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An enhanced stiffness model for elastic lines and its application to the analysis of 

a moored floating offshore wind turbine 

Zi Lin ∗ and P. Sayer 

(Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, UK) 

 

Abstract: The performance of a polyester mooring line is non-linear and its elongation plays a significant 

role in the dynamic response of an offshore moored structure. However, unlike chain, the tension-elongation 

relationship and the overall behaviour of elastic polyester ropes are complex. In this paper, by applying a 

new stiffness model of the mooring line, the traditional elastic rod theory is extended to allow for large 

elongations. One beneficial feature of the present method is that the stiffness matrix is symmetric; in 

non-linear formulations the element stiffness matrix is often non-symmetric. The static problem was solved 

by Newton-Raphson iteration whereas a direct integration method was used for the dynamic problem. The 

mooring line tension based on the enhanced model was validated against the proprietary OrcaFlex software. 

Results of mooring line top tension predicated by different elongations are compared and discussed. The 

present method was then used for a simulation of an offshore floating wind turbine moored with taut lines. 

From a comparison between linear and non-linear formulations, it is seen that a linear spring model 

under-estimates the mean position when the turbine is operating, but over-estimates the amplitude of the 

platform response at low frequencies when the turbine has shut down.  

Key words: Large extension; elastic rod theory; finite element method; mooring system; line tension; 

motion response; dynamic response  
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1. Introduction 

The capture of offshore wind energy plays a key role across the maritime industry (EWEA, 2013). Offshore 

wind turbines are becoming larger and more powerful, and are being deployed in ever-deeper water. They 

can be mounted on a fixed or floating base, but the former starts to lose its economic advantage for water 

depths larger than 60m (Goupee et al, 2014). Although the mooring system design for a floating offshore 

wind turbine (FOWT) has benefited from the experience of offshore oil and gas platforms, there are still 

several unknowns dependent on the type of floating bodies, e.g. size and environmental loading. From a 

report of EWEA (2013), it is recommended that more research must be done on mooring and anchoring 

systems for wind turbines. 

Owing to the successful experience from offshore oil & gas platforms, the design and modelling of a FOWT 

has tended to use the same mathematical modelling and methods of solution as for offshore platforms, e.g. 

the hydrodynamic analysis of floating body, mooring design and the types of FOWTs (Spar, TLP and 

Semisubmersible, etc). The methods of analysis for the hydrodynamic aspects of a FOWT and its mooring 

system are the same as for offshore platforms. However, the geometry and operational water depth are 

different. Also, the turbine thrust force may have an effect on the motion response of the floating body and 

mooring line tension, and vice versa. These differences need to be examined for a FOWT. 

Numerical simulations of the dynamic response of mooring lines have been studied during the past few 

decades, for both elastic and inelastic lines. A massless spring (e.g. Kim, et al. 2001) or the catenary 

equation (e.g. Agarwal and Jain, 2003) are straightforward ways to model a mooring line, but it is difficult 

to account for the dynamic response and the interaction between the floating body and mooring line in an 

accurate manner. Multi-body system dynamics (e.g. Kreuzer and Wilke, 2003) divides the mooring line into 

several rigid bodies, but results in a large number of degrees of freedom even for a single line. Non-linear 

finite element methods (FEMs), accounting for geometric and material non-linearities, have been widely 

used for modelling mooring line response (e.g. Kim, et al, 2013). Geometric non-linearity is needed for large 

displacements of the mooring line, while material non-linearity can model the time-dependent properties of 

a polyester rope, e.g. Young’s modulus. However, a major disadvantage of FEM is the transformation 



between local coordinate and global coordinate, which is often computationally-intensive. The lumped mass 

and spring method can be categorized as a non-linear FEM method, for which the shape function becomes a 

single line (Low, 2006). 

Unlike traditional non-linear FEM, the elastic rod theory is a global-coordinate-based method, which is 

considered to be more efficient than the non-linear FEM method (Kim, et.al, 1994). The transformation 

between local and global coordinate is dealt within the element stiffness matrix. Following the elastic rod 

theory of Love (1944), Nordgren (1974) and Garrett (1982) developed this method and solved the governing 

non-linear equations by a finite difference method (FDM) and by FEM, respectively. Many researchers have 

further developed the elastic rod theory, including elongation of the line, seabed friction, non-linear material 

properties and the incorporation of buoys or clump weights in the mooring line model. Pauling and Webster 

(1986) considered the analysis of large amplitude motions of a TLP under the action of wind, wave and 

current, under the assumption of small line elongation. Ran (2000) proposed a finite element formulation for 

mooring lines and risers based on Garett’s rod theory, applicable to both frequency and time domains. Based 

on the traditional small extensible rod theory, the incorporation of large elongation has been presented by 

many researchers (e.g. Chen, 2002; Tahar, 2001and Kim et al, 2011).  

