k
xt x y x y y

                  

 

       
  (5) 

where H is defined as the total enthalpy of PCM and it is calculated as the sum of the sensible 

enthalpy (h) and the latent heat (L). 

Hh h LH       (6) 

where the liquid fraction    is defined as 

0  if 

  if 

1  if 

solidus
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T T
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  (7) 

The sensible enthalpy is defined as [14]: 
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ref

ref p

T

T
h C dTh     (8) 

The SIMPLE algorithm is used for the numerical simulations. The PRESTO! scheme is utilized 

for the pressure correlation equation. This scheme is recommended for simulation of natural 

convection heat transfer. The second-order upwind scheme is used for discretization of the 

momentum and energy equations and the first-order implicit scheme is employed for time 

discretization. The under-relaxation factors for pressure, density, body force, velocity, energy, 

and liquid fraction are 0.3, 0.9, 1, 0.7, 1, and 0.9, respectively. The convergence conditions are 

set as 10−5 for the momentum and continuity equations and 10−9 for the energy equation. The 

maximum number of iterations in every time step is 70. The computational domain used in the 

present study is shown in Fig. 2. 

 

Fig. 2 Mesh generation for the PCM thermal energy storage unit with stepped fins 
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As shown in Fig. 3, three different grid sizes with 0.7mm, 0.5mm and 0.4mm element size are 

used to perform the grid independence study for melting in an enclosure fitted with the 3- 

straight horizontal fins. The maximum difference of the melt fraction between grid sizes of 

0.5mm and 0.4mm is 0.7%. Therefore, a 0.5 mm grid size is selected for the numerical 

investigation. By using the same method, a time step of 0.07sec is used for time discretization. 

 

Fig. 3 grid independency test 

4. Results and discussion 

Fig. 4 shows a comparison between present numerical results and previous experimental and 

numerical investigations for PCM melting in an enclosure enhanced with three horizontal fins. 

The results show that the numerical simulations are in agreement with previous experimental and 

numerical investigations for the PCM melting process in PCM filled rectangular enclosure 

vertically heated from a sidewall. The curved lines of the interface show that the natural 

convection flow is affected by the horizontal fins. 
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15min 

  
 

 Exp. [25] Num. [24] Present study 
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 Exp. [25] Num. [24] Present study 
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45min 

   
 Exp. [25] Num. [24] Present study 

60min 

   

 Exp. [25] Num. [24] Present study 
Fig. 4 Validation of liquid fraction contours with previous experimental and numerical 

investigations [24, 25] in the three-fin enclosure at different times 

The melt fraction contours for downward stepped fins are presented in Fig. 5. As can be seen, the 

PCM melting process for b/c=0.66 is speedy at the beginning (t=15min), but it becomes slower 

than the other cases for t>30min. This is mainly due to the higher amount of heat trapped 

between the heated wall and the downward stepped fins with smaller step ratios in the presence 

of natural convection. It can be observed that with increasing the step ratio from 1 to 4, the non-

uniform melting is reduced and the PCM melting performance enhances significantly. Between 
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the tested geometries, the downward stepped fins with b/c=4 have the best influence on PCM 

melting enhancement (especially at t>45min). 
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Fig. 5 Contours of the melt fraction with natural convection driven flow for the downward 

stepped fins 
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Fig. 6 shows the temperature contours of the melting process in a thermal energy storage system 

enhanced with downward stepped fins with different step ratios. It can be seen that the 

temperature contours are much more uniform for the case of b/c=4. The results show that heat is 

trapped between the stepped fin with b/c=0.66 and the heated wall due to the natural convection. 

This causes the melting process to be fast at the beginning (t=15min), but later, due to the lack of 

heat in the other areas, the melting rate is significantly reduced compared to the other tested 

cases. Due to the heat trap at the beginning of the melting process, Heat transfer in the enclosure 

with stepped fins with b/c<1 is non-uniform. 
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 b/c=0.66 b/c=1 b/c=1.5 b/c=2.33 b/c=4 

