Northumbria Research Link

Citation: Phuong, Linh Le (2020) A numerical study of partially ionised plasma using a 2D
two-fluid magnetohydrodynamic code. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/44072/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is

available online: http://nrl.northumbria.ac.uk/policies.html

ok Northumbria .)

University
NEWCASTLE -

]

a UniversityLibrary

»

http://nrl.northumbria.ac.uk/policies.html

A Numerical Study of Partially Ionised
Plasma Using a 2D Two-Fluid
Magnetohydrodynamic Code

L Le Phuong

PhD

2020

A Numerical Study of Partially Ionised
Plasma Using a 2D Two-Fluid
Magnetohydrodynamic Code

Linh Le Phuong

A thesis submitted in partial fulfilment of the requirements of the
University of Northumbria at Newcastle for the degree of Doctor of

Philosophy

Research undertaken in the Faculty of Engineering and Environment in

the Department of Mathematics, Physics, and Electrical Engineering

February 2020

Abstract

In a magnetised, partially ionised plasma, such as the lower solar atmosphere, the co-
existence of both charged and neutral particles and their interaction lead to effects that do
not occur in fully ionised plasma. Multi-fluid magnetohydrodynamic (MHD) models of a
plasma account for the degree of ionisation and the resulting effects more accurately than
common single-fluid MHD models. A 2D two-fluid MHD code has been developed (writ-
ten in C++) to study partially ionised plasma, based on the Kurganov-Tadmor scheme.
The advantage of this scheme is that it is Riemann-solver free, which makes computation
faster, and it exhibits a small, time step independent numerical viscosity, which makes
the code stable and accurate for much smaller time steps than usual schemes allow for.
The explicit Euler and fourth-order Runge-Kutta scheme are implemented to integrate
the solution in time. Furthermore, the implementation of a spatial domain decomposition
scheme, which is based on Message Passing Interface (MPI) standard, allows for parallel
computing. The code has been verified successfully and a number of tests were per-
formed, such as the Sod-shock tube test and the Brio-Wu shock test. Moreover, the effect
of ionisation and recombination on a magnetised, partially ionised plasma was investi-
gated by studying a 1.5D slow-mode shock simulation and the 2D Orszag-Tang vortex
simulation. The effect on the properties of both fluids, the ionised and the neutral fluid,
are compared to simulations where collisions are the only coupling mechanism between
the fluids. In the initialisation, the two simulations are fundamentally different; whereas
the driver of the slow-mode shock formation is the discontinuity in the magnetic field,
it is the velocity field that predominantly drives the vortex formation in the Orszag-Tang
vortex simulation. However, for both, it was found that the movement of the ionised fluid
decreases as well as the shock speeds when ionisation and recombination are included.
The partial ionisation state of the plasma adds complexity to the numerical modelling of
the solar atmosphere and so multi-fluid codes have long been ignored. Therefore, the
code developed here provides a tool to unlock new investigations into the lower solar

atmosphere and will allow new physics on the Sun to be explored.

Acknowledgement

“The only life worth living is one that you're really passionate about.”

I would like to express my gratitude to Dr Sergiy Shelyag, without whom I would not
have found my passion for numerical mathematics and computational fluid dynamics.
Thank you very much for choosing me as your PhD student and always believing in me.
Thank you for your support, encouragement, and your academic guidance, while letting
me go my own way as well. Your own passion for your research and your curiosity were
always a source of inspiration for me too. It was very hard for me to see you leaving the

UK and our solar physics group, you are missed here.

On that note, I would like to thank Dr Gert Botha and Prof James McLaughlin for taking
me under their wing when Sergiy had to leave. I appreciate the time and effort it takes to
take over a PhD student half way through.

Gert, thank you so much for always taking your time for me, no matter what day or time
or how busy you were yourself. Thank you for seeing progress where I couldn’t see it
and for your effort taking up partially ionised plasma research and always looking out
for literature. Thank you also for always keeping up to date with the current stage of my
thesis, your reliability and making me priority when it was important. Thank you also for
digging out some interview questions and for taking the time to prepare me for my future
- even though this meant that I will be leaving academic research.

James, you really are a great head of the group. I know it involves many meetings and a
lot of administration, therefore, I am grateful for the time you were able to make for me
and also for your advice as a second supervisor. I hope this album isn’t quite like Little
Mix’s.

Without all of you, this thesis and my academic journey would not have been the same,

and I do appreciate every step of it.

I would also like to thank Northumbria university for giving me the opportunity to work in
such a great group and providing us PhD students with an office that has been my second
home for the past 3 years. Especially, I want to acknowledge my fellow PhD students and
office family Andre Chicrala, Malcolm Druett, Thomas Rees-Crockford and Ajay Tiwari.

i1

I will always think back to the days in the office with you and to a great chapter in my
life. And another very special office family member I want to thank is Mehrnoush. You
know what you mean to me and I am very glad they let you move to the maths office -
destiny. My dear friends, Annabel, Laure, Francesco, Sam, you also made those three
years very special for me and something I will remember forever. I would also express
my gratitude to Prof Dr Carsten Denker, my master thesis supervisor, who has always
been very kind and encouraged me to do a PhD. During my first steps into research, I was
guided by Dr Yvonne Unruh during my research internship, whom I would like to thank

for the opportunity and her kindness.

Most of all, I would like to thank my family, because without their support and love, I
would not be where I am. Everything I am and will be, I owe to you. Thank you so much
for your endless and unconditional love, every day and minute of your life, which I can
always feel and which gives me strength.

Mum, your kindness, respect and generosity towards everyone you meet, is something I
always have and always will look up to. Thank you for your trust and believe in me and
supporting me with anything I want or not want to do. All you always want is for me to
be happy. Because of this, because I could always make my own decisions and always
being loved, I am the happy and content person that I am today. Of course, thank you also
for providing me with amazing food, throughout my whole life and even during my PhD.
Dad, thanks for always talking to me on my way to work and back, for always being on
my side, and your open mind, so I feel like I can always tell you anything. My sisters,
Thao and Milly, I thank for their incredible wisdom and ability to think very differently
and make me think in a way to make my own life easier, better and happier, too. Thank
you also for being there for me always, at any time of the day and with any problem that

I have, or just for a chat.

Last, I want to thank my fencing coach, Laszlo Jakab, for always being there for me,
supporting and believing in me and for sharing his wisdom regarding fencing and life in
general. Your care and excellent coaching have always been something that warmed my
heart and lifted me up; and on that note I also want to thank the Durham University fenc-
ing club and Laszlo’s fencing club for great and fun training, which really was a perfect
balance to PhD life.

1

G&i me clia con, khong 11 ndo c6 th8 difn t3 dwoc con yéu me nhidu nhw thé nao
va tinh yéu v6 didu kién ctia me danh cho con c6 ¥ nghia vé cting d6i véi con. Tinh
yéu ctia me danh cho con mdi ngay va theo nhidu cich khic nhau, 12 mét ngudn
ning lwong manh mé& va mang lai sw yén tim thoai méi cho con. Khéng ¢6 me, con
s& khéng biét minh dang & dau va con 1 ai nita. Cam on me di hd tro' con trong
subt qu4 trinh hoc (va lam nhing viéc trong nha cho con ma ddng nhé ra con phai
lam, haha), vi d3 luén ngt trén giwdng cia con khi con dén thim, vi nhitng mén
dn tuyét vo1 clia me va ludn tro chuyén véi con trén dién thoai trén dwdong con di
lam va. Long tét, sw ton trong va rong lwong cda me luén thé hién vé1 tAt ca moi
ngwdi ma me gip la didu con lubn luén hwéng téi va cb ging lam theo. Tréi tim
ctia me, sw théng minh, luén s&n sang ling nghe va thay d6i 13 di2u 1am con kinh

trong me rén(.t nhiéu. (Thanks to my cousin Gia for this translation.)

v

Declaration
I declare that the work contained in this thesis has not been submitted for any other award
and that it is all my own work. I also confirm that this work fully acknowledges opinions,
ideas and contributions from the work of others.
Any ethical clearance for the research presented in this thesis has been approved. Ap-
proval has been sought and granted by the University Ethics Committee on 26.01.2018.
I declare that the word count of this thesis is 30953 words.
Name: Linh Le Phuong

Signature:

Date: 27.02.2020

Contents

1 Intr 1

(1.1 Plasma Description|
(1.2 Partially lomised Plasma (PIP),
(1.3 Time and Length Scales|.

{2 Derivation of Governing Equations|
[2.1 ~ Derivation of the Fluid Approach and the Two-Fluid Model|
2.1.1 From kinetic theory to fluid theory|.
RI2 Single-fluildMHD|
2.1.3 Two-Fluid (lon-neutra) MHD|
[2.2 Derivation of the Hydrodynamic and MHD equations|

[2.2.1 Derivation of Hydrodynamic Equations|

[2.2.2 Derivation of Magnetohydrodynamic (MHD) Equations|

(3.1 Partial Differential Equations (PDEs)|.
(3.2 Finite Volume (FV) Method|
(3.3 The Kurganov-Tadmor Scheme|.

Th nd I rification

.1 CodeSetup| e
4.2 Code Structure and Functions|.
M3 CodeTestsl. s

Vi

11
15

17

19
22
25
26
28
35
45

55
55
59
64

A31

Hydrodynamic Simulations|

#4.3.2 Magnetohydrodynamic (MHD) Simulations|

A33

Divergence Control| 0o 0.

|6 Conclusions|

6.1

Conclusion With Regards to Two-Fluid Simulations|

[6.2 Summary]|

(7 Future Avenues of Investigation|

71

Rayleigh-Taylor Instability (RTD)|

[/.2 Kelvin-Helmholtz Instability (KHD)|

A" Running the Code|

[B_The Codel

vii

102
103
105
115

129
129
132

134
135
137

141

144

Nomenclature

NHall

Nohm

Courant number

Gas pressure

Gas constant

Magnetic Reynolds number
Temperature

Volume

Cyclotron frequency

Total magnetic flux

Total electric flux

Collision rate

Total energy

Electric permeativity of free space
Plasma diffusivity

Hall diffusivity coefficient

Ohm diffusivity coeflicient

viii

Namb

Yion

7rec

Wqo

Ho

Va,ﬁ

Tc

Ambipolar diffusivity coefficient
Ionisation rate

Recombination rate

Debye length

Magnetic field vector

Electric field

Force

Current density

Total pressure tensor

Alfvén velocity

Velocity vector

Particle velocity

Diffusion velocity of particle species «
Magnetic permeability of free space
Collision frequency between particle @ and particle 8
Electron plasma frequency

Total mass density

Mass density of particles a
Electrical conductivity
Cross-section

Magnetic damping time
Characteristic time

iX

Txx Stress tensor component

4 Fluid fraction

c Speed of light

Cs Sound speed

e Internal energy

kg Boltzmann constant

My Mass of particle «

Ny Number density of particle a
q Heat

qo Charge of the particle «

t Time

X, V.2 Spatial components of the Cartesian coordinate system

Mathematical Operators

X1Y1 X1y2 X1)3
Xy = tensor product of two vectors = [xoy; X2y2 X2V3

X3yl X3Y2 X3)3

X =ix; +jx +Kkx3
X-y = dot product of two vectors = x1y| + x2y2 + xX3y3
X2Yy3 — X3y2
XXy = cross product of two vectors = | x3y; — x1y3
X1Y2 —X2y1
_:+0 20 J
v = lm +J@ + ka—z

Chapter 1
Introduction

The visible matter in our universe is made of plasma by more than 90% (Goedbloed and
Poedts, 2004, p. 3). Plasma is ionised gas and often contains enough free charges for

electromagnetic forces to dominate the dynamics (Boyd and Sanderson, 2003).

1.1 Plasma Description

Theoretical models of plasma describe it either microscopically with (Goedbloed and
Poedts, 2004, p. 34)

1. the theory of the motion of individual charged particles in given magnetic and elec-
trical fields,

2. the kinetic theory of a collection of such particles (by means of particle distribution

functions)
or macroscopically with

3. the fluid theory (magnetohydrodynamics (MHD)), describing plasmas in terms of

averaged macroscopic functions

The single particle orbit theory is applied when the density is so low that interactions
of particles can be neglected and no collective effects are to be studied. However, in a
plasma, the interactions between particles are numerous and the kinetic theory makes use

of statistical mechanics approaches to describe the collective behaviour of particles that

1

make up the plasma (Goedbloed and Poedts|, 2004, p. 48). Here, physical information
of the electrons and ions are expressed in terms of time-dependent distribution functions
Jfa(r,v,1) in a six-dimensional phase space and the total number of particles is assumed
to be constant. The phase space is formed by three position coordinates (r) and by three
velocity coordinates (v). Collisions of the particles change the distribution function. The
evolution of this distribution function is described by the kinetic equation, also known
as the Boltzmann equation. This combined with the Maxwell equations to determine
the electric and magnetic field closes the microscopic equations for the plasma kinetic
theory (Goedbloed and Poedts, 2004, p. 50).

The fluid theory averages out microscopic fluctuations, but considers microscopical
aspects by requiring frequent enough collisions between ions and electrons to establish
fluid behaviour. Additionally, besides the microscopic conditions of length and time
scales of density and temperature, the macroscopic approach has to allow macroscopic
length and time scale conditions of the magnetic field (Goedbloed and Poedts, 2004,
p. 28). In this thesis, the fluid theory is applied, i.e. the macroscopic dynamics of magne-
tised plasma is studied. The fluid description can be applied when there is sufficient num-
ber of particles present so that local fluid properties such as pressure, density and velocity
can be defined and, furthermore, when those particles, such as ions and electrons, interact
or collide frequently enough (Spruit, 2017). The quantitative criterion can be determined
with the transport theory, which provides the time scale, where the hydrodynamic time
scale has to be much larger than the collisional relaxation times of the electrons, ions, and
neutrals (Goedbloed and Poedts, 2004, p. 65). If this is true, a hydrodynamic description
is valid. The relaxation time is the time related to the restoration of local equilibrium
through collisions (Bittencourt, 2004, p. 135). A more detailed discussion of length and
time scales can be found in Sec.

In summary, "the dynamical configuration, size, duration, density and magnetic field
strength have to be large enough to establish fluid behaviour and to average out the mi-
croscopic phenomena like collective plasma oscillations and cyclotron motions of the
electrons and ions" (Goedbloed and Poedts, 2004, p. 28). Moreover, charge neutrality is
assumed. The assumption of electrical conductivity of a plasma neutralises charge densi-
ties quickly and they only appear at the boundaries of the volume (Spruit, [2017).

Furthermore, the magnetic field B behaves differently depending on the conductiv-

ity of the fluid. Three important parameters in MHD are the magnetic Reynolds number

R, = pooul, which is related to the conductivity but actually the more important pa-
rameter to look at, the Alfvén velocity v4 = B/ y/puo, and the magnetic damping time
7 = [0-B?/p] with u as the velocity component, B the magnetic field component, o being
the permeability of free space, o the electrical conductivity, p the density of the conduct-
ing medium, and / the characteristic length scale (Davidson, 2001, p. 8). If the magnetic
Reynolds number is high, the magnetic field lines are frozen into the conducting fluid and
act like elastic bands. When the medium is disturbed, this would result in almost elastic
oscillations (where the magnetic field provides the restoring force), which leads to the
formation of Alfvén waves (Davidson, 2001, p. 8). If the magnetic Reynolds number is
small, the induced field is negligible compared to the imposed magnetic field, and the
velocity v has little influence on the magnetic field, which in this case is more dissipative,
and the time scales considered are not related to the Alfvén velocity, but the damping
time 7 (Davidson, 2001}, p. 9). Therefore, the Reynolds number gives us the strength of
coupling between the flow and the magnetic field (Davidson, 2001, p. 71).

1.2 Partially Ionised Plasma (PIP)

Plasma can be partially or fully ionised; in a fully ionised plasma the particles are all
charged, whereas a partially ionised plasma includes neutrals to a high portion.

In a magnetised environment like the solar atmosphere, the particles interact with each
other, but have different forces acting on them, e.g. charged particles feel the magnetic
field, whereas neutrals do not. They are also connected through collisions between them,
and in the lower solar atmosphere the plasma is dense and collisions play a significant role.
Hence, the existence of both charged particles and neutrals embedded in a magnetic field
and colliding with each other results in effects or properties that fully ionised plasmas do
not show: e.g. ambipolar diffusion, Hall effect, heating due to ion-neutral friction, charge
exchange, or ionisation energy (Ballester et al.| 2017). These have direct effects on the
plasma dynamics and the energy exchange (Gonzalez-Morales ef al., 2018)).

For example, the plasma can drift with respect to the neutrals and this plasma-neutral
drift is called ambipolar diffusion (Zweibel, 2015). More precisely, ambipolar diffusion
in astrophysics refers to the diffusion of the magnetic field through the neutral fluid, be-
cause, although neutral and charged components are decoupled (and move with different

velocities), the ions and the neutrals collide and now the magnetic flux, which is frozen

3

into and moving with the charges, diffuses with respect to the neutrals (Khomenko and
Collados, 2012) and there is a redistribution of the magnetic flux (Zweibel, 2015)). In the
solar chromosphere for instance, the collisions between ions and neutrals couple the oth-
erwise not affected neutrals to the magnetic field but also allow some of the ions to move
across the magnetic field, which then can diffuse and the magnetic energy dissipates into
thermal energy or heat (Martinez Sykora et al.l 2015). Ambipolar diffusion helps con-
verting magnetic energy to thermal energy faster and, because of its larger magntitude,
stronger than Ohmic diffusion does (Gonzalez-Morales et al., 2018)). Ambipolar diffusion
- a term used in Astrophysics, similarly also referred to as Pedersen resistivity, whereas
diffusivity and resistivity are used interchangeably - is caused by the collision of neutrals
with ions, act perpendicularly to the magnetic field and can lead to thin current structures
in weakly ionised plasma (Leake et al.,|2012). The extent to which the magnetic field is
coupled to the neutrals and, therefore, the magnitude of ambipolar diffusion depends on
the collision frequency — the more collisions, the higher the coupling. This can also be
seen in Eqn. (I.4). It can also be inferred from that equation that ambipolar diffusion ef-
fects are proportional to the neutral-ion density ratio of the fluid: the bigger the ionisation
fraction, the smaller the ambipolar diffusion effects.

The Hall effect in a fully ionised plasma is similar to the one appearing in a partially
ionised plasma. In both cases, it results from the decoupling of the ions from the magnetic
field, whereas the electrons are still coupled to it. Unlike in a fully ionised plasma, where
this decoupling happens because of a difference of inertia of ions and electrons at high fre-
quencies, in a partially ionised plasma, the decoupling is due to the collisions of the ions
with the neutrals (Gonzalez-Morales et al.| 2018). The Hall effect does no work on the
plasma and, therefore, produces no direct heating (Raboonik and Cally, 2019). Although
being dispersive and, therefore, non-dissipative and not contributing to the heating of the
plasma, it leads to redistribution of the magnetic energy in the system (Gonzalez-Morales
et al.,[2018)).

In solar physics, in the quest of solving the coronal heating problem, Alfvén waves
play a crucial role. Alfvén waves are assumed to propagate through the chromosphere and
corona where those layers are heated by the dissipation of the wave energy (Vranjes ef al.}
2008)). In their paper, Vranjes et al. (2008)) study the energy flux of Alfven waves under
solar-photosphere conditions, which means under weakly ionised plasma conditions and

found that this energy flux is orders of magnitudes smaller than under ideal MHD con-

ditions, which would make the generation of waves less efficient there and, therefore,
they questioned the photospheric Alfvén waves as a source for chromospheric and coro-
nal heating. Tsap, Stepanov, and Kopylova (2011), however, found that the amplitude
of Alfvén waves does not depend on the ionisation fraction and, therefore, is the same
in both cases, the ideal MHD case and the weakly ionised plasma case. In 2013, Soler
et al.|(2013)) found that the energy flux depends on initial velocities of both (ion and neu-
tral) fluids and pointed out the different initial conditions Vranjes ef al.| (2008) and Tsap,
Stepanov, and Kopyloval (2011) started off with and which is why they came to different
conclusions (Ballester et al., 2017).

However, because the existence of those waves and their generation in the weakly
ionised, ion-neutral collisions dominated photosphere has not been observationally con-
firmed, there thought to be mode conversion mechanisms based on other MHD waves in
the lower solar atmosphere that are related to the production of Alfvén waves. Raboonik
and Cally (2019) show how a partially or weakly ionised plasma provides a mechanism,
namely the Hall effect, to convert fast waves into Alfvén waves. The Hall effect, as well
as the ambipolar diffusion, depends on the magnetic field strength, unlike the Ohmic dif-
fusion, which is diffusion due to collisions. These abovementioned effects are related to
the difference in velocity of the neutral and ionised fluid, or the drift velocity. A drift in
the velocity occurs because of the different forces that act on the particles. But, as the par-
ticles collide and exchange momentum, this difference in the velocity reduces over time
and they both get the same velocity and flow together (Hillier, |2019). But before that, this
drift velocity can also lead to frictional heating and the coupling process can be important
for the energy dissipation (Khomenko and Collados, [2012).

The co-existence of ions and neutrals also leads to three shocks that are characteristic for
a partially ionised plasma: the continuous shock, or C-type shock, the J-type shock, or
the C*-type shock. They are a result of the coupling of ions and neutrals too and their
classification is related to the neutral fluid’s flow variables. If a shock moves with a speed
lower than the Alfvén speed, the ions can build a so called magnetic precursor ahead of
the shock, where the coupling to the neutral fluid makes them accelerate with the ionised
fluid before the shock arrives. Therefore, post-shock, the neutral fluid’s flow variables
show a continuous (C-type) variation. If the neutral fluid is subsonic before the shock
arrives, the shock will either contain a jump in the neutral flow variables (J-type) or it

will have two continuous sonic points (C*-type), as post-shock the neutral fluid will be

super-sonic again (Toth, [1994).

In simulations, the co-existence of neutrals and ions and its effects have been imple-
mented in different ways. In solar physics, there are single-fluid MHD codes that account
for partial ionisation by adding extra terms to the equations which approximate the exis-
tence of neutrals, for example, described in Leake and Arber| (2006). Arber, Haynes, and
Leake| (2007), for instance, do so in their two-dimensional (2D) code by taking averages
of the densities and temperatures of the ions and neutrals and assume ionisation balance
and the centre of mass velocity used in Ohm’s law is an average over ions and neutrals,
too. Vogler et al. (2005) created a 3D MHD code to study the solar convection zone and
photosphere. They consider partial ionisation in their single-fluid code by adjusting the
equation of state according to the ionisation fraction, as partial ionisation influences the
adiabatic gradient and, therefore, the specific heat and the radiative damping of tempera-
ture fluctuations. Also Martinez-Sykora ef al.|(2017) consider a partially ionised plasma
in their model to simulate spicules, which occur when the magnetic tension is amplified
through the interaction of ions and neutrals and the resulting ambipolar diffusion. For
their single-fluid simulations obtained with the BiFrost code (Gudiksen et al.,[2011), they
extend the induction equation by an ambipolar diffusion and Hall term. Alvarez Laguna
et al. (2018) give an informative overview of the differences and advantages of a two-fluid
model over a single-fluid MHD model and the regime where two-fluid models are nec-
essary, before introducing their fully-implicit finite volume code to model ideal two-fluid
plasmas. Therefore, in the single fluid description of partially-ionized plasma, taking into
account partial ionisation can be achieved by adding additional terms to Ohm’s law that
account for the effects of ion-neutral interaction (Maneva ef al., [2017). The generalised
Ohm’s law then has extra terms such as the Hall term or the ambipolar diffusion term
(Cap\ 1994, p.126). The induction equation would then look as follows:

0B
—=Vx va—nohmj—nha”ij+

ot |B] B?

flamb &« By x B|, (1.1)

where B, j, and v are the magnetic field, current density and velocity field, respectively.
The terms 1onm, NHan and 14,y are related to the ohmic diffusion, the Hall diffusion term,

and the ambipolar diffusion term, respectively, and are defined as:

_ Me(Vei + Ven)

Nohm = > , (1.2)
geNe
|B]
Nhall = , (1.3)
{elle
B 2 (B 2
namb:(l lon/p) :(I lon/p) . (1.4)

PiVin PnVni
As can be seen, these terms depend heavily on the interaction of the species (ion-neutral
and neutral-ion collision rates v;, and v,;, the total density p) and on each of the species’
individual characteristics like ion and neutral densities p; and p,,, electron number density
n. and electron charge ¢, (Martinez Sykora et al., 2015).

In a partially ionised plasma, the Hall term leads to an electric field which is parallel
to j X B. Ambipolar diffusion occurs in a partially ionised plasma because neutrals are not
affected by the Lorentz force and, therefore, decouple from the magnetic field. It also dis-
sipates electric currents perpendicular to the magnetic field and, consequently, magnetic
energy is converted to thermal energy. Ambipolar diffusion is dependent on the thermal
structure of the plasma and affects instabilities like the Rayleigh-Taylor instability by ei-
ther inhibiting the instability or increasing small-scale structures (velocities), depending
on its spatial distribution (Martinez Sykora et al.,[2015).

Furthermore, those ion-neutral collisions can lead to the dissipation of Alfvénic waves
and their damping (de Pontieu and Haerendel, |1998; Soler ef al., 2017) and, according to
Soler, Oliver, and Ballester (2009), who studied the effect of neutrals on wave propagation
in a filament thread, actually are the most efficient damping mechanism for short wave-
lengths. Hence, damping of waves results from collisions between the ionised and neutral
fluid and their momentum exchange and the inertia of the neutrals also leads to a decrease
of their phase speed (Martinez-Gomez, Soler, and Terradas, [2017). Two energy dissipa-
tion mechanisms, which convert the energy of damped MHD waves into thermal energy,
are collisional dissipation (resistivity) and viscosity and the presence of neutrals enhances
the efficiency of both of these mechanisms (Khodachenko et al.| 2004)). Collisional dissi-
pation is related to the collisional friction forces that occur due to the relative motion of
the fluids and the physical nature of viscosity which makes it a dissipation mechanism is

related to the kinetic energy and the momentum transfer between the fluids.

The single-fluid MHD models, however, have limitations and are less accurate. For
example, the short spatial and temporal scales related to the collisions of the particles are
not sufficiently well treated when using the generalised Ohm’s law (Maneva et al., 2017).
Therefore, a generalised Ohm’s law, where ambipolar diffusion terms are added, can only
be applied where the dynamic frequency is much smaller than the collision frequencies
(Hillier, 2019). |Zagarashvili, Khodachenko, and Rucker (2011) derive MHD waves in
two-fluid partially ionised plasmas and find that, for slow waves, the single-fluid and the
two-fluid descriptions give similar results, whereas for waves, whose frequency becomes
comparable with or are higher than the ion-neutral collision frequency, the dynamics of
MHD waves changes significantly in a two-fluid approach. For example, they found that
Alfvén and fast magneto-acoustic waves are damped most at a certain ionisation fraction.

In multi-fluid codes, the aforementioned effects do not have to be accounted for by
adding extra terms to the induction equation, as they are naturally implemented and occur
just because of the mere co-existence and interaction of the fluids. Multi-fluid theory, for
example, accounts for the short length and time scales that are related to the collisions
between the fluids that cannot be captured with the generalised Ohm’s law added to the
single fluid approach (Maneva et al., 2017). An illustrated overview of approaches to
mathematically describe a plasma, depending on the regime, can be found in |Alvarez-
Laguna et al.| (2018)).

In solar physics, two-fluid codes are still not an established means to simulate the so-
lar atmosphere and we are only at the beginning of investigating the physics of the Sun
when partial ionisation in a two- or multi-fluid setting is accounted for. |[Zaqgarashvili, Kho-
dachenko, and Rucker (2011)) show that there is a significant difference in the damping
of fast waves, yet, it needs more investigation in terms of the damping of high-frequency
waves with a realistic height profile of the ionisation degree for the solar chromosphere.
Leake et al.| (2012) presented the first multi-fluid simulation of reconnection in the solar
atmosphere and found that the advantage of a two-fluid approach is that it allows high
non-LTE ion densities, which naturally form in reconnection regions (as their simulations
show). Their resulting fast recombination influences the reconnection process.

Hillier, Takasao, and Nakamural (2016) simulate a 1.5D slow mode shock with two
fluids, where the two fluids are coupled via a collision term. In their initial conditions
everything is in equilibrium, but the magnetic field. They found that the problem set for

partially-ionised plasma is dynamically different from ideal MHD and the two-fluid sim-

ulation develops more complex and numerous shocks. Due to changes in the ionisation
fraction and density with height propagating slow-mode shocks are constantly evolving
on their way and ideal MHD assumptions are not valid any longer. Maneva et al.| (2017)
studied the wave propagation through the chromosphere with their 3D CoolFluid code
and find that it significantly differs from single-fluid results. [Popescu Braileanu et al.
(2019) further developed the Mancha3D code (Felipe, Khomenko, and Collados, 2010)
and turned it into a two-fluid code to simulate waves and shocks in the solar chromo-
sphere. They show the importance of multi-fluid modelling by revealing the difference
of wave propagation when the coupling is strong and when the coupling is weak and,
moreover, what consequences the strength of collision has on the wave frequencies and
damping. It is clear that more investigation is crucial, as there is a significant difference
in the physical consequences and effects when a more accurate approach of the partially
or weakly ionised plasma is applied.

Up to here, it has been established that in a partially ionised plasma, the co-existence
and interaction of charged particles and neutrals leads to additional effects that change
the structure of and the dynamics in a magnetised plasma. Now, if, additionally, the pro-
portion of the charged particles and neutrals changes, the magnitude of these effects and
the dynamics in the plasma change again. The proportion can change due to chemical
reactions such as ionisation and recombination. In the solar chromosphere, for instance,
the complex structure is due to the combination of it being partially ionised, a decreasing
density and pressure with height, which leads to a change from a strongly collisional be-
haviour to a weakly collisional behaviour and a change from being dominated by the gas
pressure to being dominated by the magnetic pressure. On top of that, the variation of the
ionisation fraction adds to this complexity.

In our model, which will be described in more detail in Chapter Ef], we do not con-
sider the solar atmospheric chemical composition, but a pure hydrogen plasma made up
of two fluids, one consisting of singly charged ions of charge +e and one fluid consisting
of neutral atoms, where charge neutrality (n, = n; = n) and a negligible electron mass is
assumed. The temperature of the electrons is equal to the temperature of the ions, and
the ionised fluid moves with the velocity of the ions. Elastic collisions cause momen-
tum exchange of the fluids. Momentum can also be gained and lost due to ionisation
and recombination, mathematically manifested in the source terms, discussed in Sec. @

Neutrals and ions can be heated due to ionisation and recombination (inelastic collisions)

(Popescu Braileanu et al., 2019). In this model, simple ionisation and recombination take
place: the ions can be recombined and neutrals can be ionised.

Essentially, for recombination, an electron is merged with an ion and together form a

neutral atom, whose mass, momentum, and energy is then considered in the neutral fluid
in our model. In reality, ionisation and recombination are much more complex and related
to the multi-level structure of atoms (Biberman, Vorob’ev, and Yakubov, [1969). Recom-
bination can be spontaneous or stimulated or a three-body collisional recombination, but
to account for this, a very elaborated model and code would be needed, which is beyond
the scope of this project. But, as an example, to produce and atom in the ground state by
recombination, the electron has to pass through a set of excitation states and recombina-
tion is, therefore and amongst others, related to the distribution of atoms over the energy
levels (Biberman, Vorob’ev, and Yakubov, 1969). In this work, ionisation is also consid-
ered in a simple way, namely as the loss of an electron of a neutral hydrogen atom and
results in a positively charged ion. It can result from thermal processes or non-thermal
processes like collisions with an electron or atoms or electromagnetic radiation, i.e. pho-
tons.
Ionisation and recombination affect the dynamics and properties of a plasma in the way
that it changes the ionisation fraction and affects the magnitude of effects like ambipolar
diffusion, Hall effect or Ohmic dissipation, which were discussed above. Without ioni-
sation and recombination terms included in the simulations, the ionisation fraction stays
the same, or in other words, the amount of each neutrals and ions does not change and,
therefore, in these simulations the effects resulting from the coupling of ions and neutrals,
are not affected by the ion-neutral proportion, when in fact they are. lonisation means
a stronger coupling of the fluids due to more interactions, which can also be seen in the
source terms, e.g. Eqn. (2.141), where extra terms are added when including ionisation
and recombination. Through ionisation the ionised fluid is heated and through recombi-
nation, the neutral fluid is heated (Popescu Braileanu et al., 2019).

