The Urinary 1-hydroxypyrene Biomarker in Street Janitors exposed to Air Quality Changes Associated with Religious events in Madinah, Saudi Arabia

Kordi KN¹, McNally RJ¹, Namdeo A²

Institute of Health & Society, Newcastle University
1- Institute of Health & Society, Newcastle University, Newcastle, UK
2- School of Engineering, Newcastle University, Newcastle, UK

Background
Madinah is the second most important Muslim holy city in Saudi Arabia. Particularly during holy months, traffic congestion and consequent air emission of several pollutant compounds, “mainly carcinogenic Benzo[a]pyrene (BaP)”, is expected to reach high levels at certain locations. BaP is a potent carcinogen and mutagen found in diesel exhaust emissions¹. It is classified by IARC as a human carcinogen (Group 1) with a potential to bind to cellular proteins and DNA with toxic effects². 1-Hydroxypyrene (1-OHP), a metabolite of pyrene, has been commonly used as urinary biomarker of (BaP) exposure³.

Aim:
The aim of this study was to explore the levels of BaP in ambient air in Madinah at various locations to investigate the relationship between BaP and urinary 1-OHP among participants (street vendors).

Methods
The research was designed as a time series study of one Islamic year to include three locations with high traffic density (Downtown, Quba, and Awali) and two control locations with low traffic activity (Sultana and Al-Aziziyah) in Madinah (Fig. 1). Twenty male street janitors participated in the study from the five locations. Daily breathing-zone BaP was measured using PM2.5 personal samplers at the five locations. Morning and after-work urinary 1-OHP was measured daily. Daily traffic volumes were recorded at the same locations. Daily weather recordings were obtained at these locations. Statistical analysis was done using descriptive statistics, ANOVA, time series analysis and plots. Statistical significance was considered at p< 0.05 (Figure 2).

Results
Urinary 1-OHP, BaP and daily traffic volumes were significantly higher at the high traffic locations (Figure 3) compared to those in the control locations. Time series analysis using ARIMAX model for urinary 1-OHP showed that the only significant input variable was air BaP (Figure 4). Figures 4 and 5 show that the time series were non-stationary as the means of BaP, 1-OHP concentrations and traffic records throughout the year were not constant. However, they were higher during the holy months (Ramadan- M9, Dhu al-Qadah11, Dhu al-Hijjah12 and Muharram1) at traffic locations.

Conclusions
There is a noticeable rising rate of emitted BaP at traffic locations and holy months that is associated with elevated levels of urinary 1-OHP as a biomarker of exposure among the street janitors. It spotlights the importance of finding solutions to minimize its emission to protect the health of Madinah residents and visitors.

References