Ensemble Forecasting of Major Solar Flares: Methods for Combining Models

Guerra, Jordan A., Murray, Sophie A., Bloomfield, Shaun and Gallagher, Peter T. (2020) Ensemble Forecasting of Major Solar Flares: Methods for Combining Models. Journal of Space Weather and Space Climate, 10. p. 38. ISSN 2115-7251

[img]
Preview
Text
swsc200004.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (4MB) | Preview
[img]
Preview
Text
2008.00382v1.pdf - Accepted Version
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview
Official URL: https://doi.org/10.1051/swsc/2020042

Abstract

One essential component of operational space weather forecasting is the prediction of solar flares. With a multitude of flare forecasting methods now available online it is still unclear which of these methods performs best, and none are substantially better than climatological forecasts. Space weather researchers are increasingly looking towards methods used by the terrestrial weather community to improve current forecasting techniques. Ensemble forecasting has been used in numerical weather prediction for many years as a way to combine different predictions in order to obtain a more accurate result. Here we construct ensemble forecasts for major solar flares by linearly combining the full-disk probabilistic forecasts from a group of operational forecasting methods (ASAP, ASSA, MAG4, MOSWOC, NOAA, and MCSTAT). Forecasts from each method are weighted by a factor that accounts for the method's ability to predict previous events, and several performance metrics (both probabilistic and categorical) are considered. It is found that most ensembles achieve a better skill metric (between 5\% and 15\%) than any of the members alone. Moreover, over 90\% of ensembles perform better (as measured by forecast attributes) than a simple equal-weights average. Finally, ensemble uncertainties are highly dependent on the internal metric being optimized and they are estimated to be less than 20\% for probabilities greater than 0.2. This simple multi-model, linear ensemble technique can provide operational space weather centres with the basis for constructing a versatile ensemble forecasting system -- an improved starting point to their forecasts that can be tailored to different end-user needs.

Item Type: Article
Uncontrolled Keywords: physics.space-ph, astro-ph.SR, solar flares forecasting, ensembles, weighted linear combination
Subjects: F300 Physics
F500 Astronomy
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: John Coen
Date Deposited: 11 Aug 2020 09:48
Last Modified: 15 Sep 2020 15:15
URI: http://nrl.northumbria.ac.uk/id/eprint/44051

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics