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Abstract:  

The traditional waterbomb origami, produced from a pattern consisting of a series of 

vertices where six creases meet, is one of the most widely utilised origami patterns. From 

rigid origami viewpoint, it generally has multiple degrees of freedom, but when the 

pattern is folded symmetrically, the mobility reduces to one. This paper presents a 

thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has 

been found that the pattern can have two folding paths under certain circumstance. 

Moreover, the pattern can be used to fold thick panels. Not only do the additional 

constraints imposed to fold the thick panels lead to single degree of freedom folding, but 

the folding process is kinematically equivalent to the origami of zero-thickness sheets. 

The findings pave the way for the pattern being readily used to fold deployable structures 

ranging from flat roofs to large solar panels.  

 

Keywords: Waterbomb base, waterbomb tessellation, rigid origami, thick-panel origami 

 

Nomenclature 

iz * Coordinate axis of crease i  or revolute joint i  

ix  Coordinate axis common normal from 1−iz  to iz  

)1( +iiα  Angle of rotation from iz  to 1+iz  about axis +1ix , also known as the twist of link 

)1( +ii  

α , β  Design angular parameters of the origami waterbomb pattern 
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)1( +iiQ     3 by 3 transformation matrix between the coordinate system of link ii )1( −  and 

that of link )1( +ii  for spherical linkages 

iδ        Angle of rotation from ix  to 1+ix  about axis iz  in the vertex D of the origami 

waterbomb pattern, also known as the revolute variable of joint i  

iϕ        The dihedral angle between link ii )1( −  and link )1( +ii  in the vertex D of the 

origami waterbomb pattern 

iω       Angle of rotation from ix  to 1+ix  about axis iz in the vertex W of the origami 

waterbomb pattern, also known as the revolute variable of joint i  

iφ        The dihedral angle between link ii )1( −  and link )1( +ii  in the vertex W of the 

origami waterbomb pattern 
D

iia )1( +     The normal distance between iz  and 1+iz , also known as the link length of link 

)1( +ii  in the vertex D of the thick-panel waterbomb pattern or the panel 

thickness 
W

iia )1( +     The normal distance between iz  and 1+iz , also known as the link length of link 

)1( +ii  in the vertex W of the thick-panel waterbomb pattern or the panel 

thickness 
D
iR        The normal distance between ix  and 1+ix , also known as the offset of joint i  in 

the vertex D of the thick-panel waterbomb pattern 
W
iR        The normal distance between ix  and 1+ix , also known as the offset of joint i  in 

the vertex W of the thick-panel waterbomb pattern 

)1( +iiT     4 by 4 transformation matrix between the coordinate system of link ii )1( −  and 

that of link )1( +ii  

a        Thickness parameter for thick-panel waterbomb pattern, also the thickness of 

link 23 in the vertex W of the thick-panel waterbomb pattern 

µ        The proportion between the thickness of link 34  and link 23 in the vertex W 

of the thick-panel waterbomb pattern 
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iδ ′        Angle of rotation from ix  to 1+ix  about axis iz  in the vertex D of the thick-

panel waterbomb pattern, also known as the revolute variable of joint i  

iϕ′        The dihedral angle between link ii )1( −  and link )1( +ii  in the vertex D of the 

thick-panel waterbomb pattern 

iω′       Angle of rotation from ix  to 1+ix  about axis iz in the vertex W of the thick-

panel waterbomb pattern, also known as the revolute variable of joint i  

iφ′        The dihedral angle between link ii )1( −  and link )1( +ii  in the vertex W of the 

thick-panel waterbomb pattern 

* The setup of coordinates and kinematic parameters for both zero-thickness and thick-

panel origami according to Denavit–Hartenberg's (DH) notation is shown in figure A of 

Appendix A. 

 

1. Introduction 

The waterbomb is a traditional origami [1]. Commonly, two terms are related to it: 

waterbomb bases and waterbomb tessellations. There are two types of waterbomb bases: 

the eight-crease base and the six-crease base. The former is made from a square sheet of 

paper consisting of eight alternating mountain and valley creases around a central vertex, 

figure 1(a). One of its typical tessellations is produced by four such bases tiling around a 

smaller square forming the square Resch pattern, figures 1(b) and 1(c). The latter, 

consisting of two mountain and four valley creases shown in figure 1(d), is more 

commonly known, and its tessellations range from a flat-foldable surface to a deformable 

tube known as the magic origami ball, figures 1(e) and (f).  

 

Both waterbomb origami structures were extensively investigated in the past. For 

instance, Hanna et. al. and Bowen et. al. established the bistable and dynamic model of 

the eight-crease waterbomb base [2, 3]. Tachi et. al. worked on the rigidity of a six-crease 

origami tessellation with multiple degrees of freedom to achieve an adaptive freeform 

surface [4]. On the application side, the first origami stent was made from the waterbomb 

tube aimed to achieve a large deployable ratio [5]. A worm robot [6] and a deformable 

wheel robot [7] were also proposed based on the magic origami ball. 
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In this paper, the focus is drawn on the six-fold waterbomb tessellation. Due to its large 

deployable ratio between expanded and packaged states, it can be potentially used to fold 

large flat roofs and space solar panels. Although the waterbomb pattern is of multiple 

degrees of freedom, the symmetric folding is often preferred in most of research or art 

work, which is done by constraining it with symmetric conditions and then controlling 

the motion to reach an ideal flat-foldable state. This is not easy in practice due to the fact 

that in rigid origami, the six-fold waterbomb base itself is a spherical 6R linkage with 

three degrees of freedom [8], thus the number of degrees of freedom for the pattern could 

increase significantly if the pattern consists of a large number of waterbomb bases.  

