Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica

Turney, Chris S. M., Fogwill, Christopher J., Golledge, Nicholas R., McKay, Nicholas P., van Sebille, Erik, Jones, Richard T., Etheridge, David, Rubino, Mauro, Thornton, David P., Davies, Siwan M., Ramsey, Christopher Bronk, Thomas, Zoë A., Bird, Michael I., Munksgaard, Niels C., Kohno, Mika, Woodward, John, Winter, Kate, Weyrich, Laura S., Rootes, Camilla M., Millman, Helen, Albert, Paul G., Rivera, Andres, van Ommen, Tas, Curran, Mark, Moy, Andrew, Rahmstorf, Stefan, Kawamura, Kenji, Hillenbrand, Claus-Dieter, Weber, Michael E., Manning, Christina J., Young, Jennifer and Cooper, Alan (2020) Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica. Proceedings of the National Academy of Sciences, 117 (8). pp. 3996-4006. ISSN 0027-8424

[img]
Preview
Text
3996.full.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview
Official URL: http://dx.doi.org/10.1073/pnas.1902469117

Abstract

The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery
of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming.

Item Type: Article
Subjects: F800 Physical and Terrestrial Geographical and Environmental Sciences
Department: Faculties > Engineering and Environment > Geography and Environmental Sciences
Depositing User: Ellen Cole
Date Deposited: 12 Aug 2020 12:15
Last Modified: 12 Aug 2020 12:30
URI: http://nrl.northumbria.ac.uk/id/eprint/44067

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics