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Abstract: Polyvinylidene fluoride (PVDF)-based piezoelectric materials (PEMs) have found 
extensive applications in energy harvesting which are being extended consistently to diverse fields 
requiring strenuous service conditions. Hence, there is a pressing need to mass produce PVDF-
based PEMs with the highest possible energy harvesting ability under a given set of conditions. To 
achieve high yield and efficiency, solution blow spinning (SBS) technique is attracting a lot of 
interest due to its operational simplicity and high  throughput. SBS is arguably still in its infancy 
when the objective is to mass produce high efficiency PVDF-based PEMs. Therefore, a deeper 
understanding of the critical parameters regarding design and processing of SBS is essential. The 
key objective of this review is to critically analyz e the key aspects of SBS to produce high efficiency 
PVDF-based PEMs. As piezoelectric properties of neat PVDF are not intrinsically much significant, 
various additives are commonly incorporated to enhance its piezoelectricity. Therefore, PVDF-
based copolymers and nanocomposites are also included in this review. We discuss both theoretical 
and experimental results regarding SBS process parameters such as solvents, dissolution methods, 
feed rate, viscosity, air pressure and velocity, and nozzle design. Morphological features and 
mechanical properties of PVDF-based nanofibers were also discussed and important applications 
have been presented. For completeness, key findings from electrospinning were also included. At 
the end, some insights are given to better direct the efforts in the field of PVDF-based PEMs using 
SBS technique. 

Keywords: SBS; PVDF; (nano)fibers; nanofillers; piezoelectricity 
 

��  



Polymers 2020, 12, 1304 2 of 29 

��

1. Introduction 

In 1880, Jacques and Pierre discovered that certain materials can generate electrical energy when 
subjected to mechanical strain through a phenomenon called piezoelectricity, and the materials 
exhibiting this characteristic are called piezoelectric materials (PEMs) [1]. One of the naturally 
occurring PEMs is quartz whose crystalline and amorphous structures are shown in Figure 1a,b, 
respectively [2]. There are two kinds of piezoelectric effects: direct and converse [3] In direct 
piezoelectric effect, voltage is generated at the application of mechanical strain while in converse 
piezoelectric effect, mechanical strain is generated upon the application of voltage as schematically 
shown in Figure 2 [4]. Piezoelectric efficiency is generally measured in terms of piezoelectric charge 
constant (dij) (C/N) which is defined as the amount of charge density (C/m 2) generated upon the 
application of mechanical stress of 1 N/m2 [5]. The subscripts i and j tell the direction of applied force 
and orientation of dipoles, respectively. The piezoelectric charge constant is related to piezoelectric 
voltage constant (gij) (Vm/N or m 2/N) and is given by �C�Ü�Ý
 L � :� Ý�Í �;�?�5�@�Ü�Ý, where �Ý�Í  is permittivity 

under constant stress �6�,�& [6]. The absolute permittivity of the material �‰ (F/m) is given by � Ý 
 L � Ý�å�Ý�4, 
where �Ý�4 is permittivity of free space (8.854 × 10�º12 F/m), and �Ý�å is dielectric constant (or relative 
permittivity) of the material [6]. 

 

Figure 1. (a) Quartz SiO2 and its (b) amorphous crystal structure [2]. 

 

Figure 2. Direct and converse piezoelectric effects [4]. 



Polymers 2020, 12, 1304 3 of 29 

��

PEMs can be embedded into the final products of daily use, for example, gas sensors, pressure 
sensors, parking sensors, and piezoelectric motors and mobile phones [7–9]. Although most used 
PEMs are ceramic-based, however, due to their brittleness and high density, they are not ideal 
candidates for applications demanding flexibility such  as flexible electronic screens [10,11]. In 1969, 
polyvinylidene fluoride (PVDF) was first report ed as thermoplastic polymer PEM exhibiting the 
piezoelectric activity [12]. Differ ent polymorphs of PVDF on the basis of repeating units of -CH 2-CF2- 
are �…, �†, �‡, � ,̂ and �‰, and are shown in Figure 3 [13,14]. The different phases are based on chain 
conformations; all-trans (TTTT) for �†-phase, TGTG (trans-gauche-trans-gauche) for �… and � ,̂ and 
T3GT3G for �‡ and �‰ [15]. Generally, PVDF exists as �…-phase which is non-polar due to random 
alignment of hydrogen and fluorine ‘dipoles’, �‡- and � -̂phases are weakly polar as they exhibit some 
alignment of so-called dipoles [16]. The �†-phase displays the best piezoelectric and ferroelectric 
properties as all-trans chains cause all dipoles to orient in one particular direction giving a 
piezoelectric response [17]. Various ways have been reported to enhance �†-phase such as annealing 
[18], solution casting [19], and spin coating [20]. It has also been reported that the �†-phase can be 
obtained directly by high-temperature quenching from a melt or by casting from dimethyl acetamide 
(DMAc), a strongly polar solvent [21].  

The most widely used method to nucleate �†-phase is either by mechanical stretching in uniaxial 
direction or by the application of high electric fiel d [22]. However, it has been shown that fraction of 
�†-phase increases mainly due to stretching and minimally due to electric field [21]. Uniaxial 
stretching tends the polymer chains to orient them selves and charge neutrality favors H and F atoms 
to segregate on opposite sides of the polymer chain resulting in piezoelectric �†-phase [23]. As the 
stretching rate increases, fraction of �…-phase decreases while �† and �‡ phases dominate [23]. The 
fraction of �†-phase saturates at a stretching rate of ~50 mm/min while the �…-phase completely 
disappears at a ~600 mm/min [23]. In situ observation during uniaxial stretching shows that the 
deformation of the crystalline structure begins from the middle of �…-spherulite and extends to one 
after another resulting in large-scale transformation from �… to �† phase [24]. Li et al. [24] carried out 
in situ microscopy as shown in Figure 4. They reported that stretching temperature (T s) can influence 
phase transformation and recommended a temperature of 100 °C [24].  

PVDF-based PEMs are classified as stimuli responsive materials and have been employed as 
standalone or as matrices in composites and layered structures to fabricate stimuli responsive 
systems for applications such as drug delivery and tissue engineering [25]. One of the applications of 
PVDF-based PEMs is intelligent clothing to sense user activities in sports and personalized health 
care [26]. Various fabrication methods have been employed to produce fibers, such as gas jet 
spinning, nozzle-free centrifugal spinning, rotary jet spinni ng, melt blow spinning and flash-
spinning. Out of all these, electrospinning has been extensively used for the fabrication of fibers; 
however, it has some limitations. Firstly, it can only be used for systems that are electrically 
conductive to conduct voltage applied during elec trospinning process, and secondly, formation of a 
high fraction of �†-phase is dependent on very high electric field making the process a safety hazard 
[27]. As there is electric field involved, it also requ ires the use of conductive collectors. It also has low 
yield making it a laborious process and unfit for scale-up. 