In the present paper, a sensible balance has been sought between efficiency and accuracy. The traditional 

rod theory has been extended to allow for large stretch by applying an enhanced stiffness method. By using 

an approximation of the non-linear tension-elongation relationship in a Taylor series expansion (Ćatipović et 

al., 2011), the mathematical and numerical formulation of large extensible mooring line are considered. 

2. Mathematical formulation of a mooring line with large elongation 

2.1 Equation of motion  

For polyester mooring lines bending and torsion stiffness can be neglected, but the elongation cannot be 

assumed to be small. The mooring line is discretized into a number of rods and the centreline of each rod is 

described by a space-time curve ( , )r s t . From Ćatipović et al. (2011), the equation of motion for a rod with 

large elongation can be written as: 



   
   
d
ds

(
TE

1+ ε
dr
ds

)+ (1+ ε )qE = (1+ ε )ρ!!r        (1) 

where Eq is the load acting on the rod. Morison’s equation (1950) was used to calculate the hydrodynamic 

loads on the mooring line (Pauling and Webster, 1986):   

   
F = −CA!!rn +CM

!Vn +
1
2

CD Vn − !rn (Vn − !rn )       (2) 

where n denotes the normal component . AC , MC and DC  are the added mass, inertial (Morison) and drag 

coefficients. 

The rod velocity and acceleration normal are given by 

   !rn = !r − ( !r ⋅ ′r ) ⋅ ′r            (3) 

   !!rn = !!r − (!!r ⋅ ′r ) ⋅ ′r            (4) 

r
⋅⋅

 represents the time derivation of the rod. TE is the effective tension of the rod.ε is the elongation of the 

rod. ρ is the mass per length of the rod, including added mass. Following Ćatipović et al, assuming equal 

principal stiffness, the relationship between the effective tension and elongation can be written as 

ET
AE

ε =              (5) 

where AE is the axial stiffness 

The following elongation condition then has to be satisfied  

2

1 1
(1 )

dr dr
ds dsε

=
+

           (6) 

In the static problem, the weight per unit length and diameter of the mooring line are related to the 

elongationε . The cross-sectional area and mass after elongation can be written as / (1 )A ε+ and / (1 )m ε+ , 

respectively (Ćatipović, et,al 2011), where A and m are the cross-section area and mass of the mooring line 

without stretch. Applying the above relationship to the motion equation, we see that the term (1 )ε+ cancels 

out when multiplied by the applied force Eq . For the hydrodynamic force calculated by Morison’s equation, 

the mass per unit length and cross-sectional area for one element were assumed constant. 



Equations (1) and (6) show the rod motion equation and elongation condition, respectively: they are 

non-linear. In the following section, we will describe a numerical procedure for solving this non-linear 

equation and the required order of approximation for the elongation condition. 

2.2 Numerical Implementation 

2.2.1 Static problem 

For the static problem, r  is independent of time. Consequently the inertial term in equation (1) is deleted. 

We therefore have 

( ) 0
1

E
E

Td dr q
ds dsε

+ =
+

         (7)
 

Using the Taylor series expansion, the elongation relationship can be written as: 

1
(1+ε)2

=1− 2ε +3ε 2 +o(ε3)         (8)
 

However, it is not clear, a priori, whether the third-order term should be included explicitly. In the present 

paper, the order of expansion and subsequent results will be discussed.  

In the FEM, the variables ri  and TE  may be approximated (Garrett, 1982) as 

4

1
( , ) ( ) ( )i k ik

k
r s t A s U t

=

=∑           (9) 

 
3

1
( , ) ( ) ( )E m m

m
T s t P s tλ

=

=∑          (10) 

where Ak and Pm are shape functions. The definition of the shape functions can be found in the appendix. 

Uik  and λm  are unknown variables. The subscript i of Uik  denotes the dimension of the element. For the 

3-dimensional problem, i=3. For k=1 and 3, Uik  represents the space position of the rod at two ends while 

Uik  denotes the space derivative at both ends for k=2 and 4. λ  is the Lagrange multiplier. The physical 

meaning ofλ is mooring line tension at both ends and middle of the rod. 

The variableUik and mλ are defined as: 



1 2

3 4
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         (11) 

   1 2 3(0, ), ( , ), ( , )
2
Lt t L tλ λ λ λ λ λ= = =        (12) 

Using Galerkin’s method (Bathe, 1996) and integrating the motion equation from 0 to L over the length of 

the element, the final form of motion equation for static problem in notation form can be written as 

ˆ 0nijlk n jk ilK U Fλ − =            (13) 

where 

0 1 2ˆ
nijlk nmijlk nmpijlkmnijlk m pK K K Kλ λλ= + +        (14) 

0
0

L
nijlk n l k ijP A A dsK δ′ ′= ∫           (15) 

1
0

1L
nmijlk n m l k ijP P A A dsK EA

δ′ ′= −∫         (16) 

2
20

1
( )

L
nmqijlk n m q l k ijP P P A A dsK EA

δ′ ′= ∫        (17)
 

where δ is the Kronecker Delta function, L is the element length, and the standard double-suffix summation 

condition has been used.
 

The elongation condition, incorporating Taylor series expansion to second order, can be written as 
 

ˆ 0mil ki kl mB U U C− =            (18) 

where 
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0
0

L
mil m i lP A AdsB ′ ′= ∫            (20) 

1
0

2L
nmil m n i lP P A AdsB EA

′ ′= −∫          (21) 
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0

L
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Recalling equation (13) and the elongation condition (18), Newton-Raphson iteration was applied to the 

static problem (Ran, 2000). Omitting higher order components, we have 

( 1) ( ) ( ) ( ) 0il iln n
jk nil il

njk

R RUR R U λ
λ

+ ∂ ∂= + Δ + Δ =
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      (24) 



m
(n+1)G = m

(n)G +
∂ mG
∂ jkU

(Δ jkU )+ ∂ mG
∂ nλ

(Δ nλ ) = 0       (25) 

Re-arranging the terms and writing in the matrix form, we have 
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ln
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n n n
jkijlk i il

n n n
mn nmjk m

UK K R
K K Gλ
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where

 

( )11( ) ( )ˆ nn n
nijlk nijlkK K λ=             (27) 

( )12( ) ( )ˆ nn n
iln jknijlkUK K=             (28) 

21( ) 12( )
ln

n n
mjk iK K=             (29) 

1 ( ) ( )22( ) 22 )( n nn
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( )( ) ( )ˆ nn n
ilil jknijlkUR FK= −            (31) 

( ) ˆn
m mil ki kl mB U U CG = −            (32) 

The above formulation of the Newton-Raphson method can be written in matrix form 

(n)K (Δy) = (n)F             (33) 

where K and F are the same as the stiffness matrix and forcing vector in equation (26). yΔ includes jkUΔ  

and nλΔ . In the static problem, n represents the step of iteration.  

2.2.2 Dynamic problem 

The inertial term in the equation of motion equation cannot be neglected in the dynamic problem.
 

2 31 1 ( )
(1 )

oε ε ε
ε

= − + +
+

         (34) 

The definition of ri  and TE  are the same as in the static case. Integrating over the element generates the 

discretized form of the equation of motion. Incorporating the elongation condition, we have 

ˆ ˆ( ) jkijlk jk n nijlk ilM U K FUλ= − +          (35) 

ˆ 0m mil ki kl m mt tG B U U B C λ= − − =         (36) 

where 

ˆ a
ijlkijlk ijlkM M M= +            (37) 



To solve the second-order differential equation of motion, Ran (2000) introduced a new variable V : 

   
M̂ijlk
!Vjk = −λn K̂nijlk jkU + Fil          (38) 

  
!U jk =Vjk              (39) 

To solve these two equations, we need to integrate from t(n) to t(n+1), using the first-order Adam-Moulton 

method. Ran assumed a constant value ( 0.5)ˆ n
ijlkM
+  during this time interval, leading to the equation: 
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Re-writing equations (38) and (40) in matrix form, we have 
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m
'(n)G = 2( m

(n)G −Cm )            (47) 

The dynamic problem can be solved in a manner similar to the static case: 

(n)K (Δy) = (n)F             (48)  



Now, n denotes the time step (instead of the iteration step in the static analysis). The static model was first 

used to determine the mean position of the mooring line. The above numerical procedure was incorporated 

in FAST’s FEM. The original FAST program, based on the assumption of small elongations was extended 

to allow for large elongations, and therefore suitable for polyester lines. An advantage of the present method 

is that the element stiffness matrix remains symmetric. 

2.3 Validation of the enhanced model 

The present study considered a model of a spar-type floating platform, similar to that used for a wind turbine 

design of the National Renewable Energy Laboratory (NREL). The platform can be moored by slack or taut 

mooring lines (ABS, 2014). In this paper, three equal taut mooring lines were selected for case studies. The 

parameters of the floating cylinder and the upper structure are the same as NREL’s OC-3 Hywind Spar 

(Jonkman, 2010), except for the mooring system. The main properties of the wind turbine are shown in 

Table 1; those of the taut mooring line in Table 2. For simplicity, the Radius to Fairleads from Platform 

Centreline in Table1 was 4.7m, instead of 5.2 m. 

Figures 1 and 2 show the dynamic response of line tension in sea state 6 (H=5.5m, T=11.3s). The red line 

shows the results of Fastlink (FAST+OrcaFlex). In Fastlink, OrcaFlex solves the dynamic response of 

mooring line in the time domain and passes the mooring line tension to FAST for the coupled response of 

the mooring system. From this comparison we can see that the Taylor expansion to second order (present) 

shows little difference compared with the results from third order (extended stiffness). They both show very 

good agreement with the lumped mass and spring method. However, when assuming small elongation 

(equivalent to an expansion to first order, using the governing equation and elongation condition of the rod 

by Pauling & Webster,1986) the blue and green lines in Figures 1 and 2 show poor results for a polyester 

line.  



The present enhanced stiffness method is also appropriate for a slack mooring line (catenary chain, line 

length: 902.2m; chain mass: 77.7kg/m and elastic stiffness: 384.2E6 N). Figure 3 compares the line tension 

results under sea state 6 for a catenary chain. Results from the approximation to second (reduced stiffness) 

and third order (enhanced stiffness) generate the same results as OrcaFlex and the small elongation 

assumption. From a comparison of Figures 1, 2 and 3 we can see that the present method can be used for 

modelling both traditional materials as well as high-performance fibre. For the enhanced stiffness condition 

(expansion to third order), the stiffness term and elongation are:  

0 1 2 3ˆ
nijlk nmijlk nmpijlk nmpqijlkmnijlk m p q m pK K K K Kλ λ λ λ λλ= + + +     (49) 

0 1 2 3ˆ
mil nmil npmil npqmilmil n n p n p qB B B B Bλ λ λ λ λ λ= + + +       (50) 

3
30

1
( )

L
nmtpqijlk n m q t l k ijP P P PA A dsK EA

δ′ ′= −∫        (51) 

For the static problem, 

3
30

4
( )

L
nmqtil n m q t i lP P P PA A dsB EA

′ ′= −∫          (52) 

while for the dynamic problem, 

3
30

1
( )

L
npqmil n m q t i lP P P PA A dsB EA

′ ′= −∫         (53) 

2.4 Comparison of line tension for different approximations 

In order to check further the effect of differing elongation approximations, a reduced line length (420m) was 

considered. Waves only were assumed, having the same height and frequency as above (sea state 6). The 

elongation of the mooring line is about 15%, but the difference between values of the mean and maximum 

line tension is around 1.3 % (see Figure 4, the mooring line layout is shown in Figure 5). So, the 

approximation to second order is sufficient. 



3. Comparison between present method and linear spring method 

3.1 Methods applied 

The hydrodynamic coefficients and wave exciting forces for the OC-3 Spar-type wind turbine were 

pre-calculated by WAMIT and stored in FAST. Only first-order wave forces were included in the present 

study. The impulse response function method of Cummins (1962) was used in our time-domain study. 

Fourier transformations converted the frequency-dependent added mass and radiation damping terms for use 

in the time-domain model. The equation of motion of the floating platform is  

   
[M + M a (∞)] !!X + KX + R(t −τ )

−∞

t

∫ !X (t)dτ = Fe        (54) 

where M and Ma are mass and added mass of the floating body, respectively; K is the hydrostatic matrix; X 

is the motion response of the floating body. eF  is the external force on the floating body, arising from 

waves, currents and wind. The HydroDyn model of FAST calculates the retardation function and motion 

response of the platform; the former is given  

2( ) ( )cos( )
t

R t b t dω ω ω
π −∞

= ∫           (55)  

The coupling between the floating body and mooring line applied a ‘loose coupling’ method, as introduced 

by Jonkman (2013).  

