
Northumbria Research Link

Citation: Asim, Muhammad, Wang, Yong, Wang, Kezhi and Huang, Pei-Qiu (2020) A
Review on Computational Intelligence Techniques in Cloud and Edge Computing. IEEE
Transactions on Emerging Topics in Computational Intelligence, 4 (6). pp. 742-763. ISSN
2471-285X

Published by: IEEE

URL: https://doi.org/10.1109/tetci.2020.3007905
<https://doi.org/10.1109/tetci.2020.3007905>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/43725/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

1

A Review on Computational Intelligence Techniques
in Cloud and Edge Computing

Muhammad Asim, Yong Wang, Senior Member, IEEE, Kezhi Wang, Member, IEEE, and Pei-Qiu Huang

Abstract—Cloud computing (CC) is a centralized computing
paradigm that accumulates resources centrally and provides these
resources to users through Internet. Although CC holds a large
number of resources, it may not be acceptable by real-time mobile
applications, as it is usually far away from users geographically.
On the other hand, edge computing (EC), which distributes
resources to the network edge, enjoys increasing popularity in the
applications with low-latency and high-reliability requirements.
EC provides resources in a decentralized manner, which can
respond to users’ requirements faster than the normal CC, but
with limited computing capacities. As both CC and EC are
resource-sensitive, several big issues arise, such as how to conduct
job scheduling, resource allocation, and task offloading, which
significantly influence the performance of the whole system.
To tackle these issues, many optimization problems have been
formulated. These optimization problems usually have complex
properties, such as non-convexity and NP-hardness, which may
not be addressed by the traditional convex optimization-based
solutions. Computational intelligence (CI), consisting of a set
of nature-inspired computational approaches, recently exhibits
great potential in addressing these optimization problems in CC
and EC. This paper provides an overview of research problems
in CC and EC and recent progresses in addressing them with
the help of CI techniques. Informative discussions and future
research trends are also presented, with the aim of offering
insights to the readers and motivating new research directions.

Index Terms—Cloud computing, edge computing, computa-
tional intelligence, evolutionary algorithms, swarm intelligence
algorithms, fuzzy system, learning based system

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization
AI Artificial Intelligence
AIS Artificial Immune System
BA Bee Algorithm
BFA Bacterial Foraging Algorithm
CC Cloud Computing
CI Computational Intelligence
C-RAN Cloud-Radio Access Network
CSA Cuckoo Search Algorithm

This work was supported in part by the National Natural Science Foundation
of China under Grants 61673397 and 61976225, in part by the Beijing
Advanced Innovation Center for Intelligent Robots and Systems under Grant
2018IRS06, and in part by the Foundational Research Funds for the Central
Universities of Central South University under Grant 2020zzts521. (Corre-
sponding author: Yong Wang and Kezhi Wang)

M. Asim is with the School of Computer Science and Engineering, Central
South University, Changsha 410083, China (Email: asimpk@csu.edu.cn)

Y. Wang and P.-Q. Huang are with the School of Automation, Cen-
tral South University, Changsha 410083, China (Email: ywang@csu.edu.cn,
pqhuang@csu.edu.cn)

K. Wang is with the Department of Computer and Information
Sciences, Northumbria University, Newcastle NE1 8ST, UK.
(kezhi.wang@northumbria.ac.uk)

DE Differential Evolution
EAs Evolutionary Algorithms
EC Edge Computing
FA Firefly Algorithm
FC Fog Computing
FI Fuzzy Inference
FL Fuzzy Logic
FS Fuzzy System
GA Genetic Algorithm
HS Hybrid System
IaaS Infrastructure-as-a-Service
IoT Internet of Things
LBS Learning Based System
MCC Mobile Cloud Computing
MDP Markov Decision Process
MEC Mobile Edge Computing
NN Neural Networks
PSO Particle Swarm Optimization
QoS Quality of Service
SIAs Swarm Intelligence Algorithms

I. INTRODUCTION

Cloud computing (CC) is a paradigm of computing tech-
nologies that provides on demand services to its clients. The
vision of CC is to offer computing, storage, and network
resources centrally in the remote clouds, which is related to
data centers, backhaul networks, and core networks [1], [2]. It
is an architecture for allowing appropriate, pervasive, and on
request access to a shared pool of configurable resources [3].
The large number of resources available in the central cloud
can then be leveraged to deliver elastic computing capacity
and storage to support resource-constrained end devices. It has
been driving the rapid growth of many Internet companies
[4]. For example, the cloud business has risen to be the
most profitable sector for Amazon [5], and Dropbox’s success
depends highly on the cloud service of Amazon. It can
intensify collaboration, scalability, nimbleness, and availability
for enterprises as well as users. CC offers services on a pay-as-
you-go basis and reduces hardware and software costs, energy,
and carbon footprints by providing an optimized and sufficient
computing environment [6]. In CC, users first offload tasks
to the central cloud, and then the central cloud executes the
tasks on behalf of users and sends back results to users [7].
Although CC provides a vast number of resources, easy back
and recovery, high accessibility as well as an eco-friendly
environment for users (i.e., can be accessed anytime from
anywhere on demand), it may not be capable of fulfilling the

2

Fig. 1. Architecture of CC and EC.

requirements of real-time applications with low latency and
high reliability as the central cloud is far away from users.

On the other hand, edge computing (EC), which deploys
the resources, data, and services from the central cloud to
the network edge, enjoys increasing popularity recently. It
enables analytics and knowledge generation to occur or close
to users’ end. In EC, users first offload tasks to the nearby edge
cloud, and then the edge cloud executes their tasks and sends
outcomes back to users. Fig. 1 presents a typical architecture
of CC and EC, where edge clouds can provide computing
and network resources between users and the central cloud.
Compared with CC, EC can provide services with low latency,
high security, and high mobility but with limited computing
capacities. CC and EC facilitate a wide range of applications
including virtual reality/augmented reality, online game, online
video, etc.

In CC and EC, several metrics are related to the quali-
ty of service (QoS), such as security and privacy, latency,
resource utilization, cost, energy consumption, throughput,
and makespan. In order to improve these metrics, we need
to consider several issues, such as job scheduling, resource
allocation, and task offloading. For example, security and
privacy can be improved by designing efficient task offloading
schemes [8]. In addition, latency and energy consumption
can be optimized by designing proper resource allocation

[9] and task offloading schemes [10], [11]. Similarly, oth-
er metrics can be improved by considering job scheduling,
resource allocation, and task offloading. To this end, many
optimization problems have been formulated for tackling these
issues. However, compared with optimization problems in
other areas, these optimization problems are normally highly
complex and NP-hard, which may include mixed/strongly-
coupled variables, nonlinear constraints, multiple objectives,
and bilevel structures. Therefore, they may not be solved by
the traditional convex optimization-based methods. In addition,
their optimal solutions should be found within a reasonable
amount of time.

As a class of nature-inspired computational approaches,
computational intelligence (CI) exhibits great potential in ad-
dressing complex optimization problems, which has attracted
much attention from both academia and industry. CI includes
evolutionary algorithms (EAs), swarm intelligence algorithms
(SIAs), fuzzy system (FS), learning based system (LBS), and
hybrid system (HS). These CI techniques have the capability
to process imprecise information and search for approximate
yet good enough solutions while ensuring robustness and
computational tractability [12].

The aim of this paper is to present a review of CI techniques
to address issues in CC and EC. Several survey papers and
books have been devoted to CC and EC. For example, Hoang

3

 Organization

 Sec. I: Introduction

 Sec. II: CC and EC Paradigms
 and their Related Metrics &

 Critical Issues

 Sec. III: CI for CC and EC

 Sec. IV: CI in Addressing
 Critical Issues in CC and EC

 Sec. V: Discussion and
 Future Reasearch Trends

 Sec. VI: Conclusion

Fig. 2. Paper Organization.

et al. [13] presented a survey on architecture, applications,
and approaches in mobile CC (MCC). A short review on
task scheduling in CC is carried out in [14]. QoS in CC is
surveyed in [15] and [16]. Wu [17] studied multi-objective
decision making for offloading decision in MCC. An extensive
survey on MCC is given in [18]. A survey on challenges and
opportunities in CC is presented in [19]. Zhou et al. [20]
published a survey on artificial intelligence (AI) in EC. In
[21], visions and challenges of EC are discussed. A survey on
EC for Internet of things (IoT) is investigated in [22]. Liu et
al. [23] surveyed systems and tools in EC. Peng et al. [24]
studied service adaptation and provision in mobile EC (MEC).
Mao et al. [4] elaborated on the communication perspective of
MEC. Lin et al. presented a survey on computation offloading
in EC. Wang et al. [25] focused on offloading algorithms,
issues, methods, and perspectives in edge cloud. Moreover,
some other surveys devoted to MEC are [26]–[31]. However,
none of the aforementioned surveys considers CI techniques.
In addition, some survey papers review CI techniques in CC
or EC. For example, evolutionary approaches for resource
management in CC are reviewed in [32] and [33]. Chopra and
Bedi [34] reviewed the applications of fuzzy logic (FL) in CC.
Deep learning (DL) in EC is studied in [35]. It is worth noting
that the above-mentioned surveys only consider one particular
type of CI for CC or EC.

This survey attempts to give a detailed review of the state-
of-the-art CI techniques in CC and EC. Our paper is an
ambitious effort to capture the interplay among CI, CC, and
EC, instead of delving into one particular CI technique in
CC and EC exclusively. The motivation behind this survey
is to provide researchers with a glance of mutual relationship
between CI and both CC and EC at a higher level.

The works introduced in this survey are taken from relevant
journals, workshops, conference proceedings, and theses. This

TABLE I
FEATURES OF CC AND EC

Feature CC EC
Latency High Low
Mobility No Yes

Architecture Centralized Distributed
Location Awareness No Yes

Security Less Secure More Secure
Service Access Through Core At User End

Availability High High
Geographic Distribution No Yes

Scalability Average High
Reliability Low High

No. of devices connected In Millions In Billions
Resources Huge Limited

survey focuses on reviewing issues in CC and EC tackled
by CI techniques, rather than a detailed study of CC/EC/CI
techniques.

The rest of this paper is organized as follows. Section II
presents an overview of the concepts related to CC and EC
along with important metrics and critical issues. Section III
introduces CI techniques used for addressing critical issues
in CC and EC. Section IV reviews the existing applications
of CI techniques in CC and EC. Finally, Section V offers a
detailed discussion on the use of CI techniques in CC and EC
along with future research trends, followed by the conclusion
in Section VI. For clarity, the organization of this paper is
given in Fig. 2.

II. CC AND EC PARADIGMS AND THEIR RELATED
METRICS AND CRITICAL ISSUES

A. CC and EC Paradigms

CC and EC are complementary fields and their features are
summarized in Table I.

1) CC: In CC, different types of paradigms have been
designed. Next, we introduce two typical paradigms of CC:
MCC and cloud-radio access network (C-RAN).

• MCC is proposed to enrich resources for users. It merges
CC, mobile computing, and wireless networks to enable
service providers to help users to conduct computation-
intensive tasks [18]. It provides several benefits to users
like extending battery lifetime, improving storage capac-
ity and processing power, and providing computation-
intensive applications [13].

• C-RAN provides centralized processing, collaborative
radio, and energy efficient infrastructure for RAN [36].
In this architecture, network computation-based tasks are
performed in the central baseband unit, and the radio
signals from distributed antennas are gathered through
remote radio heads and transmitted to the cloud by optical
transmission network. It offers better services without
affecting coverage of network by reducing the number
of cell sites and capital expenditures and operating costs.

2) EC: EC includes many paradigms, e.g., cloudlet, fog
computing (FC), and MEC, which are discussed below.

• Cloudlet, introduced by Satyanarayanan et al. [37], [38],
is a decentralized and widely distributed infrastructure,
i.e., providing storage and processing close to users. It

4

 Sec. II-B: Metrics in
 CC and EC Systems

 Sec. II-B1: Energy
Consumption

 Sec. II-B2: Security
 and Privacy

 Sec. II-B3: Resource
 Utilization Sec. II-B4: Latency

 Sec. II-B5: Makespan

 Sec. II-B6: Cost

 Sec. II-B7: Throughput

Fig. 3. Metrics in CC and EC.

is also referred to as a “data center in a box”. It is
indeed proposed to fulfill the demands of users to re-
duce response time for new latency-sensitive applications
without going to the main central cloud [39]. Although
cloudlet has many benefits due to being close to users,
it does not have enough computing capacity as the
central cloud; thus, it is limited in providing computation-
intensive services.

• FC was first discussed by Cisco in 2012 [40] and is
referred to as an extension of services from the central
cloud to the network edge. It reduces the amount of data
sent to the central cloud for processing and storage [41].
It is a paradigm that furnishes computing, storage, and
networking services close to users. FC provides better
support for real-time applications, dense geographical
distribution, low latency, and location awareness.

• The architecture of MEC was proposed by European
Telecommunications Standards Institute in 2014, enabling
the provision of resources close to users via RAN [42]. It
can provide services with low latency and high bandwidth
at the edge of radio network. In addition, MEC makes it
possible to measure and improve network performance
by setting up services like software defined network and
network function virtualization [43].

Although EC can effectively overcome some problems of
network congestion and long latency in CC, it has limited
computation and communication capabilities [44]. On the
other hand, although CC has rich computing resources, it
may suffer from high latency. To address the above-mentioned
problems, researchers have made some attempts to investigate
the hierarchical computing (i.e., the collaboration between CC
and EC), such as [44]–[46], where the tasks of users can be
partially or jointly processed at both edge and central clouds.

B. Metrics

Over the past two decades, many researchers focused on
diverse aspects of CC and EC, including security and privacy,
energy consumption, resource utilization, etc. Some important
metrics are given in Fig. 3 and discussed below.

1) Energy Consumption: EC may suffer from battery life
problem. Even though CC is normally connected to the power
grid, energy efficiency is still very important as it is relevant
to the profit and economy of CC operators. The energy spent
on end devices during task execution is a primary aspect
to be considered. Total energy consumption includes static

energy consumption and dynamic energy consumption [47].
Energy consumed by the system without considering any
workload is called the static energy, while the dynamic energy
is the energy consumed on the current cloud/edge resources
by virtual machines (VMs). Usually, an edge cloud can be a
small device like laptop and mobile, and applies the battery.
However, CC normally connects to power grid, and has much
more power consumption than EC. Therefore, saving energy
in EC is to keep edge cloud alive, whereas in CC, saving
energy contributes to green society. For users, due to the long
distance transmission, CC usually needs more energy than EC
for offloading tasks.

2) Security and Privacy: Security and privacy is one of
the important metrics to be considered for providing secure
and trusted services to users. Many hackers try to interrupt
or steal data while users offload and process their tasks at
central/edge clouds. Security and privacy is a set of control-
based technologies and policies designed to protect sensitive
information, data, applications, and infrastructures [48]. CC
is more vulnerable to be attacked by hackers due to the long
distance transmission between users and the central cloud. In
contrast, EC is a decentralized architecture, which is more
secure than CC. Locally sharing, storing, exchanging, and
analyzing data among edge clouds make it harder for hackers
to get access to data. Moreover, real-time processing and
response of EC make it difficult for malicious attackers to
detect sensitive information of users. However, EC still inherits
many security problems such as privacy leakage, forgery,
tampering, spam, jamming, and impersonation [49].

3) Resource Utilization: If CC and EC infrastructures place
VMs for resource utilization without any specific scheme,
some resources may run out while others are idle. Thus, an
efficient resource utilization scheme becomes more important
to get the maximum profit of resource utilization by utilizing
resources properly [50]. Moreover, load balancing also needs
to be considered for better performance and resource utiliza-
tion. It is essential to distribute workloads across multiple n-
odes of the system to maintain stability, minimize latency, and
improve resource utilization ratio in CC and EC. In CC, proper
utilization of resources is needed to save energy, host more
users, and make more profits, whereas in EC, it is important
to meet high-reliability and low-latency requirements.

4) Latency: A mass of novel mobile applications is emerg-
ing, most of them are latency-sensitive. Typically, latency is
defined as the delay between a user’s request and response of
a service provider [51]. It has a high effect on the usability and
enjoyability of end devices. CC is a large system and hosts a
huge number of users, thus leading to routing problems such
as VMs’ connection problem. In addition, the long physical
distance between users and the central cloud also leads to high
latency. In contrast, edge clouds are placed at the network edge
and thus have a better capability to perform latency-sensitive
tasks than CC.

5) Makespan: Makespan is the maximum required time to
complete all assigned tasks [33], [52], including response time,
execution time, waiting time, etc. It can be expressed as:

M = max(Ti), i = 1, 2, . . . , n (1)

5

 Sec. III: CI for
 CC and EC

 Sec. III-A: Evolutionary
 Algorithms (EAs)

 Genetic Algorithm (GA)

Artifical Immune System (AIS)

Differential Evolution (DE)

 Sec. III-B: Swarm
 Intelligence Algorithms

 (SIAs)

 Particle Swarm Optimization (PSO)

Ant Colony Optimization (ACO)

Bee Algorithm (BA)

Cuckoo Search Algorithm (CSA)

Firefly Algorithm (FA)

 Bacterial Foraging Algorithm (BFA)

 Sec. III-C: Fuzzy System
 (FS)

Fuzzy Logic (FL)

Fuzzy Inference (FI)

 Sec. III-D: Learning
 Based System (LBS)

Deep Learning (DL)

Reinforcement Learning (RL)

Deep Reinforcement Learning (DRL)

 Sec. III-E: Hybrid System (HS)

Fig. 4. Main paradigms of CI family used in CC and EC.

where Ti is the completion time of task i, and n is the number
of tasks.

Compared with EC, there are a huge number of tasks needed
to be processed in CC. Therefore, many researchers focused
on makespan in CC only.

6) Cost: Since users and service providers usually belong
to different entities, users have to pay for availing specific
resources [51] such as computing or communication resources.
The cost can consist of computing cost, running cost, and
setup cost. The purpose of this metric is to reduce the cost of
services provided to users. One of the most significant ways
is to generate a program for services, which can manage the
changing behavior of buyers and optimize costs for infrastruc-
ture maintenance and order.

7) Throughput: Throughput measures the rate at which data
is successfully transferred between two endpoints. It concerns
the ability of a service provider to handle the demands of users
as it cannot directly track users’ experience [51]. It is affected
by latency and limitations existing at users and central/edge
clouds. Usually, EC has a higher throughput compared with
CC, as it takes less time in responding to users’ requests or
transferring data to users.

C. Issues in CC and EC

In order to improve the above-mentioned metrics in CC and
EC, we need to address the following issues.

1) Job Scheduling: The rising demands for services in
CC and EC may lead to the imbalanced resource usage and
drastically affect the performance of service providers; hence,
job scheduling is a necessary prerequisite for improving QoS
in CC and EC. The main aim of job scheduling is to order
tasks in a specific way. There are two types of job scheduling:
static and dynamic scheduling. In static scheduling, all jobs
arrive at the same time and are assigned to VMs in a static
way, while in dynamic scheduling, all the jobs once arrive,
they are scheduled instantly.

2) Resource Allocation: Improper distributions of resources
in central/edge clouds lead to performance degradation of
applications. It is becoming more and more difficult to al-
locate resources accurately to meet the demands of users
and the service level agreements. The main aim of resource
allocation is to assign the available resources to the demanded
cloud/edge applications over the Internet or wireless networks.
Resource allocation should be provided to both users and
service providers and, as a result, users can access good-
quality services through cloud/edge service providers.

3) Task Offloading: The rapid growth of Internet services
has yielded a variety of computation-intensive applications
such as virtual reality applications. If applications are executed
in the end devices, it leads to high computing costs, while if
they are executed in central/edge clouds, it may take high
transmission costs. Thus, users have to decide whether to
offload their applications to central/edge clouds or not. Task
offloading is the process that maps users’ tasks to suitable
resources in the form of VMs to execute. Usually, in CC,
users only need to consider whether to offload their tasks or
not as there is only one data center. But in EC, users have to
further consider where to offload their tasks as there are many
edge clouds. Task offloading is a critical issue to improve QoS
in CC and EC.

4) Joint Issues: A growing number of applications are
multi-sensitive. For instance, some tasks are both resource-
intensive and delay-sensitive, e.g., face recognition [53] and
augmented reality applications [54]. Researchers started ad-
dressing multiple issues together in CC and EC, which are
termed as joint issues.

III. CI FOR CC AND EC

CI is a developed paradigm of intelligent systems, which
is a set of nature-inspired computational methodologies and
approaches to address complex real-world problems. It has
attracted much attention from researchers and practitioners
around the world. We focus on five categories of CI techniques
applied in CC and EC, i.e., EAs, SIAs, FS, LBS, and HS,
which are given in Fig. 4.

A. EAs

EAs try to mimic the process of natural evolution to find
suitable solutions to optimization problems [55]. EAs follow
evolutionary mechanisms that vary considerably, however the
basic ideas of these mechanisms are the same. Some common-
ly used EAs for CC and EC are given below.

• Genetic algorithm (GA) was proposed by Holland in
1975 inspired by Darwin’s principle of survival of the
fittest [56]. GA operates on a set of individuals called
a population. Genetic operators, i.e., crossover and mu-
tation, are applied to produce offspring from the parent
population. Then, better individuals are selected for the
next generation through a selection operator based on the
fitness values. This process continues until the stopping
criterion is met. Finally, the best individual is returned as
the best solution found for an optimization problem. GA

6

has been widely applied to address issues in CC and EC,
such as [57]–[61].

• Artificial immune system (AIS) is a kind of intelli-
gent computational model inspired by the principles of
human immune system with the characteristics of self
organization, learning, memory, adaptation, robustness,
and scalability [62]. In the initialization phase, candidate
antibodies are randomly produced to form a population.
The affinity of each antibody is evaluated by the fitness
function. In each iteration, each antibody is cloned to a
number of offspring. Then, these offspring experience the
mutation operator. Only the one with the highest affinity
is selected. Unlike GA, there is no crossover operator in
AIS. AIS has been used for addressing issues in CC and
EC, such as [63]–[65].

• Differential evolution (DE) was developed by Storn and
Price in 1997 [66]. Due to the simple structure, ease
of implementation, and robustness, it has been success-
fully applied to complex optimization problems, such
as resource allocation [67] and job scheduling [68] in
CC and EC. In DE, the first step is to initialize a
population randomly. After initialization, a mutant vector
is generated by adding the weighted difference vector
of individuals to another individual using a mutation
operator. Then, a crossover operator is implemented to
obtain a trial vector. Afterward, a selection operator is
applied to select better individuals for the next generation.
Finally, the best individual is returned as the solution of
an optimization problem.

B. SIAs

SIAs are a type of nature-inspired algorithms based on in-
teraction among living organisms [69]. They can be described
by the collective behaviors of living organisms working under
specific rules. Some commonly used SIAs in CC and EC are
discussed in the following:

• Particle swarm optimization (PSO) was proposed by
Kennedy and Eberhart [70] in 1995. It is inspired by the
social behaviors of the groups of population in nature
such as animal herds, bird flocking, or schooling of fish.
In PSO, a population of particles is first generated. In
each iteration, each particle has an adaptable velocity,
according to which it moves in the search space to
update position and velocity. Moreover, each particle has
a memory, remembering the best position it has ever
visited. Thus, its movement is an aggregated acceleration
toward its best previously visited position and the best
position ever detected/visited by the swarm [71]. This
process continues until the stopping criterion is met. PSO
has been used to tackle issues in CC [72]–[74].

• Ant colony optimization (ACO), introduced in the early
1990s by Dorigo et al. [75], [76], is a technique for
optimization. The inspiring source of ACO is the foraging
behavior of real ant colonies [77]. In ACO, firstly a finite
set of solution components is derived. Secondly, one has
to define a set of pheromone values called the pheromone
model, which is one of the central components of ACO.

In each iteration, ACO assigns higher pheromone values
to good solution components probabilistically. ACO has
been applied to address job scheduling and resource
allocation in CC and EC [78]–[81].

• Bee algorithm (BA), introduced by Pham [82] in 2005,
is inspired by the natural foraging behavior of honey
bees. In BA, the agent population is divided into a small
set of scouts and a larger set of foragers. The scouts
randomly sample in the solution space, and evaluate the
visited flower patches (i.e., locations). In each iteration,
BA compares the new solutions discovered by the scouts
with the best-so-far solution. The solutions are ordered
according to their fitness values, and the highest ranking
ones are selected for local search. BA performs exploita-
tive neighborhood search and random explorative search.
BA has been applied to job scheduling in CC and EC
[83]–[85].

• Cuckoo search algorithm (CSA) is inspired by the living
behaviour of a kind of bird named cuckoo and was
developed by Yang and Deb in 2009 [86]. In CSA, the
adult cuckoos lay eggs in the habitat of other birds.
If these eggs are not found and thrown by host birds,
they grow and become mature cuckoos. CSA begins
with a primary population i.e., a group of cuckoos. In
each iteration, CSA performs the following steps. First,
individuals are generated by making modifications in
existing individuals. After that, the new individuals are
evaluated by the fitness function. The new individuals are
compared with existing individuals, if they are better than
existing individuals, they replace existing individuals in
the population. Job scheduling in CC and EC has been
addressed by using CSA [87], [88].

• Firefly algorithm (FA) was developed by Yang [89] in
2008. It is inspired by the flashing pattern and behavior
of fireflies. In FA, a population of fireflies is generated
randomly. In each iteration, one firefly can be fascinated
by other fireflies regardless of its sex. The less brighter
firefly is fascinated by the brighter one in the population.
The brightness of a firefly is set on the landscape of the
fitness function [90]. In case there is no brighter one, the
fireflies move randomly and form a new population for
the next iteration. The light intensity of fireflies is updated
by evaluating the new population. Resource allocation
and job scheduling in CC and EC have been tackled by
using FA [91]–[93].

• Bacterial foraging algorithm (BFA) is a swarm optimiza-
tion algorithm inspired by colonies of escherichia coli
and proposed by Passino [94]. In BFA, individuals are
first generated randomly. Then, for all individuals, the
chemotaxis process is carried out. The process in which
an organism moves with the gradient of a substance
concentration is called chemotaxis. After the chemo-
taxis process, individuals are reproduced and dispersed.
Elimination-dispersion is applied as a final step, in which
many random individuals are eliminated and many new
individuals are generated. BFA has been used for job
scheduling in CC [95], [96].

7

C. FS

FS is a type of CI family that resembles human reasoning.
FS is a unique system that can handle numerical data and
linguistic knowledge at the same time. We have found two
types of FS for CC and EC, which are described below.

• FL was initiated by Zadeh in 1965 [97] during the
development of theory of fuzzy sets. It works on ap-
proximate reasoning rather than exact approximation. The
main difference between FL and traditional logic is that
FL represents natural language and human thinking. In
traditional logic, each member of a binary set has a
logical value either 0 or 1, which shows that either it fully
belongs to the set or not. There is no concept of partial
membership in the traditional set theory [98]. Fuzzy
modeling provides the best alternative for fuzziness and
obscurities. FL has been applied to address issues in CC
and EC, for instance, job scheduling [99]–[101], resource
allocation [100], [102], and task offloading [103].

• Fuzzy inference (FI) is a model that can infer a crisp
value as an input from a set of inputs, their fuzzy set,
membership function, and a set of inference rules [104].
FI is usually constructed as follows. Firstly, inputs for the
model are fuzzified through a membership function linked
with the predefined fuzzy set. Linguistics terms are used
to label the fuzzy set. Afterward, the firing strength is
calculated for each rule, showing that some rules are more
important than the others in approaching the conclusion.
All firing strengths are then aggregated and weighted
for all rules, thus producing a fuzzy value. Finally, this
fuzzified value is defuzzified by using a proper method.
FI has been used for resource allocation [105] and task
offloading [106], [107] in CC and EC.

D. LBS

LBS is inspired by the learning behaviour of living organ-
isms. It uncovers the relationship between the set of nominal
features and states or objects [119]. In the following, we
present the three most prominent types of LBS.

• DL is inspired by human’s thinking ability, i.e., the
mechanisms of human brain and neurons for processing
signals, and was proposed by Hinton et al. [120] in 2006.
It can cataract layers to extract features from the input
data and eventually form a decision [121]. DL consists of
input layer, output layer, and one or more hidden layers.
In the input layer, the state of environment is represented
in a suitable numerical form, which can be used as inputs
of the network. Afterward, an activation function (e.g.,
Sigmoid function, Tanh function, or rectified linear unit
function) is applied to represent or interrupt the recollec-
tion of results. Subsequently, all weights among layers
are updated. Finally, the structure of DL is constructed.
DL has been used for task offloading in EC [8], [122],
[123].

• Reinforcement learning (RL) [124], [125] determines an
optimal policy dictating which actions to take at certain
states to achieve the highest possible reward. The problem
such as resource allocation [126] in CC and EC is often

formulated as a Markov decision process (MDP), where
there is a set of states and actions. In RL, an agent under
a given state selects a suitable action from the set of
actions, receives a reward, and moves into a new state
where it chooses another action from the updated set of
actions. This process continues until a specific stopping
criterion is met. RL has been applied to address issues in
CC and EC [126]–[131].

• Deep RL (DRL) can be seen as a class of new ef-
ficient learning algorithm by combining DL with RL
[132]–[134]. It is a powerful model that implements
DL architectures such as deep neural networks with RL
algorithms like Q-learning to scale and solve problems
in different areas [135]. It has been effectively used
for addressing issues in CC and EC, for instance, job
scheduling [136], [137], resource allocation [138], task
offloading [139]–[142], and joint issues [143]–[145]. Two
commonly used DRL algorithms are deep Q-learning and
deep Q-network.

E. HS

HS is a system combining two or more CI techniques to
overcome their individual shortcomings. For example, genetic-
fuzzy system is proposed for automating maritime risk assess-
ment [146], which is a hybrid system of GA and FL. Also, EAs
and SIAs are often combined as both have similar behaviors.
Similarly, fuzzy adaptive theory [147] is sometimes hybridized
with FL and neural networks (NN) [12]. Recently, some hybrid
algorithms have been applied to address critical issues in CC
[148]–[151].

IV. CI IN ADDRESSING CRITICAL ISSUES IN CC AND EC

This section reviews the CI techniques introduced in Section
III to solve the critical issues in CC and EC: job scheduling,
resource allocation, task offloading, and joint issues.

A. EAs in CC and EC

This subsection is relevant to the works on the use of EAs
in CC and EC, which are summarized in Table II.

1) EAs for Job Scheduling: Hu et al. [57] proposed an
improved adaptive GA based on a priority mechanism for
task scheduling in CC. This algorithm ensures the least
execution time for job scheduling and guarantees the QoS
requirements of users. It outperforms an adaptive GA and
some other GAs in terms of convergence speed, feasibility and
effectiveness. Agarwal and Srivastava [58] proposed a GA for
task scheduling in CC, which distributes the loads among VMs
effectively to optimize the overall response time. Experimental
results show that the proposed algorithm outperforms some
existing techniques such as greedy-based techniques and First
Come First Serve in terms of overall response time. Liu
et al. [59] developed a job scheduling model in CC based
on multi-objective GA, which aims to minimize the energy
consumption and maximize the profit of service. The proposed
model has several components to analyze the applications
and to allocate the appropriate resources to the applications.

8

TABLE II
EAS FOR ADDRESSING ISSUES IN CC AND EC.

Issue EA Metric Paradigm Reference

Job Scheduling

GA execution time CC [57]
GA response time CC [58]
GA energy consumption, cost CC [59]
GA makespan CC [108]
GA makespan, resource utilization CC [109]
GA makespan, computing cost CC [110]
GA execution time, cost FC [61]
AIS response time FC [111]

Resource Allocation
DE resource utilization, makespan CC [67]
GA makespan CC [112]
GA energy consumption, latency MEC [9]

Task Offloading

AIS security and privacy CC [63]
GA execution time, energy consumption MCC [113]
GA energy consumption MCC [114]
GA latency FC [60]
AIS security and privacy EC [64]
AIS security and privacy FC [65]
GA latency EC [10]
GA energy consumption MEC [11]
GA execution time, energy consumption MCC [115]
GA energy consumption, latency MEC [116]

Joint issues
DE energy consumption MEC [68]
GA energy consumption MEC [117]
GA makespan MEC [118]

Experimental results show that the proposed model can obtain
a higher profit, while consuming lower energy. Zarina et al.
[108] investigated GA-based optimal job scheduling and load
balancing in CC. They combined a GA with three traditional
scheduling techniques: min-min, max-min and suffrage. In the
first phase, these three traditional scheduling techniques are
applied to obtain the minimum completion time for a given
job at each VM. After that, GA is applied to attain better QoS
by utilizing available resources. Experimental results reveal
that the proposed algorithm outperforms min-min, max-min,
suffrage, and First Come First Serve in terms of makespan.
Kumar and Verma [109] presented an improved GA by using
min-min and max-min techniques in the original GA for
scheduling tasks in CC. In this improved GA, the initial popu-
lation is generated by using min-min and max-min techniques.
Makespan is considered as the fitness function. This improved
GA is applied for two cases. In the first case, the number of
VMs is kept constant and the number of cloudlets is varied,
while in the second case, the number of cloudlets is fixed and
the number of VMs is varied. Experimental results show that
it performs better than the simple GA in terms of makespan
and resource utilization. Shaminder et al. [110] proposed a
modified GA by merging two existing scheduling algorithms
with standard GA for scheduling tasks in CC. In the proposed
algorithm, the initial population is generated by using the
output schedules of two algorithms (i.e., longest cloudlet to
fastest processor and smallest cloudlet to fastest processor)
and 8 random schedules. To achieve time minimization and
compare it with existing heuristics, a fitness function is for-
mulated for single-user jobs. Experimental results show that
the proposed algorithm performs better than standard GA in
terms of response time.

Binh et al. [61] proposed a GA-based algorithm for solving
task scheduling in cloud-FC. The proposed algorithm tries

to achieve the optimal tradeoff between the execution time
and operating costs by addressing different tasks in cloud-FC.
Experimental results demonstrate that the proposed algorithm
outperforms BA in terms of time-cost tradeoff. Wang et al.
[111] studied an immune scheduling network-based method
for task scheduling in FC. The proposed method uses forward
and backward propagation in the ad hoc network along with
the power of distributed schedulers to generate the optimized
scheduler strategies to deal with computing node overloaded
and achieve the optimal task finishing time reducing. Expe-
rimental results reveal that the proposed method performs
better than the modified critical path, dynamic critical path,
dominant sequence clustering, and GA.

2) EAs for Resource Allocation: Dolly [67] used DE for
resource allocation in CC. The proposed method avoids pre-
mature convergence effectively, reduces the makespan, and
increases the resource utilization. The proposed method out-
performs PSO in terms of makespan, resource utilization,
and load balancing. Lin and Zhong [112] presented a GA-
based strategy for computing resource allocation in CC. They
incorporated enhancements and local search into GA for
solving computing resource allocation in CC. The computation
time is focused in this work, which is an important factor in
cloud manufacturing for fast response to users’ requests. The
proposed method is compared with other algorithms like PSO,
BA, ACO, etc. Experimental results show the effectiveness of
the proposed method in terms of makespan. Luo et al. [9]
proposed a GA-based cashing placement strategy to minimize
energy consumption in MEC. A joint optimization problem
is formulated by considering energy consumption, backhaul
capacities, and content popularity distributions. A GA is
applied to solve this complicated joint optimization problem.
Simulation results show that the proposed algorithm effectively
determines the near-optimal caching placement and obtains

9

better performance in terms of energy efficiency compared
with the conventional caching placement strategies.

3) EAs for Task Offloading: Chen and Yang [63] presented
a data security strategy based on AIS in CC. They discussed
the main factors affecting data security, introduced a Hadoop
distributed file system, and applied AIS with negative selec-
tion and dynamic selection in CC. Simulation results show
that the proposed strategy performs better than GA, PSO,
and simulated annealing. Deng et al. [113] proposed a GA-
based computation task offloading approach for MCC. This
approach is designed for robust offloading decision to optimize
execution time and energy consumption of mobile services.
Numerical results demonstrate that with near-linear algorith-
mic complexity, the proposed approach can produce near-
optimal solutions. Kaushik and Kumar [114] applied GA to
a framework designed for elastic applications to reduce com-
munication and computation energy by finding the optimum
offloading solution. They focused on augmented execution of
mobile applications and formulated an optimization problem
by minimizing the cost function, which is the combination
of communication energy and computation energy. Simulation
results demonstrate that the proposed approach outperforms all
mobile-side execution and all cloud-side execution.

Canali et al. [60] proposed a GA for service placement in
FC. They studied mapping data streams over fog nodes and
presented an optimization model. Then, a scalable heuristic
based on GA is adopted to tackle this model. Experimental
results verify the stability and performance of the proposed
heuristic. Roman et al. [64] proposed an AIS-based strategy
for the IoT system using edge technologies. In the proposed
strategy, the requirements of immune system for IoT are
analyzed and a security architecture is proposed to meet the
demands of users. It makes a decision on the number and
type of VMs deployed at the edge infrastructure. Farhoud et
al. [65] proposed a new distributed and lightweight intrusion
detection system in FC based on an AIS model. In this
paper, the intrusion detection system is distributed to three
layers: cloud, fog, and edge layers. Intrusion detection system,
primary network traffic clustering, and detectors’ training are
performed in the cloud layer. Intrusion alerts are analyzed
by using smart data concept in the fog layer. Detectors are
deployed in edge clouds in the edge layer. Experimental
results show the efficiency of the proposed system. Cheng
et al. [10] proposed a fast heuristic algorithm based on GA
for just-in-time code offloading for wearable computing. The
proposed algorithm is compared with offloading nothing, off-
loading all to cloud, and simple greedy offloading. Numerical
results show that the proposed algorithm outperforms the
three competitors significantly. Tang et al. [11] suggested a
task caching and migration strategy in MEC based on GA
to satisfy the completion time constraints and the goal of
minimizing energy consumption. They adopted a fine-grained
task partitioning migration model to transform users’ tasks into
directed graphs with multiple subtasks. The task caching is
proposed to further reduce the delay and energy consumption.
Simulation results reveal that the proposed strategy can greatly
reduce the energy consumption of end devices compared
with all tasks being executed in the edge or end devices.

Goudarzi et al. [115] proposed a GA-based algorithm for
multi-site computation offloading in MCC. They modified
genetic operators to reduce ineffective solutions and evaluated
the efficiency of the proposed algorithm using graphs of real
mobile applications. Experimental results demonstrate that the
proposed algorithm outperforms other existing algorithms in
terms of execution time, energy consumption, and weighted
cost in a timely manner. Bozorgchenani et al. [116] proposed
a multi-objective EA, i.e., non-dominated sorting GA, to find
the optimal offloading decisions in MEC. They modeled the
task offloading as a constrained multi-objective optimization
problem that jointly minimizes the task processing delay
and the energy consumption of mobile devices. Experimental
results reveal that the proposed approach outperforms other
existing approaches in terms of energy consumption and task
processing delay.

4) EAs for Joint Issues: Wang et al. [68] studied a multi-
unmanned aerial vehicle (UAV) enabled MEC, where the
delay-sensitive task can be executed on the local device or
one of UAVs. This paper designs a two-layer optimization
method for jointly optimizing the deployment of UAVs and
task scheduling, where DE and the greedy method are adopted
at the upper layer and the lower layer, respectively. Guo
et al. [117] presented a computation offloading model in
the multi-access and multi-channel interference MEC. The
offloading decision, channel allocation, and computation re-
source allocation are formulated as a mixed-integer nonlinear
programming problem. A suboptimal algorithm, i.e., a GA-
based computation algorithm, is proposed to solve this large-
scale and NP-hard problem. Simulation results demonstrate
that the proposed algorithm outperforms a PSO-based compu-
tation algorithm, a random computation algorithm, and a local
computation algorithm in terms of energy consumption. Li
and Zhu [118] proposed a joint optimization method based on
GA to optimize offloading proportion, channel bandwidth, and
mobile edge servers’ computing resource allocation in MEC.
Simulation results demonstrate that the proposed algorithm
can effectively reduce the task completion time and guarantee
fairness among users.

B. SIAs in CC and EC

This subsection discusses the works on the use of SIAs for
solving issues in CC and EC, as summarized in Table III.

1) SIAs for Job Scheduling: Elina et al. [72] described a
two-level cloud scheduler by using PSO, which operates under
the IaaS model. They explored whether the use of a priority-
based policy at the VM-level is suitable in an online cloud.
Experimental results show that the proposed algorithm offers
a good balance between throughput and response time. Guo
et al. [73] proposed a PSO algorithm by incorporating a small
position value rule to minimize processing cost in CC. Expe-
rimental results show that the proposed algorithm outperforms
two other PSO-based algorithms in terms of convergence,
processing time, and processing cost. Medhat et al. [78] pre-
sented an ACO algorithm for task scheduling in CC. At first,
parameters with better values are determined for ACO through
experiments. Then, ACO is evaluated on a set of instances with

10

TABLE III
SIAS FOR ADDRESSING ISSUES IN CC AND EC.

Issue SIA Metric Paradigm Reference

Job Scheduling

PSO throughput, response time CC [72]
PSO makespan, cost CC [73]
ACO makespan CC [78]
ACO energy consumption, resource utilization MCC [79]
ACO resource utilization CC [152]
ACO energy consumption MCC [153]
BA makespane CC [83]
BA response time, execution time CC [84]

CSA setup cost, running cost CC [87]
FA energy consumption, resource utilization CC [91]
FA makespan CC [92]

BFA makespan, computation cost, resource utilization CC [95]
BFA cost, makespan CC [96]
BA execution time FC [85]

CSA response time, cost CC & FC [88]
ACO energy consumption, waiting time CC [80]
ACO energy consumption, resource utilization CC [154]

Resource Allocation FA resource utilization, cost CC & FC [93]

Task Offloading PSO energy consumption, latency CC [74]
ACO response time MCC [155]

Joint Issues ACO energy consumption MEC [81]

up to 1000 tasks. Wang et al. [79] investigated MCC-assisted
execution of a multi-task scheduling problem in a hybrid MCC
architecture, and formulated it as an optimization problem with
time constraints. Cooperative multi-task scheduling based on
ACO is used to solve this optimization problem by considering
task profit, task deadline, task dependence, node heterogeneity,
and load balancing. Zhang and Zhang [152] applied an ACO
algorithm for load balancing in a complex network named
ACCLB for CC. The purpose of this study is to cope with
the dynamic load balancing problem in open CC federation.
Experimental results show that the proposed method performs
better than SearchMax-SearchMin and classic ACO in terms
of minimizing standard deviation and gains a more suitable
distribution of the workloads on the whole cloud federation.
Wei et al. [153] studied application scheduling in MCC with
load balancing by using ACO. They presented a hybrid local
mobile cloud model by extending the cloudlet architecture.
The proposed model can select applications with the maximum
profit and minimum energy consumption in a heavy load
environment.

Hesabian et al. [83] presented a scheduling method in CC
based on BA to dedicate the sources optimally. The proposed
method behaves like a load balancing BA for small-scale
systems in terms of makespan, while outperforms it in large-
scale systems. Walaa et al. [84] proposed a BA for load
balancing in CC, which distributes workloads of multiple
network links to avoid under utilization and over utilization
of the resources. The proposed algorithm can minimize the
response time and data center processing time by distributing
workloads on different VMs based on the availability and load
of each VM. It performs better than modified throttled and
round robin algorithms in terms of average response time and
execution time. Supacheep et al. [87] applied CSA for job
scheduling in CC. They considered only static cases of job
scheduling. The results of CSA are better than those of GA in
most cases and it can find larger number of feasible solutions

than GA. Kansal and Chana [91] proposed an energy-aware
VM migration technique based on FA for CC, which migrates
the maximally loaded VM to the least loaded active node
while maintaining the performance and energy efficiency of
the data centers. This technique is compared with ACO-based
and FFD-based techniques in the Cloudsim simulator. Kaur
and Sherma [92] applied FA to address workflow scheduling in
CC, which reduces the execution time by efficient scheduling
of workflow. The proposed FA performs better than other
SIAs for workflow scheduling in terms of makespan. Verma
et al. [95] proposed an improved BFA for scheduling tasks
in CC. The performance of this algorithm is evaluated by
using CloudSim toolkit. Experimental results demonstrate that
it outperforms BFA and two other algorithms in terms of
makespan, computation cost, and resource utilization. Jacob et
al. [96] presented a BFA for resource scheduling in CC. In this
work, a hyper-heuristic-based scheduling algorithm is used in
the cloud system to map the resources in an efficient way. The
proposed BFA reduces the cost and makespan and outperforms
some existing algorithms like GA, ACO, a priority-based
algorithm, and a Berger model-based algorithm.