��  
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Figure 3. (a) Primary polymorphs of PVDF ( �…, �†, �‡). (b) Electric field-induced phase transitions of 

PVDF. The transverse dipole moment of each polymer chain is shown using an orange arrow that 

points from the negatively charged fluorine atoms to  the positively charged hy drogen atoms. T-trans; 

G-gauche [28]. 

 

Figure 4. 3D digital microscope observation and infrared  microscope scanning of the PVDF samples 
after being stretched at 100 °C temperature and 1 mms�º1 stretching rate. (a) The polarized photo of 

stretched samples observed by polarized module of 3D Digital Microscope; (b) the corresponding 

contour chart of F(�†) of samples calculated from IR scanning [24]. 

Solution blow spinning (SBS) has emerged as an alternative technique to produce sub-
micron/nano sized fibers and can relieve the user of the limitations posed by electrospinning. In SBS, 
polymeric precursor is dissolved into a suitable solvent to reduce its viscosity as thin fibers cannot be 
produced with very viscous polymer melt. The solution is then injected through a nozzle which is 
surrounded by a concentric outer pipe from which ai r is purged out. The solution interacts with the 
air and forms short fibers which fall on a collector.  The photos and schematic of various components 
and setup are shown in Figure 5 [29]. The advantage of SBS is that it can be applied to both electrically 
conducting and insulating systems and does not require the application of electric field and 
conductive collectors to initiate fiber processing. Moreover, yield of fiber production is very high 
making it suitable for industrialization [30]. Parameters that influence the fiber production using SBS 
are discussed in the next sections. 

2. Nanofillers 

The piezoelectric properties of neat PVDF are intrinsically lower than their inorganic 
counterparts [31]. One of the ways of enhancing piezoelectric properties is making copolymers. The 
copolymers of PVDF have chemical compatibility in high pH solutions, high impact strength at 
ambient and low temperatures and better clarity [32]. Some of the copolymers of PVDF include 
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poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)] and poly(vinylidene fluoride-
trifluoroethylene [(P(VDF-TrFE)] [33]. It has been  reported that the addition of trifluoroethylene 
(TrFE) in PVDF can promote the formation of �†-phase due to the steric hindrance effect [34]. 
However, copolymers have been thoroughly reviewed [35] and will not be further discussed in this 
review. As inorganic PEMs have very high piezoelectricity, inorga nic materials have been commonly 
incorporated in PVDF to enhance its piezoelectric properties [36]. The fraction of �†-phase obtained 
using different nanofillers is shown in Figure 6. Th e nanofillers act as heterogeneous nucleation sites 
for �†-phase and a hindering agent for the �…-phase [37]. When a nanofiller is placed between the 
isolated polymer chains, it forms micro-capacitor structures due to interfacial interactions [38,39]. It 
increases the local electric field that promotes both migration and accumulation of charge carriers at 
the interface [38,40]. This interfacial polarization th at causes the enhancement of a dielectric constant, 
is explained by Maxwell-Wagner-Sillars (MWS) effect [38]. However, it should be noted that not all 
nanofillers can enhance fraction of �†-phase and some might inhibit the formation of �†-phase. The 
incorporation of hydroxyapatite (HA) dec reased the crystallinity and fraction of �†-phase in 
HA/PVDF nanofibers [30]. Similar results were re ported by Li et al. [41] where fraction of �†-phase 
significantly dropped with unmodified zinc oxide (ZnO) nanoparticles mainly due to their 
agglomeration. The hybrid nanofill ers produce synergistic effects in polymers that are useful to 
improve mechanical properties; however, when ZnO nanorods and graphene nanoplatelets were 
incorporated into PVDF along with hydrated metal salts, a drastic reduction in d 33 was recorded [42]. 
It can be because of nanofillers assuming a competitive role with respect to H-bond formation 
between PVDF and the dissolved metal salt. 

 

Figure 5. Various parts of SBS setup [29]: (A) Inlets for polymer solution and air with fibers coming 

out of nozzle due to attenuation force applied by high speed air [43]. ( B) Schematic of SBS setup [44]. 

(C) Image of direct deposition of poly(styrene-block-isoprene-block-styrene) block copolymer fibers 
using a homemade solution blow spinning device [43]. (D) Commercial airbrush used for solution 

blow spinning [45]. 
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Figure 6. Fraction of �†-phase obtained with different ad ditives and copolymers [41,46–54]. 

The agglomeration of nanofillers is deleterious to the mechanical properties of polymer-based 
nanocomposites [55]. It is further reported that agglomeration of nanofiller s is not beneficial to 
achieve a higher fraction of �†-phase. The FT-IR spectra and �†-phase content of single-layer (SL) and 
double-layer (DL) samples of PVDF/BaTiO3 nanocomposites are shown in Figure 7. The 840 cm�º1 
band, which relates to stretching of CF2 and C-C bonds, corresponds to the �†-phase. The 880 cm�º1 
band, which could be ascribed to the rocking of C-C skeleton vibration, corresponds to non-polar �…-
phase [56]. The content of �…-phase and �†-phase is usually determined by the area ratio of 840 cm�º1 
band and 880 cm�º1 band. The �†-phase can be quantified using Beer–Lambert law as shown in 
Equation (1) [57]; 

�(�	 
L
�#�	


l
�-�	

�-��

H�#�� 
 p 
 E�#�	

 (1) 

where �#��  and �#�	  are the absorption of �… and �†-phases, respectively, K�… and K�† are the absorption 
coefficients at the corresponding wave number, which are 7.7 × 104 and 6.1 × 104 cm2/mol, respectively. 
As can be seen, the fraction of �†-phase decreased in both SL/DL samples when concentration of 
BaTiO3 increased beyond 15 vol%. Sultana et al. [48] incorporated methylammonium lead iodide 
(CH3NH 3PbI3) (MAPI) into PVDF and reported that the fraction of �†-phase initially increased with 
the incorporation of MAPI, saturated at 10 wt%, and then gradually started to decrease. Hoque et al. 
[47] also reported that when the concentration of hydrated metallic salts increased beyond certain 
value, the fraction of �†-phase started to decrease. The dielectric constant increased initially and then 
decreased upon further increase in salt concentration caused by agglomerates hindering the free 
chain movement of PVDF matrix [58]. Hence, a suitable concentration of nanofillers must be 
incorporated to avoid agglomeratio n and a subsequent reduction in �†-phase content. 
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Figure 7. (a) FT-IR spectra and (b) concentration of �†-phase at different concentrations of BaTiO3 [46].  

2.1. Carbonaceous Nanofillers 

Carbonaceous nanofillers have been most commonly employed to enhance the fraction of �†-
phase in PVDF and in general mechanical properties of polymer nanocomposites [59]. The carbon 
atoms in graphene have a zig-zag structure which matches the zig-zag structure of the �†-phase and 
therefore can be a strong nucleating agent [60]. Graphene oxide (GO) was more effective in enhancing 
piezoelectric and pyroelectric properties of PVDF than graphene [61]. Achaby et al. [37] found that 
the �…-peaks completely disappeared at the incorporation of 0.075 wt% GO and a solely �†-phase was 
observed. They concluded that a 0.1 wt% of GO is sufficient to nucleate all PVDF chains into �†-phase.  
The attachment of PVDF chains to the GO sheets is caused by the interaction between CF2 in PVDF 
and the -C=O and COOH groups of the GO (hydrophilic interactions) [62]. 

2.2. Metallic Oxides 

Metallic oxides, such as hematite (Fe2O3) and cobalt oxide (Co3O4), have also been employed as 
nanofillers [63]. PVDF nanofibers reinforced with 2 wt% Ce-Fe2O3 (Ce is cerium with atomic number 
58) and Ce-Co3O4 recorded peak-to-peak output voltages of 20 V and 15 V with corresponding output 
currents of 0.010 and 0.005 µA/cm2, under the force of 2.5 N, respectively [63]. The transition metal 
cations influence the PVDF properties by affecting its chemical environment through covalent 
interactions as schematically shown in Figure 8 [63]. The nanofillers act as heterogeneous nucleation 
site and the positively charged surface of nanofillers attracts negative ends of PVDF dipoles. It results 
in the nucleation of electroactive crystalline ph ase. The growth of these nuclei is driven by 
electrostatic attraction-repulsion balance between dipoles. He et al. [64] also addressed the formation 
of electroactive phases by the electrical interfacial interaction between the positively charged 
organosilicate surface and the partially negative -CF2- bonds of the PVDF matrix.  
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Figure 8. Schematic diagram of interaction between positively charged nanoparticles and dipoles in 

PVDF chains [63]. 

2.3. Hydrated Metal Salts 

Hydrated metal salts have also been commonly incorporated into PVDF. The d33 and fraction of 
�†-phase improve as the mean spherulite diameter of hydrated metal salts decreases [42]. A smaller 
particle exposes more surface per unit volume for �†-phase to heterogeneously nucleate and is 
therefore more effective than a bigger particle. It was further observed that rare-earth ions such as 
Er3+ (Er is erbium with atomic number 68) are more effective nucleating agents for �†-phase than 
transition metal ions such as Fe3+ (Fe is iron with atomic number 26) [47]. An enhancement in 
piezoelectric properties of PVDF by the incorporation of hydrated metal salts can be due to the large 
accumulation of surface charge between salt surface and PVDF matrix via MWS interfacial 
polarization [65]. A similar effect of interaction with the positively charged nanoparticles and the - 
CF2- dipoles of the PVDF chains, through which the stabilization of electroactive phase was achieved 
by Liu et al. [66]. Liang et al. [67] also suggested that the formation of electroactive phases in PVDF 
is due to the ion-dipole interactions between the positively charged molecules and -CF2- dipoles in 
PVDF or the negatively charged molecules and the -CH2- dipoles in PVDF chains. The piezoelectric 
properties degraded at higher fraction of nanofill ers. Dhakras et al. [49] produced nickel chloride 
hexahydrate NiCl 2.6H2O/PVDF nanofibers and reported that when  the concentration of the nanofiller 
increased beyond 0.5 wt% the piezo-voltage dropped. The reason behind this drop could be the 
excess water content in the salt as it has been shown that excess water can notably affect the 
ferroelectric �†-phase and in turn the electrical properties of the PVDF-based PEMs [20]. 

Fortunato et al. [42] incorporated hexahydrat e metal salts of zinc (Zn), magnesium (Mg), 
aluminum (Al), and Fe into PVDF. They reported that  the largest enhancement of piezoelectric charge 
constant (d33) and highest fraction of �†-phase (82.17%) were achieved in case of magnesium nitrate 
hexahydrate Mg(NO 3)2.6H2O. The increase in d33 can be attributed to the synergistic effect of the 
dipole moment associated with the nucleation of the electroactive phase and with the electrostatic 
interaction between the CF2 group of PVDF and the dissolved salt through hydrogen bonding. 
Magnesium has a highly negative standard redox potential ( �/�C�6�>
 E � t� A�? �Ž �/�C�á 
F�t�ä�u�y�u���A�8), which is 
similar to that of yttrium ( �; �7�>
 E � u� A�? �Ž �;�á 
F�t�ä�u�y�t���A�8) and very close to that of cerium (�%�A�7�>
 E � u� A�? �Ž
�%�A�á 
F�t�ä�u�u�x���A�8) [42]. The worst piezoelectric performance was observed in case of iron chloride 
hexahydrate FeCl3.6H2O [42]. It can be attributed to the relatively high mass and low negative 
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standard redox potential of iron ( �(�A�7�>
 E � u� A�? �Ž �(�A�á 
F�r�ä�r�u�y���A�8), which weakens hydrogen bonding 
between PVDF chains and hexahydrate salts in polar solvents [42]. Hence, Mg(NO3)2.6H2O can 
replace cerium nitrate hexahydrate Ce(NO3)3.6H2O and yttrium nitrate hexahydrate Y(NO 3)3.6H2O 
which are toxic salts. 

2.4. Nanoclay 

Nanoclays have also been incorporated into PVDF where the most widely studied clay is 
halloysite nanotubes (HNT). HNT is identical to kaolinite clay but has tubular morphology. Similar 
to montmorillonite, halloysite consists of two layers of aluminosilicate with Al:Si ratio of 1:1. The 
outer surface of HNT is made of Si-O units and the inner core comprises of Al-O units. Therefore, 
HNT has negative surface potential and partially positive potential from the inner core of HNT 
leading to the enhanced polymer solution conducti vity [68]. HNT have been proven to act as a 
nucleating agent for PVDF, which is due to the dipole-dipole attraction between the oxygen atoms of 
HNT and C-H groups of PVDF. Alongside, the hydr ogen bonding between hydroxyl groups of HNT 
and the fluorine atoms of PVDF enhances the formation of �†-phase [69]. Khalifa et al. [70] 
incorporated HNT into PVDF and reported that HN T aligned themselves along the fiber axis and the 
produced nanofibers were fine, smooth, uniform an d the mean fiber diameter decreased drastically 
with the incorporation of HNT.  

3. SBS Process Parameters 

3.1. Molecular Weight 

Two of the key factors that influence the viscoelastic properties of the polymer solution are 
molecular weight and molecular weight distribution (MWD). It has been shows that polymers with 
high molecular weights are more suitable for fiber spinning [71] and a higher molecular weight of 
precursor PVDF yield nanofibers with bigger diameters [72]. The molecular weight of precursor 
PVDF also affects the fraction of �†-phase in the produced nanofibers [73]. When polymer has high 
molecular weight, the formation of bundles of fibrils is easy in the cross-linked polymer fiber [74,75]. 
At the evaporation of solvent, the polymer phase collapses laterally thereby resulting in a strong, 
dense and highly oriented fiber surrounded by an annulus of the solvent [74]. Gelation effects may 
render the fiber solid-like with indefinite life time in agreement with the literature [76,77].  

3.2. Solvents 

Various organic solvents have been employed to dissolve PVDF and most commonly used is a 
mixture of N,N-dimethylformamide (DMF) an d acetone [78]. Other solvents include N-
methylpyrrolidone (NMP) [79], dimethyl sulfoxid e (DMSO) [80], and tetrahydrofuran (THF) [81]. 
PVDF cannot be dissolved in THF. THF was used with DMF to dissolve PVDF [82]. As PVDF cannot 
be dissolved in THF, the answer of using THF with  DMF to dissolve PVDF could not be found in the 
reviewed literature and is a potential gap in the available literature. Solvents reported in the literature 
and the resultant fraction of �†-phase are shown in Figure 9. A mixture of DMF and acetone with 
different volume fractions has been mostly used. The highest fraction of �†-phase (98%) was achieved 
when the solvent system was DMF:acetone (2:3) [27]. However, this information does not suggest to 
use DMF:acetone (2:3) to get maximum fraction of �†-phase as there are various other parameters that 
influence the fraction of �†-phase obtained and should be taken into account. 
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Figure 9. Various solvent systems used for PVDF-based PEMs and fraction of �†-phase obtained 

[18,27,30,42,46,49,70,78,79,82–89]. 

3.3. Evaporation Rate 

Solvent evaporation rate is known to in fluence final diameter and fraction of �†-phase in PVDF-
based materials [90]. As a solvent is only used to dissolve polymer, it is not supposed to be a part of 
the final product. Therefore, its evaporation rate should be as high as possible. It can be explained on 
the basis of the law of conservation of mass. The mass of an unperturbed element of unit length in 
the straight part of the jet soon after it comes out of the nozzle decreases according to Equation (2) 
[91]. 

�×�:�Ù�Ï�;

�×�ë
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where f is the area of a jet cross-section which is assumed to be circular of radius a, V is the absolute 
jet velocity, x is the axial coordinate reckoned along the straight jet axis, �%�æ�á�Ø�ä�:�6�; and �%�æ�á�¶ are the 
solvent vapor volume fractions at the jet surface and far away from it, respectively, T is temperature 
which is the same for polymer solution an d the surrounding air in case of SBS, �D�à  is the mass 
transfer coefficient and is given by Equation (3) [91]. 
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where �&�Ô is the solvent vapor diffusion coefficient in air, �4�Ø is Reynolds number given by [91],  
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where �å�Ô is the kinematic viscosity of air, �5�Ö is is the Schimdt number and is given by [91],  
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The above equations suggest that the solvent vapor volume fraction at the jet surface should be 
high. This is possible when solvent has low boilin g point and high evaporation rate. Dhakras et al. 
[49] added low boiling point solvent acetone into PVDF-DMF system and found that bead formation 
was significantly suppressed with th e addition of acetone. Therefore, a solvent with low boiling point 
and high vapor pressure would be suitable for this purpose. Another probable way of increasing the 
evaporation rate is heating the polymer solution jet externally.  
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3.4. Dissolution Method 

3.4.1. Manual Stirring 

A simple way of dissolving PVDF in the solvent system is manual stirring. However, it is time-
consuming and not suitable to disperse nanofillers as uniform dispersion of nanofillers requires 
prolonged and strong agitation.  

3.4.2. Magnetic Stirring 

In magnetic stirring, an electromagnet is used that continuously reverses its polarity under the 
application of AC voltage. Another regular magnet is placed in the beaker containing solvent and 
PVDF. The magnet rotates to keep its poles opposite to the electromagnet poles underneath the 
beaker. The magnetic stirring becomes slow or difficult when viscosity of the polymer solution 
increases. In addition, there is a possibility that solvent system may react and dissolve the polymer 
coating on the magnet. Hoque et al. [47] successfully dissolved 250 mg of PVDF and up to 20 wt% of 
erbium (III) chloride hexahydrate and iron nitrate ( III) nonahydrate in 5 mL of  DMSO at 60 °C under 
continuous magnetic stirring for 14 h. The addition of the salts led to vanishing of all XRD peaks 
corresponding to �… and �‡ crystals while peaks at 2�Œ = 20.5 (110)/(200) became sharp indicating the 
nucleation and growth of �†-phase [47]. 

3.4.3. Sonication 

One of the applications of PEMs is sonicator. A piezo crystal fluctuates under the application of 
AC voltage. The fluctuations generate ultrasonic waves that shake the PVDF-solvent system and 
PVDF gets dissolved. It is a very powerful method  not only for dissolution but also to uniformly 
disperse nanofillers. Up to 20 vol% BaTiO3 nanoparticles were successfully dispersed in DMF by 
ultra-sonication to form PVDF/BaTiO 3 nanocomposites [46].  

3.5. Feed Rate 

Mean fiber diameter increased with increasing feed rate of the polymer solution [92]. When feed 
rate is very high, solvent does not evaporate completely resulting in the formation of droplets on the 
web/collector [93]. To increase the evaporation rate of the solvent, Zhuang et al. [94] used a heating 
unit. Limited information about the influence of feed rate on the properties of PVDF-based nanofibers 
using SBS is available in the reviewed literature. Variation in fiber diameter of polyurethane with 
feed rate is shown in Figure 10 [92]. Polyurethane is used here as an example due to the similarity of 
rheological properties with PVDF [95]. At 1 mL/h, a majority of fibers are in the range of 100–250 nm. 
The range of fiber diameters lowered to 50–200 nm at 10 mL/h. It remained almost the same when 
feed rate increased to 25 mL/h. The fiber diameter slightly shifted to higher values at 50 mL/h. The 
maximum fraction of nanofibers with diameters up to 50 nm was achieved with 10 mL/h feed rate. 
Therefore, an optimum feed rate is essential to achieve the fibers with minimum diameter.  