Mathers and Cramer (1978) investigate the effect of ionisation and recombination on
resistivity. Usually, in a partially ionised plasma, the resistivity is enhanced due to ion
slip for currents perpendicular to the magnetic field. However, with ionisation and re-
combination, this enhancement is reduced. This is thought to be due to the decrease of
speed of the ionised fluid relative to the neutral fluid caused by ionisation, as the ion slip

is reduced and the dissipation due to plasma-neutral friction decreases. The aforemen-

10

tioned complex structure of the chromosphere affects the wave propagation through it and
causes damping of Alfvén waves (Soler et al., 2017). This damping of waves depends on
the ionisation fraction as well and the dispersion of the Alfvén waves is due to the differ-
ent time scales the Alfvén speed has, depending on the strength of coupling of the fluids
(Kumar and Roberts, [2003) . Maneva et al.|(2017) investigate the wave propagation when
ionisation and recombination is included in their code and find, for example, that the re-
sults significantly differ from single fluid results in terms of wave propagation through the
solar chromosphere. Furthermore, (Pandey and Wardle, 2008) show that both ambipolar
diffusion and the Hall diffusion depend on the ionisation fraction and that Hall diffusion
is especially important when the ionisation fraction is high. They show that, even though
the dynamics of the Hall effect is similar in a highly ionised and weakly ionised plasma,
the frequency ranges and spatial scales on which they occur can be different. This means
that the ionisation fraction plays an important role in the Hall diffusion too.

Later in this thesis, simulations are studied, where ionisation and recombination rates
are activated and compared to simulations without ionisation and recombination, i.e.

where collisions are the only interaction between the fluids.

1.3 Time and Length Scales

An overview of the length and time scales that play a role in plasma physics on various
scales, gives us an idea about when it is important to apply which plasma theory to the
problem under study. Furthermore, it will be briefly discussed what time and length scales
have to be considered when dealing with the single-fluid MHD approach or the two-fluid
MHD approach.

If we consider one particle only, the motion of a charged particle in a magnetised
plasma is influenced by the electromagnetic field. The circular motion of electrons and
ions is then given by the gyro or cyclotron radius R and the gyro or cyclotron frequency
Q (Goedbloed and Poedsts, 2004, p.28):

lq|B v
Q= — d R=—.
m an Q

(1.5)

Both, the cyclotron radius R and cyclotron frequency € depend on the particle’s charge

11

g and mass m and it follows that for electrons the radius is smaller and the cyclotron
frequency higher compared to the cyclotron radius and frequency of the ions. v, is the
perpendicular velocity. The length scales for which the fluid theory can be applied have
to be larger than the ion cyclotron radius (Goedbloed and Poedts| 2004, p.21). As for
the length scales, there is also a distinction between scales parallel or perpendicular to
the magnetic field. Perpendicular to the magnetic field, the length scale is related to and
has to be larger than the scales related to the cyclotron motion. However, parallel to the
magnetic field, the length or spatial scales have to be much bigger than scales related
to the collision frequency and the thermal and plasma velocities (i.e. the thermal free
path scale) (Khomenko et all 2014). Furthermore, the conditions for collective plasma
behaviour are also that the length scales have to be bigger than the Debye length for a
quasi-neutral plasma. The Debye length Ap is given by

eoksT
Ap= |2 5 (1.6)
gin

where ¢ is the electric permeativity of free space, kgT the thermal energy with kp as

the Boltzmann constant and 7 as the temperature, g, is the elementary charge and n
the particle density. The sphere with the radius of the Debye length, or also called the
Debye shielding length, is the space beyond which the plasma remains effectively neutral
(Boyd and Sandersonl 2003} p.8). In the Corona, for instance, the Debye length would be
Ap = 0.07m (Goedbloed and Poedts, 2004, p.21).

As for the time scales, those have to be larger than the microscopic particle motion
time scales such as the above mentioned cyclotron frequency €, but also the electron
plasma frequency w,, and the collision frequency between the charged particles v,;,. The
electron plasma frequency is related to the oscillations that occur when electrons in a
plasma are pulled back by the strong electrostatic forces or the Coulomb forces, when
there is a charge imbalance. This mechanism secures charge neutrality. The electron

plasma frequency w, is given by:

: (1.7)

e ap M€

VkgT/me (ngqg)1/2

and reduces to wpe = 56.4ni/ 251 (Boyd and Sanderson, 2003, p. 8). The ion and electron

collisions have to be frequent, i.e. the collision time scales short, so that the particles

12

can be considered as one fluid. Collision times reflect the times for significant particle
deflection, i.e. momentum change and exchange (Boyd and Sanderson, 2003} p.62). This
also means that the time scales occurring in the problem under study have to be sufficiently
larger than the time scales of collisions between the charged particles. However, if there
are neutrals as well, these charged-particle-collision time scales have to be sufficiently
short compared to the collision times with the neutrals, so that the long-range Coulomb
interaction between the charged particles dominate over the short-range collisions with
the neutrals (Goedbloed and Poedts, 2004, p.20). Therefore, the time scale 7, has to be
much smaller than the time between ion-neutral collisions 7,, which is expressed through:
1 Amfp

TLT, = ~ , (1.8)
npO Ve Vih

where 4,7, is the mean free path and vy, is the thermal velocity of the particles. The mean
free path is, therefore, A7, = (n,0.)" 1, where n, is the number density of neutrals and
o the cross-section. o, = ma?, where a is chosen to be the radius of a neutral hydrogen
(H) atom and vy, = (kBT/mp)l/ 2. Therefore, the mean free path essentially gives us the
collision frequency, which then allows the determination of the according time scales and
the comparison to other time scales. Moreover, in terms of length scales, the mean free
path has to be much smaller than the hydrodynamic length scales. (Boyd and Sanderson,
2003, p.63) For a plasma, the neutral number density can be converted into an ion num-
ber density with the Saha-equation. In the solar Corona, where the temperature and ion
number density is high (T = 10°K and n; = 1012 m=3, n, =4 x 1077 m‘3), the time scale
would be T < 7, ~ 2% 10%s.

In the lower solar atmosphere, there are a high number of neutrals and the tempera-
ture is low. To determine the applicability of a certain model for a problem (here, either
single-fluid MHD or two-fluid MHD), the microscopic length and time scales mentioned
above have to be compared to collisions between the charged particles only and also col-
lisions between the charged particles with the neutrals. Usually, single fluid MHD (where
required with some modifications) is a good approximation for the processes on the Sun
and the solar photosphere, as collisions between ions and neutrals are frequent enough
and the plasma is strongly coupled. The application of single-fluid MHD to simulate so-
lar processes such as convection, magneto-convection, formation of magnetic structures

or wave propagation are good examples for the success of single-fluid MHD application

13

for the Sun (Khomenko et al., 2014). However, when the magnetic field is large, for ex-
ample in sunspot regions, the cyclotron frequency can become very large too, and can
overcome collisional frequencies and ideal MHD assumptions are not any longer valid
(Khomenko et al., [2014).

In the chromosphere, the collisional coupling is not as strong as in the photosphere,
and, therefore, single-fluid MHD assumptions break as well (Khomenko et al., 2014).
This means, if the collisional coupling between charged particles and neutrals is not suffi-
cient so that they can be considered as one fluid or if the time scale of the problem under
study is similar or smaller than the collision time scale between the two fluids, a better
approach is the two-fluid model.

Therefore, two-fluid modelling is needed where there is a considerate amount of
neutral particles that do not show a strong collisional coupling to the charged particles,
with collision time scales longer than typical MHD time scales. However, the two-fluid
model involves the single-fluid MHD model (which represents the ionised fluid), which
expresses all the occurring charged particles as one fluid. Therefore, assumptions and ne-
glections are made, for instance, stationary currents are assumed and charge separation is
neglected. Two-fluid approximations can only be applied, where the coupling between the
charged particles is stronger than the coupling between the neutral particles (Khomenko
et al.| [2014)). This is further discussed in Chapter@ In the simulations performed in this
thesis, the time and length scales are greater than the ones related to the plasma frequency
and the Debye length, respectively. They, therefore, fall into the applicability range of the
fluid approach.

For these simulations, the estimations of the time scales are non-dimensionalised (the
non-dimensionalisation is further discussed in Chapter E]) The characteristic time scale,
7., is calculated with 7. = L/c, where the characteristic length L = 1 and where c is a
characteristic speed. For the neutral fluid, the characteristic speed is the maximum sound
speed cg. For a plasma, or the ionised fluid, the characteristic speed is the maximum of
cs or the Alfvén speed v4. For the hydrodynamic Sod shock tube simulation (discussed in
Sec.[d.3.1) 7. = 0.9. For the ionised fluid in the Brio-Wu shock simulation (discussed in
Secld.3.2) 7. = 0.3. In the 1.5D slow-mode shock simulation (discussed in Sec.[5.1.1)), a
neutral and ionised fluid are present and 7. for the neutral fluid is 0.5 and 7. for the ionised
fluid is 0.3. The two fluids interact through collisions with a collision rate «,, given by
Eqn.(2.142)), which leads to the characteristic collision time scale of 1/a., which is 0.4 for

14

the 1.5D slow-mode shock. For the two-fluid Orszag-Tang vortex simulation (discussed

in Sec.[5.1.2), 7. = 0.6 for both fluids and the characteristic collision time scale is 1.

1.4 Motivation and Structure of the Thesis

It is a challenging and costly task to observe plasma in space, because the object or event
is very far away or can be hidden. Another means of studying astrophysical plasma and
help understand the physics in space are simulations.

A two-fluid magnetohydrodynamic (MHD) code has been developed here to account
for the partial ionisation state of a plasma more accurately than common single-fluid
simulations can. This code is meant to provide the basis of a tool and simulations achieved
and studied with this code provides an insight into the two-fluid plasma behaviour and the
effect of ionisation and recombination on this magnetised plasma.

The intention is to study the physics of the Sun under the multi-fluid model in the
future, applying this code. The Sun is the most important star to us, as it is our main
energy source and its activity and behaviour can have a severe effect on our lives and
technology on Earth. Moreover, being the closest star to us makes it a great prototype
to understand and study other stars and the universe. Yet, there are still open questions
to be answered in the study of the Sun. One of them is the coronal heating problem
and refers to the temperature of the outermost layer of the Sun, which is by a few or-
ders of magnitude larger than the temperature of the lower layers of the solar atmosphere,
the photosphere and chromosphere. The energy that is generated in the interior of the
Sun has to go through the photosphere, chromosphere, and transition region. Those lay-
ers and regions influence the mass, energy and momentum transfer from the underlying
photosphere and convection zone into the corona. Therefore, understanding the energy
transport and conversion in those layers is the key to solve the coronal heating problem.
The complexity of the chemical structure of the chromosphere, however, makes studying
it thoroughly a challenging task, and it is well known that this complexity is related to
its partial ionisation state (Maneva et al., 2017)). To model and understand the physics in
those layers, additional effects resulting from the partial ionisation or the co-existence and
interaction of neutrals and charged particles, have to be considered in the modelling and
analysis of the solar atmosphere. These simulations allow us to understand the physics

that leads to what we can observe and enables us to make predictions. Therefore, a great

15

advantage of simulations is they enable us to see and analyse what otherwise is hidden in
observations and need to be inferred (Arregui, 2015). The question of how and to what
extent do partially ionised plasma effects influence the physics and dynamics on the Sun,

is still to be answered.

In Chapter [2] the equations that lay the basis for the MHD model of plasma are derived.
An overview of the derivation of the fluid approach from the kinetic approach is given
and it is shown how the fluid equations are obtained from kinetic equations. It is, fur-
thermore, explained which physical laws lead to the Euler and Navier-Stokes equations
and how Maxwell’s equations add to the system of hydrodynamic equations to form the
MHD equations. In Chapter [3] an overview of the mathematics and numerical methods
is given, which are the underlying theories for the code developed here. In Chapter 4] the
code is presented. First, the overall code set-up is described, before the code structure
is revealed, where the main functions in the code are explained. As simulations are a
complex interplay of the physical setting, the underlying mathematics, and appropriate
numerical schemes, we first want to ensure that the code does what it is supposed to do,
with high accuracy and stability. Therefore, the code is verified with simulations and tests
in the hydrodynamic and MHD regime. In Chapter [5] the two-fluid MHD source terms
are introduced, and the results of our 1.5D and 2D two-fluid MHD simulations and the
effects of ionisation and recombination on a partially ionised plasma are presented. In
Chapter[6] a conclusion regarding the two-fluid results is given, before a summary of the
thesis closes this chapter. The thesis is completed by giving an insight into the future

avenues in Chapter

16

Chapter 2
Derivation of Governing Equations

First, the mathematical derivation of the fluid theory from kinetic theory is shown. Fol-
lowing this, a more intuitive, physical derivation of the macroscopic hydrodynamic and

the MHD equations is presented.

2.1 Derivation of the Fluid Approach and the Two-Fluid
Model

Amongst the theoretical descriptions of plasma, the kinetic theory is the most compre-
hensive model. To simulate a plasma of a certain density with the kinetic theory, collision
terms are introduced that change the distribution function and reveal the evolution of the
plasma. The derivation of the collision term is a very complex matter, as plasma collisions
are many-body interactions, affected also by the long-ranged Coulomb force and forces
of the electromagnetic field.

In the hydrodynamic case, the frequent collisions between the neutral particles is the rea-
son why these particles move as one fluid (Chen, 1984, p.53). In a high-temperature
plasma, however, collisions can be rare and, as a result, deviations from thermal equi-
librium can last considerably longer too. Nevertheless, most of the time, plasma can be
described with the fluid approach very well (Chenl 1984, p.225).

As it is not possible to track every particle in a fluid or determine their equation of mo-

tion, statistical methods have to be employed to describe a collection of particles. The

17

starting point for a statistical description of a many-body system, is given by the Liouville
function (Capl 1994, p. 62):

F = {xa,)’a’za,xﬁ,Yﬁ’Zﬁa ---axNaYNaZN,Va'x,Va'y,Va'z,VNx,VNy,VNza l}a (21)

which gives for N number of particles the probability of the particles’ (a, and up to
N) position in space x,y,z and their velocity v at time ¢. By integrating over all space
and velocity variables but the i-th particle, the distribution function is reduced to a one-
particle function based on only seven variables (the six space and velocity variables and
time), describing the probability of a particle to be found at the position x,y,z with the
velocity vy, vy, v, at time £. This six-dimensional (or 2 f dimensional, where f is the degree
of freedom) phase space x,y,z,Vx, Vy,V; is also called the pu-phase space. This one-particle
distribution function, with the according normalisation, equals the Boltzmann distribution

function, which is written as:
F (9,2, Ve, vy, vy, Ddxdydzdv,dvydy,. 2.2)

This is the number of particles that are contained in the spacial interval of x +dx, y +dy,
and z +dz with a velocity between v, and v, +dv,, vy, and vy +dvy, and v, and v, +dv,.
From the distribution function, differential equations (with collisions) can be derived,
where there are different methods to obtain the so-called collision equations from the Li-
ouville function, which are described in any plasma physics text book, such as|Boyd and
Sanderson| (2003)).

When collisions are to be involved, there are two kind of interactions to be considered, the
binary collisions and the many-body collisions. Binary collisions, the collisions of two
particles, occur in neutral fluids with low density and short-ranged interaction forces. The
collision term for that has been derived by Boltzmann and extended by Landau for plas-
mas; because for plasmas, long-ranged Coulomb forces lead to many body interactions
and have to be taken into account (Cap, 1994, p. 67). Often, interactions in a plasma lead
to small scattering angles or so-called weak interactions, where the potential energy of the
interaction ~ ¢2/Ap is much less than the mean thermal energy~ kgT (Boyd and Sander-
son, |2003}, p. 307). In these circumstances, the Fokker-Planck equation can be applied. In

general, to reduce the complexity of the theoretical description, approximations and as-

18

sumptions have to be made, which lead from the Liouville equation to the Fokker-Planck
equation, the Boltzmann equation or the Lenard-Balescu equation.

In this thesis, the focus is on the fluid approach and the plasma is described with
the MHD equations, which are obtained by starting at the Liouville equations and then
applying the BBGKY (for Bogolyubov, Born, Green, Kirkwood and Yvon) approach
(which handles the evolution of multiple particles) to get to the Boltzmann equation. In
principle, for the BBGKY approach the Liouville equation is integrated step by step over
the space and momentum of each particle. This and the derivation of the Boltzmann
collision terms are also well explained in |Cap, (1994, p. 71), however, are beyond the

scope of this thesis. The Boltzmann equation for a plasma reads:

- = = -V E B)-—
t+ f+(+x)v6t

d 0 0
f_of of (f) 03
dt coll

The collision term on the RHS can be determined using different approaches with different
underlying assumptions. For the Boltzmann collision term, only binary collisions are
considered, whereas Landau, for instance, extended the collision integral to account for

interactions in plasmas.

2.1.1 From Kkinetic theory to fluid theory

In the following, it is shown how to get from the Boltzmann equation to the fluid equa-
tions of a plasma, in the case when microscopic behaviour can be neglected. Firstly, it is
assumed that the plasma is dense enough for the mean free path to be much shorter than
the characteristic length scales over which the distribution function changes (Cap, 1994,
p- 99). Being the first to establish this assumption, Hilbert also came up with an equation
to describe exactly that and obtain the hydrodynamic description of plasma. To solve the
equation Hilbert came up with, one needs conditions for the integrability of the function,
where these conditions are exactly the hydrodynamic equations. However, depending on
how the equation is solved, one gets to different hydrodynamic equations. Another, nowa-
days more common way to obtain the fluid equations is the methods of moments, which
yields the distribution functions themselves. Here, for physical averages, i.e. moments, a
differential equation is derived and solved. To derive the moment of r-th order, the Boltz-

mann equation (Eqn.(2.3)) is multiplied with a physical quantity ®, which satisfies the

19

conservation laws (here ® = mv") and then integrated over all possible velocities (velocity
space) to yield a function independent of details of the velocity space (Cap, 1994):

f 9a of _ a_f
E+V-Vf+Z(E+VXB)-E]dV—f®()wlldv. 2.4)

0
C)
/ i

Since f(r,v,t)drdv is the probability of finding particles of type « at time ¢ within a small
volume element drdyv, its integral over the velocity space is the probability of finding
the particles within the volume dr, irrespective of velocity (Boyd and Sanderson, 2003,
p. 480).

With F being the forces, we yield:

ﬁffmv’dv+V-fmv’vf+lmev gdv () ffmv (2.5)
ot m Ot} .on

The RHS describes for r = 0 (moment of zeroth order) the change of the total mass density,
for r = 1 (moment of first order) the change of the total momentum and for = 2 (moment
of second order) the change of the total (kinetic) energy, due to the interactions of particles
through collisions. In the case of elastic collisions or like-particle collisions, the quantities

are conserved and the RHS is zero. With

ffdv =n, n{mv')= fmvrfdv, (@) = f@fdv, (2.6)
we can define the r-th moment as the average and write:
f mv’'v fdv
<mvr = 2.7)
[fav

For any r, we yield the Maxwell-Boltzmann transport equation

(2
= fmv (0t)wlldv. (2.8)

r+1>

ﬁ(n(mvr» +V - (n(mv - ﬁ(m
ot m

More general, this would read as:

or

0 n 00
éTf(n(@))+V-(n<(>3)v)—E(mFE>: f®(8t

) dv. (2.9)
coll

20

(Cap\ [1994). This means, a macroscopic variable (g)(r,?) is the average of a phase space
function g(r,v,1).
First, a few words about the general meaning of the moments of different orders,

which have the following meaning in the plasma physics sense:

1. r=0
particle density (if m = 1):

n(x,t) = ff(x,v, Ndv. (2.10)
mass density:
n{m) = p(x,t) = mn(Xx,t) = mff(x,v, tdv. 2.11)
2. r=1
particle flux (if m = 1):
nv = fvf(x, v,1)dv. (2.12)
mass flux:
n{mv) = pv = mfvf(x,v, Hdv. (2.13)
3.r=2
momentum flux:
n{mvv) = p(V,v) = fmvvfdv. (2.14)

21

The flux of the energy density ® = %mvz, yields:

1 . _m 2
n(Emv V) = 7 fv vfdv. (2.15)

With those velocity integrals, which are called moment integrals of a function f, we
have now yielded fluid variables. Now, we want to obtain the evolution equations for
these macroscopic variables by taking appropriate moments of the kinetic equation (Boyd
and Sanderson, 2003}, p. 482). Applying the moment method to the Maxwell-Boltzmann
equation in Eqn. (2.§), for r = 0 the continuity equation is derived (Capl 1994, p. 103):

dp

% +V(pv)=0 (2.16)

and for r = 1 the momentum equation is obtained:
0
E(pv)+V-(p(vv))—nF =0 (2.17)

and for r = 2 and by multiplying with energy density, we yield the energy equation:

O (L) v [ty = anE v =
E(HEmW >)+V (nzm(v V)) gnE-v=0. (2.18)

The RHS is treated with according collision terms. As mentioned before, in fluid theory,
the variables are a function of four variables, the three space components x,y,z and time ¢.
This independence of the velocity is possible because the velocity distribution is assumed
to be Maxwellian everywhere and, therefore, can be determined with the temperature T
only (Chen, (1984, p.225).

2.1.2 Single-fluid MHD

A plasma consisting of different species, where each species can be described by its own
set of fluid equations, can be simplified to a single, conducting fluid, described by just

one set of equations. To describe this macroscopic behaviour of the plasma as a whole,

22

the contributions of the various particle species are added up, and we end up with the
total macroscopic parameters (Bittencourt, [2004). In this process, information gets lost,
but time is gained when solving only one set of equations. The species we combine here,
however, are only electrons and ions, as the neutrals are considered as a separate fluid in
this work, and therefore, less information is lost compared to combining all three.

Following Bittencourt (2004), the mass density would be:

Pn= D P =) Mama (2.19)
a a

and the mean fluid velocity, v is defined through the total momentum density:

PmV = meava’ (2.20)
@

where v is a weighted mean value, where the velocity of each species is weighted propor-
tionally to its mass density. Here, the mean velocity is, therefore, essentially the velocity
of the ions. The mean velocity of each particle species, is called the diffusion velocity
Wy !

W, :VQ—V:VQ—inmava. (2.21)

Pm =

The mass flux (also mass current density) is:

jm = Z ngMagVo = PmV. (2.22)

[

The charge flux (or electric current density) is given by:

§=) MaGaVa =pV+) NaGaWa, (2.23)
@ @
where ¢ is the particle charge. As the diffusion velocity of the electrons is greater than
the ion diffusion velocity, the electric current density is determined by the electrons. A
random velocity is introduced as ¢, = V4 — Vo, Where v, is the particle velocity and v,
the fluid velocity. The pressure is defined as the time in which momentum is transported

by the particles through a surface element moving with the mean particle velocity. The

23

total kinetic pressure tensor is:
p= Z Po + meawawaa (2.24)
a a

where p,, is the pressure relative to a particles mean velocity and p is the pressure relative
to the global mean velocity. For random velocities, the tensor can be expressed by the
pressure scalar. The total scalar pressure P is defined as one-third the trace of p, P =

%Z ; Pii» and the scalar pressure tensor is written as:

1
P= Z P, + 3 meawé. (2.25)
a a

The single-fluid equations derived by adding up the contributions of all species, lead to

the vanishing of the collision term, as the density, momentum and energy are conserved.

The correct relationship between currents and field is given by the generalised Ohm’s
law (Boyd and Sanderson, 2003, p.64). Although this would need a two-fluid approach to
be derived correctly, the inequality of the masses of ions and electrons and the condition
of charge neutrality lead to an Ohm’s law that is applicable in the MHD approximation.

The generalised Ohm’s law is derived by combining the equations of motion with which
we obtain a charge-weighted average and which can be used to extend the ideal MHD
or resistive MHD model (Goedbloed and Poedts| 2004, p. 562). Adding the equations of

motion for the ions and electrons, which can be expressed as:

mina—t' = gen(E+v;xB)=VP;+mng+C,, (2.26)
o
mm% = gen(E+v,xB)— VP, +meng+C,,, (2.27)

the collision term, here C;, = —C,;, as well as the electric field cancel out and we yield:

w_ (jxB)-VP+pg. (2.28)

Par =

As the fluid is neutral, the electric field does not appear explicitly (Chen, 1984, p. 173).
If we take the momentum equations, Eqns. (2.26)) and (2.27), and now multiply one with

24

the mass of the other and subtract the electron equation from the ion equation, we obtain:

0
mimena—t(vi —V,) = gen(m; +me)E + gen(m,v; + mive) X B—mVP;+m;VP, — (m; +mg)P,;,

(2.29)
which, following (Chen| (1984} p. 173), becomes
. 1 |mmndj .
E+vxB=nj+ —|——=—=+(mj—m)jxB+m,VP;—m;VP,)|, (2.30)
gep| gqe Otn

which is the generalised Ohm’s law and describes the electric properties of a conducting
fluid. Because the % term can be neglected where inertial effects (like the cyclotron
frequency) are not important, i.e. in slow motions, this can be further simplified, and in

the limit m,/m; — O this yields:

1
E+vxB-nj=—(xB-VP,) 2.31)
n

e
Often the Hall term (j X B) and the VP, term are small enough and can be neglected, and
the equation reduces to:
E +vxB =1nj, (2.32)

which is called the resistive MHD Ohm’s law. If the resistivity (or diffusivity) n is ne-
glected too, the ideal MHD Ohm’s law is obtained. In this work, Ohm’s law is integrated
in the induction equation of the set of equations for the charged fluid. There, Ohm’s law
and Faraday’s law are used to express the electric field and electric current density in

terms of the magnetic field and the velocity.

2.1.3 Two-Fluid (ion-neutral) MHD

The code developed here covers the two-fluid ion neutral model for partially ionised plas-
mas. This means that there are two sets of equations, one for the ionised fluid and one for
the neutrals. From the above sections one can sum up the approximations and assumptions
made for the two-fluid (neutral-ion) MHD model applied here. Apart from fundamental

plasma such as charge-neutrality, for an ideal gas (like our MHD set of equations), there

25

are no forces between the particles and, therefore, no Coulomb forces (Cap, 1994, p. 115).
Moreover, pure hydrogen plasma is assumed and, therefore, the ions are of only one kind
and ions and electrons have the same temperature. Furthermore, it is assumed that the
electron inertia can be neglected, as the electron mass is much lower than the ions’ mass.
However, in fact, a centre-of-mass velocity, the velocity of the ionised fluid equals the
ions’ velocity, whereas the electron’s velocity could be calculated from the current den-
sity j, which is expressed through B with the Maxwell equations (Cap, 1994, p. 106).
However, in the derivation of the single-fluid MHD equations from an electron-ion two-
fluid equation, the collision terms containing j that are proportional to the electron density,
are neglected.

In the following, the macroscopic derivation of the hydrodynamic and MHD equa-
tions are given. The chapter ends with a derivation and explanation of the source terms,

including the collision terms, which are the terms connecting the fluids.

2.2 Derivation of the Hydrodynamic and MHD equations

The theoretical models of plasma lead to non-linear PDEs (Goedbloed and Poedts, 2004,
p- 3). The PDEs solved for the two fluid model are equations describing neutral fluid flow
in terms of hydrodynamics and plasma dynamics in terms of MHD. When considering
fluid flow, there are two ways of looking at the fluid and modelling it. We can either
consider a control volume V (which is a finite region of the flow with a control surface
S) or an infinitesimal fluid element with volume dV. Both can be either fixed in space
(and we obtain the conservation form) or moving with the flow, which is referred to as
the Eulerian and Lagrangian frames of reference, respectively (Wendt et al., 2009). In our
code, we consider a finite control volume V' (which directly leads to the integral form of
the equations) in the Eulerian framework. Fluid flow is described with equations based
on conservation laws. Conservation laws are a natural consequence of a central postulate
which states that there is balance in a physical system and, therefore, in a closed volume,
the production of mass, energy, or charge for example, is balanced by the flux of the same
across the boundaries of the volume (Hesthaven, 2018}, p.1). Following Hesthaven| (2018]),
general conservation laws can be mathematically expressed and derived as follows.

We consider a mass per unit length, or the density p(x,), of a fluid that is distributed

in the spatial domain x € [x1, x2] = Q. Hence the total mass is given as:

26

M(t):f p(x, t)dx. (2.33)

If v(x,1) is the local velocity of the fluid at position x and time ¢, mass conservation is

expressed as

d
7 jg; p(x,0dx = p(x1, v(x1, 1) — p(x2, Hv(x2,). (2.34)

This means that, assuming v > 0, mass can only be gained by a higher inward mass flux
at x| than outward mass flux at x,. Integrating over a temporal domain €; = [#1,#2], we

recover
f p(x,1)dx — f p(x,t)dx = f p(x1, Hv(x1, 1) — p(xz, Hv(xz, 1)dt, (2.35)
Q, Q, Q;

which is a direct consequence of the basic principle that mass cannot be created or disap-
pear by itself. Assuming that the density and the velocity are both differentiable functions

at (x,t), we obtain with the Fundamental Theorem of Calculus:

d 0
) plea) =5 [plende= [2 pceoan 236)
dt Q, Q, ot

or, equivalently:

d 0
p(x2, H)v(xp, 1) — p(x1,)v(x1,1) = o ‘fQ p(x, Hv(x,)dx = fQ ap(x,t)v(x,t)dx. (2.37)

Combining the theorem with Eqn. (2.33), we obtain

A

Since this must hold for any volume Q, X €, it must hold in a pointwise sense and we

o) 8
Ipet) O e (e |drdix = 0. (2.38)
ot ox

recover the conservation law in differential form:

Opel) O =0, (n.)eQxQ,. (2.39)
ot ox

As this applies to any conserved variable, say u(x,) and the associated flux f(u,t), we

27

yield for the conservation law in integral form:

ou(x,t) 0 3
f x fg | [o 5 S |didx =0, (2.40)
or, in differential form:
e 9 =0, (nneQ.xQ,. (2.41)
ot ox

In multi dimensions, a conservation law is expressed as

d
—f ux,ndV = § n-f(u,x,ds, xeQ, C Rd, t>0, (2.42)
dt Jo, 00,

now, u(x,) : Q, xQ; - R™ is the dependent variable, fi is the outward pointing unit vector
along the boundary 0Q, of Q, and f(u,x,?) : R" X Q, xQ; — R™ is the flux through the

boundary. Assuming that the solution and the flux are differentiable and applying Gauss’

ou

theorem over a control volume, we yield
, 1
(’;) 4 V- f(u,x,0)|dxdi = 0. (2.43)

NS

As this, again, holds for any control volume, we recover the general conservation law in

differential form

ou(x,1)
ot

The above is a system of m conservation laws in a d-dimensional space. Again, our

+V-f(u,x,7) =0, xeQ,, t>0. (2.44)

two fluid model requires two systems of equations: one governing the dynamics of the
neutral fluid (hydrodynamic equations) and one governing the dynamics of the ionised
fluid (MHD equations).

2.2.1 Derivation of Hydrodynamic Equations

Hydrodynamic or fluid dynamic equations are based on the fundamental principles of
mass, momentum and energy conservation. The following derivation will be based on
Wendt et al.| (2009). For the continuity equation or the conservation of mass, a control

volume V is considered; the net mass flow out of this volume through the surface S (LHS

28

of Eqn. (2.45)) equals the rate of decrease of mass inside the volume (RHS of Eqn.
(2.43)). This leads to the following mathematical expression:

5@5 pvds =—2 9%6 odV (2.45)
S ot JIJv

0

g 95@5 pdV + 9%5 ov-dS =0, (2.46)
ot 1% S

which is the conservation and integral form of the continuity equation. The conservation

or

and partial differential form is written as:

dp
— +V-pv=0. 2.47
5 TVoPY (2.47)

The momentum equation is derived by applying Newton’s second law, which is:
F = ma. (2.48)

In the fluid dynamics case, the force F described by Newton’s law is the net force on the
fluid element. There are two sources of forces: firstly, there are the body forces which "act
at a distance" and directly on the volumetric mass of the fluid element, like gravitational
and electromagnetic forces. Secondly, there are surface or contact forces, which act di-
rectly on the surface of the fluid element and are basically due to the pressure distribution
and the shear and normal stress distributions that are imposed by the surrounding fluid.
We denote the body force acting in x-direction with p f,(dxdydz), the shear stress with
Txy and the normal stress with 7,,. Normal stresses are usually much smaller than shear
stresses and only become important when the gradient of the velocity are very large like,
for example inside shock waves. With the pressure force, —p, acting inwards with respect
to the fluid element, we get to the equation for the total force in x-direction:
Op Oty Oty 01y

Fe=|—+ + + dxdydz + p frdxdydz. 2.49
x ox " ox T ay e xdydz + p frdxdydz (2.49)

Furthermore, as the mass of the fluid element is fixed, and with:

29

_ Dy,
- Dr’

F =ma where m = pdxdydz and ay (2.50)

Dv,
Dt

component of the momentum equation

where

is the substantial derivative of the velocity in x-direction u#, we obtain the x-

Dv, xx ot X
pl; (ap+37 + Ty+67ﬂ+pﬁ, @2.51)

and, similarly, the y- and z-components:

p% _ _dp N 0Ty N Oty N Oty,
Dt oy o0x 0y 0z

+ 01y, (2.52)

Dv;, _ Op Oty aTZy Ot
th —(8z+ B + Iy + oz +pf (2.53)

These equations are also called Navier-Stokes equations and are partial differential equa-
tions in non-conservation form. Those scalar equations can be formed into equations of

conservation form by applying the definition of the substantial derivative, namely:

D 0

— =—+v.V 2.54
Dt ot v (259
or in the case of Eqn. (2.51)):
Dv, ovy
=p— V. 2.55
Py TP TPV Vi (2.55)

In addition, we expand the derivative and yield

% _ d(pvy) _ a_P

P ot o or

opv) _ v op

or Pt o (2.56)

With the vector identity for the divergence of a scalar and a vector, namely:

V- (ovyv) = v V- (pv)+ (ov) - Vv, or ov-Vv, =V.-(pv,v)—v,V-(pv) (2.57)

30

and by substituting the above equations into Eqn. (2.55]), we obtain:

Dv, d(pvy) op

th =5 —VxE—VxV'(pV)+V-(pVXV) (2.58)
or
Dv, d(pvy) B 6_p
0 Dr - or Vy 5 +V-(ov)|+ V- (ovyv). (2.59)

As the term in the square brackets is just LHS of the continuity equation (Eqn. (2.47))
and, therefore, zero we get for the conversion of our momentum equation from non-

conservation form to conservation form:

Dv, d(pvy)
P = ar + V- (ovyv), (2.60)

which leads to the following components of the momentum equation in x,y and z direction

in partial differential and conservation form:

(9([)\/ +) 0 % OTxx aTXy aTxZ
V- xY)=\—"7_ X
g TV en) (ax+ax+ay+az ol
d(pvy) _(Op Oty 0Ty, 0Ty
% +V-(pvyv)—(6y+ P + By + e +pfy (2.61)
o(pv;) _ Op Oty asz Ot
o +V (vaV)—(ﬁz+ I + Iy + oz +pf.

The energy equation is based on the first law of thermodynamics which states that the
energy of an isolated system is constant, hence energy can neither be destroyed nor cre-
ated. Considering a fluid element, this means that the rate of change of energy inside it
equals the net flux of heat into it plus the rate of work done on the fluid element due to
body and contact forces. The work done by a force is the product of the force times the
component of the velocity in the direction of the force. Considering the derivation of the
body and contact force terms for the momentum equation (RHS of Eqn. (2.61)), we get

for the work done by these forces, arbitrarily denoted as C:

31

Ovyp Ovyp Ov,p\ OviTex OVWTxy Ov,Ty,
C=|-

[(0x+6y+8z TTox oy oz
(9VxTyx N 5VyTyy N avayz N avx‘rzx (9Vy‘l'zy . 8VZTZZ
0x oy 0z o0x oy 0z

+of - vdxdydz. (2.62)

dxdydz

Here, C is the combined terms for the work done on the fluid element, and we now con-
sider the change of energy due to heat flux, which is a result of volumetric heating, e.g.
absorption or emission of radiation and the heat transfer across the surface due to temper-
ature gradients, also known as thermal conduction.

With the mass of the fluid element being pd xdydz and the denotation of g as the rate of
the volumetric heat addition per unit mass, our volumetric heating term equals pgdxdydz.
The thermal conduction term is obtained by considering the heat transferred into the fluid
element (in x-direction this would be g.dydz) and the heat transferred out of the fluid

element ([gy + (%)dx]dydz). The net heating in x-direction, gy, then is

0d.x

P
dx|dydz = =2 dxdydz, (2.63)
Ox ox

Anetx = [QX - (Qx +
or for all directions:

ox "oy oz

The volumetric heating together with the heating by thermal conduction then equals:

0
et = — (% L 6qz)dxdydz. (2.64)

0
Q:[pq_(%+&+%

dxdydz. 2.65
Ox 0y 8Z)]xyz (2.65)

Because the heat transfer by thermal conduction is proportional to the local temperature
gradient (Braginskii, (19635, p. 221),

gx = _kg’ qy - _k_; q; = —k—’ (266)

32

where k is a proportionality constant, we can replace gy, gy, q; in Eqn. (2.65) and arrive at

o (. or o (. .oT 0 (. oT
= —lk— |+ —|k— |+ — | k— || dxdydz, 2.67
0 [p‘”ax(8x)+(9y(8y)+81(OZ)] rayaz ()

for the net flux of heat into the fluid element. The total energy of our moving fluid element
is the sum of its internal energy e and its kinetic energy v2/2 per unit mass, and hence the
time rate of change of energy is as follows:

D

V2
E = Dr (e + ?)pdxdydz. (2.68)

The energy equation then is:

2€+V_2 — +£ ka_T +2 ka_T +£ ka_T
Poc\c T2 T PTG \Fax) Tav\Tay) T az\V ez

Ovp Ovyp Ov,p\ OviTyx OVyTxy OV, Ty
- + + + + + 2.69
(0x dy 0z O0x dy 0z (269
OV Tyx . OvyTyy N v, Ty, N OV Ty N OvyTyy N ov,T,, by

O0x ay 0z ox dy 0z

which is the total energy equation in non-conservation form. To write the energy equation
in terms of the internal energy only, we take the momentum equations in x,y and z direc-
tions (Eqn. (2.61)) and multiply them on the LHS by v2/2, v% /2 and v2/2, respectively.

Adding those three altered momentum equations together, we get

D (v? op op op Otyy 0Ty 0Ty
= = —V— —Vy— —V,— + + + 2.70
th(2) Yxox oy 'z 0z "\ Tox oy 0z (2.70)
0ty Oty 01y or ory, Or
+ vy(o oy e)t 8;2 Yy T aZZZ +pWafx+Vyfy +Vfo).

Subtracting (2.70) from and noting that pf - v = p(vfy + v, f, + v.f;) the energy
equation in terms of the internal energy only becomes:

33

D T T T

Dt ox\ ox) ody\ dy) dz\ 0z
ov ov ov ov ov ov

N vy N dvy N v, N vy N dvy N v,
Tyx—— Ty + Typ—— + Tox—— + Toy—— + T ——
yx y 6y Yz 0z X Ox 7y ay z 9z

0x
and as done with the momentum equation, we can get the energy equation in conservation
form by applying the definition for the substantial derivative (Eqn. (2.54))) and the vector
identity (Eqn. (2.57))) and obtain:

d(pe) o0 (.0T 0 (. 0T\ o0 /(. 0T
ot +V-(pev) pCI+8x(3x)+6y(6y)+az(az)
Ov, Ovy v ov ov ov
RA G e R e

Oy vy v, Oy vy v,
+ Tyxa + Tyya—y + Tyza—z + sza + sza—y + Tzza—z

which is the energy equation in terms of the internal energy in conservation form. The
above equations express fluid behaviour for a viscid flow, and hence, consider the dis-
sipative, transport phenomena of viscosity and thermal conduction. If those phenomena
are neglected we talk about inviscid flow and with neglecting shear and normal stress the

equations simplify to:

dp
F.v. = 0
5 VoY)
Opvy B oP
ot +V~(pvxv) - Ox +pra
Opvy oP
7 +V'(pVyV) = _a_y +pf;;, (273)
opv oP
Vv = =Sl
Oe
E-'_V (ove) = pq—V-vP+pf-v.

34

The energy equation here is given in terms of the energy per unit mass (odxdydz) and if

this is one, the full hydrodynamic equations, without forces, are written as:

0
—p+V. = 0
FYL (pv)
0
—pv+V-(povww+PI) = 0
ot
0
a—te+V-(e+P)v = 0 (2.74)

2.2.2 Derivation of Magnetohydrodynamic (MHD) Equations

The equations governing our ionised fluid are, in essence, the same governing our neutral
fluid. Additionally, the fluid is ionised (plasma) and, therefore, electrically conducting,
and non-magnetic (Davidsonl, 2001, p. 3). In its core, the fluid theory of plasma and
the macroscopic plasma dynamics are about the interaction of plasma motion as a whole
within the magnetic field geometry. Plasma motion is influenced by magnetic fields,
which are, in turn, generated by the plasma motion itself, and MHD is a way to describe
this global interplay of plasma and magnetic field (Goedbloed and Poedts| 2004, p. 28).
This requires, apart from the continuity, momentum and energy equations, an equation
that describes the evolution of the magnetic field. Therefore, fluid dynamic equations are
combined with Maxwell equations. Furthermore, an expression to describe the interaction
of the magnetic field with the fluid flow or velocity field of the fluid has to be provided.
The velocity of the electrons is what creates currents and therefore influences the magnetic
field, which, again, influences the fluid.

Starting from the equations to evaluate the electromagnetic field, the Maxwell equa-
tions are derived. Then, in order to combine them and account for the interaction with the
velocity field, the induction equation is modified. The electromagnetic field equations are
a compound of four equations and together are known as the Maxwell equations. These

four Maxwell equations are:

35

V-E = , (2.75)
€0
vV-B = 0, (2.76)
0B
VXE = ——, 2.77
X ot @77
1 0E
VxB = j+——, 2.78
X L R ary (2.78)

where E is the electric field, B is the magnetic field, ¢ is the electric permeability of
free space, p" is the charge density, uq is the magnetic permeability of free space, j is the
current and c is the speed of light. Maxwell’s set of equations to describe the evolution
and interaction of electric and magnetic fields with matter is based on research and ideas
of great mathematicians and physicists like Gauss, Ampere and Faraday (Mattis|, [1965).
Gauss’ law, as seen in Eqn. (2.73]), states that the divergence of an electric field
depends on the electric charge (Priest, 2014, p. 75). We get to this expression by starting
from Coulomb’s law of electrostatics in 1785 (Eqn. 2.2.2)), which gives us the magnitude
and direction of the force F between two charge carrying particles g1, g> at distance ry;
(Grant and Phillips|, [1999, pp. 2).

1
F= @rm. (2.79)
e 1y,

Considering a point charge g at the centre of a sphere of the radius r, the electric field
on its closed surface S with the surface area A = 4172 is everywhere of magnitude E =
q/4nrey, with € being the permittivity of free space constant. The product of area and
electric field A - E becomes g/€y and shows the independence on the radius (Grant and
Phillips,, 1999, p. 16). If we, now, do not have a single charge, but a number of charges,

the total field can be determined with the principle of superposition:
E=)E, (2.80)
i=1
which says that the total field is the sum of all the individual fields (Griffiths,|1999, p. 68).

36

The flux ®g coming from all of the charges together and going through the sum of the

infinitesimal area da, i.e. the closed surface S, that encloses the total charge Q,;;, then,

@EzggE-da:Zn:(SEEi-da):Zn:(Z—é). (2.81)

i=1 i=1

is :

As this holds for any surface S, the total electric flux ®g or the flux of E going through a
closed surface S is:

1
O = SEE-da = —Qenel- (2.82)
N €0

Equation (2.82)) is Gauss’ law in integral form. We get the differential form by applying

the divergence theorem, where dV is an infinitesimal volume element:

SEE-da:f(V'E)dV. (2.83)
S 14

The charge enclosed can be rewritten in terms of the charge density p*,

Qenct = f p'av, (2.84)
\%
and we get: .
f V.Eav= | Lav (2.85)
Vv Vv €0

Again, as this is valid for any volume, the integrands have to be the same and Gauss law

simplifies to:

V.E=E, (2.86)

which can be seen as Coulomb’s law plus the law of superposition (Griffiths, 1999, p.
232).

The second of Maxwell’s equations is based on Gauss’ law of magnetism, as seen
in Eqn. (2.76). It is an expression for the non-existence of magnetic monopoles or free
magnetic poles or another analogue to electric charges. The flux integrated over any finite
closed surface is zero, because as many lines that enter the volume enclosed by the surface
also leave it (Priest, 2014} Grant and Phillips, 1999, p. 75, 191). Hence, the magnetic field
lines are continuous, and form either closed loops or extend out to infinity (Griffiths, 1999,
p. 232).

37

Faraday’s law, as seen in Eqn. (2.77), states that time-varying magnetic fields give rise
to electric fields (Priest, 2014, p.75). Based on a series of experiments Faraday conducted,
he found, in 1831, that if there is a loop of wire and a magnetic field, we get a current
flowing by holding the loop still and changing the magnetic field. The force acting on a
charge at rest, cannot, however, be a magnetic force and Faraday inferred that a changing
magnetic field, induces an electric field (Griffiths, |1999, p. 302).

The induced electromotive force (emf) V is related to the induced electric field E,
which is caused by the changing magnetic field in the following way (Grant and Phillips|
1999, pp. 218):

V= ggE -dl. (2.87)
Furthermore, with the resistance of a material R, the current / can be determined with:
vV 1
I=—=—=QE-dl 2.88
=R 9§ (2.83)

From experiments, it is known that the current / is proportional to the rate of change with
time of the total magnetic flux @ through the circuit and the magnitude of the emf is

‘ SEE-dl

Lenz’ law gives information about the direction of this current induced and the emf. The

: do.
therefore proportional to <;=:

dd
—. 2.89
< (2.89)

direction of the current is such that it produces a magnetic flux tending to oppose the

dd
56E~dloc—z. (2.90)

original change of flux:

The magnetic flux through a coil is given by:

CI):fB~dS. (2.91)
S

In ST units, the proportionality constant is unity and from:

dd
E-d=—— 2.92
56 g (2.92)

38

we obtain

d
E-dl=-— | B-dS. 2.93
pra--% | (293

According to Eqn. (2.93), the line integral of the induced electric field around a loop can
be related to the time-rate-of-change of the magnetic flux through the surface enclosed by
this loop. If we now use Stokes’ theorem and express the line integral of the electric field

by the integral over the surface S of the curl of the vector E,

SEE-dl:foE-dS (2.94)
C S
we obtain p
fVXEdS:——fB-dS. (2.95)
s dr Js
The Leibniz rule for the derivative of an integral with constant integration limits allows
us to write (2.95)) as
0B
foE-dS:f——dS, (2.96)
S S ot
and we arrive at the differential form of Faraday’s law:
0B
VXE = ——. 2.97
ot (237)

Maxwell’s fourth equation, based on Ampere’s law, as seen in Eqn. (2.78)), describes
how currents and changing electric fields produce magnetic fields (Priest, 2014, p.75).
This equation is a generalisation of Ampere’s law, which puts the line integral of a mag-
netic field around a closed loop in relation to the current that passes through the loop
(Grant and Phillips, 1999, p. 135):

95 B-dl = o), (2.98)
C

where p is the permeability of free space, a constant that helps to define the unit ampere
(Griffiths, (1999, p. 216). However, Ampere’s law is only valid if currents are stationary
and continuous (Tipler and Mosca, 2009, p. 1064). Maxwell found an expression to make

Ampere’s law valid for currents that are not continuous by adding a displacement current

39

1; (Tipler and Mosca, |2009, p. 1166):

dd
Iy = EOTtE. (2.99)

We get to the general form of Ampere’s law:

do®
SEB-dl = uo(I+ 1) = ,u()I+;1()eod—tE. (2.100)
C

With the propagation speed for electromagnetic waves of:

= : 2.101)
VHo€o
we get:
1 ddp
B-dl =pupl+ ———. 2.102
SEC pol + = — ()

The differential form of Ampere’s law can be obtained with an expression for the total
current (as a surface integral over the current density j) and Stoke’s theorem (Grant and
Phillips, 1999, p. 148):

I:fj-dS. (2.103)
N

Without the displacement current we can then rewrite Ampere’s law in the following

9§B-dl:,uofj-ds. (2.104)
C S

According to Stokes’ theorem, a line integral can be expressed as a surface integral:

manner:

9§B-dlEfV><B-dS, (2.105)
C S
and Ampere’s law can be written as:
fVXB-dS:uofj-dS. (2.106)
N N

As this must hold for any surfaces, the integrands must be the same. By adding the

40

displacement current, we get the differential form:

1 dog
VXB =puj+—=——. 2.107
0 R ()

Ampere’s law describes what causes a magnetic field, and the induction equation -

how it evolves. The induction equation is derived starting at Faraday’s equation:

0B 0B
VXE__E or E——(VXE). (2.108)

With Ohm’s law, we can then get an expression for the electric field. Ohm’s law, in
general, relates the current density j to a force f per unit charge, where the proportionality
factor o is the conductivity of the medium (Griffiths, 1999, p. 285):

j=of. (2.109)

In our case, the force that drives the charges is electromagnetic force, and we get to the
special case of Ohm’s law:
j=0c(E+vxB). (2.110)

If the velocity of the charges is sufficiently small, it reduces to:

j=oE. 2.111)

For the electric field, we otherwise obtain:

E=L_vxB. 2.112)
o
Substituting E in Eqn. (2.108), we get:
OB j
—:—Vx(—va+i). (2.113)
ot o

From Ampere’s law we can get the current density j = VX B/ug. Therefore, j/o =V X

41

B/uoo. With the constant n = 1/ugo, where 7 is the diffusivity, we yield

%—l: =Vx(vxB)-Vx(nVxB)

= VX (vxB)-nVx(VxB). (2.114)

In general, 7 is not constant, which means the simplification in Eqn. (2.114) cannot be
made. For 1 as a function of space, the extra term —Vn X (V X B) has to be added. With the
vector calculus identity VX (VxB) =V(V-B) - V2B and knowing that B is a solenoidal
vector field, hence V-B = 0, we get the induction equation:

0B

E:Vx(va)msz, (2.115)

where the first term on the RHS describes the advection of the magnetic field with the
plasma and the second term describes the diffusion of the magnetic field through the
plasma (Wilmot-Smith, Priest, and Hornig, 2005). With another vector identity (V X (v X
B) =V (Bv-vB)) and for ideal MHD (magnetic diffusivity n = 0), we obtain the induction
equation:

68—]:+V-(VB—BV)=O. (2.116)

Before merging the hydrodynamic equations with the electromagnetic equations to
obtain the MHD equations, we have to make the Maxwell equations Galilean invariant
(Schnack,, 2009, p. 36). This means, we consider low velocities, v/c << 1. With the

Ohm’s law, which couples the dynamics of the electromagnetic field and the fluid:
E' =nj, (2.117)

where E’ is the electric field in the moving frame, which, according to the theory of

relativity, is

E+vxB
F=—t 2.118)
12
vi-a
we arrive at an expression for Ohm’s law in MHD form:
E+vxB =rnj. (2.119)

42

This is often referred to as resistive Ohm’s law. If we assume infinite conductivity, n be-
comes zero and the ideal MHD Ohm’s law is obtained (Schnackl, 2009, p. 36).

In Ampere’s law (Eqn. (2.78)) the displacement current can be neglected for low
frequencies, where the electric field is negligibly small, and Eqn. then becomes
(Schnack, [2009, p. 36):

toj =V xB. (2.120)

The momentum equation of our full MHD equations represents balance between ac-
celeration, pressure gradient and the Lorentz force. It can take on different forms and in
the following we want to briefly outline how they are related. In the momentum equation,
we have body forces acting on the fluid element. These body forces can be gravitational

or electromagnetic forces, like the Lorentz force, which can be expressed by
Fr =jxB. (2.121)

The Lorentz force acts perpendicular to the magnetic field, therefore, any acceleration
along the magnetic field lines is due to a pressure gradient or gravity (Goedbloed and
Poedts, 2004, p. 70). We use Ampere’s law

VxB
VxB=pj or j=-—— (2.122)
Ho
in the following vector identity (where p is a constant):
1
EV(B-B) = (B-V)B+Bx(VxB) (2.123)
vB?
= (B-V)B+Bx(uj)
VB’ ,
= B-V)B+uBX]))

VB2 B-V)B
— = () + (B xj).
20 Ho

43

Now, by rearranging, we obtain:

(B-V)B VB?
Ho 20

xB =

: (2.124)

where the first term in the RHS is the magnetic tension force and the second term is the
magnetic pressure force.

The terms of the energy equation are derived from the net flux of heat into a fluid
element as well as the rate of work done on the fluid element due to body and contact
forces. In an electromagnetic field this can be thermal conduction, viscous heating as
well as Joule dissipation. The total energy is the sum of kinetic, thermal, and magnetic
energy. The flux term of the energy equation in Hillier, Takasao, and Nakamura (2016) is
V[v(e + P) + ;-E x B] and relates to our energy equation as follows (applying Ohm’s law

and the triple vector product):

1
E =--(vxB) (2.125)
C
‘ExB = <|-lwxB)xB
Ar Y

_1 [-(B-B)v+(B-v)B]
4

i [((B-B)v—-B(B-v)]
4

The full MHD equations write as follows:

44

ﬁp+V-(pV) = 0 (2.126)

ot
)
EpV+V-(pVV+pI—BB) = 0 (2.127)
d 2
Ee+V-[(e+P+B/8JT)V—B/471(V-B)] = 0 (2.128)
0
aB+V-(vB—Bv) = 0. (2.129)

2.3 Two-Fluid Source Terms

The crucial aspect of a two-fluid code is the coupling of the fluids due to collisions, ex-
pressed mathematically in the source terms of the system of equations. If they were not
coupled, they would simply behave as separate fluids sharing the same space. However,
the fluids’ interaction leads to significant effects, as described in Sec. @ Those effects
are captured with our two-fluid MHD code and the source term is presented on the fol-
lowing.

For two-fluid MHD simulations, the full solution vector for our two-fluid code has the
following form, where the subscript p denotes the ionised fluid and » the neutral hydrogen
fluid:

U= [pp,ppvxp,ppvyp, €p, By, By,pn,pnvxnapnvyn, En]Ta (2.130)

and the flux vectors are:

45

PpVxp
ppv)%p +P,+ B?/8n— B2 /4n
PpVxpVyp — BxBy/4m
(ep+Pp+ BZ/Sﬂ)vxp —B(v,-B)/4r
0
VxpBy = VypBx
PnVxn
PnVan + Pn
PnVxnVyn

Vin(€r + Pp)

PpVyp
PpVxpVyp — BxBy[4m
ppvgp +P, +Bz/87r—B§/47r
(€p+ P+ B?/8m)vy, — By(v,-B)/4n
VapBy —VypBx

G= . 2.131
0 ()

PnVyn
PnVxnVyn

2
PnVyp+ P

Vyn(fn +Py)
The system of equations is closed with the following equations for the total energy:

vy P, B

_% il 2.132
Y= "5 s (2.132)
for the ionised fluid, and)
Pvy P
_ PV L 2.133
“=72 o1 @139

for the neutral fluid. Each of these represents an ideal gas equation. The first term in these
total energy equations expresses the kinetic energy, the second term the thermal energy

and the third term in Eqn. (2.132) is the magnetic energy term.

46

As has been mentioned before, the crucial aspect of multi-fluid simulations is the coupling
of the fluids. The two sets of equations for each, the neutral and the ionised fluid, are cou-
pled through collision, ionisation, and recombination terms, mathematically implemented

in the source terms, expressed for the entire system of equations in Eqn. (2.134).

~YrecPp + YionPn
Pp&x + AcPnPp(Vin = Vap) = YrecPpVap + YionPnVan
Pp8y + AcPnPp(Vyn = Vyp) = YrecPpVyp + YionPnVyn
Pp&xVx, + AcPrppl (Vi =V3)[2 4+ 3Rg(Tr = Tp)l = VrecPpV3) /2 + VionfnVi) /2
0
0

YrecPp = YionPn
Pn8x = AcPnPp(Van = Vap) + VrecPpVip = YionPnVan
Pn8y — ¥cPnPp(Vyn = Vyp) + YrecPpVyp = YionPnVyn
| on8yVy, = XePuPpl (v = V3) /24 3Rg(Ty = Tp)l + VrecPpVis) /2 = YVionPnvia) /2|
(2.134)

Yion and y,.. are the ionisation and recombination rates, respectively. The temperature
is calculated with the ideal gas law and in the non-dimensionalised form it is given by
Ty, = Pyy/py for the neutral fluid and by T), = P,y/2p,, for the ionised fluid. 7 is the adi-

abatic index and R, the gas constant.

The interaction between particles with each other or existing force fields is often also re-
ferred to as collisions and, hence, the terms expressing the particle interactions are called
collision terms, also known as collision integrals. These collisions can involve transfer of
mass, momentum and energy and their study is part of transport theory (Boyd and Sander-
son, 2003, p. 296). Collisions are important for the establishment of thermodynamic equi-
librium and can be divided into elastic and inelastic collisions. Inelastic collisions change
the internal state of a fluid by various processes such as ionisation, recombination, exci-
tation and variuos other plasmachemical reactions (Rozhansky and Tsendin, 2001} p. 19).
The collision terms are a very complex matter and one of the most challenging topics

in plasma physics, as they require, for example, the evaluation of the kind of collision,

47

the scattering angle, and various cross sections. The plasma books by Bittencourt| (2004])
or Boyd and Sanderson| (2003) have been proven to be comprehensive and well written
sources of literature on that topic. Therefore, only a brief insight into collision terms and
their form is given and afterwards each collision term used in our equations will be briefly
described in their meaning.

The collision integral for a species «, is the sum over all collisions between the par-
ticles of o with the the particles of the other species, say f (Rozhansky and Tsendin,
2001}, p. 18). For elastic, two-body collisions, for instance, Boltzmann derived a collision

integral, which is written as (Cap, [1994):

2

at) = f(va _Vﬁ)[f(XQ’V*(X’t)f(xﬁ7V*,B’t) _f(XOz’Va/’t)f(Xﬁ’ Vﬁ,t)]O'CdVﬁ, (2135)
coll

where the subscript @ and 8 denote different kind of species and o is the cross section. v*
denote the velocities before the collision, which are scattered to the velocity v. At equilib-
rium each collision term is equal to zero, which is satisfied with the Maxwell distribution.
Landau included Coulomb collisions and extended the Boltzmann collision integral (Cap)
1994).

As can be seen in Eqn. (2.4), for the evolution of the macroscopic variables (i.e., for the
analysis of relatively slow, large-scale transport processes), the moment for each collision
term has to be taken. The collision terms of the macroscopic quantities (mass density,

momentum and energy) are:

f (% dv = S, (2.136)

ot coll

maf(v% dv = R, (2.137)
ot coll

My 20fa

Ma 9Ja - 0, 2.1

7 f(v o COlldV 0 (2.138)

where S 4, R, and Q,, stand for the source terms of the continuity, momentum, and energy
equation, respectively. It follows that for inelastic collisions, the collision terms have to

be the inverse of each other, so that conservation laws apply. In our neutral-ion plasma,

48

this would mean:
Sp=-Sn, R,=-R,, Qp=-0,. (2.139)

This implies that every collision term in the source term of the ionised fluid has the oppo-
site sign of the same collision term in the neutral fluid equation. The shape of Eqn. (2.139)
are determined by some appropriate physical approximations, which can be obtained from
classical transport theory (Boyd and Sanderson, 2003, p. 487). Their derivation can be
found in |Braginskii| (1965), |Boyd and Sanderson| (2003), and Rozhansky and Tsendin
(2001)).

Source terms represent either forces acting on a fluid element or the transfer of a quantity
onto the other fluid. In our continuity equation, the source term includes terms expressing
the transfer of mass (per volume) due to ionisation and recombination (Draine, Roberge,
and Dalgarno, [1983). If no particles are produced or annihilated, the source term is zero
(Braginskii, [19635)). In the following, the source term of the ionised fluid (top row) and the
neutral fluid (bottom row) shows that the mass density that is added to one fluid, will be

subtracted from the other fluid.

~YrecPp + YionPn
YrecPp — YionPn

Sdensity = . (2.140)

As can be seen, if y;,, and y,.. are set to zero, no mass density would be exchanged at
all. By taking the zeroth moment of a Maxwell distribution function, Meier and Shumlak
(2012)) derive concisely that the impact of ionisation on the mass density of the ionised

fluid equals the inverse of the same for the neutral fluid, i.e. yfo "

= —y;,,» Where the
superscript here indicates the fluid which is affected by the collision term. The same
applies for the recombination rate, where —y%,. = y"... A good qualitative consideration
of the collision terms or transport coefficients is also given by Rozhansky and Tsendin

(2001). In the momentum and energy equations, body and contact forces, like gravity g,

49

come into play in the source term.

Pp8x+ AcPnPp (Van — pr) ~YrecPpVxp t YionPnVxn
+a. Vyn = Vyp) = YrecPpVyp + VionPnV
S,omenium = Pp8y an,Op(yn yp) YrecPpVyp T YionPnVyn . (2.141)
Pn8x — a'cpnpp(vxn - pr) tYrecPpVxp — YionPnVxn

Pn8y = AcPPp(Vyn = Vyp) + YrecPpVyp = YionPnVyn

The first two rows of Eqn. (2.14T]) are the ionised fluid’s momentum source terms and the
third and fourth row are the neutral fluid’s momentum source terms, in x— and y—direction.
As gravity can act at an angle, depending on the orientation of the computational domain,
it has an x and a y component. However, in this work, gravity is neglected and set to zero.
The source term for the momentum equation describes how much momentum is added to
each fluid; and the source term of the energy equations describes how much energy (ki-
netic, thermal or magnetic) is added to each of the fluids (Draine, Roberge, and Dalgarnol
1983). Furthermore, the numerical setup is such that the two fluids basically share the
same position in space and move through thermal motions, i.e. due to their thermal en-

ergy. Momentum transfer are the result of the collisions between the two fluids, described

T,+T
e = a(To) 4 /’;TO” (2.142)

This collision rate, like in [Hillier, Takasao, and Nakamural (2016)), covers the elastic col-

by the collision rate a,:

lisions between the ionised fluid and the neutral fluid and shows a dependence on tem-
peratures of both fluids. «@.(Ty) expresses the collision rate at a reference temperature,
the ambient temperature 7, which is the surrounding temperature at the beginning of the
simulation. The friction force is the second term in Eqn. (2.141), which due to the loss
of the particles’ relative velocity after a collision leads to a redirected motion (Rozhansky
and Tsendin, 2001} p. 31). The conversion of the energy of direct motion into heat by
friction force is called Joule heating (Rozhansky and Tsendin, 2001}, p. 37). The friction
force term includes the velocities of both fluids in relation to each other, the drift velocity,
and is proportional to it. The resulting velocity is not isotropic (as for thermal motions),
but has a certain direction. This direction is the direction v, —v,, i.e. the direction of

the drift velocity, and implies the impact of one fluid on the other. On the one hand, the

50

friction force is determined by and proportional to the drift velocity, but it also causes a
drift, which is in the direction of the electric field (Rozhansky and Tsendin, 2001, p. 41).
This means, the higher the drift velocity, i.e. the greater the difference in velocity of both
fluids, the greater the friction force. It follows that the fluid moves in the direction of
the electric field with a velocity which is proportional to the collision frequency. The

thermal energy term related to the thermal exchange due to ionisation and recombina-
1 kg

tion (;Tlm_n(yrecp »Tp = YionpnTn), compare Leake et al. (2012); Popescu Braileanu e al.
(2019)), has not been included to this set of equations, as a direct comparison to Hillier,
Takasao, and Nakamural (2016) was the aim, therefore, the exact same equations therein
were solved for.

The third and fourth terms are related to ionisation and recombination, the inelastic
interactions between the fluids. Those two terms are related to the velocities of each fluid
in the respective direction, but not to the drift velocity. As can be seen, recombination adds
to the momentum of the neutral fluid (at the same time it takes away momentum from the
ionised fluid) and ionisation adds to the momentum of the ionised fluid (and takes away
momentum from the neutral fluid). Or in other words, recombination processes, which
are expressed mathematically as the y,..-terms and are added to the source term of the
neutral fluid, increase the neutral fluid’s momentum and ionisation processes increase the
ionised fluid’s momentum.

In the energy source terms, Eqn. (2.143), the top row is the ionised fluid’s energy

source term and second row is the neutral fluid’s energy source term.

Pp8xVx, + AcPnPp [(V% - VIZJ)/Z + 3Rg(Tn - Tp)] - (7recppV127)/2 + (Yionpnv;%)/z
Pn8yVy, — CYanPp[(V,% - V%;)/Z + 3Rg(Tn - Tp)] + ('yrecppvlzy)/z - (')’ionan%)/z
(2.143)

Senergy =

Here, the second term is related to the energy exchange between the fluids due to elas-
tic collisions, where one part expresses the kinetic energy exchange and the other part
(including the temperature), represents the thermal energy exchange. The last two terms
are related to inelastic collisions, namely ionisation and recombination processes. As can
be seen from the last term of the ionised fluid’s energy source term, through ionisation
the ionised fluid gains energy and through recombination, the neutral fluid gains energy

(third term in the neutral fluid’s energy source term). Therefore, each fluid’s energy level

51

depends on the size of each term, y;,, and ;.

Ionisation and recombination are very complex processes, as mentioned in the Sec. [1.2]
We want to investigate what happens when ionisation and recombination rates are imple-
mented and activated. In order to emphasize the difference with and without ionisation
and recombination, the rates used maximise the effect of ionisation and recombination in
the two chosen cases that will be presented. Following ionisation and recombination rates

are used:

Yion = 0.25[tanh(T), — Tyax/2) + 11, (2.144)
Yrec = 0.5[1 _)’ion]- (2.145)

The form of v,,, and y,.. is not derived from actual physical settings, but, again, chosen
to maximise the effects of these rates in the parameter regime studied, i.e. the parameter
regime of the slow-mode shock and the Orszag-Tang vortex.

A physical derivation and description can be found in |Braginskii| (1965), where transport
equations for fully ionised plasmas and, to some extent, partially ionised plasmas are de-
rived and explained. Meier and Shumlak! (2012) focus more on partially ionised plasma,
or the interaction of ionised-neutral fluids and present their model based on kinetic theory.
A comparison with formulations derived from physical principles is presented in the fol-
lowing. The ionisation and recombination rates used here, according to Eqns. (2.144)) and
(2.143), are compared to the ionisation and recombination rates used in[Popescu Braileanu
et al.|(2019) (and also used in [Leake et al.|(2012)):

o R 1 (q)ion)Ke(—(l),-on/Tg) (2.146)
o ¢ X+ q)ion/Te Te ’ .
e 2 6%1071°, (2.147)

Arec = \/Te

with ®@j,, = 13.6¢V, A =2.91x 1074 K =0.39, X = 0.232, and the temperature T, is
given in eV. In Fig. 2.1] the rates given by Eqns. (2.146) and (2.147) are compared to the
ionisation and recombination rates applied in this work, see Eqns. (2.144) and (2.143).
Scaling is applied to compare their behaviour as a function of temperature. This scaling

brings our temperature regime to the regime used in Popescu Braileanu ez al.|(2019) (with

52

Tscaiea = 1500T +13330) and their ionisation and recombination rates are scaled down to

match our regime (with 7, sc47.q = 0.0025n,).

Comparison lonisation and Recombination

0.5 4

0.4 4

rate

0.3 4

0.2 4

0.1+

13000 13500 14000 14500 15000 15500 16000
TinK

Figure 2.1: The ionisation rate (solid line) and recombination rate (dotted line) in
Popescu Braileanu et al.| (2019) green and in our model red

As can be seen, our ionisation and recombination rate (red) and the physical ionisation
and recombination rate (green), behave very similarly in the regime where ionisation and
recombination both play a role, i.e. where temperatures are not so low that the fluid is
completely neutral, i.e. ionisation is unlikely to happen or where temperatures are so high
that everything is ionised.

The full two-fluid equations are:

53

0
Epp +V. (ppr)

0
a—tppvp +V-(ppVpVp+ ppI—BB)

gtep +V-|(ep+Pp+B*/87) v, ~B/4n(v)-B)|

0
~B+V-(v,B-Bv,)
D o+ V- (on¥)

0
Epnvn + V- (ovpv, + puD)

0
Een +V-(en+ pu)Vy

54

—YrecPp + YionPn

Pp&+@cPrPp(Vn—=Vp) = VrecPpVp + YionPnVn
Pp&¥p +acpupp |(Va—V2) 2+ 3Ry(T, = T))|
~ (Yrecop¥) 12+ (Yiowou V) 12

0

YrecPp ~ YionPn

— Pp&— AcPnPp(Vn = Vp) +VrecPpVp — YionPnVn

Pp8Vp + AcPupp [(v,% - vf,) [2+3Rg(T, — Tp)]

- (7recppV127) /2+ (Vionpnvg) /2

Chapter 3
Numerical Methods — an Overview

To simulate or computationally model any physical phenomenon or processes, one needs

to
1. define the problem
2. model it mathematically and then
3. computationally simulate it.

After the definition of the problem, the governing equations and the initial and boundary
conditions have to be found (Peiro and Sherwinl 2005)). Often conservation laws and their
mathematical representation in the form of PDEs are involved and even though they can

be solved numerically, obtaining their solution can be a very complex task.

3.1 Partial Differential Equations (PDEs)

PDE:s express a function of several variables and how fast the function changes, or its rate
of change. They include partial derivatives, where the function (the dependent variable)
depends on at least two independent variables. The coeflicient of the partial derivative
determines the order of the PDE (Shyy, 2006, p. 27).

There are three operators that are each a typical feature of the three general classes of

partial differential equations (Shyy, 2006, p. 27):

55

0

1. Laplace operator, V2 = e +..+ which typifies elliptic equations (e.g. in

axz’
potential flow problems in fluid mechamcs)

2. Diffusion operator, E V2, which typifies parabolic equations (e.g. in diffusion

dominated situations, as in heat conduction)

3. D’Alembert operator, O = % — V2, which typifies hyperbolic equations and is ap-

plied the most in wave transmissions

Physical behaviour can be divided into the categories of equilibrium and marching prob-
lems (Versteeg and Malalasekera, 2007, p. 26). Elliptic equations govern steady state
situations. Marching, or propagating problems, are governed by parabolic and hyper-
bolic equations. Distinctive for an elliptic equation or problem is that if the interior of
the solution is disturbed or a perturbation into the boundary condition is introduced, it
instantaneously changes the solution everywhere (Peiro and Sherwin, 2005). For exam-
ple, a local change in temperature would lead to a global change in temperature (Versteeg
and Malalasekera, [2007, p. 27). A typical example for an elliptic equation is the Laplace
equation, which describes irrotational flow of an incompressible fluid and steady state

heat transfer and reads in two dimensions as:

) an>
sz 2

Parabolic equations describe time-dependent problems with diffusion, like unsteady vis-

=0. 3.1

cous flows or heat conduction. The heat or diffusion equation is a typical example of a
parabolic equation (Versteeg and Malalasekera, 2007, p. 28):
oD 50

E ZQW. (32)

Here, the solutions move forward in time and diffuse in space. That means, if we disturb
the interior of the solution region at #; > ¢, it influences the solution only at a later stage
where ¢ > t; and diffusion ensures smoothness of the solutions (Versteeg and Malalasek-
era, 2007, p.28). If t — oo, or % = 0, the steady state has been reached and the governing
equation is now the one governing the steady distribution of @ and is elliptic (Versteeg and
Malalasekera, 2007, p. 28). Hyperbolic equations govern the analysis of time-dependent
processes with a negligible energy dissipation (Versteeg and Malalasekera, 2007, p. 28),

56

such as steady or unsteady inviscid compressible and incompressible flows (Wendt ez al.,
2009, p.82). The wave equation is a typical hyperbolic equation, where c¢ is the wave
speed (Versteeg and Malalasekeral, 2007, p. 28):

0 0%

IO _ L0 33
o2~ a2 (3-3)

Hyperbolic PDEs have special characteristics, which are related to the wave speed: they
allow the wave propagation (or information to travel) at finite speed, and the occurrence
of discontinuities (shocks) in the solution (Versteeg and Malalasekera, 2007; Shyy, 2006,
p- 29, 89). For non-linear PDE:s, the classification cannot be made that easily. For hydro-
dynamic and MHD equations, for instance, convection or diffusion terms can be added,
which are hyperbolic and parabolic, respectively. The classification, therefore, depends
on the dominating term and can only be made locally, for a region in the domain (Wendt
et al., 2009, p. 81). Depending on the mathematical problem or the governing equation,
the boundary values have to be chosen. The boundary-value problem requires the solu-
tion of a differential equation or system of equations in a region R, at which boundaries
additional conditions have to be taken into consideration (Scheid, |1968, p. 382). For our
simulation, the solution of the Navier-Stokes and Maxwell equations is approximated with
the Kurganov-Tadmor scheme, which is a finite volume scheme and further explained in
Sec.[3.3] Common spatial discretisation or integration methods are the forward or upwind
Euler, backward or downstream Euler, or the central scheme; common temporal discreti-
sation or integration schemes are the forward or explicit Euler, backward or implicit Euler,
or Runge-Kutta. The classical numerical discretisation methods are finite difference (FD),
finite volume (FV) and the finite element (FE) methods (Peiro and Sherwin, 2005)). There
are three main aspects for the analysis of discretisation schemes that are also interrelated:
the accuracy, stability, and consistency and convergence of the scheme used to discretise
the problem (Shyyl, 2006, p.3-5). Consider a differential equation that describes the vari-
ation of a function U, with respect to one or more independent continuous variables like
x (space coordinate in one dimension) and ¢ (time coordinate). To apply, for example, the
finite difference method, we now want to get a discrete function u, which is a function
of x and ¢ at discrete points. If we let 2 and k be positive constants, so that x,, = mh and
t, = nk (with integers m and n) are spatial grid points and time instants, respectively, the

corresponding function at (x,,,1,) will be uj,, i.e. u,, = U(x,,t,) (Shyy, 2006, p. 3). We

57

replace the differential operators /(«) and apply finite difference operators L(u) like the:

1. forward difference : du,;;, = up+1 — U
2. backward difference : ou,, = uy, — Uy—1

3. central difference : du,;, = U1 — Upp—1-

The consistency of a scheme has to do with whether a difference operator L(u) can truly
represent the differential operator l(u) as h,k — 0, and convergence with whether the
finite difference solution approaches the exact differential solution in the limit, i.e. u);, —
U(xp,ty) as h,k — 0 (Shyy, 2006, p. 3-5). Basically, a numerical scheme is consistent
if the discrete numerical equation tends to the exact differential equation as the mesh
size tends to zero (Peiro and Sherwin, [2005, p. 25). For example, we consider the linear
advection equation u; + au, = 0 (where the subscripts ¢ and x indicate the derivative with
respect to ¢ (time) and x (space)), respectively, which is given by a central in space and

forward in time scheme:

Wttty u —ut
i i + i+1 i—1 =0. 3.4
A YT oAx 34)

The superscript n indicates the step in time and the subscript i the grid point in space.

Here, the Courant number C = aAt/Ax, where a is the velocity, Ax the grid spacing and

At the time step, we obtain:

uf*th =l - %(”?H —ujy)- (3-5)
With the Taylor expansions for ul’.‘” , u;‘+ , and uf_lz
i =+ Aol + (Azt)z tlf + . (0.6)
i, =uy +(Ax)uxli + %uml? + (Ag)3 Upxxl? + ...
u; | =u; — (Ax)uyl! + (A;)Z Ul — g”xml? to

substituted in (3.4)) and re-arranged, we yield:

58

n+1 n n o _ . n
L ST b au)l! = e 3.7)
At 2Ax PR ’ '

where er is the truncation error given by:

u

2
er = Sl + ! + 002, (40 (3.8)
If At and Ax go to zero, the LHS (er) will tend to zero, and we can say that the approx-
imation is consistent, as the numerical scheme approaches the exact equation at point x;
and time ¢"* (Peiro and Sherwin, 2005, p. 27).

Stability refers to the computed solution and the exact solution of the discrete equation
to be bounded, hence u), is bounded as n — oo (Shyy, 2006, p. 3-5). For explicit schemes,
at least the Courant-Friedrichs-Lewy (CFL) condition is to be fulfilled for them to be
stable and, therefore, for the errors not to grow uncontrolled (Peiro and Sherwin, 2005).
The CFL condition is based on the theory of characteristics for hyperbolic systems. It says
that the domain of dependence of a PDE is the portion of the domain that influences the
solution at a given point. The CFL condition expresses that for each point in the mesh the
domain of dependence of the FD approximation has to contain the domain of dependence
of the PDE in order for the explicit scheme to solve a hyperbolic PDE to be stable (Peiro
and Sherwin, [2005). In other words, the domain of dependence of the discretisation must
include the domain of dependence of the PDE. For hyperbolic and parabolic PDEs, the
stability can be analysed with the von Neumann stability analysis, which is based on the
decomposition of the errors into Fourier series. To sum up, "Stability is the necessary
and sufficient condition for a consistent linear FD approximation to a well-posed linear
initial-value problem to be convergent." (Peiro and Sherwin, [2005). The accuracy of a
scheme relates to how closely u),, approximates U(xy,,?,) as h and k vary, and is often

characterised by the order of accuracy.

3.2 Finite Volume (FV) Method

The scheme used for the code is based on the FV method. Unlike the FD method, where
the differential or strong form is used, in finite volume methods it is the integral form of

the equations that provides the basis (Peiro and Sherwin, 2005). This has the advantage

59

of being a good scheme for discontinuous (or weak) solutions too (Keppens, 2007) and
providing a more natural treatment of Neumann boundary conditions and discontinuous
source terms, as it does not require the solution to be as smooth. Furthermore, the in-
tegral formulations do not depend on a special mesh structure and deal with curvature
more naturally and, therefore, make FV methods more suitable for complex geometries
in multi-dimensions (Peiro and Sherwin, [2005). Moreover, it ensures global continuity
and, therefore, is consistent with the mathematical structure of Navier-Stokes equations
(Shyy. 2006, p. 116).