 

The waterbomb pattern is primarily created for zero-thickness sheets just like all of the 

origami patterns. Yet, in most of the practical engineering applications, the thickness of 

the material cannot simply be ignored. Various methods have been proposed to fold thick 

panel. In one instance, tapered surfaces are used to fold a thick panel using the Miura-ori 

of zero-thickness sheet [9], whereas in the other, offsets at the edge of the panels were 

introduced to implement folding of thick panels using the square-twist origami pattern 

[10]. A more recent research suggested to replace folds with two parallel ones to 

accommodate the thickness of materials [11]. In all of the above methods, the 

fundamental kinematic model in which origami is treated as a series of interconnected 

spherical linkages remained. Different from the above methods, the authors of this paper 

have also proposed an approach in which the fold lines were only allowed to be placed on 

top or bottom of flat thick panels. As a result, the spherical linkage assembly for the 

origami of zero-thickness sheet is replaced by an assembly of spatial linkages. We have 

proved that not only are the assemblies of such panels foldable, but they can be folded 

compactly under certain conditions [12]. 

 

In this paper, we provide a comprehensive kinematic analysis on foldability of the 

waterbomb tessellation made from the six-fold waterbomb bases of both a zero-thickness 

sheet and panel of finite thickness. Kinematically the folding of zero-thickness sheet is 

modelled as spherical 6R linkages whereas that of thick panel is treated as an assembly of 
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the Bricard linkages. The analysis has revealed a number of very interesting features 

associated with the waterbomb origami, including the existence of two folding paths for 

general waterbomb origami of zero-thickness sheets when it is folded symmetrically. 

Moreover, because the Bricard linkages are overconstrained [14, 15], the increase in 

number of degrees of freedom occurring for the origami of zero-thickness sheet does not 

materialise for thick panels. 

 

The paper is structured as follows. Section 2 presents a detailed analysis on rigid 

foldability of the waterbomb tessellation for zero-thickness sheets. This is followed by 

the design and kinematic behaviour of its corresponding thick-panel origami in section 3. 

Comparisons are made in section 4 with further discussion for potential applications.   

 

2. Symmetric rigid folding of the waterbomb pattern of zero-thickness sheet 

Consider a pattern made by tessellating six-crease waterbomb bases, figure 2(a). The 

pattern consists of only two types of vertices, D and W, enlarged in figures 2(b) and 2(c). 

The rigid origami folding around each vertex can be modelled kinematically as a 

spherical 6R linkage in which the creases act as revolute joints and the sheets between 

creases are rigid links. In general, a spherical 6R linkage is of three degrees of freedom, 

but this number is reduced to one if only the symmetric folding is allowed. In such a way, 

vertex D is regarded as a spherical 6R linkage with the geometric parameters 

ααααα ==== 61453412 , απαα 25623 −== , where 
2

0 πα ≤< . Imposing the line and 

plane symmetry conditions, i.e., 41 δδ =  and 6532 δδδδ === , to the closure condition of 

the linkage (see Appendix A), we can then write the closure equations as  

 
2

tancos
2

tan 21 δαδ
−= , and 41 δδ = , 6532 δδδδ === . (1) 

Similarly applying the symmetry condition to vertex W, it becomes a plane-symmetric 

spherical 6R linkage with the geometric parameters βαπαα −−== 6112 , βαα == 5623 , 

ααα == 4534 , where 
2

0 πβ ≤< , and  

 35 ωω = , 26 ωω = .  (2a) 
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To ensure the compatibility of the entire pattern, the kinematic relationship between 1ω  

and 3ω  of vertex W must be identical to that between 1δ  and 2δ  of vertex D. Replacing 

1δ  and 2δ  in equation (1) with 1ω  and 3ω , respectively, yields 

 
2

tancos
2

tan 31 ωαω
−= .  (2b) 

Now considering the closure condition of the linkage at W, we obtain two sets of 

equations. The first set is 

 
2

tan
)(cos

cos
2

tan 32 ω
βα

αω
+

−= , (3a) 

 14 ωω = , (3b) 

whilst the second one is 

 
)(sin

2
tan)(sin

2
tansin2

2
tan

32

3

2

βαωαβ

ωαω

++−
−= , (4a) 

and 

)(sin2
2

tan)2cos)((cos4
2

tan))sin()(sin2()sin(2

)))2(sinsin7)((sin
2

tan))sin()(sincos2sin(sin4
2

tan)(sincos2
2

tan

2
tan

232234

323423

4

βαωββαωαββααβ

βαββα

ωαββααβαωαβαω

ω

+−−++−++−

+−++

−+++−−

=

（

. 

(4b) 

Together with equations (1) and (2), the entire sets of closure equations of waterbomb 

pattern have been obtained.  