3.6. Viscosity 

The reviewed literature suggests a direct relationship between viscosity of polymer solution and 
mean fiber diameter. Haddadi et al. [96] incorporated hydrophobic and hydrophilic nanosilica into 
PVDF and reported that mean fiber diameter incr eased in both cases. They suggested that the 
viscosity of polymer solution increased by the incorporation of nanofillers which in turn led to an 
increase in mean fiber diameter. Yun et al. [32] fabricated Pb(Zr0.53Ti0.47)O3 reinforced PVDF 
nanofibers and reported that density and viscosity of the polymer solution increased after the 
incorporation of PZT. The mean diameter of nanofibers increased until 10 wt% and then started to 
decrease when volume fraction increased up to 30 wt% [32]. 

��  
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3.7. Weight Fraction 

The weight fraction of parts should be selected such that there is no leftover of solvent as retained 
solvent causes degradation of mechanical properties by acting as stress concentration site [97]. 
Similarly, porosity in the PVDF nanofibers caus ed by fluids is deleterious to the mechanical 
properties [98]. If volume fraction of solvent is t oo low, the viscosity of the polymer solution will be 
high because of which a reasonable attenuation of polymer solution will be difficult to get thin fibers. 
On the other hand, a use of very large volume fraction of solvent will decrease the yield and increase 
the overall cost. Therefore, a minimum possible volume fraction of solvent should be used.  

3.8. Temperature 

The processability of PVDF is easier because of its relatively low melting point (177 °C) and a 
glass transition temperature (Tg) of �º35 °C. PVDF solution temperature was reported to influence the 
spinnability of PVDF fibers [30]. The viscosity an d temperature are inversely related. Therefore, low 
attenuation force will suffice to get thin fibers. Attenuation force in SBS is high speed air which means 
that thin fibers can be achieved at relatively low air pressure and velocity. On the contrary, when 
polymer solution is cold, its viscosity will be high and therefore high air pressure and velocity will 
be required to achieve thin fibers. 

3.9. Air Pressure and Velocity 

The air pressure has a significant impact on the morphology of the final product especially the 
fiber diameter [99]. Fiber diameter decreased and became more uniform with increasing air pressure. 
However, the fibers became defective when pressure was further increased [100]. When air is passed 
through the air inlet and moves toward the nozzle ti p, it must be ensured that there is no choking 
[101]. A nozzle is choked when the maximum mass flow rate has been reached [102]. Any additional 
increment in pressure will result in an increase in chamber pressure. Internally the pressure might 
increase to a value in excess of the rated mechanical strength of the nozzle material which will result 
in catastrophic failure of the device. Externally of  the nozzle an increase beyond choked conditions 
can lead to shock wave formation in the nozzle wake. The effect of shock structures on the fiber 
formation has not been determined; however, it is li kely that the rapidly changing conditions before 
and after the shock will have a detrimental effect on  the fiber morphology. To avoid choking, nozzle 
diameter, feed rate and air pressure must be carefully optimized [103]. 
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Figure 10. SEM images of solution blown thermoplastic polyurethane fibers with different feed rate 

values produced: (a) 1 mL/h, (b) 10 mL/h, (c) 25 mL/h, (d) 50 mL/h [92]. 

Computational methods have been employed to numerically investigate the influence of air 
characteristics on the fiber morphology in SBS [100,104]. Experimental studies that investigate airflow 
parameters for SBS are sparse. Figure 11 displays the velocity contour and vector plot for a typical 
subsonic nozzle. The flow presents with a recirculation zone of reversed flow directly behind the 
nozzle where the fiber is attenuated. Lou et al. [100] provided velocity plots along the centerline of 
the nozzle where flow reversal is observed. The flow velocity rapidly increases aft of the recirculation 
zone to a maximum value and then decreases monotonically. Turbulence intensities in the order of 
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40% are reported in the recirculation zone. To investigate the turbulent behavior of the flow, the k- �‰ 
turbulence model is one of the most commonly used models in CFD to simulate mean flow 
characteristics. This method results in rapid convergence [100] and is effective for solving problems 
involving reverse flow [105]. It is a semi-empirical  model based on model transport equations for the 
turbulence kinetic energy (k) and its dissipation rate ( �‰). Neglecting gravitational effects, the transport 
equations for the k-�‰ turbulence model are given below [100]; 
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where �é is density kg/m 3, �G is turbulent kinetic energy m 2/s2, t is time s, �Q�Ü and �Q�Ý are velocity 
fluctuations in the i th and jth directions, respectively, �ä is viscosity kg/(m.s), �ä�ç is turbulent viscosity 
kg/(m.s), �ê�Þ and �ê�� are turbulent Prandtl numbers for the kinetic energy and the dissipation rate, 
respectively, �Ý is dissipation rate of turbulent kinetic energy, �/ �ç is turbulent Mach number, �%���5 
and �%���6 are parameters for k-�‰ turbulence model. There are numerous turbulence models available 
that can provide accurate results for this type of flow. This can be the subject of a future study. 

3.10. Nozzle Design and Quantity 

The flow of polymer solution is different from those of Newtonian fluids [106]. The stability of 
fiber spinning of polymer solutions at high tensil e rates has been theoretically and experimentally 
studied for diluted polymer solutions while conc entrated polymer solutions still need to be 
addressed [107–110]. The nozzle design is very critical in SBS as it significantly affects the airflow 
field distribution, air velocity and morphology of the final product [104]. Large diameter of the nozzle 
produced higher velocity which enhanced fiber atte nuation and overall reduction in fiber diameter 
[104]. If the internal diameter of nozzle is too big, large droplets will be produced resulting in 
nanofibers with bigger diameters. Similarly, a very small orifice will reduce the throughput however 
it may produce fibers with small diameters. On ce the process has been optimized to achieve 
maximum possible throughput, yield can be further increased by using an assembly of multiple 
nozzles and solution being injected through each nozzle simultaneously. A disk with 20 outlets for 
solution with two holes on the sides for compressed air was used to increase throughput [111]. They 
used the system to produce PVDF nanofibers with diameters in the range of 60–280 nm. The 
cumulative solution flow rate was 320 mL/h [111]. Other research groups have also tried to increase 
the throughput by using multiple nozzles [112] and grids [113].  