Bitam et al. [85] proposed a BA for job scheduling in FC,
in which two factors are considered: the CPU execution time
and the allocated memory required by the overall tasks. The
reliability and efficiency of the proposed BA are evaluated by
performing a set of tests. It is superior to GA and PSO in
terms of allocated memory and execution time. Nazir et al.
[88] proposed a CSA for balancing load of users’ requests
in residential areas in cloud-FC. The performance of CSA is
compared with that of some existing techniques like round
robin and throttled algorithms. Pang et al. [80] designed an
ACO algorithm to address dynamic energy management in
cloud data center. They used Petri net for analyzing scheduling
process, and then a task-oriented resource allocation method is
proposed to optimize the running time and energy consump-
tion of the system. Liu et al. [154] proposed an algorithm

11

TABLE IV
FS FOR ADDRESSING ISSUES IN CC AND EC.

Issue FS Metric Paradigm Reference
FL response time, throughput, resource utilization CC [99]

Job Scheduling
FL latency CC [101]
FL latency, cost CC [156]
FL latency CC [157]
FL resource utilization CC [158]

Resource Allocation
FL resource utilization, cost CC [100]
FL cost CC [102]
FI resource utilization CC [105]

Task Offloading
FL security and privacy CC [103]
FI security and privacy CC [107]
FI security, execution time MEC [106]

Joint Issues FL resource utilization, response time EC & CC [159]
FL response time, processing time CC [160]

called OEMAC based on ACO to minimize energy for VM
placement in CC. OEMAC minimizes the number of active
servers. Experimental results show that OEMAC outperforms
conventional heuristics and some other EAs in terms of saving
energy, improving resource utilization, minimizing the number
of active servers, and balancing different resources.

2) SIAs for Resource Allocation: Kanza et al. [93] utilized
a FA for efficient resource allocation in cloud-FC, in which
load balancing and cost reduction are considered.

3) SIAs for Task Offloading: Deng et al. [74] adopted
discrete PSO to search the optimal offloading policy in cloud-
enhanced small cell networks, with the aim of minimizing
energy consumption under strict delay constraints. The energy-
efficient task offloading problem is formulated as a constrained
0-1 programming problem. Experimental results show that the
proposed approach outperforms local execution and conven-
tional rough-granularity offloading policy in terms of energy
saving. Bao et al. [155] proposed an ACO-based method for
addressing computation offloading problem in MCC. Different
rules are adopted to provide services to a large number of
service requests.

4) SIAs for Joint Issues: Huang et al. [81] studied an
ACO-based bilevel optimization approach for joint offloading
decision and resource allocation in cooperative MEC to attain
energy-efficient task execution under delay constraints. The
effectiveness of the proposed approach is demonstrated by
comparing it with four other algorithms.

C. FS in CC and EC
The works devoted to the use of FS in CC and EC are

discussed in this subsection and summarized in Table IV.
1) FS for Job Scheduling: Anindita [99] proposed a new

dynamic task scheduling approach in CC based on FL, which
takes two inputs: the time required to complete the tasks in
each VM and the number of requests received from each
VM. These inputs produce an output i.e., id of VM which
is assigned to the host. Experimental results show that the
proposed algorithm outperforms First Come First Serve, round
robin, and BA in terms of throughput, response time, and
resource utilization. Srinivas et al. [101] proposed an efficient
load balancing algorithm by using FL based on round robin
load balancing technique for attaining better resource utiliza-
tion in CC. For evaluating the balanced load through FL, two

parameters are used: processor speed and assigned load of
a VM. Numerical results reveal that the proposed algorithm
outperforms round robin load balancing technique in terms of
minimizing the processing and response time. Ragmani et al.
[156] proposed an improved scheduling strategy based on FL
in CC to evaluate processing time, response time, and total
cost. FL uses the number of VMs, bandwidth, the number of
processors, processor speed, the size of data, and request per
user per hour as inputs. Then, the fuzzy controller calculates
the global performance indicator. Issawi et al. [157] proposed
an efficient adaptive load balancing algorithm in CC based
on FL and round robin/random assignment, which consists
of three main components: burst detector, load balancing
algorithm, and fuzzifier. When a request is received in the data
center, it is detected by the burst detector as normal or burst
workload state. Then, a load balancing algorithm (round robin
in burst and random assignment in non-burst state) is selected,
which assigns the received task to an appropriate VM based on
the information provided by the fuzzifier. Experimental results
show that the proposed algorithm reduces the response and
processing time. Mondal et al. [158] used FL to improve QoS
in CC by balancing the imposed load in the system. This paper
considers the speed of processor and load as inputs and load
balancing as output.

2) FS for Resource Allocation: Haratian et al. [100] pro-
posed an adaptive and fuzzy resource management approach
called AFRM for allocating resources in CC. In AFRM, the
last resource values of each VM are collected through the
environment sensors and sent to a fuzzy controller. Then,
AFRM analyzes the received information to make a decision
on how to reallocate the resources in each iteration of a
self-adaptive control cycle. Experimental results show that
AFRM outperforms rule-based and static-fuzzy approaches in
terms of resource allocation efficiency, utility, the service level
agreement violations, and cost. Wang et al. [102] proposed
a strategy for resource allocation based on improved fuzzy
clustering in CC. They first divided the set of resources in
CC into different resource pools on the service level of users
by using improved fuzzy clustering, and then generated a
resource scheduling scheme by using a scheduling algorithm.
The proposed strategy shows certain advantages in terms of
the number of iterations and the accuracy of classification

12

TABLE V
LBS FOR ADDRESSING ISSUES IN CC AND EC.

Issue LBS Metric Paradigm Reference

Job Scheduling

RL makespan CC [128]
DRL latency CC [136]
DRL energy consumption MEC [137]

Resource Allocation

RL response time, resource utilization CC [129]
RL latency FC [126]
RL energy consumption, latency EC [130]

DRL latency MEC [138]
DL response time, resource utilization EC [161]

DRL response time MEC [162]
DRL resource utilization, makespan MEC [163]

Task Offloading

DRL resource utilization, latency MCC [164]
RL resource utilization, latency MCC [165]
DL security and privacy MEC [8]
DL energy consumption, makespan Cloudlet [123]
RL energy consumption MEC [131]

DRL energy consumption, latency MEC [139]
DRL latency, cost MEC [140]
RL processing time, latency MEC [141]

DRL energy consumption FC [142]
RL energy consumption MEC [166]

DRL latency MEC [167]
DRL latency, energy consumption MEC [168]
DRL latency, energy consumption, computation cost MEC [169]

Joint Issues

DL energy consumption, total cost MEC [122]
DRL cost, energy consumption, latency MEC [143]
DRL latency, resource utilization EC [144]
DRL energy consumption, execution time EC [145]
RL security and privacy, energy consumption MEC [170]

DRL latency, energy consumption MEC [171]
DRL latency MEC [172]

compared with other algorithms. Tao et al. [105] designed a
containerized test environment in CC and developed a node se-
lection algorithm based on FI for container deployment, where
FI is applied to dynamically predict the most proper node for
the deployment of the selected containers. Experimental results
show that the proposed algorithm performs better than existing
container deployment algorithms.

3) FS for Task Offloading: Ritu and Jain [103] presented a
trust model in CC by using FL. The proposed model makes use
of turnaround time, availability, and reliability for evaluating
trust in CC. Qu and Buyya [107] proposed a cloud trust
evaluation system by using hierarchical FI for service selection
in CC. To facilitate service selection, this system evaluates the
trust of clouds according to users’ fuzzy QoS requirements
and services’ dynamic performance. Simulations and case
studies demonstrate the effectiveness and efficiency of this
system. Li et al. [106] designed an architecture in MEC to
decouple the security functions with physical resources and
developed a FI-based algorithm to find the optimal order of
the required security functions. Numerical results show that
the proposed algorithm performs better than a widely used
fuzzy-based simple additive weighting algorithm in terms of
inverted generational distance values and execution time.

4) FS for Joint Issues: Sonmez et al. [159] proposed an
FL-based approach for workload orchestration in EC, where
execution locations for incoming tasks from mobile devices
are decided within an EC infrastructure. Simulation results
demonstrate that the proposed approach performs better than
other algorithms for the cases studied in terms of resource
utilization and response time. Zulkar et al. [160] presented a

FL-based dynamic load balancing algorithm in virtualized data
centers, which can efficiently predict the VM where the next
job is scheduled. They modeled the requirements of memo-
ry, bandwidth, and disk space using FL. Simulation results
demonstrate that the proposed algorithm outperforms other
scheduling algorithms in terms of response and processing
time in the data centers.

D. LBS in CC and EC

In this subsection, we review the works on the use of LBS
in CC and EC as summarized in Table V.

1) LBS for Job Scheduling: Peng et al. [128] proposed
a RL-based mixed job scheduler scheme for CC, which
considers accurate scaled CC environment and efficient job
scheduling under VM resource and service level agreement
constraints. The proposed scheme outperforms fast-fit, best-
fit, min-min, and max-min scheduling schemes in terms of
makespan. Lin et al. [136] presented a multi-resource cloud
job scheduling strategy in CC based on current popular DRL
and deep Q-network, which aims to reduce the average job
completion time and average job slowdown. In this strategy,
the convolutional NN is adopted to perceive the system re-
sources, job state features, and RL decision-making capabili-
ties to solve online awareness decision problems in CC. Based
on the experimental results, the proposed strategy performs
better than classical heuristic algorithms and converges faster
than a standard policy gradient algorithm. Zhang et al. [137]
combined a stacked auto-encoder with a Q-learning model to
design a deep Q-learning model for energy-efficient scheduling

13

in real-time systems. The main function of the stacked auto-
encoder is to replace the Q-function for learning the Q-
value. The proposed model can save 4.2% energy compared
with hybrid dynamic voltage and frequency scaling scheduling
based on Q-learning for different sets of tasks.

2) LBS for Resource Allocation: Dutreilh et al. [129]
studied RL for autonomic resource allocation in CC, in which
proper initialization is adopted at the early stages and con-
vergence speedups are applied in the learning phases. Nassar
and Yilmaz [126] proposed a RL-based resource allocation
algorithm in fog radio access networks. They formulated the
resource allocation problem as an MDP in two alternative
formulations: infinite-horizon MDP and finite-horizon MDP.
Experimental results show that the proposed algorithm outper-
forms the fixed-threshold method. Liu et al. [130] proposed
a RL approach based on ε-greedy Q-learning for resource
allocation in EC. Experimental results show the effectiveness
of the proposed approach in terms of minimizing energy
consumption and latency. Yang et al. [138] proposed DRL-
based resource allocation in MEC. They allocated compu-
tation resources by investigating different strategies in MEC
networks that operate with finite block length codes to sup-
port low-latency communications. Simulation results show
that the proposed algorithm outperforms the random and
equal scheduling benchmarks. Luong et al. [161] proposed
an optimal auction based on DL in the edge resource allo-
cation. They constructed a multi-layer NN architecture based
on analytical solution of the optimal auction. The NN first
performs monotone transformations of the miners’ bids. Then,
allocation and conditional payment rules are calculated for the
miners. Simulation results show that the proposed scheme can
quickly converge to a solution. Wang et al. [162] proposed a
DRL-based approach for smart resource allocations including
computing resource allocation and network resource allocation
in MEC. They considered two aspects: average service time
minimization and resource allocation balancing. Experimental
results reveal that the proposed approach outperforms the
traditional open shortest path first algorithm. Xiong et al. [163]
proposed a DRL-based approach for resource allocation of
IoT in EC. They formulated the resource allocation problem
as an MDP. They also proposed an improved deep Q-network
algorithm for policy learning, where multiple replay memories
are applied to separately store the experiences with small
mutual influence. Simulation results show that the proposed
algorithm outperforms the original deep Q-network algorithm
in terms of convergence, and that the corresponding policy
performs better than other policies regarding completion time.

3) LBS for Task Offloading: Quan et al. [164] proposed a
two-layered RL algorithm for task offloading with a tradeoff
between physical machine utilization rate and delay in M-
CC. The k-nearest neighbors algorithm divides the physical
machines into many clusters. The first layer selects a cluster
via learning the optimal policy, while the second layer learns
an optimal policy to choose the optimal physical machine to
execute the current offloaded task. Numerical results show
that the proposed algorithm is faster than DRL when learning
the optimal policy for task offloading. Sundar and Liang
[165] proposed a game and learning approach for multi-user

computation offloading in MCC. This paper discusses both
online and offline computation task offloading from multiple
users to a cloud or nearby cloud at the edge. The offline
algorithm provides a better average solution while online
algorithm is much faster.

Chen et al. [8] proposed a DL-based model to detect securi-
ty threats in MEC. This model uses unsupervised learning and
location information to improve the detection process, which
can detect malicious applications at the edge of a cellular net-
work. Numerical results demonstrate that the proposed model
outperforms softmax regression, decision tree, support vector
machine, and random forest. Rani and Pounambal [123] pro-
posed DL-based dynamic task offloading in mobile cloudlet,
which considers energy consumption and execution time as
objective metrics. The task computed on cloudlet or cloud
server is divided into subtasks. Experimental results show that
the proposed algorithm outperforms cloudlet-based dynamic
task offloading in terms of energy consumption and completion
time. Dinh et al. [131] proposed a RL-based computation off-
loading scheme in MEC to reduce energy consumption. They
studied multi-user multi-edge-node computation offloading
problem, and formulated it as a non-cooperative game where
each user maximizes its own utility. Experimental results show
that the proposed scheme outperforms local processing and
random assignment. Meng et al. [139] proposed a DRL-based
task offloading algorithm to minimize the mean slowdown
of tasks and energy consumption of MEC. A new reward
function is designed to optimize the tradeoff between average
slowdown and average energy consumption. Numerical results
reveal that the proposed algorithm performs better than the
baseline algorithms such as all in MEC server, all in mobile
device, and random in terms of average energy consumption
and average slowdown.