Fig. 6 Temperature contours for PCM filled thermal energy storage unit with the downward 

stepped fins 

Figs. 7 and 8 show the liquid fraction and temperature contours of PCM melting in an enclosure 

enhanced with upward stepped fines with different step ratios. It can be observed that the melting 

rate in the upside direction is faster than the downside one. The main physical reason is that the 

melted PCM with higher temperature moves to the upside, under the influence of natural 

convection. In contrast, PCM at the bottom of the enclosure is still cold and solid. The non-

uniform temperature contours lead to overheating of the upper part of the enclosure. Therefore, 

the non-uniform temperature distribution arising from the natural convection slows down the 

melting process in the enclosure. It also can be observed that the conduction heat transfer in the 

solid PCM near the fin edge increases the temperature of solid PCM. 
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Fig. 7 Contours of the melt fraction with natural convection driven flow for the upward stepped 

fins 
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Fig. 8 Temperature contours for PCM filled thermal energy storage unit with the upward stepped 

fins 
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Fig. 9 shows the velocity vectors of melted PCM together with liquid fraction contours in an 

enclosure enhanced with different stepped fins. It can be seen that at the early times (t=15min), 

some vortex flows are generated near regions of the hot wall. These vortices receive heat from 

the heated wall and collide with a solid-liquid interface, which results in a curved interface. 

Besides, on the upper surface of the stepped fins, many small vortices and liquid PCM loops are 

formed, which melt at a later time as the thickness of the liquid layer increases. The fast PCM 

melting in the upper area of the cavity with upward fins with b / c = 0.66 is explained by the 

storage of heat in the upper side of the thermal storage unit. 

 

 

15min 

    

45min 

    

 Horizontal 

(validation case) 
b/c=4 (Downward) b/c=1 (Downward) b/c=0.66 (Upward) 

Fig. 9 Velocity vectors and detailed view of the liquid fraction contours for different upward and 

downward fins 
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Fig. 10 shows the temporal variation of liquid fractions in the enclosure enhanced with upward 

and downward stepped finned with different step ratios ranging from 0.66 to 4. The liquid 

fraction of PCM in the vertical cavity with three horizontal fins is also plotted for analyzing the 

effects of the upward and downward stepped fins on the melting rate. It is seen that the melting 

rate accelerates by increasing the step ratio or changing the fin positions from upward to the 

downward direction. It is interesting to note that, initially the melting rate in the enclosure with 

small fins (b/c=0.66) is higher than the other tested geometries (t<1000sec) and then it reduces as 

the liquid fraction increases. Such melting performance can be described by measuring the effect 

of natural convection currents in different geometries. At the beginning of the melting process, 

heat is trapped between the heated wall and stepped fins with more towering vertical walls. This 

area with high temperature enhances the melting process of PCM in this area. Subsequently, the 

melting process slows down due to the inhomogeneous heat transfer area in the enclosure. The 

melting process of PCM energy storage unit enhanced with downward stepped fins is generally 

higher than the upward ones. This is mainly due to the effect of natural convection. The 

transition time from fast to slow melting occurs when the PCM in the upper half of the cavity is 

completely melted. This shows that the downward fins more effectively melt solid PCM above 

fin’s surface due to the natural convection effects. The results show that by using downward 

stepped fins with b/c=4 instead of conventional horizontal fins, the melting process could be 

enhanced up to 56.3% at t=800sec and 65.5% at t=3600sec.  
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Fig. 10 Melt fraction as a function of time for all cases 

The instant heat flux at different melting times is shown in Fig. 11. The heat flux is defined as 

   " /q t Q t A  where  Q t  is the instantaneous total heat transfer rate to the phase change 

material and A is the total heat transfer surface including base and fins. After a significant 

decrease in the heat flux at the early stage of melting in all cases, the heat flux is further reduced 

for cases with b / s = 0.66 at the highest times. Also, the heat flux is more reduced when the fins 

are in the upward direction. During the PCM melting process, there is another time duration in 

which the heat flux enhances and makes its second maximum and then decreases again. When 

the heat flux is high, natural convection and total heat transfer rate reach their maximum values. 

During this period, the local eddies merge (see Fig. 9), and the fins disturb the PCM flow 

direction. The maximum heat flux of 1430 W / m2 is achieved for the case of ascending stepped 

ribs with b / c = 4 at t = 3151 sec. 
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(a) Downward stepped fins 

 

(b) Upward stepped fins 

Fig. 11 Heat flux over the time, (a) downward stepped fins and (b) upward stepped fins 
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The average PCM temperature with different fin geometries is presented in Fig. 12. It is 

observed that for the initial melting time (t = 800 s), the average PCM temperature increases with 

increasing b/c. In other words, increasing b/c increases heat storage capacity. It is seen that with 

increasing time, temperature changes decrease. The real reason for this is a more uniform 

distribution of temperature inside the enclosure with increasing the melting time. Besides, there 

is no significant difference in the average temperature for b/c = 1.5, 2.33 and 4 at t = 3600 s. This 

means that with increasing melting time, the influence of the fins geometry on the improvement 

of heat transfer decreases. The results show that when replacing conventional horizontal fins 

with stepped fins with b/c = 4, the average temperature of the latent heat energy storage unit 

increases by 1.94% at t=800s. The temperature enhancement reduces with increasing the melting 

time to 3600sec. This is mainly due to smaller heat flux values at higher melting times. 

 

Fig. 12 Effects of the stepped fin geometry on average temperature 

Fig. 13 shows the Accumulative stored energy inside PCM filled enclosure as function of 

melting time for different downward stepped fins. It can be seen that the required time to store 
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the energy is considerably reduced with increasing b/c from 0.66 to 4. As discussed earlier, 

stepped fins with larger step ratios have more uniform temperature distribution in the enclosure 

and as a result, the melting process would be intensified. The results illustrate that the 

accumulative stored energy for all of the test cases is equal, due to the fact the volume of the fins 

is kept constant for all of the test cases. However, the required time to store that amount of 

energy (179.8 KJ) is completely dependent on the step ratio.   

 

Fig. 13 Accumulative energy as function of time for different stepped fins 

Reducing the melting time is only one of the important aspects in design of PCM energy storage 

units. Economic analysis is also important in the design of this equipment. Another critical 

parameter that should be evaluated is the total mean power of the system as function of the fin 

geometry. The mean power is defined as the ratio of the total accumulated energy at the end of 

melting to the total melting time [14]. Fig. 14 shows the effects of the fins geometry (b/c) on the 

mean power of the latent heat thermal energy storage unit. It can be seen that the mean power 
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considerably increases with increasing the step ratio. Physically speaking, by raising the step 

ratio, hot melted PCM is trapped at the upper part of the storage unit due to the natural 

convection heat transfer effects. As discussed in Figs. 6 and 8, large amount of heat would 

trapped between the stepped fins with larger step ratios and the vertical heated walls. As a result, 

the melting process would be delayed and the mean power would be reduced. As expected, the 

mean power of the system equipped by upward stepped fins is relatively smaller than that for 

downward ones.  

 

Fig. 14 Mean power as function of the fin step ratio for upward and downward stepped fins 

5. Conclusion 

In this work, numerical investigations of heat transfer with a phase change in a rectangular PCM-

based LHTES system is carried out by using the enthalpy-porosity method. Lauric acid is 

selected as the PCM. The heat is transferred to the PCM from a side heating wall. In order to 

improve PCM melting performance for the accumulation of thermal energy, three parallel 
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stepped fins with five different step ratios are proposed. A two-dimensional transient numerical 

model is used based on the Navier-Stokes equations considering the natural convection effects. 

After validation of the accuracy of the numerical results with previous experimental data, a 

model is developed for the numerical simulation of thermal behavior of the PCM filled enclosure 

with downward and upward stepped fins. The main findings are as follows: 

 As can be seen, the PCM melting process for b/c=0.66 is slightly faster at the beginning 

(t=15min), but it becomes slower than the other cases for t>30min. This is mainly due to 

the higher amount of heat trapped between the heated wall and the downward stepped 

fins with smaller step ratios in the presence of natural convection. 

 Between the tested geometries, the downward stepped fins with b/c=4 have the best 

influence on PCM melting enhancement. The melting process could be enhanced up to 

56.3% at t=800sec and 65.5% at t=3600sec. 

 The melting process accelerates by increasing the step ratio or changing the fin positions 

from upward to downward. At the beginning of the melting process, the melting rates in 

the enclosure with small fin ratios (b/c=0.66) is slightly higher than the other tested 

geometries (t<1000sec), and then it decelerates as the liquid fraction increases. 

 There is a period during the PCM melting, in which the heat flux increases and reaches 

its second maximum value. When heat flux is high, natural convection and overall heat 

transfer rate reach their maximum values. The maximum heat flux of 1430 W / m2 was 

achieved for the case of ascending stepped ribs with b/c =4 at t=3151 sec. 

 Replacing the conventional horizontal fins with stepped fins with b/c= 4 enhances the 

average temperature of the thermal energy storage unit up to 1.94% at t=800sec. The 
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temperature enhancement reduces with increasing the melting time to 3600sec. This is 

mainly due to smaller heat flux values at higher melting times. 
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