 
Figure 11. (a) Velocity contour. ( b) Vector field in the vicini ty of the nozzle end [100]. 
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3.11. Syringe Protrusion Length and Diameter 

The influence of the protrusion length of the needle on fiber dimensions was found to be 
insignificant [104]. Lou et al. [100] also reported that the effect of protrusion length has insignificant 
effect on the fiber morphology. They used four different protrusion lengths: 4 mm, 2 mm, 0 mm, and 
�º2 mm (minus sign means that the polymer syringe wa s retracted from the nozzle end by a distance 
of 2 mm). It was reported that the air velocity re aches a maximum in the vicinity of 10–20 mm below 
the nozzle face. The maximum air velocities were in the range of 170–180 m/s. However, based on lab 
experiments, the retracted nozzles resulted in intermittent process with polymer solution blocking 
the nozzle end. The protruded syringe was capable of producing fibers without such deficiencies. 
The best morphology of nanofibers was produced when polymer syringe was protruded out by 4 
mm [100]. The diameter of the syringe will define th e diameter of the droplet of the polymer solution. 
If the droplet diameter is large it can be potentially difficult to elongate it to get thinner fibers. It has 
been shown that a needle with a smaller diameter promotes fiber attenuation thereby resulting in 
thinner fibers [104].  

3.12. Collectors 

Some commonly used collectors include copper wire drum [114], magnetic field [115], and two-
metal bars to achieve statically aligned nanofibers [116]. Shehata et al. [116] demonstrated that two-
metal bars as collector can significantly enhance the alignment of nanofibers compared with 
conventional dynamic technique in which a high  speed rotating drum is used as collector. A 
comparison of the two types of collectors drawn by COMSOL Multiphysics package is shown in 
Figure 12 [116]. In the conventional collector, charge distribution is uneven that resulted in poor 
alignment of nanofibers. In contra st, an even charge distribution on two-metal bars resulted in 
efficient alignment of nanofibers. 

 

Figure 12. Electric field distribution for ( a) two-bar collector, and (b) conventional collector [116]. 

4. Morphology of PVDF-Based Nanofibers 

The morphological defects, such as beads, have deleterious effect on the piezoelectric properties 
[98]. Abbasipour et al. [98] reported that the output voltage in case of 0.8 wt% HNT/PVDF samples 
was higher than that of 0.8 wt% GO/PVDF samples even though the fraction of �†-phase was higher 
in the latter samples. Hence, it is not just the fraction of �†-phase but also morphology of nanofibers 
that influence the overall piezoelectric properties.  

4.1. Bead Formation 

The phenomenon of beads-on-string breakup of thin jets of dilute polymer solutions was 
discovered by Goldin et al. [117]. Its essence is that at later stages of capillary breakup “necks” 
between forming drops cease to thin and transform into thin liquid filaments gradually thinning 
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without apparent change of shape of drops [118–120]. The presence of beads (Figure 13) may stem 
from a local higher concentration of polymer and charge accumulation [121]. The morphological 
defects in PVDF-based nanofibers can be suppressed by the incorporation of nanofillers, such as 
hydrated metal salts [49]. Dhakras et al. [49] produced PVDF nanofibers and reported that beads were 
observed on the produced fibers. When they incorporated nickel chlo ride hexahydrate (NiCl 2.6H2O), 
the population of beads was found to decrease significantly. They further reported that the piezo-
voltage increased up to 44% in neat PVDF when they were able to achieve beads free nanofibers [49]. 
Xin et al. [26] produced nanoclay/PVDF nanofibers and reported that the bead formation was 
suppressed by the incorporation of nanoclay. 

4.2. Porosity 

Porosity within PVDF fibers degrades the mechanical properties however it also increases the 
total charge collecting area and results in enhanced piezoelectric properties of PVDF-based PEMs 
[122]. Various techniques have been employed to increase through thickness macro-porosity in 
membranes, such as cryogenic spinning of fibers [123], laser drilling [124], sacrificial fibers [125], and 
in situ porosifiers to achieve interconnected macropores throughout the scaffold to improve cellular 
infiltration and enhance vascularization [126]. Th e densely packed membranes are also useful for 
many applications such as cell guidance substrates and in forming barriers in applications such as 
wound dressing and preventing infection (e.g., dental  applications) [127]. The incorporation of LiCl 
results in increased porosity in PVDF nanofibers wh ere long finger-like porosity was observed [128]. 
It was also observed that the average pore size decreased with increasing LiCl fraction [129]. 

 

Figure 13. (A) Plot indicating morphology of poly(met hyl methacrylate) (PMMA) sprayed using a 
solution blow spinning (SBS) apparatus at various concentrations and molecular weights. The 

estimated overlap concentration (c *) is indicated by the dashed line. Scanning electron microscopy 

(SEM) image of PMMA fibers formed at high molecular weight but below overlap concentration. Scale 
bar represents 50 µm. (B) SEM images of 50/50 wt. % PMMA/1H,1H,2H,2H-heptadecafluorodecyl 

polyhedral oligomeric silsesquioxane (PMMA: Mw = 593 kDa, PDI = 2.69) blends sprayed using an 

SBS apparatus at increasing concentrations of PMMA in solution. Scale bars represent 50, 100, and 50 

µm, respectively [29]. 

4.3. Fiber Diameter 

The mean fiber diameter and size distribution  affect the properties and applications. For 
example, fibrous membranes are capable of generating different cellular response depending on fiber 
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diameter [30]. Difference in fiber diameter influe nces the roughness and inter-fiber pore size of 
membranes and scaffolds used in tissue engineering applications and can have a direct influence on 
cellular adhesion, proliferation and differentiation [130]. Controlling fiber size is a strategy that can 
be used to tune pore size and mimic aspects of the extracellular matrix to alter cell infiltration [131]. 
This approach has been shown to enable the migration of human osteosarcoma cells (SaOs-2 cell line) 
from one side of a fiber membrane to the other, to support their proliferation [131]. The differentiation 
and spreading of osteoblastic cell line, MC3T3-E1 cell has also been reported to be affected by fiber 
diameter [132].  