 

The kinematic variables, or rotations about each crease, can be replaced by the dihedral 

angles between adjacent sheets connected by the crease. The relationship between the 

kinematic variables and dihedral angels are 11 ϕπδ −= , 2 2δ π ϕ= + , 33 ϕπδ += , 

44 ϕπδ −= , 5 5δ π ϕ= + , 66 ϕπδ +=  for vertex D and 1 1ω π φ= − , 2 2ω π φ= − , 

3 3ω π φ= + , 4 4ω π φ= − , 5 5ω π φ= + , 6 6ω π φ= −  for vertex W. Thus the two sets of 
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kinematic relationships of the waterbomb pattern presented by the dihedral angels 

become  

 
2

tan
cos

1
2

tan 31 φ
α

φ
= ,  (5a) 

 
2

tan
cos

)(cos
2

tan 32 φ
α
βαφ +

= , (5b) 

 14 φφ = , 35 φφ = , 26 φφ = , (5c) 

32 φϕ = , (5d) 

 
2

tan
cos

1
2

tan 21 ϕ
α

ϕ
= , 41 ϕϕ = , 6532 ϕϕϕϕ === ; (5e) 

and 

 
2

tan
cos

1
2

tan 31 φ
α

φ
= ,  (6a) 

 

2
tansin2

)(sin
2

tan)(sin

2
tan

3

32

2

φα

αβφβαφ −++
= , (6b) 

)(sincos2
2

tan))sin()(sincos2sin(sin4

2
tan))(2sinsin7)((sin

)))sin()(sin2()sin(2
2

tan)2cos)((cos4
2

tan)(sin2(
2

tan

2
tan

232

34

3223423

4

αβαφαββααβα

φβαββα

αββααβ

φββαφβαφ

φ

−−−+++

+−+

−++−−

−+−+

= ,    

  (6c) 

 35 φφ = , 26 φφ = , (6d) 

 32 φϕ = , (6e) 

 
2

tan
cos

1
2

tan 21 ϕ
α

ϕ
= , 41 ϕϕ = , 6532 ϕϕϕϕ === . (6f) 

Considering a pattern with 
9

2πα = , 
9

2πβ = , and taking 1φ  as an input, the variations of 

other dihedral angles at vertex W with respect to 1φ  are plotted in figure 3(a). There are 

two paths with the same starting point ),( ππ  and ending point )0,0( : Path I based on 
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equations (5a-e) and Path II on equations (6a-f). It indicates that vertex W can be folded 

compactly along two different paths. Yet for vertex D, with 141 φϕϕ == , there is only 

one path, see figure 3(b). Therefore, in general the patterns with a large number of 

vertices D and W will fold in two different manners, from i, ii, iii, iv to v, or from i, viii, 

vii, vi to v, as demonstrated in figure 3(c).  

 

There are a few special cases of the waterbomb pattern which are mostly interesting. First, 

when 2/πβα =+ , creases along 2z  and 6z  at vertex W shown in figure 2(c) become 

collinear. As a result, they fold together like a single crease. Path I, given by equation (5), 

breaks down into two straight lines. A particular case with 
4
πβα ==  is shown in figure 

4. At the first folding stage, 2φ  (and 6φ ) starts from π  and finishes at 0 from i, xi, x and 

ix, while 1φ , 3φ , 4φ , and 5φ  remain to be π , then 2φ  (and 6φ ) is kept at constant 0 and 1φ , 

3φ , 4φ , and 5φ  changes from π  to 0 along ix, viii, vii, vi and v. Both reach the compactly 

folded configuration. At the latter stage, vertex W behaves like a spherical 4R linkage 

because 2φ  and 6φ  are frozen. The movement around vertex W will drive vertex D to 

move accordingly.  

 

Second, equations (5) or (6) could give negative dihedral angles, which indicates 

blockage occurring during folding because physically the dihedral angles cannot be less 

than zero. By analysing equation (5b), it can be found that for Path I when 
2
πα β+ > , 2φ  

is always negative except at points )0,0(  and ),( ππ . So blockage is always there. And 

from equation (6c), it can be found that on Path II when α β≠ , blockage will occur 

when  
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2

2

2 2
2

2
1

sin sin 2 4(sin sin 2 cos sin ( )sin( ))
2

cos sin ( )sin( ) 2cos sin ( )sin ( )(7sin sin (2 ))1
cos sin ( )(7sin sin (2 ))

(cos ( ) cos 2 )
cos ( ) cos 2

sin( )sin (
tan

2

α β α β α α β β α
α α β β α α β α α β β α β

α α β β α β

α β β
α β β

β α αφ

+ + − 
− + + + − + − + − + 

+ − +

+ −
+ − +

+ −
< <

)(2sin ( ) sin( ))
cos sin ( )

β α β β α
α α β

+ + + −

+
 (7) 

For example, when 
36
7πα = , 

4
πβ = , the kinematic curve between 4φ  and 1φ  is shown in 

figure 5(a) and the folding sequences are demonstrated in figure 5(b). Along Path I, the 

pattern can be folded from a sheet at i to fully folded configuration at vii, whereas along 

Path II, the folding process terminates at iii. The framed configurations are physically 

impossible due to blockage because these configurations correspond to cases where 4φ  

becomes negative. Even if the penetrations were allowed, the folding along Path II would 

end up in a fully folded configuration at vi that differs from that at vii along Path I. 

 

The physical blockage can also occur when 
2
πα β+ =  but α β≠ . Figure 5(c) shows a 

two-stage motion on Path I and blockage on Path II for a pattern with 
6
πα =  and 

3
πβ = . 

Based on the above analysis, the behaviour of the waterbomb tessellation can be 

summarized as follows. 

(a) When 
2
πα β+ <  and α β= , there are two smooth folding paths without either two-

stage motion or blockage. 

(b) When  
2
πα β+ <  and α β≠ , Path II is blocked and Path I is smooth; 

(c) When 
2
πβα =+  and α β= , Path I is in two-stage motion while Path II is smooth; 

(d) When 
2
πα β+ =  and α β≠ , both two-stage motion on Path I and blockage on Path 

II happen. 
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(e) When 
2
πβα >+  and α β= , only Path II for vertex W is smooth, but vertex D is 

blocked. Thus the whole pattern is blocked from compact folding; and  

(f) When 
2
πβα >+  but α β≠ , both paths are blocked.  

Among them, only cases (a) – (c) can have one or two smooth folding paths.  

 

3. Folding thick panels with the waterbomb pattern 

The waterbomb tessellation can also be used to fold panels with non-zero thickness. This 

is done by mapping the same pattern onto a thick panel while placing the fold lines either 

on top or bottom surfaces of the panel. Now at D and W, there will still be six fold lines 

in places of creases, but these fold lines no longer converge to a vertex. In other words, 

dissimilar to zero-thickness sheet, the distances between the adjacent fold lines are no 

longer zeros. In terms of kinematic model, the spherical 6R linkage is now replaced by 

spatial 6R linkages. Among all possible spatial 6R linkages, the plane-symmetric Bricard 

linkage [16], is the most suitable one [12]. Let us select two Bricard linkages for D and 

W, respectively, figures 6(a) and (b), with their link lengths being the panel thicknesses. 

As the linkages are overconstrained, the geometric conditions of the linkage at D are 

 12 61 34 45 (2 )D D D Da a a a aµ= = = = + , 23 56 0D Da a= = ,  (8a) 

 12 2Dα π α= − , 61
Dα α= , 23 2Dα π α= − , 56 2Dα π α= + , 34

Dα α= , 45 2Dα π α= − ,   (8b) 

 0 ( 1, 2, 3, 4, 5, 6)D
iR i= = ; (8c) 

and those at W are 

 12 61 (1 )W Wa a aµ= = + , 23 56
W Wa a a= = , 34 45

W Wa a aµ= = ,  (9a) 

 12
Wα π α β= − − , 61

Wα π α β= + + , 23
Wα β= , 56 2Wα π β= − , 34 2Wα π α= − , 45

Wα α= ,(9b) 

 0 ( 1, 2, 3, 4, 5, 6)W
iR i= = ,  (9c) 

Here, α  and β  are the same as the sector angles of the origami pattern in figures 2(b) 

and (c) and D
ijα  and W

ijα  are expressed using the DH notation [16], while a  is the 

thickness of link 23 and µ  is the proportion between the thickness of link 34  and link 

23 in the vertex W of the thick-panel waterbomb pattern where 0a ≠  and 0≠µ . 
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Applying the closure condition of the linkages leads to the following closure equations 

(see Appendix A). For D, two sets of closure equations can be obtained, which are 

 
2

tan
cos

1
2

tan 21 δ
α

δ ′
−=

′
, πδδ +′=′ 23 , 14 δδ ′=′ , 35 δδ ′=′ , 26 δδ ′=′ ; (10) 

and 

 
αδ

δαδ

2cos
2

tan
2

tancos2

2
tan

22

2

1

−
′

′

=
′

, 23 δπδ ′−=′ , 14 δδ ′−=′ , 35 δδ ′=′ , 26 δδ ′=′ , (11) 

respectively. The relationship between the kinematic variables and dihedral angels at D 

are 11 2 ϕπδ ′−=′ , 22 ϕδ ′=′ , 33 ϕπδ ′+=′ , 44 2 ϕπδ ′−=′ , 55 ϕπδ ′+=′ , 66 ϕδ ′=′ . By conversion 

of the kinematic variables to the dihedral angels, the two sets of closure equations can be 

respectively rewritten as 

 
2

tan
cos

1
2

tan 21 ϕ
α

ϕ ′
=

′
,  (12a) 

 14 ϕϕ ′=′ , 6532 ϕϕϕϕ ′=′=′=′ ; (12b) 

and 

 
αϕ

ϕαϕ

2cos
2

tan

2
tancos2

2
tan

22

2

1

+
′

−

′

=
′

,  (13a) 

 23 ϕϕ ′−=′ , 14 ϕϕ ′−=′ , 35 ϕϕ ′=′ , 26 ϕϕ ′=′ , (13b) 

Similarly, we also have two sets of closure equations at W, which are  

 
2

tan
cos

1
2

tan 31 ω
α

ω ′
−=

′
, (14a) 

 
2

tan/
)cos(

cos
2

tan 32 ω
βα

αω ′
+

=
′

,  (14b) 