Chen et al. [140] presented two DRL algorithms for op-
timizing computation offloading performance in virtual EC,
where the stochastic computation offloading problem is for-
mulated as an MDP. Numerical results show that the proposed
algorithms outperform mobile execution, server execution,
and greedy execution in terms of computation offloading
performance. Zhang et al. [141] proposed a DRL-based task
offloading scheme for vehicular edge computing networks
(VECNs), in which the central cloud server is considered as
a backup server due to its powerful computation capacities.
The task offloading problem is formulated as a processing
time minimization problem with delay constraints. Ning et al.
[142] studied DRL for intelligent Internet of vehicles. They
constructed an offloading framework consisting of three layers
(i.e., cloudlet, RodeSide Units, and fog nodes) to minimize
the total energy consumption under the delay constraint.
The proposed method outperforms the baseline algorithms in
terms of average energy consumption. Ranadheera et al. [166]
proposed a computation offloading approach based on game
theory and RL in MEC to reduce energy consumption.

Wang et al. [167] proposed a DRL-based method for
computation offloading in MEC. The offloading problem in
MEC is formulated as an MDP and the S2S neural network
is designed to represent the offloading policy. Simulation
results show that the proposed method performs better than

14

TABLE VI
HS FOR ADDRESSING ISSUES IN CC AND EC.

Issue HS Metric Paradigm Reference

Job Scheduling

GA-PSO makespan, cost, execution time CC [148]
GA-ACO execution time CC [149]
GA-ACO energy consumption, makespan, resource utilization MCC [150]

ACO-CSA energy consumption, makespan CC [151]
Resource Allocation RL-ACO throughput MEC [173]

Task Offloading NN-PSO security and privacy CC [174]

Joint Issues GA-PSO energy consumption MEC [175]
DRL-PSO-FL energy consumption MEC [176]

two heuristic baselines in terms of latency, and can obtain
nearly optimal results while having polynomial time com-
plexity. Chen et al. [168] proposed a DRL-based approach
for performance optimization in MEC. They considered MEC
for a representative mobile user in an ultra-dense network,
where one of multiple base stations can be selected for
computation offloading. They modeled an optimal computation
offloading policy as an MDP and developed a deep Q-network-
based strategic computation offloading algorithm to learn the
optimal policy without having any priori knowledge of the
dynamic statistics. Chen and Wang [169] proposed a DRL-
based approach for decentralized computation offloading in
MEC to minimize the long-term average computation cost
in terms of power consumption and buffering delay. They
adopted continuous action space-based DRL to learn efficient
computation offloading policies independently at each mobile
user. Experimental results demonstrate that the proposed ap-
proach outperforms conventional deep Q-network-based dis-
crete power control strategy and some other greedy strategies
in terms of computation cost.

4) LBS for Joint Issues: Huang et al. [122] proposed
distributed DL-based offloading in MEC. They formulated
joint offloading decision and bandwidth allocation as a mixed-
integer programming problem. Multiple parallel deep NNs are
used to generate offloading decisions. Numerical results reveal
that the proposed algorithm outperforms deep Q-network in
terms of total cost and energy consumption. Huang et al. [143]
further studied the same joint issue in multi-user MEC by
adopting the idea of deep Q-network. Experimental results
show that the proposed algorithm performs better than the
MUMTO algorithm in [177] in terms of overall cost, energy
consumption, and delay. Liu et al. [144] formulated offloading
and resource allocation in VECNs as a semi-Markov process,
by considering stochastic vehicle traffic, dynamic computation
requests, and time-varying communication conditions. Two RL
methods, i.e., a Q-learning based method and a DRL method,
are designed to get the optimal policies for computation
offloading and resource allocation. Ning et al. [145] con-
structed an intelligent offloading system for VECNs by using
DRL. They used Markov chains to model communication and
computation states. To improve users’ quality of experience,
task scheduling and resource allocation are formulated as a
joint optimization problem. To schedule offloading requests
and allocate network resources, this paper designs a two-sided
matching scheme and a DRL approach. Experimental results
show that the proposed method outperforms Q-learning, a

greedy method, local computing, and deep Q-network in terms
of quality of experience and execution time. Xiao et al. [170]
applied RL to provide secure offloading to the edge nodes
against jamming attacks in MEC. Lightweight authentication
and secure collaborative cashing schemes are presented for
securing data privacy. Simulation results show that the pro-
posed RL-based secure solution can effectively enhance the
security and user privacy of MEC and protect it against various
smart attacks with low overhead. Li et al. [171] proposed
a DRL-based computation offloading and resource allocation
scheme for MEC. In order to minimize the sum cost of delay
and energy consumption for all user equipments in MEC,
they jointly optimized the offloading decision and computing
resource allocation. Simulation results reveal that the proposed
scheme performs better than other baselines. Huang et al.
[172] proposed a DRL-based method for online computation
offloading in wireless powered MEC networks to maximize
the weighted sum computation rate with binary computation
offloading. They optimally adapted task offloading decisions
and wireless resource allocations to the time-varying wireless
channel conditions. Simulation results demonstrate that the
proposed algorithm achieves similar near-optimal performance
as existing benchmark methods but reduces the CPU execution
latency by more than an order of magnitude.

E. HS in CC and EC

This section discusses the works on the use of HS for
solving issues in CC and EC, which are summarized in Table
VI.

1) HS for Job Scheduling: Manasrah and Ali [148] pro-
posed a hybrid GA-PSO algorithm for workflow task schedul-
ing in CC. It outperforms GA, PSO, and some other CI
techniques in terms of total execution time of the workflow
task. Liu et al. [149] proposed a hybrid GA-ACO task
scheduling algorithm in CC, which takes advantage of fast
convergence from ACO and global search ability of GA.
Simulation results show that it outperforms GA and ACO
in terms of task execution time. Rashidi and Sharifian [150]
presented a hybrid GA-ACO algorithm for task scheduling in
MCC. Experimental results show that it outperforms queue-
based round robin, queue-based random, queue-based weight-
ed round robin assignment algorithms in terms of average
completion time, total energy consumption of mobile devices,
and the number of dropped tasks. Moganarangan et al. [151]
combined ACO with CSA to address job scheduling in CC.

15

25%

22%

14%

31%

8%

EAs SIAs FS LBS HS

Fig. 5. Overall percentage distributions of CI techniques for addressing issues
in CC and EC.

The proposed algorithm performs better than ACO in terms
of energy consumption and makespan.

2) HS for Resource Allocation: Vimal et al. [173] proposed
a hybridization of RL and multi-objective ACO to enhance
resource allocation in MEC for industrial IoT. The proposed
algorithm allocates resources accurately and optimally for
users in MEC. Experimental results show that the proposed
algorithm outperforms GA and BA in terms of throughput.

3) HS for Task Offloading: Saljoughi et al. [174] presented
a hybrid NN-PSO algorithm to detect intrusions and attacks in
CC. For extraction of the optimal weights of NN, the weights
of NN are optimized by using PSO. The proposed method
obtains better outcomes than the simple NN on NSL-KDD
and KDD-CUP databases.

4) HS for Joint Issues: Guo et al. [175] studied the energy-
efficient computation offloading management scheme based
on hybrid GA-PSO in MEC with small cell networks. They
jointly optimized computation offloading, spectrum, power,
and computation resource to minimize the energy consumption
of all users’ equipments. They presented the computation
offloading model and formulated the problem as a mixed-
integer nonlinear programming problem. Simulation results
show that the proposed algorithm performs better than other
baseline algorithms. Jiang et al. [176] presented a hybrid
DL-PSO-FL algorithm for online offloading to minimize the
energy consumption of users’ equipments in a hybrid MEC
network. In the proposed algorithm, FL is used to locate the
ground vehicles and UAVs, PSO is used to solve the mixed-
integer nonlinear programming problem and provides high-
quality samples to DNN, and DL is applied to make the
task admission and resource allocation decision in real time.
Simulation results reveal that the proposed algorithm reduces
the CPU time by more than several orders of magnitude.

V. DISCUSSION AND FUTURE RESEARCH TRENDS

Recent literature shows that researchers have paid much at-
tention to the innovative use of CI techniques to address issues
in CC and EC, such as job scheduling, resource allocation,
task offloading, and joint issues. However, there are still open
challenges for researchers to tackle. This section provides the
statistics which reflect the status-quo of CI for CC and EC,
and points out future research trends.

0

2

4

6

8

10

12

14

16

18

EAs SIAs FS LBS HS

N
u

m
b

er
o

f
Pa

p
er

s

CI Techniques
Job Scheduling Resource Allocation Task Offloading Joint Issues

Fig. 6. Suitability of CI techniques for addressing issues in CC and EC.

7

1

2

1

7

3

2

1
0

2

4

6

8

10

12

14

16

18

20

GA DE AIS

N
u

m
b

er
 o

f
Pa

p
er

s

Job Scheduling Resource Allocation Task Offloading Joint Issues

Fig. 7. Distribution of EAs in CC and EC.

A. Discussion

Fig. 5 presents the overall percentage distributions of CI
techniques mentioned in Fig. 4 for solving issues in CC and
EC. Fig. 6 presents all issues, CI techniques, and the number
of papers found for each issue in CC and EC. Furthermore, we
elaborate on the main research findings derived from Section
IV.

1) EAs for CC and EC: From Fig. 5, EAs are the second
most commonly used techniques among all types of CI tech-
niques. Most of the works found in this survey are on the use
of EAs for job scheduling and task offloading as shown in Fig.
7. Furthermore, the most frequently used EA in CC and EC
is GA as shown in Fig. 7. Fig. 7 also presents the distribution
of EAs, which indicates the suitability of each kind of EAs
for each issue in CC and EC.

2) SIAs for CC and EC: SIAs have been used in 22%
papers compared with other CI techniques as shown in Fig. 5.
We can observe from Fig. 8 that job scheduling is the hottest
issue addressed by SIAs and ACO is the most frequently used
SIA in CC and EC. Fig. 8 also shows the distribution of SIAs
in the context of issues in CC and EC.

3) FS for CC and EC: It can be seen from Fig. 5 that 14%
papers employ FS to address issues in CC and EC. FS has
been frequently used for job scheduling, resource allocation,
and task offloading as shown in Fig. 9. Fig. 9 presents the
distribution of FS in the context of issues in CC and EC.

4) LBS for CC and EC: LBS is the most commonly studied
CI technique in CC and EC as shown in Fig. 5. In particular,

16

2

6

3
2 2 2

11

1

1

0

1

2

3

4

5

6

7

8

9

PSO ACO BA BFA FA CSA

N
u

m
b

er
 o

f
Pa

p
er

s

Job Scheduling Resource Allocation Task Offloading Joint Issues

Fig. 8. Distribution of SIAs in CC and EC.

5

2

1

1

2

2

0

2

4

6

8

10

12

FL FI

N
u

m
b

er
 o

f
Pa

p
er

s

Job Scheduling Resource Allocation Task Offloading Joint Issues

Fig. 9. Distribution of FS in CC and EC.

it has been used more intensively for task offloading, resource
allocation, and joint issues in CC and EC from Fig. 10. In
addition, DRL is the most frequently used LBS as shown in
Fig. 10. Fig. 10 gives the distribution of LBS in CC and EC.

5) HS for CC and EC: HS has not been utilized frequently
(only 8% papers) in CC and EC as depicted in Fig. 5.
Specifically, half of papers related to HS studies on job
scheduling as shown in Fig. 6.

Remark: Based on the above discussion, we would like to
give more details to understand what kinds of CI techniques
are good at solving what kinds of issues:

• GA is the best choice for solving job scheduling and
task offloading among all EAs [10], [61], [108], [175].
The reasons are twofold: 1) it is the most popular and
frequently used EA paradigm; and 2) it has various
crossover and mutation operators that can deal with
different optimization problems, such as discrete and
continuous optimization problems.

• ACO is the best SIA for job scheduling among all the
issues studied in this paper [79], [152], [153], due to the
following reasons: 1) it can consider/incorporate multiple
scheduling targets/metrics, such as load balancing, energy
consumption, makespan, and cost; 2) each variable in the
solution obtained by ACO is generated one by one; thus,
jobs can be assigned to VMs one by one to optimize
the scheduling process; and 3) it can ensure the fast
convergence and good performance by balancing the
exploration of new solutions and exploitation of accu-
mulated experience about the problem [154].

• Compared with FI, FL is better for solving job schedul-

1 21

3
3

2

4

7

1

1

5

0

2

4

6

8

10

12

14

16

18

DL RL DRL

N
u

m
b

er
 o

f
Pa

p
er

s

Job Scheduling Resource Allocation Task Offloading Joint Issues

Fig. 10. Distribution of LBS in CC and EC.

ing, resource allocation, and joint issues [99], [101], since
it is flexible, easy to understand, compatible with the
uncertainty of CC and EC parameters as well as users’
behaviors, and can deal with imprecise data and complex
problems with several variables.

• DRL performs the best among all LBS for resource
allocation, task offloading, and joint issues [145], [161],
[163], [171]. The superiority of DRL can be summarized
as follows: 1) it can automatically adapt and customize
itself according to users’ requirements [162]; 2) it can
discover/learn new knowledge from large databases; 3)
it can develop models that are difficult and expensive to
be designed manually due to the requirements of specific
skills; and 4) it has a strong ability to handle complex
problems by efficiently learning from experiences.

B. Future Research Trends
1) From CC and EC Perspective:
• Many-Metric Formulation: More metrics need to be con-

sidered at the same time in CC and EC to create the
trade-off among them. For example, in the future, we
may consider the trade-off among latency, cost, energy
consumption, security, and privacy to satisfy QoS of
users.

• Edge Node Allocation: Due to the distributed nature
of EC, edge clouds that offer services across diverse
geolocation and regions are difficult to be allocated [178].
In the future, efficient service discovery protocols are
needed to design, such that users can identify and locate
the relevant service providers to meet their demands.

• Real-Time Optimization: For many edge application sce-
narios, the service environments are of high dynamics
[60] and it is hard to correctly foresee future events. Thus,
it would require the remarkable capabilities of online
edge resource orchestration and provisioning to contin-
uously handle massive dynamic workloads and tasks. In
the future, real-time resource allocation is required to
fulfill dynamic task demands.

• Decentralized Trust: The open nature of EC leads to the
decentralized trust, e.g., services provided by different
edge entities must be secured and trustworthy. Thus,
efficient security mechanisms are required to ensure
users’ authentication, data integrity, and mutual platfor-
m verification for EC [20]. Also, novel secure routing

17

schemes and trust network topologies are critical for EC.
In addition, end devices would generate a large volume of
data at the network edge, which can be privacy-sensitive
since they may contain users’ location data, health status,
personal activities records or other sensitive information
[49]. Therefore, feasible paradigms are needed to secure
data sharing to minimize the privacy leakage.

• Hardware Constraints in EC: Due to hardware constraints,
unlike CC, EC cannot support heavy-weight software
[49]. Big data analysis and data warehousing will never
be feasible with existing EC because of the increas-
ing number of duplication of small software in market.
Therefore, users are facing difficulties in looking for a
trusted edge provider among edge providers with a lack of
standardized framework. Thus, developing software and
hardware for handling computation offloading from the
central cloud is a critical issue to be addressed.

• Migration of EC Applications: Migration of EC app-
lications among different edge clouds is a challenging
issue that can help to balance loads or accommodate
users’ movements and minimize the end-to-end latency of
users [35]. In the future, efficient techniques are required
based on system measurements and experiments to handle
the migration challenges.

• Interoperability and Collaboration of CC and EC: Thanks
to EC, users are able to process latency-sensitive app-
lications at the network edge [179]. However, handling
an increasing number of multiple services is still a big
challenge. Some tasks may be redirected to the central
clouds for further processing. Thus, it is important to
develop effective architectures and efficient algorithms to
facilitate the above collaboration.

• Heterogeneity: The future edge and cloud networks
may present a huge level of heterogeneity, i.e., we
may come across various kinds of users, ranging from
smartphones, smartwatches, sensor nodes, and intelligent
cameras [180]. This may cause the instability of the
networks and, therefore, efficient solutions are highly
required [181].

• Edge Intelligence: There is a growing trend to process
data at edge clouds because of privacy and other con-
cerns [20]. However, due to the limited resources in
edge clouds, some computational-intensive tasks such as
machine learning models may not be trained at edge
clouds without any proper modification. Therefore, in
the future, it is important to study how to execute or
train machine learning models in edge clouds. Federated
learning has been proposed to address this issue but more
attempts are expected in the future.

• Blockchain-Assisted CC and EC: Blockchain has attract-
ed much attention from both academia and industry [182],
[183]. It is also interesting to design the blockchain-based
networks for CC and EC. Three aspects can be considered
here: 1) blockchain can be applied to enhance the privacy
in the communication and computing resource sharing; 2)
blockchain can be very useful in terms of improving the
price and security of CC and EC; and 3) as blockchain
may need huge computing resources to run, CC and EC

can provide computing resources to blockchain-related
tasks or applications.

2) From CI Technique Perspective:

• Execution Time: Most CI techniques like EAs need a long
time for searching the optimal solution in CC and EC. In
the future, we may find a way to decrease the execution
time.

• Convergence: Sometimes, it is not easy to prove the
convergence in CI techniques. However, in CC and EC,
it is important to have an algorithm with convergence
guarantee. Therefore, a future trend is to design some CI
techniques with good convergence performance.

• Multi/Many-Objective Optimization: Two or more objec-
tives need to be addressed in CC and EC to meet the ser-
vice level agreements of users. Therefore, a future trend
may be to design multi/many-objective CI techniques to
address multi/many-objective optimization problems in
CC and EC.

• Constraint-Handling Issue: Since most CI techniques
cannot handle constraints effectively, we can incorporate
some constraint-handling techniques into CI techniques
to address constrained optimization problems in CC and
EC.

• CI Techniques for Security and Privacy: Directly sharing
data among multiple edge nodes may run a high risk of
privacy leakage. Therefore, federated learning paradigms
can be applied to secure data sharing by training dis-
tributed data such that the original data sets can be kept
in their source nodes and the edge AI model parameters
can be shared among different nodes.

• AI Edge Models: Instead of utilizing the existing
resource-intensive AI models in CC and EC, we can
design a resource-aware edge AI model. For example,
methods like CI techniques can be adopted to efficiently
search over the AI model design parameter space by
taking into account the impact of hardware resource
constraints on the performance metrics such as execution
latency, security, and energy overhead.

• CI Techniques for Migration of EC Applications: Sharing
and migrating applications among edge clouds is a chal-
lenging task, as we have to consider the load balancing
and reduce the latency for all tasks. LBS and FS may be
suitable candidates for migration of EC applications.

• CI Techniques for Interoperability and Collaboration of
CC and EC: Multiple latency-sensitive requests may
arrive at the same time. Therefore, fast CI techniques
(such as LBS and FS) along with prediction algorithms
are potential for the collaboration between the central and
edge clouds.

• Hybrid Versions: Hybrid CI techniques have shown great
potential in solving complex optimization problems; how-
ever, few papers have studied them for addressing issues
in CC and EC. A future trend may be to design hybrid CI
techniques. For instance, FS is suitable for job scheduling
while LBS is competitive for task offloading. In the
future, we may combine FS and LBS to address joint
issues. Similarly, more hybrid CI techniques can be

18

developed to deal with energy consumption, completion
time, and security in CC and EC.

VI. CONCLUSION

In this survey paper, we reviewed the applications of CI
techniques to four critical issues in CC and EC: job scheduling,
resource allocation, task offloading, and joint issues. We com-
menced with rudimentary concepts of CC and EC along with
critical issues and metrics, and then focused on five categories
of CI techniques used in CC and EC: EAs, SIAs, FS, LBS,
and HS. Subsequently, diverse designed approaches relying on
CI techniques were reviewed in the context of CC and EC. In
addition, the statistics about the status-quo of CI for CC and
EC were provided based on the works collected in this survey
paper. We found that LBS was intensively used in CC and
EC, followed by EAs and SIAs. However, FS and HS were
not fully utilized in CC and EC. Finally, we pointed out some
challenges and future research trends in CI, CC, and EC.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A berkeley view of cloud computing,” EECS De-
partment, University of California, Berkeley, Tech. Rep. UCB/EECS-
2009-28, Feb 2009.

[2] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-
the-art and research challenges,” Journal of Internet Services and
Applications, vol. 1, no. 1, pp. 7–18, May 2010.

[3] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology (NIST), Gaithersburg,
MD, Tech. Rep. 800-145, September 2011.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
Fourthquarter 2017.

[5] N. Wingfield, “Amazon’s profits grow more than 800 percent, lifted by
cloud services,” New York Times, New York, NY, USA, Tech. Rep.,
July 2016.

[6] I. Bojanova and A. Samba, “Analysis of cloud computing delivery
architecture models,” in Proceedings of the 2011 IEEE Workshops of
International Conference on Advanced Information Networking and
Applications, ser. WAINA’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 453–458.

[7] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, April 2015.

[8] Y. Chen, Y. Zhang, and S. Maharjan, “Deep learning for secure mobile
edge computing,” arXiv preprint arXiv:1709.08025, 2017.

[9] Z. Luo, M. LiWang, Z. Lin, L. Huang, X. Du, and M. Guizani, “Energy-
efficient caching for mobile edge computing in 5G networks,” Applied
Sciences-basel Journal, vol. 7, pp. 1–13, 2017.

[10] Z. Cheng, P. Li, J. Wang, and S. Guo, “Just-in-time code offloading
for wearable computing,” IEEE Transactions on Emerging Topics in
Computing, vol. 3, no. 1, pp. 74–83, March 2015.

[11] L. Tang, B. Tang, L. Kang, and L. Zhang, “A novel task caching and
migration strategy in multi-access edge computing based on the genetic
algorithm,” Future Internet, vol. 11, no. 8, pp. 1–14, 2019.

[12] N. Primeau, R. Falcon, R. Abielmona, and E. M. Petriu, “A review of
computational intelligence techniques in wireless sensor and actuator
networks,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4,
pp. 2822–2854, Fourthquarter 2018.

[13] D. T. Hoang, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
Communications and Mobile Computing, vol. 13, pp. 1587–1611, 2013.

[14] R. M. Singh, S. Paul, and A. Kumar, “Task scheduling in cloud
computing: Review,” International Journal of Computer Science and
Information Technologies, vol. 5, no. 6, pp. 7940–7944, 2014.

[15] A. A. Helen and B. V. RebeccaJeya, “A survey on quality of service
in cloud computing,” International Journal of Computer Trends and
Technology, vol. 27, no. 1, pp. 58–63, September 2015.

[16] P. Rajeswari and K. Jayashree, “Survey on QoS metrics and ranking in
cloud services,” International Journal of Engineering & Technology,
vol. 7, no. 1.3, pp. 146–149, 2018.

[17] H. Wu, “Multi-objective decision-making for mobile cloud offloading:
A survey,” IEEE Access, vol. 6, pp. 3962–3976, 2018.

[18] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp.
84 – 106, 2013, including Special section: AIRCC-NetCoM 2009 and
Special section: Clouds and Service-Oriented Architectures.

[19] F. Fatemi Moghaddam, M. Ahmadi, S. Sarvari, M. Eslami, and
A. Golkar, “Cloud computing challenges and opportunities: A survey,”
in 2015 1st International Conference on Telematics and Future Gen-
eration Networks (TAFGEN), May 2015, pp. 34–38.

[20] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
Aug 2019.

[21] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct 2016.

[22] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the Internet of things,” IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[23] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou, “A survey on
edge computing systems and tools,” Proceedings of the IEEE, vol. 107,
no. 8, pp. 1537–1562, Aug 2019.

[24] K. Peng, V. Leung, X. Xu, L. Zheng, J. Wang, and Q. Huang,
“A survey on mobile edge computing: Focusing on service adoption
and provision,” Wireless Communications and Mobile Computing, vol.
2018, pp. 8 267 838:1–8 267 838:16, 2018.

[25] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
arXiv preprint arXiv:1806.06191, 2018.

[26] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G
network edge cloud architecture and orchestration,” IEEE Communica-
tions Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681, thirdquarter
2017.

[27] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
“Survey on multi-access edge computing for Internet of things realiza-
tion,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp.
2961–2991, Fourthquarter 2018.

[28] Q.-V. Pham, F. Fang, V. N. Ha, M. Le, Z. Ding, L. B. Le, and
W.-J. Hwang, “A survey of multi-access edge computing in 5G and
beyond: Fundamentals, technology integration, and state-of-the-art,”
arXiv preprint arXiv:1906.08452, 2019.

[29] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, thirdquarter 2017.

[30] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” in
2016 10th International Conference on Intelligent Systems and Control
(ISCO), Jan 2016, pp. 1–8.

[31] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-
edge-cloud orchestrated network computing paradigms: Transparent
computing, mobile edge computing, fog computing, and cloudlet,”
ACM Comput. Surv., vol. 52, no. 6, pp. 125:1–125:36, Oct. 2019.

[32] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and Y. Li,
“Cloud computing resource scheduling and a survey of its evolutionary
approaches,” ACM Computing Surveys, vol. 47, no. 4, pp. 63:1–63:33,
July 2015.

[33] M. Guzek, P. Bouvry, and E. Talbi, “A survey of evolutionary com-
putation for resource management of processing in cloud computing,”
IEEE Computational Intelligence Magazine, vol. 10, no. 2, pp. 53–67,
May 2015.

[34] P. Chopra and R. Bedi, “Applications of fuzzy logic in cloud comput-
ing: A review,” International Journal of Scientific Research Engineer-
ing & Technology, vol. 6, pp. 1083–1086, 2017.

[35] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, Aug 2019.

[36] J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access network
(C-RAN): a primer,” IEEE Network, vol. 29, no. 1, pp. 35–41, Jan
2015.

[37] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct 2009.

19

[38] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the Internet of things,” IEEE
Pervasive Computing, vol. 14, no. 2, pp. 24–31, 2015.

[39] Y. Gao, W. Hu, K. Ha, B. Amos, P. Pillai, and M. Satyanarayanan, “Are
cloudlets necessary?” School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA, Tech. Rep., 2015.

[40] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the Internet of things,” in Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New
York, NY, USA: ACM, 2012, pp. 13–16.

[41] M. Chiang, “Fog networking: An overview on research opportunities,”
arXiv preprent arXiv:1601.00835, 2016.

[42] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing:
A survey,” in Wireless Algorithms, Systems, and Applications, K. Xu
and H. Zhu, Eds. Cham: Springer International Publishing, 2015, pp.
685–695.

[43] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and
M. Satyanarayanan, “Quantifying the impact of edge computing on
mobile applications,” in Proceedings of the 7th ACM SIGOPS Asia-
Pacific Workshop on Systems, ser. APSys ’16. New York, NY, USA:
ACM, 2016, pp. 5:1–5:8.

[44] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[45] H. Shah-Mansouri and V. W. S. Wong, “Hierarchical fog-cloud com-
puting for iot systems: A computation offloading game,” IEEE Internet
of Things Journal, vol. 5, no. 4, pp. 3246–3257, 2018.

[46] Y. Lan, X. Wang, C. Wang, D. Wang, and Q. Li, “Collaborative com-
putation offloading and resource allocation in cache-aided hierarchical
edge-cloud systems,” Electronics, vol. 8, no. 12, 2019.

[47] E. Ahvar, A. Orgerie, and A. Lbre, “Estimating energy consumption
of cloud, fog and edge computing infrastructures,” IEEE Transactions
on Sustainable Computing, 2019, in press.

[48] R. Basedia and M. Kumbhkar, “Cloud computing security issues and
challenges,” International Journal of Innovative Research in Computer
and Communication Engineering, vol. 4, no. 4, pp. 6733–6736, April
2016.

[49] J. Ni, K. Zhang, X. Lin, and X. S. Shen, “Securing fog computing
for Internet of things applications: Challenges and solutions,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 1, pp. 601–628,
Firstquarter 2018.

[50] A. Al-Shaikh, H. Khattab, A. Sharieh, and A. Sleit, “Resource uti-
lization in cloud computing as an optimization problem,” International
Journal of Advanced Computer Science and Applications, vol. 7, no. 6,
pp. 336–342, 2016.

[51] M. Jelassi, C. Ghazel, and L. A. Sadane, “A survey on quality of
service in cloud computing,” in 2017 3rd International Conference on
Frontiers of Signal Processing (ICFSP), Sep. 2017, pp. 63–67.

[52] R. Raju, R. G. Babukarthik, D. Chandramohan, P. Dhavachelvan, and
T. Vengattaraman, “Minimizing the makespan using hybrid algorithm
for cloud computing,” in 2013 3rd IEEE International Advance Com-
puting Conference (IACC), Feb 2013, pp. 957–962.

[53] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman,
“Cloud-vision: Real-time face recognition using a mobile-cloudlet-
cloud acceleration architecture,” in 2012 IEEE Symposium on Com-
puters and Communications (ISCC), July 2012, pp. 59–66.

[54] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation
for mobile edge computing-based augmented reality applications,”
IEEE Wireless Communications Letters, vol. 6, no. 3, pp. 398–401,
June 2017.

[55] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin, Heidelberg: Springer, 2003.

[56] J. Holland, “Erratum: Genetic algorithms and the optimal allocation of
trials,” SIAM Journal on Computing, vol. 3, no. 4, pp. 326–326, 1974.

[57] B. Hu, X. Sun, Y. Li, and H. Sun, “An improved adaptive genetic
algorithm in cloud computing,” in 2012 13th International Conference
on Parallel and Distributed Computing, Applications and Technologies,
Dec 2012, pp. 294–297.

[58] M. Agarwal and G. M. S. Srivastava, “A genetic algorithm inspired task
scheduling in cloud computing,” in 2016 International Conference on
Computing, Communication and Automation (ICCCA), April 2016, pp.
364–367.

[59] J. Liu, X.-G. Luo, X.-M. Zhang, F. Zhang, and B.-N. Li, “Scheduling
model for cloud computing based on multi-objective genetic algori-
thm,” IJCSI International Journal of Computer Science Issues, vol. 10,
no. 3, pp. 134–139, 2013.

[60] C. Canali and R. Lancellotti, “GASP: Genetic algorithms for service
placement in fog computing systems,” Algorithms, vol. 12, no. 10,
2019.

[61] H. T. T. Binh, T. T. Anh, D. B. Son, P. A. Duc, and B. M. Nguyen, “An
evolutionary algorithm for solving task scheduling problem in cloud-
fog computing environment,” in Proceedings of the Ninth International
Symposium on Information and Communication Technology, SoICT
2018, Danang City, Vietnam, 2018, pp. 397–404.

[62] J. Timmis, A. Hone, T. Stibor, and E. Clark, “Theoretical advances
in artificial immune systems,” Theoretical Computer Science, vol. 403,
no. 1, pp. 11–32, 2008.

[63] J. Chen and D. Yang, “Data security strategy based on artificial immune
algorithm for cloud computing,” Applied Mathematics & Information
Sciences, vol. 7, no. 1L, pp. 149–153, 2013.

[64] R. Roman, R. Rios, J. A. Onieva, and J. Lopez, “Immune system for
the Internet of things using edge technologies,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 4774–4781, June 2019.

[65] H. Farhoud, A. Payam, Vahdani, P. Juha, H. Timo, and T. Hannu, “An
intrusion detection system for fog computing and IoT based logistic
systems using a smart data approach,” International Journal of Digital
Content Technology and its Applications(JDCTA), vol. 10, no. 5, pp.
34–46, December 2016.

[66] R. Storn and K. Price, “Differential evolution a simple evolution
strategy for fast optimization,” Dr Dobbs, vol. 22, no. 4, pp. 18–24,
1997.

[67] E. S. Dolly, “Efficiently resource allocation in cloud scheduling using
differential evolution,” International Journal of Innovative Research in
Computer and Communication Engineering, vol. 5, pp. 10 232–10 240,
2017.

[68] Y. Wang, Z. Ru, K. Wang, and P. Huang, “Joint deployment and task
scheduling optimization for large-scale mobile users in multi-UAV-
enabled mobile edge computing,” IEEE Transactions on Cybernetics,
pp. 1–14, 2019.

[69] J. Kacprzyk and W. Pedrycz, Springer Handbook of Computational
Intelligence. Berlin, Heidelberg: Springer, 2015.

[70] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of ICNN’95 - International Conference on Neural Networks,
vol. 4, Nov 1995, pp. 1942–1948 vol.4.

[71] K. Parsopoulos and M. Vrahatis, “Recent approaches to global op-
timization problems through particle swarm optimization,” Natural
Computing, vol. 1, no. 2, pp. 235–306, Jun 2002.

[72] P. Elina, M. Cristian, and G. Carlos, Garcia, “Dynamic scheduling
based on particle swarm optimization for cloud-based scientific exper-
iments,” Latin American Center for Computer Studies; CLEI Electronic
Journal, CLEI Electronic Journal, vol. 14, no. 1, pp. 1–14, April 2014.

[73] L. 2, S. Zhao, S. Shen, and C. Jiang, “Task scheduling optimization
in cloud computing based on heuristic algorithm,” Journal of Network,
vol. 7, pp. 547–553, 2012.

[74] M. Deng, H. Tian, and B. Fan, “Fine-granularity based application
offloading policy in cloud-enhanced small cell networks,” in 2016 IEEE
International Conference on Communications Workshops (ICC), May
2016, pp. 638–643.

[75] M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a search
strategy. technical report 91-016,” Politecnico di Milano, Milano, Italy,
Tech. Rep., 1991.

[76] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by
a colony of cooperating agents,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29–41, Feb
1996.

[77] C. Blum, Physics of Life Reviews, vol. 2, no. 4, pp. 353 – 373, 2005.
[78] T. Medhat, E.-S. Ashraf, K. Arabi, and T. Fawzy, “Cloud task schedul-

ing based on ant colony optimization,” The International Arab Journal
of Information Technology, vol. 12, no. 2, pp. 129–137, March 2015.

[79] T. Wang, X. Wei, C. Tang, and J. Fan, “Efficient multi-tasks scheduling
algorithm in mobile cloud computing with time constraints,” Peer-to-
Peer Networking and Applications, vol. 11, no. 4, pp. 793–807, Jul
2018.

[80] S. Pang, W. Zhang, T. Ma, and Q. Gao, “Ant colony optimization
algorithm to dynamic energy management in cloud data center,”
Mathematical Problems in Engineering, vol. 2017, pp. 1–10, 2017.

[81] P. Huang, Y. Wang, K. Wang, and Z. Liu, “A bilevel optimization
approach for joint offloading decision and resource allocation in co-
operative mobile edge computing,” IEEE Transactions on Cybernetics,
pp. 1–14, 2019.

[82] D. Pham, A. Ghanbarhh, E. Koc, S. Otri, S. Rahim, and M. Zaidi, “The
bees algorithm, technical note,” Manufacturing Engineering Center,
Cardiff University, Cardiff, UK, Tech. Rep., 2005.

20

[83] N. Hesabian, H. Haj, and S. Javadi, “Optimal scheduling in cloud com-
puting environment using the Bee algorithm,” International Journal of
Computer Networks and Communications Security, vol. 3, no. 6, pp.
253–258, June 2015.

[84] H. Walaa, N. Heba, and R. Rawya, “Honey bee based load balancing
in cloud computing,” KSII Transactions on Internet and Information
Systems, vol. 11, no. 12, pp. 5694–5711, 2017.

[85] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job scheduling
optimization based on bees swarm,” Enterprise Information Systems,
vol. 12, pp. 1–25, 04 2017.

[86] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,” in 2009
World Congress on Nature Biologically Inspired Computing (NaBIC),
Dec 2009, pp. 210–214.

[87] A. Supacheep and M. Toshiyuki, “Cuckoo search algorithm for job
scheduling in cloud systems,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. E98.A,
no. 2, pp. 645–649, 2015.

[88] S. Nazir, S. Shafiq, Z. Iqbal, M. Zeeshan, S. Tariq, and N. Javaid,
“Cuckoo optimization algorithm based job scheduling using cloud and
fog computing in smart grid,” in Advances in Intelligent Networking
and Collaborative Systems, F. Xhafa, L. Barolli, and M. Greguš, Eds.
Cham: Springer International Publishing, 2019, pp. 34–46.

[89] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms. Luniver Press,
2008.

[90] X. S. Yang, “Firefly algorithm, stochastic test functions and design op-
timisation,” International Journal of Bio-Inspired Computation, vol. 2,
no. 2, pp. 78–84, 2010.

[91] N. J. Kansal and I. Chana, “Energy-aware, virtual machine migration
for cloud computing - a firefly optimization approach,” Journal of Grid
Computing, vol. 14, pp. 327–345, 2016.

[92] A. Kaur and S. Sharma, “Workflow scheduling in cloud computing
environment using firefly algorithm,” International Journal of Com-
puter Science and Technology, vol. 8, pp. 73–76, 2017.

[93] K. Hassan, N. Javaid, F. Zafar, S. Rehman, M. Zahid, and S. Rasheed,
“A cloud fog based framework for efficient resource allocation using
firefly algorithm,” in Advances on Broadband and Wireless Computing,
Communication and Applications, L. Barolli, F.-Y. Leu, T. Enokido,
and H.-C. Chen, Eds. Cham: Springer International Publishing, 2019,
pp. 431–443.

[94] K. M. Passino, “Biomimicry of bacterial foraging for distributed
optimization and control,” IEEE Control Systems Magazine, vol. 22,
no. 3, pp. 52–67, June 2002.

[95] J. Verma, S. Sobhanayak, S. Sharma, A. Kumar-Turuk, and B. Sahoo,
“Bacteria foraging based task scheduling algorithm in cloud computing
environment,” International Conference on Computing, Communica-
tion and Automation (ICCCA), pp. 777–782, 2017.

[96] L. Jacob, V. Jeyakrishanan, and P. Sengottuvelan, “Resource scheduling
in cloud using bacterial foraging optimization algorithm,” International
Journal of Computer Applications, vol. 92, no. 1, pp. 14–20, April
2014.

[97] L. A. Zadeh, “Fuzzy logic,” Computer, vol. 21, no. 4, pp. 83–93, Apr.
1988.

[98] L. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp.
338–353, 1965.

[99] K. Anindita, “A new approach for task scheduling of cloud computing
using fuzzy,” International Journal of Innovative Research in Computer
Science & Technology (IJIRCST), vol. 3, pp. 112–116, March 2015.

[100] P. Haratian, F. Safi-Esfahani, L. Salimian, and A. Nabiollahi, “An adap-
tive and fuzzy resource management approach in cloud computing,”
IEEE Transactions on Cloud Computing, vol. 7, no. 4, pp. 907–920,
Oct 2019.

[101] S. Srinivas, S. Anupama, and K.-J. Suvendu, “Efficient load balancing
in cloud computing using fuzzy logic,” IOSR Journal of Engineering
(IOSRJEN), vol. 2, pp. 65–71, July 2012.

[102] X. Wang, Y. Wang, Z. Hao, and J. Du, “The research on resource
scheduling based on fuzzy clustering in cloud computing,” in 2015 8th
International Conference on Intelligent Computation Technology and
Automation (ICICTA), June 2015, pp. 1025–1028.

[103] Ritu and S. Jain, “A trust model in cloud computing based on fuzzy
logic,” in 2016 IEEE International Conference on Recent Trends in
Electronics, Information Communication Technology (RTEICT), May
2016, pp. 47–52.

[104] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. SMC-15, pp. 116–132, 1985.

[105] Y. Tao, X. Wang, X. Xu, and Y. Chen, “Dynamic resource allocation
algorithm for container-based service computing,” in 2017 IEEE 13th

International Symposium on Autonomous Decentralized System (ISAD-
S), March 2017, pp. 61–67.

[106] G. Li, H. Zhou, B. Feng, G. Li, T. Li, Q. Xu, and W. Quan, “Fuzzy
theory based security service chaining for sustainable mobile-edge
computing,” Mobile Information Systems, vol. 2017, pp. 1–13, 2017.

[107] C. Qu and R. Buyya, “A cloud trust evaluation system using hier-
archical fuzzy inference system for service selection,” in 2014 IEEE
28th International Conference on Advanced Information Networking
and Applications, May 2014, pp. 850–857.

[108] M. Zarina, A. M. Aminu, S. W. N. Wan Nur, M. A. Mohamed,
and M. D. Mustafa, “A genetic algorithm for optimal job scheduling
and load balancing in cloud computing,” International Journal of
Engineering and Technology, vol. 7, pp. 290–294, 2018.

[109] P. Kumar and A. Verma, “Scheduling using improved genetic algorithm
in cloud computing for independent tasks,” in Proceedings of the
International Conference on Advances in Computing, Communications
and Informatics, ser. ICACCI ’12. New York, NY, USA: ACM, 2012,
pp. 137–142.

[110] K. Shaminder and V. Amandeep, “An efficient approach to genetic
algorithm for task scheduling in cloud computing environment,” I.J.
Information Technology and Computer Science, vol. 10, pp. 74–79,
2012.

[111] Y. Wang, C. Guo, and J. Yu, “Immune scheduling network based
method for task scheduling in decentralized fog computing,” Wireless
Communications and Mobile Computing, vol. 2018, pp. 1–8, 2018.

[112] Y.-K. Lin and C. S. Chong, “Fast GA based project scheduling for
computing resources allocation in a cloud manufacturing system,”
Journal of Intelligent Manufacturing, vol. 28, no. 5, pp. 1189–1201,
Jun 2017.

[113] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation
offloading for service workflow in mobile cloud computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 12, pp.
3317–3329, Dec 2015.

[114] K. Nitesh and K. Jitender, “A computation offloading framework to
optimize energy utilization in mobile cloud computing environment,”
International Journal of Computer Applications & Information Tech-
nology, vol. 5, pp. 61–69, 2014.

[115] M. Goudarzi, M. Zamani, and A. Toroghi Haghighat, “A genetic-based
decision algorithm for multisite computation offloading in mobile cloud
computing,” International Journal of Communication Systems, vol. 30,
no. 10, pp. e3241:1–e3241:17, 2016.

[116] A. Bozorgchenani, F. Mashhadi, D. Tarchi, and S. Salinas Monroy,
“Multi-objective computation sharing in energy and delay constrained
mobile edge computing environments,” IEEE Transactions on Mobile
Computing, 2020, in press.

[117] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, “Energy efficient
computation offloading for multi-access MEC enabled small cell net-
works,” in 2018 IEEE International Conference on Communications
Workshops (ICC Workshops), May 2018, pp. 1–6.

[118] Z. Li and Q. Zhu, “Genetic algorithm-based optimization of off-
loading and resource allocation in mobile-edge computing,” Informa-
tion, vol. 11, no. 2, pp. 1–11, 2020.

[119] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, 3rd ed., ser. Morgan Kaufmann Series
in Data Management Systems. Amsterdam: Morgan Kaufmann, 2011.

[120] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554,
July 2006.

[121] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless
networks: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 2595–2621, Fourthquarter 2018.

[122] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed
deep learning-based offloading for mobile edge computing networks,”
Mobile Networks and Applications, pp. 1–8, Nov 2018.

[123] D. S. Rani and M. Pounambal, “Deep learning based dynamic task
offloading in mobile cloudlet environments,” Evolutionary Intelligence,
2019, in press.

[124] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[125] Y. Shoham, R. Powers, and T. Grenager, “Multi-agent reinforcement
learning: a critical survey, technical report,” Computer Science Depart-
ment, Stanford University, Tech. Rep., 2003.

[126] A. T. Nassar and Y. Yilmaz, “Reinforcement-learning-based resource
allocation in fog radio access networks for various IoT environments,”
arXiv preprint arXiv:1806.04582, 2018.

21

[127] L. Wang, P. Huang, K. Wang, G. Zhang, L. Zhang, N. Aslam, and
K. Yang, “Rl-based user association and resource allocation for multi-
UAV enabled MEC,” in 2019 15th International Wireless Communica-
tions Mobile Computing Conference (IWCMC), June 2019, pp. 741–
746.

[128] Z. Peng, D. Cui, Y. Ma, J. Xiong, B. Xu, and W. Lin, “A reinforcement
learning-based mixed job scheduler scheme for cloud computing under
SLA constraint,” in 2016 IEEE 3rd International Conference on Cyber
Security and Cloud Computing (CSCloud), June 2016, pp. 142–147.

[129] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre, and
I. Truck, “Using reinforcement learning for autonomic resource allo-
cation in clouds: Towards a fully automated workflow,” in ICAS 2011:
The Seventh International Conference on Autonomic and Autonomous
Systems, 2011, pp. 67–74.

[130] X. Liu, Z. Qin, and Y. Gao, “Resource allocation for edge com-
puting in IoT networks via reinforcement learning,” arXiv preprint
arXiv:1903.01856, 2019.

[131] T. Q. Dinh, Q. D. La, T. Q. S. Quek, and H. Shin, “Learning for
computation offloading in mobile edge computing,” IEEE Transactions
on Communications, vol. 66, no. 12, pp. 6353–6367, Dec 2018.

[132] F. Youssef and B. Houda, “Deep reinforcement learning overview of the
state of the art,” Journal of Automation, Mobile Robotics & Intelligent
Systems, vol. 12, no. 3, pp. 20–39, 2018.

[133] A. Mosavi, P. Ghamisi, Y. Faghan, P. Duan, and S. Shamshir-
band, “Comprehensive review of deep reinforcement learning methods
and applications in economics,” arXiv preprint arXiv:202003.0309.v1,
2020.

[134] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[135] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
J. Pineau, “An introduction to deep reinforcement learning,” arXiv
preprint arXiv:1811.12560, 2018.

[136] J. Lin, Z. Peng, and D. Cui, “Deep reinforcement learning for multi-
resource cloud job scheduling,” in Neural Information Processing,
L. Cheng, A. C. S. Leung, and S. Ozawa, Eds. Cham: Springer
International Publishing, 2018, pp. 289–302.

[137] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, and P. Li, “Energy-efficient
scheduling for real-time systems based on deep Q-learning model,”
IEEE Transactions on Sustainable Computing, vol. 4, no. 1, pp. 132–
141, 2019.

[138] T. Yang, Y. Hu, M. C. Gursoy, A. Schmeink, and R. Mathar, “Deep
reinforcement learning based resource allocation in low latency edge
computing networks,” in 2018 15th International Symposium on Wire-
less Communication Systems (ISWCS), Aug 2018, pp. 1–5.

[139] H. Meng, D. Chao, and Q. Guo, “Deep reinforcement learning based
task offloading algorithm for mobile-edge computing systems,” in
Proceedings of the 2019 4th International Conference on Mathematics
and Artificial Intelligence, ser. ICMAI 2019. New York, NY, USA:
ACM, 2019, pp. 90–94.

[140] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 4005–4018, June 2019.

[141] J. Zhang, H. Guo, and J. Liu, “A reinforcement learning based task
offloading scheme for vehicular edge computing network,” in Artificial
Intelligence for Communications and Networks, S. Han, L. Ye, and
W. Meng, Eds. Cham: Springer International Publishing, 2019, pp.
438–449.

[142] Z. Ning, P. Dong, X. Wang, L. Guo, J. J. P. C. Rodrigues, X. Kong,
J. Huang, and R. Y. K. Kwok, “Deep reinforcement learning for
intelligent internet of vehicles: An energy-efficient computational off-
loading scheme,” IEEE Transactions on Cognitive Communications and
Networking, vol. 5, no. 4, pp. 1060–1072, Dec 2019.

[143] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforcement
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing,” Digital Communications and Networks,
vol. 5, no. 1, pp. 10 – 17, 2019.

[144] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 158–11 168, Nov 2019.

[145] Z. Ning, P. Dong, X. Wang, J. J. Rodrigues, and F. Xia, “Deep
reinforcement learning for vehicular edge computing: An intelligent
offloading system,” ACM Transactions on Intelligent Systems and
Technology, vol. 10, no. 6, pp. 1–24, January 2019.

[146] A. Teske, R. Falcon, R. Abielmona, and E. Petriu, “Automating
maritime risk assessment with genetic fuzzy systems,” in Proc. of the
2nd International Symposium on Fuzzy and Rough Sets (ISFUROS),
2017, pp. 1–10.

[147] S. Tzafestas and K. Zikidis, “NeuroFAST: on-line neuro-fuzzy ART-
based structure and parameter learning TSK model,” IEEE Transactions
on Systems, Man and Cybernetics, Part B (Cybernetics), vol. 31, no. 5,
pp. 797–802, 2001.

[148] A. M. Manasrah and H. B. Ali, “Workflow scheduling using hybrid
GA-PSO algorithm in cloud computing,” Wireless Communications and
Mobile Computing, vol. 2018, pp. 1–16, July 2018.

[149] C. Liu, C. Zou, and P. Wu, “A task scheduling algorithm based on
genetic algorithm and ant colony optimization in cloud computing,”
in 2014 13th International Symposium on Distributed Computing and
Applications to Business, Engineering and Science, Nov 2014, pp. 68–
72.

[150] S. Rashidi and S. Sharifian, “A hybrid heuristic queue based algorithm
for task assignment in mobile cloud,” Future Generation Computer
Systems, vol. 68, pp. 331–345, 2017.

[151] N. Moganarangan, R. Babukarthik, S. Bhuvaneswari, M. S. Basha, and
P. Dhavachelvan, “A novel algorithm for reducing energy-consumption
in cloud computing environment: Web service computing approach,”
Journal of King Saud University - Computer and Information Sciences,
vol. 28, no. 1, pp. 55–67, Jan 2016.

[152] Z. Zhang and X. Zhang, “A load balancing mechanism based on
ant colony and complex network theory in open cloud computing
federation,” in 2010 The 2nd International Conference on Industrial
Mechatronics and Automation, vol. 2, May 2010, pp. 240–243.

[153] X. Wei, J. Fan, Z. Lu, and K. Din, “Application scheduling in
mobile cloud computing with load balancing,” Journal of Applied
Mathematics, vol. 2013, pp. 1–13, 2013.

[154] X. Liu, Z. Zhan, J. D. Deng, Y. Li, T. Gu, and J. Zhang, “An energy
efficient ant colony system for virtual machine placement in cloud
computing,” IEEE Transactions on Evolutionary Computation, vol. 22,
no. 1, pp. 113–128, Feb 2018.

[155] W. Bao, H. Ji, X. Zhu, J. Wang, W. Xiao, and J. Wu, “ACO-based
solution for computation offloading in mobile cloud computing,” Big
Data and Information Analytics, vol. 1, pp. 1–13, Jan 2016.

[156] A. Ragmani, A. El Omri, N. Abghour, K. Moussaid, and M. Rida, “An
improved scheduling strategy in cloud computing using fuzzy logic,” in
Proceedings of the International Conference on Big Data and Advanced
Wireless Technologies, ser. BDAW ’16. ACM, 2016, pp. 22:1–22:9.

[157] S. F. Issawi, A. Al Halees, and M. Radi, “An efficient adaptive load
balancing algorithm for cloud computing under bursty workloads,”
Engineering, Technology & Applied Science Research, vol. 5, no. 3,
pp. 795–800, 2015.

[158] H. S. Mondal, M. T. Hasan, T. K. Karmokar, and S. Sarker, “Improving
quality of service in cloud computing architecture using fuzzy logic,”
in 2017 4th International Conference on Advances in Electrical Engi-
neering (ICAEE), Sep. 2017, pp. 149–152.

[159] C. Sonmez, A. Ozgovde, and C. Ersoy, “Fuzzy workload orchestration
for edge computing,” IEEE Transactions on Network and Service
Management, vol. 16, no. 2, pp. 769–782, 2019.

[160] M. S. Q. Zulkar Nine, M. A. K. Azad, S. Abdullah, and R. M. Rahman,
“Fuzzy logic based dynamic load balancing in virtualized data centers,”
in 2013 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), 2013, pp. 1–7.

[161] N. C. Luong, Z. Xiong, P. Wang, and D. Niyato, “Optimal auction for
edge computing resource management in mobile blockchain networks:
A deep learning approach,” in 2018 IEEE International Conference on
Communications (ICC), May 2018, pp. 1–6.

[162] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation
for mobile edge computing: A deep reinforcement learning approach,”
IEEE Transactions on Emerging Topics in Computing, 2019, in press.

[163] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation based
on deep reinforcement learning in iot edge computing,” IEEE Journal
on Selected Areas in Communications, 2020, in press.

[164] L. Quan, Z. Wang, and F. Ren, “A novel two-layered reinforcement
learning for task offloading with tradeoff between physical machine
utilization rate and delay,” Future Internet, vol. 10, no. 7, pp. 1–17,
2018.

[165] S. Sundar and B. Liang, “Gaming and learning approaches for multi-
user computation offloading,” in Proceedings of the IEEE Vehicular
Technology Conference, Toronto, Canada. IEEE, 2017, pp. 24–27.

[166] S. Ranadheera, S. Maghsudi, and E. Hossain, “Mobile edge computa-
tion offloading using game theory and reinforcement learning,” arXiv
preprint arXiv:1711.09012, 2017.

22

[167] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computa-
tion offloading in multi-access edge computing using a deep sequential
model based on reinforcement learning,” IEEE Communications Mag-
azine, vol. 57, no. 5, pp. 64–69, 2019.

[168] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Performance
optimization in mobile-edge computing via deep reinforcement learn-
ing,” in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall),
2018, pp. 1–6.

[169] Z. Chen and X. Wang, “Decentralized computation offloading for
multi-user mobile edge computing: A deep reinforcement learning
approach,” arXiv preprint arXiv:1812.07394, 2018.

[170] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani, “Security
in mobile edge caching with reinforcement learning,” IEEE Wireless
Communications, vol. 25, no. 3, pp. 116–122, June 2018.

[171] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for MEC,” in 2018
IEEE Wireless Communications and Networking Conference (WCNC),
2018, pp. 1–6.

[172] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, 2019,
in press.

[173] S. Vimal, M. Khari, N. Dey, R. G. Crespo, and Y. H. Robinson,
“Enhanced resource allocation in mobile edge computing using re-
inforcement learning based moaco algorithm for IIOT,” Computer
Communications, vol. 151, pp. 355–364, 2020.

[174] A. S. Saljoughi, M. Mehvarz, and H. Mirvaziri, “Attacks and intrusion
detection in cloud computing using neural networks and particle swarm
optimization algorithms,” Emerging Science Journal, vol. 1, no. 4, pp.
179–191, Decembe 2017.

[175] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, “An efficient com-
putation offloading management scheme in the densely deployed small
cell networks with mobile edge computing,” IEEE/ACM Transactions
on Networking, vol. 26, no. 6, pp. 2651–2664, 2018.

[176] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Deep
learning based joint resource scheduling algorithms for hybrid MEC
networks,” IEEE Internet of Things Journal, 2019, in press.

[177] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision and
resource allocation for multi-user multi-task mobile cloud,” in 2016
IEEE International Conference on Communications (ICC). IEEE,
2016, pp. 1–6.

[178] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server place-
ment in mobile edge computing,” Journal of Parallel and Distributed
Computing, vol. 127, pp. 160–168, 2019.

[179] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao,
Y. Xiang, and R. Ranjan, “Fog computing: Survey of trends, architec-
tures, requirements, and research directions,” IEEE Access, vol. 6, pp.
47 980–48 009, 2018.

[180] Y. Zhang, B. Di, P. Wang, J. Lin, and L. Song, “HetMEC: Hetero-
geneous multi-layer mobile edge computing in the 6 G era,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4388–4400,
2020.

[181] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1826–1857,
thirdquarter 2018.

[182] Y. Yuan and F. Wang, “Blockchain and cryptocurrencies: Model,
techniques, and applications,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 48, no. 9, pp. 1421–1428, 2018.

[183] K. R. Choo, Z. Yan, and W. Meng, “Blockchain in industrial IoT app-
lications: Security and privacy advances, challenges, and opportunities,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 6, pp. 4119–
4121, 2020.

Muhammad Asim received the M.S. degree in
Mathematics from University of Peshawar, Pe-
shawar, Pakistan, in 2013 and the M.Phil. degree
in Mathematics from Kohat University of Science
& Technology, Kohat, Pakistan, in 2016. He is
currently pursuing the Ph.D. degree in Computer
Science and Technology, Central South University,
Changsha, China. His current research interests in-
clude computational intelligence, cloud computing,
and edge computing.

Yong Wang (M’08–SM’17) received the Ph.D. de-
gree in control science and engineering from the
Central South University, Changsha, China, in 2011.

He is a Professor with the School of Automa-
tion, Central South University, Changsha, China.
His current research interests include the theory,
algorithm design, and interdisciplinary applications
of computational intelligence.

Dr. Wang is an Associate Editor for the IEEE
Transactions on Evolutionary Computation and the
Swarm and Evolutionary Computation. He was a

recipient of Cheung Kong Young Scholar in 2018 and a Web of Science
highly cited researcher in Computer Science in 2017 and 2018.

Kezhi Wang received the B.E. and M.E. degrees
in the School of Automation, Chongqing University,
China, in 2008 and 2011, respectively. He received
the Ph.D. degree in Engineering from the University
of Warwick, U.K. in 2015. He was a Senior Research
Officer in University of Essex, U.K. Currently he
is a Senior Lecturer with Department of Computer
and Information Sciences at Northumbria University,
U.K. His research interests include wireless commu-
nications and machine learning.

Pei-Qiu Huang received the B.S. degree in au-
tomation and the M.S. degree in control theory
and control engineering both from the Northeastern
University, Shenyang, China, in 2014 and 2017, re-
spectively. He is currently pursuing the Ph.D. degree
in control science and engineering, Central South
University, Changsha, China. His current research
interests include evolutionary computation, bilevel
optimization, and mobile edge computing.

	Introduction
	CC and EC Paradigms and Their Related Metrics and Critical Issues
	CC and EC Paradigms
	CC
	EC

	Metrics
	Energy Consumption
	Security and Privacy
	Resource Utilization
	Latency
	Makespan
	Cost
	Throughput

	Issues in CC and EC
	Job Scheduling
	Resource Allocation
	Task Offloading
	Joint Issues

	CI for CC AND EC
	EAs
	SIAs
	FS
	LBS
	HS

	CI in Addressing Critical Issues in CC and EC
	EAs in CC and EC
	EAs for Job Scheduling
	EAs for Resource Allocation
	EAs for Task Offloading
	EAs for Joint Issues

	SIAs in CC and EC
	SIAs for Job Scheduling
	SIAs for Resource Allocation
	SIAs for Task Offloading
	SIAs for Joint Issues

	FS in CC and EC
	FS for Job Scheduling
	FS for Resource Allocation
	FS for Task Offloading
	FS for Joint Issues

	LBS in CC and EC
	LBS for Job Scheduling
	LBS for Resource Allocation
	LBS for Task Offloading
	LBS for Joint Issues

	HS in CC and EC
	HS for Job Scheduling
	HS for Resource Allocation
	HS for Task Offloading
	HS for Joint Issues

	Discussion and Future Research Trends
	Discussion
	EAs for CC and EC
	SIAs for CC and EC
	FS for CC and EC
	LBS for CC and EC
	HS for CC and EC

	Future Research Trends
	From CC and EC Perspective
	From CI Technique Perspective

	Conclusion
	References
	Biographies
	Muhammad Asim
	Yong Wang
	Kezhi Wang
	Pei-Qiu Huang