The mean fiber diameter changes with the incorporation of nanofillers bu t contradictory results 
have been reported in the reviewed literature. Dhakras et al. [49] produced NiCl 2.6H2O/PVDF 
nanofibers where the mean fiber diameter decreased with the incorporation of nanofiller. Khalifa et 
al. [133] incorporated nano alumina trihydrate (ATH) into PVDF and reported that mean fiber 
diameter decreased after the incorporation of ATH. On the contrary, Abbasipour et al. [98] reported 
that the mean diameter increased with different nanofillers as shown in Figure 14. The maximum 
increase in diameter in case of GO was due to interactions caused by hydroxyl and carboxyl groups 
of GO nanosheets [134]. Similarly, Fashandi et al. [135] produced cellulose nanocrystals/PVDF 
nanofibers and reported that the fiber diameter init ially increased from 439 nm to 718 nm with the 
incorporation of 1 wt% cellulose nanocrystals. Upon further loading, fiber diameter decreased (552 
nm at 3 wt% and 559 nm at 5 wt% cellulose nanocrystals) [135]. It should be noted that in all samples 
containing cellulose nanocrystals, fiber diameter is greater than neat PVDF fibers [135]. Tandon et al. 
[30] produced HA/PVDF nanofibers  where mean fiber diameter increased after the incorporation of 
HA (~550 nm for neat PVDF and ~700 nm for HA/PVDF samples). The increase in fiber diameter with 
the incorporation of nanofillers can be attribut ed to increased viscosity and decreased solvent 
evaporation rate [136]. 

 

Figure 14. Morphology of PVDF-based nanofibers: (a) pristine PVDF, (b) 0.2wt%GO/PVDF, (c) 0.2 
wt% graphene/PVDF, (d) 0.2 wt% HNT/PVDF, (e) 0.8 wt% GO/PVDF, (f ) 0.8 wt% Gr/PVDF, (g) 0.8 

wt% HNT/PVDF, and ( h) variation in mean diameter with filler content [98]. 

4.4. Alignment 

The piezoelectric performance is affected by the preferential orientation of CF2 groups of PVDF 
[30]. Superior piezoelectric properties can be achieved by aligning the nanofibers in a particular 
direction [137]. A great deal of effort has been made to get the nanofibers aligned to enhance the piezo 
response [138]. Zaccaria et al. [137] produced random and aligned nanofib ers of PVDF-TrFE. The 
electric response to mechanical stimuli, in the frequency range of 30–200 Hz is 2–4 times higher for 
aligned nanofibers compared with both random nanofibers and commercially available films. They 
further reported that an increase in piezoelectric response was due to the high fraction of �†-phase in 
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the aligned nanofibers. It was reported that the alig nment also resulted in a reduction of mean fiber 
diameter [137]. Additionally, there was no delay be tween the electric response and the mechanical 
stress in case of aligned nanofibers while a remarkable phase shift was observed in case of random 
nanofibers. Abbasipour et al. [98] incorporated graphene, GO, and HNT into PVDF and reported that 
more oriented and finer nanofibers were achieved with HNT because of the tube-like morphology of 
HNT. To get aligned nanofibers, Xin et al. [26] reduced the nozzle-collector distance from normal 
value of 10–25 cm to only 3–5 cm and called it “near distance wheeling (NWS)”. They reported that 
this reduction in nozzle-collector distance help ed in achieving aligned nanofibers as the average 
preferential fiber orientation got aligned with the co llector rotation axis as shown in Figure 15 [26]. 

 

Figure 15. (a) Schematic illustration of the piezoelectric response experimental setup and the inset is 

photograph of the assembled full -fibre sensor; SEM images of (b) PVDF nanofibers, (c) 

PVDF/nanoclay nanofibers, and (d) PVDF/nanoclay nanofibers by NWS method [26]. 

5. Mechanical Properties 

As PEMs undergo cyclic loading, it is critical that they have superior mechanical properties. The 
fraction of �†-phase, crystallinity, and morphology of nanofibers influence the mechanical properties. 
Tandon et al. [30] produced PVDF nanofibers using SBS and electrospinning, and reported that 
membranes obtained by SBS had higher tensile strength and lower Young’s modulus than those 
produced by electrospinning. �†-phase does not only have superior piezoelectric properties but also 
has high elastic strength [139]. The incorporation of nanofillers can help improve mechanical 
properties of PVDF-based PEMs [46]. When BaTiO3 was incorporated into PVDF , not only fraction of 
�†-phase but also mechanical properties improved as shown in Figure 16 [46]. At 10 vol% BaTiO3, 
ultimate tensile strength (UTS) increased in both single-layer (SL) and double-layer (DL) samples. 
The stress-strain curves suggest that PVDF initially shows ductile behavior with distinct elastic and 
plastic regions. At the onset of fracture strength, there is sudden drop in stress that suggests a very 
brittle fracture mode. However, mechanical proper ties degraded when concentration of nanofiller 
increased beyond 15 vol%. It is because when concentration is increased beyond a certain value, 
agglomeration takes place and agglomerates act as stress concentration sites [140]. Due to stress 
concentration, cracks initiate and propagate under the influence of cyclic loading and result in failure 
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[141]. Therefore, agglomeration should be avoided to prevent degradation of mechanical properties. 
The enhancement of Young’s modulus degrades piezoelectric coefficient (d33) [142]. The d33 is defined 
as the change in polarization with applied uniaxial stress. At zero applied potential, d 33 = - Pr/Y where 
Pr is remnant polarization and Y is Young’s modulus [142]. Hence, a PEM should have a lower 
Young’s modulus if a higher d 33 (with minus sign) is required. 

 

Figure 16. (a) Stress-strain curves, and (b) Young’s modulus of the PVDF/BaTiO 3 nanocomposites 

[46]. 

6. Applications 

PVDF-based PEMs have found various applications including but not limited to energy 
conversion [143], power generation [144], sensing [145], and actuation [146]. Difference in fiber 
diameter influences the roughness and inter-fiber pore size of membranes and scaffolds used in tissue 
engineering applications and can have a direct influence on cellular adhesion, proliferation and 
differentiation [130,132,147]. Controlling fiber size is a strategy that can be used to tune pore size and 
mimic aspects of the extracellular matrix to alter cell infiltration [131]. This approach has been shown 
to enable the migration of human osteosarcoma cells (SaOs-2 cell line) from one side of a fiber 
membrane to the other, and support their prolifer ation [131]. The differentiation and spreading of 
osteoblastic cell line, MC3T3-E1 cell has also been reported to be affected by fiber diameter [132]. 
PVDF-based PEMs can be used in photocatalysis [148]. The spatial electric field of PVDF plays a 
generic enhancement role in the photocatalysis of both UV-light-responsive and visible-light-
responsive photocatalysis [148]. In the presence of organic piezoelectric PVDF, the photocatalytic 
efficiency of a PVDF-TiO2 sample was improved by 55% and the corresponding first-order reaction 
rate constant increased by 5.42 times [148]. 

PVDF-based PEMs can also be employed where restricted wettability and hydrophobicity are 
desired such as to make water repellent coatings. PVDF is known to be a chemically resistant and 
hydrophobic polymer [30]. The fabrication process also affects the wettability [30]. Tandon et al. 
produced PVDF nanofibers via SBS and electrospinning, and reported that membranes produced by 
SBS had average contact angle of ~113° which was higher than those produced by electrospinning 
[30]. It suggests that PVDF nanofibers produced via SBS have lower wettability and a higher 
hydrophobic character than those produced by electrospinning. Hydrophobic character of PVDF 
fibers is explained in ref. [149–151]. PVDF-based PEMs are much promising in fabricating 
piezoelectric nanogenerators (PENGs) as the potential energy source for portable devices [152]. 
PVDF-based PEMs can also be employed to harvest energy from respiration and wind energy [50]. 
Alam et al. produced ZnO-containing paper ash ZPA/PVDF nanofibers-based PENG. They simply 
exhaled near a PENG and this mouth blowing led to  generation of 0.2 V [50]. The further observed 



Polymers 2020, 12, 1304 20 of 29 

��

that the output voltage linearly increased from 0.2 to 1 V with an increase in mouth blowing wind 
flow from 1 ms �º1 (corresponding to an exerted pressure of ~0.65 Pa) to 5 ms�º1 (~16 Pa) [50]. The 
respiration process increases 4–8 folds during workout and therefore higher energy can be harvested 
during exercise [153]. This capability is ideal for harvesting energy from environmental wind flow or 
respiration making the PENG suitable for various applications, including charging mobile phones 
during conversations. 

Deng et al. successfully demonstrated that cowpea-structured PVDF/ZnO nanofibers (CPZNs)-
based flexible self-powered sensors can be used to remote control of gestures in interactive human-
machine interface (iHMI) [154]. The mechanism of the process is summarized in Figure 17 [154]. A 
robotic hand mimics a human hand  based on the relationship between electrical output and the 
bending angle of the piezoelectric sensor (PES) (Figure 17a–g). The PES is attached to the inner 
knuckles of human fingers. The PES is comprising of PVDF/ZnO nanofibers mat and flexible MXene 
(Ti3C2) electrode. Due to the flexibility of PVDF-based nanofibers and electrode, the PES 
demonstrated good mechanical flexibility (Figure 17e).  Upon the application of bending force, stress 
is concentrated in the middle region where tension/compression are maximum. The mechanical 
strain elicits piezoelectric response and voltage is generated at the far ends of the sensor (Figure 17h). 
When human hand gives a gesture of “Two” robotic hand replicates the gesture proving that bending 
sensing can be realized based on the piezoelectric effect. The sensitivity of PES could be regulated 
through the volume fraction of ZnO. The optimum bending sensitivity of 4.4 mV/deg with a fast 
response time of 76 ms could be achieved ranging from 44° to 122°. It has been shown that the output 
of PVDF-based motion sensors is gait sensitive [155]. This feature can help podiatrist to correct 
walking and running styles of patients and in forensic sciences for trace inspection. 

 
Figure 17. The structure design of the CPZNs-based self-powered PES. (a) The schematic of the 
developed smart sensor applied in the field of iHMI. The sketch of the device. (b) Nanofibers film. ( c) 

The photograph of the fabricated sensor under bending mode. (d) Anatomy of sensor. (e) Photo of 

bent sensor. (f ) The SEM image of the nanofibers. (g) The TEM image of a single nanofiber. (h) The 

result of the FEM simulation. ( i ) The application of robot hand remote control based on the PES [154]. 
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7. Conclusions and Future Insights 

PVDF is a multifunctional polymer, exhibiting piezoelectric, pyroelectric, ferroelectric and 
superior dielectric properties. To modify the piez oelectric properties of PVDF, its copolymers are 
made, and additives are incorporated. One of the most commonly used copolymers of PVDF is poly 
(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) because of high piezo response, lightweight 
and ease of processing, making it a potential candidate for flexible and wearable applications. In 
PVDF, there are five common phases; �…, �†, �‡, � ,̂ and �‰. The phases are different based on chain 
conformations; all-trans (TTTT) for �†-phase, TGTG (trans-gauche-trans-gauche) for �… and � ,̂ and 
T3GT3G for �‡ and �‰. The phase obtained depends on the processing parameters. Among all, �†-phase 
has the highest piezo response with highest dipolar moment and spontaneous polarization per unit 
cell. It is easier to achieve electrical polarization in semi-crystalline structure than in amorphous 
structure. Hence, higher the �†-phase, greater the piezo response. 

There are two potential methods to produce PVDF-based nanofibers namely electrospinning 
and solution blow spinning (SBS). The suitable fabrication method is the one which produces a higher 
fraction of phase with highest piezo response. To achieve a high piezo response, electrospinning 
requires the application of very high electric field (>100 MV/m) sometimes making the process a 
safety hazard. The advantage of electrospinning is that it combines mechanical stretching and electric 
poling into one process. SBS has many advantages over electrospinning. SBS is portable and 
nanofibers produced can be deposited on any substrate. One of the main advantages is throughput. 
SBS can give yield up to 30 times greater than that by electrospinning making SBS suitable for scale-
up. Once nozzle design, feed rate, air pressure, solvent and polymer concentration are optimized, 
yield can be further increased by using an assembly of multiple nozzles and solution being injected 
through each nozzle simultaneously. 

One of the challenges in SBS is reproducibility. Tandon et al. produced PVDF nanofibers via SBS 
and reported that SBS resulted in higher fiber vari ability between fabricated batches [30]. Mean fiber 
diameters of 400 ± 130 nm and 300 ± 130 nm were obtained for SBS and electrospinning, respectively 
[30]. The numbers suggest that SBS parameters need further optimization to achieve thinner fibers. 
Another aspect where SBS needs improvements is in the alignment of nanofibers. Tandon et al. 
produced PVDF nanofibers via SBS and electrospinning and reported that relatively poor alignment 
of nanofibers was achieved with SBS compared with electrospinning [30]. This could be due to 
increased turbulence around the collector because of high rotational speed and compressed air 
deflecting from the surface of the cylindrical collector [44]. 

Air pressure and velocity can significantly infl uence the fiber morphology. Although a higher 
centerline velocity helps reduce the fiber diameter, it is critical that the velocity does not reach 
supersonic to an extent where shocks may be generated as shocks can potentially break the fibers. 
During the literature review, no study was found that has predicted about whether shocks will 
actually break the fibers or will only result in sharp localized reduction in fiber diameter. Hence, a 
study is essential to investigate a threshold of a maximum air velocity and effects of shocks on the 
fiber morphology. Therefore, extensive research is still required to modify and optimize the SBS 
technique to produce PVDF-based nanofibers with superior pi ezoelectric properties. This 
modification and optimization require a confluence  of both modeling/simulation and experimental 
research.  
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