3.2 Mooring system load-offset relationship 

Figure 6 shows the surge restoring force against different initial horizontal position. From the graph we can 

see that the load-offset relationship is almost linear. For the linear spring method, the spring stiffness was 

derived from the same method- giving an initial offset and the spring stiffness was calculated with the 

following equation 

FK
S

Δ=
Δ

             (56) 

where K is the spring stiffness, F and S are the force and offset of the mooring system, respectively. The 

off-diagonal stiffness was ignored. In other words, in the linear stiffness method, the coupling effects (e.g. 



heave-pitch coupling) were not accounted for.  The liner spring stiffness for surge, sway and heave are 

30680.5 N/m, 29728.2 N/m and 23178 N/m, respectively. 

3.3 Results of case studies under wave only and wave plus wind condition 

• Platform motion response 

The environmental conditions are shown in Tables 3 and 4. As potential theory fails to consider viscous 

effects, the additional linear damping was added. The additional damping for surge, sway and heave are 

100000N/ (m/s), 100000N/ (m/s) and 130000N/ (m/s), respectively. Figures 7.1~7.6 show the motion RAOs 

for the Spar under wave only and wave plus wind condition. Under wave only condition, the amplitude of 

heave response is not affected by the method of analysis, but the mean heave position has seen a large 

difference between the two methods, as can be seen from figure 8.2 and 9.2. Surge and pitch RAOs decrease 

under the wave plus wind condition, compared with wave only condition. 

For the wave only condition, there is little difference between the two methods for wave frequencies larger 

than 0.4 rad/s (e.g. Figures 10.1 and 10.3), except for the mean position of the heave motion. These results 

indicate that for the primary design of substructure of the FOWT under some survival conditions (e.g. 

seastate 7 or seastate 8), the linear spring method can be applied, as it gives results as accurate as the FEM 

method but with less running time. However, for the wave plus wind condition, although the amplitude of 

motion response shows little difference between the linear spring method and elastic rod theory, the mean 

position of surge and pitch were under-predicted by the linear spring method. Under the wave only condition, 

the floating body oscillates about its mean position, but there is a very large mean offset (e.g. about 42m in 

Figure 11.1 and 11.3) when considering wave plus wind condition. Under the wave plus wind condition, the 

turbine thrust force is much larger than the wave forces. 

 

 

 



• Turbine thrust force 

Figure 12 shows a comparison of mean rotor thrust force under linear spring method and present elastic rod 

theory. The mean thrust force is independent of wave frequency, except for wave frequency=0.24rad/s, 

linear spring method, but the linear spring method underestimates the mean thrust force. 

• Mooring line tension 

Figures 13 and 14 show the mooring line tension for both wave only and wave plus current condition. Under 

the wave only condition, the mooring line tension does not vary much; the floating body oscillates around its 

initial mean position. The reason for this phenomenon is because current modelling only included first-order 

wave forces. The second-order effects are of little importance for the Spar-type wind turbine (e.g. Roald et 

al, 2013). For the wave plus wind condition, the FOWT moves to a new equilibrium position and oscillates 

around this position, which results in one of the mooring lines becoming less taut. However, as discussed in 

the previous section, the proposed method is suitable for modelling both slack and taut mooring lines. 

4. Conclusion 

The wind turbine simulation tool FAST has been modified to examine the response of a FOWT with 

polyester mooring lines. A new stiffness model has been implemented to account for large elongations of the 

line. Its accuracy has been assessed numerically, and the results show that the proposed model is suitable for 

modelling both slack and taut mooring lines. 

The present approach has been applied to the simulation of a taut-moored FOWT. Comparison has been 

made against the linear spring method. Although the mooring system’s static load-offset graph is linear, the 

linear spring method fails to consider the dynamic response of the mooring line. It under predicts the motion 

of the floating body in the wave plus wind condition. This under prediction also affects the maximum 

mooring line tension, as its value is dependent on the instantaneous position of the floating platform. 
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Appendix  

SHAPE FUNCTIONS 

In the FEM, the shape function Al and Pm are defined as follows (Garrett, 1986): 
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where /s Lξ =   