 14 ωω ′=′ , 35 ωω ′=′ , 26 ωω ′=′ ; (14c) 

and 
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ββαµωαβαβµβα

αβµµωβαµω
ω

cossinsin)1(
2

tan)sin)cos(sin)(sin(

))sinsin)(1(
2

tan)(sin(
2

tan

2
tan

2322

223223

1

++
′

+++

+++
′

+
′

−
=

′ ,(15a) 

 
2

tan/
)sin(

sin)1(
2

tan 32 ω
βαµ
αµω ′

+
+

=
′

, (15b) 

 

βαµωβαβαµµβαµβα

βαβµαµωβααµω
ω

2sinsin)1(2
2

tan)sin())cos()241()cos()1(2)3(cos(

)))(sinsin)1((sin)1(4
2

tan)(sinsin4(
2

tan

2
tan

223222

223223

4

++
′

+−+++++−+

+−++−
′

+
′

−
=

′

  (15c) 

 35 ωω ′=′ , 26 ωω ′=′ . (15d) 

 

The above two sets of closure equations can be written in terms of dihedral angels. 

Noting that the relationship between the kinematic variables and dihedral angels at W are 

1 12ω π φ′ ′= − , 2 2ω π φ′ ′= − , 3 3ω φ′ ′= , 4 42ω π φ′ ′= − , 5 5ω φ′ ′= , 6 6ω π φ′ ′= − , the two sets of 

closure equations now become 

 31 1tan tan
2 cos 2

φφ
α

′′
= , (16a) 

 32 cos( )tan tan
2 cos 2

φφ α β
α

′′ +
= , (16b) 

 14 φφ ′=′ , 35 φφ ′=′ , 26 φφ ′=′ ;  (16c) 

and 

2 2 2 23 3

1

2 2 23

tan ( sin ( ) tan ( 1)( sin sin ))
2 2tan

2 sin( )( sin cos( )sin ) tan ( 1) sin sin cos
2

φ φ
µ α β µ µ β αφ

φ
α β µ β α β α µ α β β

′ ′
+ + + +′

=
′

+ + + + +
, (17a) 

 32 sin( )tan tan
2 ( 1)sin 2

φφ µ α β
µ α

′′ +
=

+
, (17b) 

Page 12 of 42

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

13 

 

 

( )

( )

2 2 2 23 3

4

2 2 2 2 23

tan 4 sin sin ( ) tan 4( 1)sin ( 1)sin sin ( )
2 2tan

2 cos(3 ) 2(1 ) cos( ) (1 4 2 )cos( ) sin( ) tan 2( 1) sin sin 2
2

φ φ
µ α α β µ α µ β α β

φ
φ

α β µ α β µ µ α β α β µ α β

′ ′ + − + + − + ′  =
′

+ − + + + + + − + + +

 (17c) 

 35 φφ ′=′ , 26 φφ ′=′ . (17d) 

So far, two complete sets of closure equations have been obtained. It can be noted from 

all closure equations that the motions of the linkages retain the plane symmetry. 

Additional compatibility conditions between the vertices D and W need to be added, 

which are 

 1 1φ ϕ′ ′=  and 3 2φ ϕ′ ′= . (18) 

We shall now discuss the respective motion paths provided by two sets of closure 

equations.  

 

 

• The first set of closure equations, equation (12), at D and the first set of closure 

equations, equation (16) at W 

 

Because equations (12a) and (16a) are identical, the compatibility between D and W, 

equation (18), is satisfied automatically. Therefore, there is always a smooth folding path 

for the thick-panel origami for any 0µ ≠ , figure 7(a-c), in which µ  is randomly selected 

as 0.5. By comparing equations (12) and (16) for the thick panel with equations (5) for 

the zero-thickness sheet, we can conclude that the thick-panel origami and the Path I of 

the original waterbomb origami pattern are kinematically identical, as demonstrated by 

the folding sequence of the physical models in figure 7(d). The motions of both structures 

are line and plane symmetric. Moreover, when 
2
πα β+ = , Path I becomes a two-stage 

motion, where 2φ′  and 6φ′  changing from π  to 0 while 1φ′ , 3φ′ , 4φ′ , and 5φ′  kept to π , 

followed by the process that 1φ′ , 3φ′ , 4φ′ , and 5φ′  move as a spatial 4R linkage. This 

linkage is actually a Bennett linkage. And it eventually reaches the compact folding 
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position. However, blockage could be occurred during the motion due to the panel 

thickness, which makes the structure cannot be fully folded, see figure 8, in which µ  is 

randomly selected as 0.7. 

 

• The first set of closure equations, equation (12), at D and the second set of closure 

equations, equation (17) at W 

 

Consider equations (12a) and (17a). Under the compatibility condition given by equation 

(18), there must be  

 
β

αβαµ
sin

sin)(cos +
=  (19a) 

Additionally when βα = , another solution exists, which is  

 1=µ . (19b) 

Under the first solution given in (19a), equation (17) effectively coincides with equation 

(16), and thus there is only one set of closure equations for W. Only one folding path 

exists as shown in figure 9 for the case where 
36
7πα = , 

4
πβ =  and 0.14µ = . Note that 

this path matches that shown in figure 7(c) despite that in the latter, µ is randomly 

selected as 0.5. The motion behaviour of the thick-panel waterbomb remains the same as 

the zero-thickness origami in Path I, and thus we name it Path I for thick panel origami. 

Moreover, when 
2
πα β+ = , 0=µ  from equation (19a). So it will not be considered.  

 

Under the second solution, 1=µ , given by (19b), equations (16) and (17) are different. 

In other words, together with equation (12), there are two sets of closure equations for the 

thick-panel origami with 1=µ  that result in two folding paths. The first, based on 

equations (12) and (16), has been discussed earlier. The second, based on equations (12) 

and (17), are actually identical to equation (6) of the zero-thickness sheet. This shows that 

the corresponding folding path is kinematically identical to the Path II of the waterbomb 

origami pattern of the zero-thickness sheet, and thus it is named as Path II of the thick 

panel origami. One of such example is shown in figure 10.  
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In thick panel origami, there is also blockage because of collision of panels during the 

folding process. Generally along Path I of W, the blockage would appear when one of 

the dihedral angles becomes negative. The condition without blockage is 02 >′φ . 

Considering equation (16b) leads to 2/πβα <+ , which is the same conclusion as zero-

thickness origami pattern summarized in last section. And to avoid the interference at D 

during the folding, 0
4
πα< ≤  must be satisfied.  

 

• The second set of closure equations, equation (13), at D 

 

The other set of closure equations given by equation (13) at D signify that in the thick-

panel case, there exists a folding path that violates the line-symmetry. However, this path 

is practically always blocked since 3ϕ′  and 2ϕ′ , 4ϕ′  and 1ϕ′  always have opposite signs as 

indicated by equation (13b).  

 

Therefore, the behaviour of the general thick-panel waterbomb can be summarized as 

follows. 

(a) For any 0≠µ , when 
2
πα β+ <  , there is only one smooth folding path: Path I. 

(b) For any 0≠µ , when 
2
πβα =+  , there is one two-stage folding path, Path I, with 

blockage. 

(c) For any 0≠µ , when 
2
πβα >+  , there is one blocked folding path. 

In particular, 

(d) For 1=µ , when 
2
πα β+ < , α β= , there are two smooth folding paths, 

kinematically equivalent to Paths I and II in the zero-thickness origami. 
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(e) For 1=µ , when 
4
πα β= = , Path I is in two-stage motion and blocked, but Path II 

can achieve smooth folding. 

 

Here, Paths I and II cannot be switch from one to another once the motions are underway. 

The choice of folding paths has to be made at the start and end configurations. The 

detailed comparison on the kinematic behaviour of the general waterbomb tessellation of 

zero-thickness sheets and thick panels for different design parameters is given in table B 

of Appendix B. 

 

4. Conclusions and discussion 

In this paper, we have analysed the rigid origami of the waterbomb tessellation of both 

zero-thickness sheets and thick panels under the symmetric motion condition. By 

introducing the plane-symmetric Bricard linkages to replace the spherical 6R linkages in 

the origami pattern, the thick-panel waterbomb structure has been successfully formed. 

The rigorous enforcement of compatibility conditions ensures the mobility and flat-

foldability of the thick-panel origami. We have also proven that the thick-panel origami 

and that of the zero-thickness sheet are kinematically equivalent. 

 

Despite the fact that the thick panel origami is born from an existing origami of zero-

thickness sheet, it has a number of advantages over its parent. First, kinematically the 

thick-panel origami structure is a mobile assembly of overconstrained Bricard linkages 

with only one degree of freedom, and thus no additional constraints are required to keep 

its motion symmetrical. This could be a great benefit for real engineering applications as 

its control system could become much more simple and reliable. Second, in general, the 

origami of waterbomb tessellation for zero-thickness sheet has kinematic singularity 

when it is flat and fully compact. However, for thick panel origami, the singularity only 

appears when a very specific thickness is chosen. A suitable selection of the thickness of 

the panels make the latter possible to achieve compact folding without bifurcations. The 

unique motion path is certainly much desirable for most practical applications.  
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The waterbomb tessellation for the thick panels enables the structure to be folded 

compactly. The compactness of the package depends on the thickness coefficient and the 

number of vertices within the pattern. The pattern can be divided into strips formed by 

vertices D in the horizontal direction. Consider a pattern consisting of m  strips, each 

with n  vertices D. In the completely packaged configuration, the dimension in the 

vertical direction will be 2/)1( +m  of the height of the larger triangles in the vertex D 

and the cross-section dimensions are the width of the larger triangles in the vertex D and 

the overall thickness as an )22(2 µ+ , where n  is the number of vertices D in the strip 

and 1≤µ . 1µ >  is not recommended because it results in panels with considerable 

thickness and in turn, the overall thickness of the package when the panels are packaged. 

So the ratio between the area of a fully expanded shape and that of completely folded is 

about n4 . This indicates that the concept is very suitable to fold a structure in a long 

rectangular shape. On the other hand, to meet the geometrical conditions of the spatial 

linkages, each panel within the pattern could not be of the same thickness. As a result, the 

overall structure in the fully deployed configuration is flat but not absolutely even. 

However, for this waterbomb pattern, we have manage to make sure that one side of the 

expanded surface is completely flat, which enables the waterbomb origami pattern to be 

directly applicable to fold thick-panel structures such as solar panels and space mirrors. 
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Appendix A 

According to the DH notation set up in figure A, the transformation matrix can be 

assembled as 


















−

−

=
++

+++

+++

+

1000
cossin0

sincossincoscossin
cossinsinsincoscos

)1()1(

)1()1()1(

)1()1()1(

)1(
iiiii

iiiiiiiiii

iiiiiiiiii

ii R
a
a

αα
θθαθαθ
θθαθαθ

T ,  (A1) 

which transforms the expression in the 1+i th coordinate system to the i th coordinate 

system. And the inverse transformation can be expressed as  



















−−
−−

−

=
++++

++++

+

+

1000
coscoscossinsinsin
sinsincoscossincos

0sincos
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)1(

)1(
iiiiiiiiiii

iiiiiiiiiii

iiii

ii R
R

a

ααθαθα
ααθαθα

θθ

T . (A2) 

For a single loop linkage consisting of six links, the closure equation is  

455661433221 TTTTTT ⋅⋅=⋅⋅ .     (A3) 

As for spherical linkages, the axes intersect at one point, which means the lengths of each 

links are zeros and thus equation (A3) reduces to 

455661433221 QQQQQQ ⋅⋅=⋅⋅ ,    (A4) 

where  

( 1) ( 1)

( 1) ( 1) ( 1)

( 1) ( 1)

cos cos sin sin sin
sin cos cos sin cos

0 sin cos

i i i i i i i

i i i i i i i i i

i i i i

θ α θ α θ
θ α θ α θ

α α

+ +

+ + +

+ +

 −
 = − 
  

Q ,   (A5) 

and the inverse transformation is 

















−
−=

+++

++++

)1()1()1(

)1()1()1()1(

coscossinsinsin
sincoscossincos

0sincos

iiiiiiii

iiiiiiii

ii

ii

αθαθα
αθαθα

θθ
Q .   (A6) 

Equations (A3) and (A4) can be used to obtain the closure equations of the thick-panel 

waterbomb pattern and the original waterbomb origami pattern in the text, respectively. 
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Appendix B 

Table B.  Kinematic behaviour of the general waterbomb tessellation of zero-thickness 

sheets and thick panels 

Geometric conditions Folding 
paths 

The waterbomb 
tessellation of zero-

thickness sheets 

The waterbomb 
tessellation of thick 

panels 

2
πα β+ <  

α β=  
Path I smooth smooth 

Path II smooth exists only when 1=µ  
and the path is smooth 

α β≠  Path I smooth smooth 
Path II blocked non-existent 

2
πα β+ =  

α β=  
Path I two-stage motion two-stage motion and 

blocked 

Path II smooth exists only when 1=µ  
and the path is smooth 

α β≠  Path I two-stage motion two-stage motion and 
blocked 

Path II blocked non-existent 

2
πβα >+  

α β=  

Path I blocked blocked 

Path II 
blocked while the 
path for vertex W 

is smooth 

exists only when 1=µ  
but the path is blocked 

α β≠  Path I blocked blocked 
Path II blocked non-existent 
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Captions of figures 

Figure 1  Two waterbomb bases and their tessellations. (a) The eight-fold waterbomb base; 
(b) one of its tessellations forming the Resch pattern; (c) partially folded Resch 
pattern model; (d) the six-fold waterbomb base; (e) its tessellation in unfolded 
and folded states; and (f) the tessellation can also be used to form a tube. 

Figure 2  Six-fold waterbomb pattern. (a) The general tessellation of six-fold waterbomb 
pattern; (b) vertex D and its surrounding creases; and (c) vertex W and its 
surrounding creases. 

Figure 3  Kinematic behaviour of the waterbomb origami pattern with 
9

2πα = , 
9

2πβ = . 

Kinematic relationships of vertices (a) W and (b) D; and (c) two folding paths 
with configurations i to viii. 

Figure 4  Two-stage motion of Path I with 
4
πα = , 

4
πβ = . (a) folding paths with 

configurations i to xi; and (b) kinematic relationships of vertex W. 

Figure 5  Blockage of waterbomb origami pattern. (a) kinematic curve between 4φ  and 1φ  

of unit W with 
36
7πα = , 

4
πβ = ; (b) folding manners with 

36
7πα = , 

4
πβ = ; 

(c) folding manners with 
6
πα = , 

3
πβ = , in which the framed configurations 

are with physical blockage. 

Figure 6 Parameter setup for vertices (a) D and (b) W in thick panels. 

Figure 7  Kinematic paths of thick panel waterbomb when  
36
7πα = , 

4
πβ = , 0.5=µ . 

Kinematic relationships at vertices (a) W and (b) D with 1φ′  taken as input, 
where vertex W works as a plane symmetric Bricard linkage while vertex D 
works as a line and plane symmetric Bricard linkage; (c) folding path with 
configurations i to v; (d) folding sequences of physical models of zero-thickness 
sheets and thick panels. 

Figure 8 Folding path of thick panel waterbomb pattern with 
6
πα = , 

3
πβ = , 0.7=µ , 

in which the framed configurations are with physical blockage. 

Figure 9 Folding path of thick-panel waterbomb pattern with 
36
7πα = , 

4
πβ =  and 

14.0
sin

sin)cos(
=

⋅+
=

β
αβαµ . 
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Figure 10 Folding sequence for patterns with 
9

2πβα ==  and 1=µ . (a) Two folding 

paths exist; physical models of zero-thickness sheet (top) and thick panel that 
fold (b) along Paths I and (c) II, respectively. 

Figure A  Setup of coordinates and kinematic parameters for (a) zero-thickness and (b) 
thick-panel origami according to the DH notation. 

  

Page 24 of 42

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

25 

 

Captions of table 

Table B.   Kinematic behaviour of the general waterbomb tessellation of zero-thickness 
sheets and thick panels 

 

Page 25 of 42

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

  

 

 

Figure 1. Two waterbomb bases and their tessellations. (a) The eight-fold waterbomb base; (b) One of its 
tessellations forming the Resch pattern; (c) Partially folded Resch pattern; (d) the six-fold waterbomb base; 
(e) its tessellation in unfolded and folded states; and (f) the tessellation can also be used to form a tube.  

172x90mm (300 x 300 DPI)  
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Figure 2. Six-fold waterbomb pattern. (a) The general tessellation of six-fold waterbomb pattern; (b) vertex 
D and its surrounding creases; and (c) vertex W and its surrounding creases.  

202x90mm (300 x 300 DPI)  
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Figure 3 Kinematic behaviour of the waterbomb origami pattern with α=β=2π/9. Kinematic relationships of 
vertices (a) W and (b) D.  

168x240mm (300 x 300 DPI)  
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Figure 3 Kinematic behaviour of the waterbomb origami pattern with  α=2π/9,  β=2π/9. (c) two folding 
paths with configurations i to viii.  

156x160mm (300 x 300 DPI)  
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Figure 4 Two-stage motion of Path I with  α=π/4,  β=π/4. (a) folding paths; and (b) kinematic curves of 
vertex W.  

160x229mm (300 x 300 DPI)  
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Figure 5. Blockage of waterbomb origami pattern. (a) kinematic curve between   and   of unit W with 
α=7π/36, β=π/4; (b) folding manners with α=7π/36, β=π/4, in which the framed configurations are with 

physical blockage.  

160x235mm (300 x 300 DPI)  
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Figure 5. Blockage of waterbomb origami pattern. (c) folding manners with  α=π/6, β=π/3, in which the 
framed configurations are with physical blockage.  

166x165mm (300 x 300 DPI)  
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Figure 6. Fold lines around the vertices (a) D and (b) W in thick panels.  

104x224mm (300 x 300 DPI)  
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Figure 7. The kinematic paths of thick panel waterbomb when α=7π/36, β=π/4, µ=0.5. Kinematic 
relationships at vertices (a) W and (b) D , where vertex W works as a plane symmetric Bricard linkage while 

vertex D works as a line and plane symmetric Bricard linkage.  

160x150mm (300 x 300 DPI)  
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Figure 7. The kinematic paths of thick panel waterbomb when α=7π/36, β=π/4, µ=0.5. Kinematic 
relationships at vertices (c) folding paths with configurations i to v.  

160x122mm (300 x 300 DPI)  
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Figure 7. The kinematic paths of thick panel waterbomb when α=7π/36, β=π/4, µ=0.5. Kinematic 
relationships at vertices (d) deployable sequences of models of zero-thickness sheet and thick panel.  

168x87mm (300 x 300 DPI)  
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Figure 8 Folding path of thick panel waterbomb pattern with α=π/6, β=π/3, µ=0.7, in which the framed 
configurations are with physical blockage.  

144x160mm (300 x 300 DPI)  
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Figure 9 Folding path of thick panel waterbomb pattern with α=7π/36, β=π/4, µ=0.14.  
160x115mm (300 x 300 DPI)  
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Figure 10 Folding sequence for patterns with α=β=2π/9, µ=1. (a) Two folding paths exist.  
156x129mm (300 x 300 DPI)  
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Figure 10 Folding sequence for patterns with α=β=2π/9, µ=1. physical models of zero- thickness sheet (top) 
and thick panel that fold (b) along Paths I and (c) II, respectively.  

173x169mm (300 x 300 DPI)  
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Figure A Setup of coordinates and kinematic parameters for (a) zero-thickness and (b) thick-panel origami 
according to the DH notation.  
203x77mm (300 x 300 DPI)  
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Table B.  Kinematic behaviour of the general waterbomb tessellation of zero-thickness 

sheets and thick panels 

Geometric conditions 
Folding 

paths 

The waterbomb 

tessellation of zero-

thickness sheets 

The waterbomb 

tessellation of thick 

panels 

2

π
α β+ <  

α β=  

Path I smooth smooth 

Path II smooth 
exists only when 1=µ  

and the path is smooth 

α β≠  
Path I smooth smooth 

Path II blocked non-existent 

2

π
α β+ =  

α β=  

Path I two-stage motion 
two-stage motion and 

blocked 

Path II smooth 
exists only when 1=µ  

and the path is smooth 

α β≠  
Path I two-stage motion 

two-stage motion and 

blocked 

Path II blocked non-existent 

2

π
βα >+  

α β=  

Path I blocked blocked 

Path II 

blocked while the 

path for vertex W 

is smooth 

exists only when 1=µ  

but the path is blocked 

α β≠  
Path I blocked blocked 

Path II blocked non-existent 
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