First of all, the region we integrate over is a finite volume (usually called “control”
volume) around the point x, represented by x;_(1/2) < x < X;4(1/2). The integral form of our

conservative variable u and its flux f(u) would be:

Xit+(1/2) Xi+(1/2)
f utdx+f fr(w)dx =0 3.9)
X,

i-(1/2) Xi-(1/2)
where the subscripts denote the derivation in time ¢ and space x, respectively. The flux

term can be obtained with:

Xi+(1/2)
f Hdx = f(uir2) = f(ui—1/2))- (3.10)

i—(1/2)
This way of approximating the solution produces a conservative scheme if the flux on
the boundary of one cell equals the flux on the boundary of the neighbouring cell (Peiro
and Sherwin, 2005, p. 22). This means the changes in the cell average value can only
happen through losses or gains through the cell boundary. If a scheme does not fulfil
this conservative discretisation form to correctly treat discontinuous or weak solutions,
incorrect shock speeds can be produced (Keppens, [2007). This control volume approach,
therefore, requires the construction of the fluxes at the interfaces or across the control
surfaces (Shyy, 2006, p. 116). This needs an extrapolation within the cell i from the
volume averaged value U;. This extrapolation can be achieved in two ways. Either by
means of a constant extrapolation, where the values at the interface or edges are equal to
the value at the cell centre (u(x € [x;—1, xi+1]) = u;) or by a linear extrapolation with a slope
o”’. The constant extrapolation is consistent with u;, but leads to a first order of accuracy,
where the fluxes at the interface are calculated as an average (e.g. fiy12 = (fi + fi+1)/2)

(Keppens, 2007). The linear extrapolation is still also consistent with u;, but yields a

60

second order accuracy (LeVeque, 2002, p. 106):

u(x € [xi—1,xi11]) = ui"“#%, (3.11)

Xi

where . .
Xj = E(xi—l/z +Xi1/2) = Xi—1/2+ EAX' (3.12)

Let’s say the slope is the difference of the values at the interfaces:

0" =Ujr1/2 —Uj—-1)2 EAM,’. (313)

This linear reconstruction is used to obtain a left and right value for one interface, for

. L R .
example for u;,1/2, there would be a Uiy and also a Uiy o'

Ul p = i+ Aui/2 (3.14)

and

why = uist = Auig1 /2, (3.15)

and the flux at one cell interface takes the average form:

frerpz = (FQulyy o) + fulyy 2))/2. (3.16)

When using the linear reconstruction approach to calculate the fluxes at the interfaces, the
slopes involved must be limited to avoid the introduction of spurious oscillations (Kep-
pens, 2007)). This is done by comparing the slopes of neighbouring cells and taking the
least steep slope. Furthermore, if the slopes differ in sign, then the reconstruction of the
fluxes at the cell centre is done with the first order accuracy constant reconstruction (Kep-
pens, [2007). If the slope is zero (Godunov’s method), first order accuracy is achieved.

Second order accuracy slopes can be obtained in three ways:

1. centered slope: o/ = "1

: pe: 7; TAx

2. upwind slope: o/ = 1741
- up pe: 0; Ax

3. downwind slope: 0" = Ui T4
. pe 0" = A

61

which are also referred to as the Fromm, Beam-Warming and Lax-Wendroff method,
respectively (LeVequel 2002, p. 108). In general, it is desirable for the slope to be second-
order accurate in smooth regions, and around discontinuities, a first order slope calculation
is applied. If the discontinuity stretches out over more than one cell and care is taken to
avoid oscillations, even in discontinuities non-zero slopes can help keep the solution from
smearing out too far and, therefore, increase the resolution and keep discontinuities sharp
(LeVeque, 2002, p. 108). Various applications of first and second order accuracy slope
calculation depending on the conditions are called slope-limiting methods and were first
introduced by van Leer in his monotonic upstream-centred scheme for conservation laws
(MUSCL). So, ideally, we want to apply a second order method for the slope, but at the
same time have to make sure that there are no non-physical oscillations that arise. This
can be done by measuring the oscillation in the solution with the fotal variation of a
function, defined as:

TV =Xuise1 —ul. (3.17)

In essence, it is the sum of the absolute values of the differences of one cell to a neigh-
bouring cell. A scheme is called Total Variation Diminishing (TVD) (Harten, [1982), if it

ensures that this total variation diminishes with time, hence:

TVl <TV", (3.18)

If this is fulfilled, it is ensured that monotone initial data remain monotone and, there-
fore the TVD property of a scheme guarantees it is monotonocity preserving and the
creation of spurious oscillations in the numerical solution is avoided (Keppens, 2007).
All in all, to make sure that no spurious oscillations develop with time, or to ensure the
TVD property of the solution (Sweby, |1984), the creation and growth of local extrema
(Wendt et al., 2009; Versteeg and Malalasekera, [2007) is suppressed with a limiter that is
applied to the flux terms of our conservative quantities. Hence, solving hyperbolic PDEs
numerically, requires methods that can handle solution discontinuities and do not generate
non-physical oscillations.

The Kurganov-Tadmor scheme, which will be described in the next section, deals
with discontinuities and controls spurious oscillations by ensuring TVD properties. An-
other way of oscillation control are explicit artificial diffusion terms, which are added to

the equations by means of an artificial viscosity coefficient. When artificial diffusion is

62

chosen, this viscosity coeflicient can be a scalar or it is substituted by a more complex
diffusion matrix. For a scalar viscosity term, the consequence it that it often leads to too
much diffusion in a large part of the the domain, where it is not needed and wished. By
applying limiter functions for each field, as done in the KT scheme, the optimal amount
of artificial viscosity is added (LeVequel, 2002). If the explicit artificial viscosity is not a
scalar but a matrix, those artificial diffusion schemes are equivalent to FV schemes with
TVD, for instance. Those TVD schemes are often considered as part of the artificial vis-
cosity models too (Denner et al., 2017). In fact, could also be translated into an explicit
artificial viscosity term (Davis, [1987). However, there are some situations where one ap-
proach of dealing with spurious oscillations (scalar artificial viscosity term or FV scheme
with TVD / diffusion matrix) could be more advantageous than the other. For transonic
steady flows, where shock waves are not very strong, scalar artificial diffusion is the bet-
ter approach, as it is computationally cheap and easy to code up. However, for flows
associated with strong shock waves, the FV scheme and TVD or the matrix diffusion are
needed, as they provide the best possible resolution of shock waves and contact discon-
tinuities (Wendt et al., 2009, p. 221). Depending on the simulation, either the Minmod
limiter (Roel, [1986) as in Eqn. (3.19) is used or the Optimum Symmetric Polynomial-Ratio
Expression (OSPRE) limiter (Waterson and Deconinck, 2007) as in Eqn. (3.20):

Y(r)pminmoa = max[0,min(r, 1)], (3.19)
_ 3r(r+ 1)
Y(r)os PrE = D) (3.20)

where r is the ratio of the neighbouring gradients (Waterson and Deconinckl, 2007)), de-
fined as

e Ly (3.21)

Ujr] — Ui

The use of flux limiters is an effective way to construct non-linear discretisation schemes,
which adjust themselves according to the local solution to maintain bounded and with
that fulfill the TVD condition. Flux limiters are simple functions which take the form
of piece-wise linear functions, ratios of equal order polynomials or combinations of the
two (Waterson and Deconinckl, [2007). We want a non-linear convective scheme, because,

according to Godunov’s theorem, linear convection schemes with second order accuracy

63

or higher cannot be monotonic. And as monotonicity, or TVD has to be ensured to avoid
the development of non-physical oscillations, a convective scheme has to be non-linear if

high accuracy is aimed for.

3.3 The Kurganov-Tadmor Scheme

The Kurganov-Tadmor (KT) scheme was developed and introduced in 1999 with the aim
of creating a new central scheme that is independent of the eigenstructure of the problem
(which means no calculation of the Jacobian matrix or characteristic decomposition) and
also showing a small numerical viscosity. A fully-discrete scheme and a semi-discrete
scheme were developed, where the latter can be combined with any time stepping scheme
wished. In this work, the semi-discrete version of the KT scheme is used, combined with
a forward Euler or fourth order Runge-Kutta scheme. | Kurganov and Tadmor (2000) prove
that their semi-discrete second order central scheme also satisfies the TVD property and,
therefore, prevents the development of spurious oscillations. Furthermore, the scheme
also shows an independence of the numerical viscosity on the time step, therefore, high-
resolution can be achieved even with very small time steps.

For convection-diffusion equations, achieving the solution with an explicit scheme is
computationally cheaper, but also restricts the choice of time step to the parabolic CFL
condition Ar < C(Ax)?, with Ax being the grid spacing (Cavalli ef al., 2006). In gen-
eral, when a semi-discrete scheme is coupled with an appropriate ODE solver, a small
numerical viscosity is obtained, which is proportional to a vanishing time step, At. Most
(fully discrete) schemes work best close to a convective CFL Ar < CAx, i.e., At ~ Ax. If
the time step is much smaller, they accumulate large numerical dissipation of the order
O(Ax®" | Ar), with r being the accuracy of the scheme, and if therefore At — 0, the numer-
ical viscosity becomes very large (Cavalli et al., 2006). When discontinuities are resolved,
the computed sub-shocks are smeared due to larger numerical dissipation, which accumu-
lates with every time step. The KT semi-discrete scheme allows for smaller time steps due
to a small numerical viscosity of the order of O(Ax®*"~1), which is time step independent.
This is achieved by treating smooth and non-smooth regions separately (Kurganov and
Tadmor, [2000). The non-smooth region, which is at the cell interface (i.e. between u? and
u? .1) and the resulting Riemann fan is illustrated in Fig. This is convenient in solar

physics, as time steps for simulations of the solar atmosphere can get very small. This is

64

af + (ug); (z — ;)

Py + (Uz) (T — 2541)

Figure 3.1: Illustration of the central differencing approach and the staggered integration
over the local Riemann fan, which results from the discontinuity at the cell interface, is
shown (from [Kurganov and Tadmor| (2000), Fig. 2.1.)

due to frequent collisions in the photosphere and chromosphere, which then lead to stiff
source terms (Gonzalez-Morales et al., 2018)).

Compared to upwind schemes, central schemes have the advantage of being inde-
pendent of the eigenstructure of the problem and are Riemann-solver free, which makes
computation cheaper and easier. In the KT scheme, the values of the state variables are
calculated as an average over the cell, and the fluxes are computed at the left and right
cell interfaces. In this Riemann-solver free approach, the fluxes are calculated in terms of
the discrete values of the neighbouring cells, where the approximate flux derivatives are
computed in a component-wise manner, instead of being obtained from the eigenvalues
(which are the speeds of characteristic waves like the sound wave) of the flux Jacobians.
This is illustrated in Fig. and discussed in the following. Given is the solution u;?, at
point x; in space and point n in time. To yield the solution at the next time step n+ 1, the
idea is to average over the non-smooth Riemann fans. To do so, the KT scheme uses local
wave propagation speeds. This means that first, the propagation speed at the cell inter-
faces at u;+1/ 1s calculated, where we are interested in the maximum propagation speed
and this results in new cell widths, w in Fig. Over these smaller cells the solution
is computed. These cells are essentially the width of the Riemann fan, which originates
at the interfaces and which can vary in size at each time step. In fact, the calculation of

the maximum propagation speeds has often been done already, when calculating the CFL

65

Figure 3.2: This figure illustrates the steps from the solution u’;, at point x; in space and

point n in time, to the solution u?”, i.e. at the next time step. It shows the cells w,

which are obtained by computing the maximum propagation speed at the cell boundaries
and which are used to realise the solution at the next time level (Kurganov and Tadmor
(2000), Fig. 3.2).

66

number. Therefore, if the propagation speed is a, the control volume between x;_1/2 —a
and x;_1/2 +a, denoted in Fig. @ by xj_1/2,l and x;j_12,r, respectively and, therefore,
the new control volume w has the size 2a. Due to finite speed of propagation, those points
separate between smooth and non-smooth regions. These non-uniform averages on the
staggered grid are then converted back into the original grid. Non-staggered grids have
the advantage of being simpler to implement if the geometry and boundaries are more
complex (Jiang et al.| 1997). In their paper, Jiang et al. (1997) show how to convert a
scheme that is based on a staggered grid to one that is non-staggered, this has been fol-
lowed by Kurganov and Tadmor as well. In that way, the numerical solution is updated on
the edges of the staggered grid, where it is smooth and can be computed via a Taylor ex-
pansion, and the computationally expensive Riemann problem does not have to be solved
(Cavalli et al.,[2006).

Summing up, behind the construction of the KT scheme there are two main ideas:
firstly, it uses more precise information of the local propagation speeds and secondly,
the scheme constructs the non-smooth part of the approximate solution in terms of its cell
averages, which can vary in size, integrated over the non-smooth Riemann fans (Kurganov
and Tadmor, [2000)).

As mentioned before, the time integration is achieved with the forward Euler or fourth-
order Runge-Kutta scheme. The forward Euler scheme is a simple linear scheme, where
the solution at the next time step utl =y + h fi» where h is the discretisation step size
(Quarteroni, Sacco, and Saleri, 2006, p.472). The Runge-Kutta methods are actually a
family of schemes of different orders, where the first order Runge-Kutta method equals
the forward Euler method. For the 4th order Runge-Kutta method (Quarteroni, Sacco, and
Saleri, [2006, p.511), the slope is calculated in four steps with different weighing of each

step and leads to:

u(to+1) = u(to)+mh (3.22)

1 1 1 1
M(to) + (gkl + §k2 + §k3 + 8](4) h,

where u(ty) is a known initial condition and the solution to u(¢) is found with ug and a

67

weighted sum or weighted average, m, of the slope approximated, and with

ki = f(u(t),10), (3.23)
h h

ky = f(u(f0)+k1§,t0+§),
h h

ks = f(u(t0)+k2§,t0+§),

ky = f(u(t()) +k3h,to+ h).

68

Chapter 4

The Code and Its Verification

The equations governing hydrodynamics and magnetohydrodynamics are highly non-
linear partial differential equations (PDEs). As a result, propagating waves and various
discontinuous waves are formed throughout the simulation, which makes computation
very difficult, even with modern schemes and computers (Hesthaven, 2018]). The scheme
implemented in this code, the Kurganov-Tadmor scheme, has been introduced in the pre-
vious chapter, Sec.|3.3| This scheme advances the solution on a Cartesian grid, where a
variety of boundary conditions are implemented to account for different physical settings.
In the following, the code set-up and the simulations and tests, which substantiate the

code’s stability and accuracy, are presented.

4.1 Code Setup

The system of non-linear PDEs for conservation laws like advection-diffusion equations
are solved with the Kurganov-Tadmor scheme (Kurganov and Tadmor, |[2000) as described
in Sec.[3.3] The time integration is achieved with the forward Euler or fourth-order Runge-
Kutta scheme (Hartley and Wynn-Evans| [1979; Atkinson, |1989). This is done on a uni-
form Cartesian grid, which means that the cells have the same size everywhere in the
computational domain. As illustrated in[4.1] the Cartesian grid is made of n_x_global x
n_y_global cells, where n_x_global and n_y_global represent the number of total grid
points in the x and y direction, respectively. The cell size dx, is determined by the physi-

cal dimension and the number of grid points, so that dx = physical_domain/n_x_global,

69

whole computational domain

n_y_global

n_x_global

Figure 4.1: Computational domain.

and the same applies for dy.

The time step is controlled through the speed vy, which is the maximum of the
Alfvén speed and the sound speed, v, = max(va,cs). The time step is calculated with
dt = CFL(dxYmin/Vmax), where CFL is a Courant-Friedrichs-Lewy coeflicient (smaller
than one for this explicit solver) and dxy,,, is the minimum (if grid cell size varies) spa-
tial grid cell size over all directions. If collisions in the plasma are numerous, then the
very small collision time scale and the related elastic collision term in the source term
of the equations (Eqns. (2.134)), represent another possible constraint to the time step.
Furthermore, perpendicular to the magnetic field there is the time scale of the magnetoa-
coustic waves that add to that constraint, however in a plasma with a low plasma beta
B= 5—; << 1, the fast magnetosonic speed can be approximated by the Alfven speed.

Message Passing Interface (MPI) allows the parallel computation of each subdo-
main on different central processing units (CPUs), which can make computation faster.
Therefore, the computational domain is divided into subdomains and each subdomain
is sent to a different CPU to be calculated, which is illustrated in Fig. #.2] Each sub-
domain has a size of ny = n_x_global/n_cpu_x + 4 * n_ghost in x-direction and n, =
n_y_global/n_cpu_y + 4 % n_ghost in y-direction, where n_cpu_x and n_cpu_y denote
the number of CPUs used for each dimension. n_ghost is the number of ghost cells,

which are added to each side of the subdomain. The values for the ghost cells come from

70

the neighbouring subdomains, therefore, the subdomains have to communicate with each
other and send and receive the values for their ghost cells from each other, as illustrated
in Fig. [4.3] At each MPI exchange 4 *n_ghost cells are needed for each dimension. For
example, if continuous boundary conditions are applied, the ghost cellsati=0and i =1
of subdomain 2 receive the values from the last two cells of subdomain 1. Therefore, at
the same time, a subdomain sends and receives values for/of ghostcells from/to another
subdomain, where the received values are stored in a buffer array. Whereas the boundaries
between the subdomains are usually always continuous to allow continuous flow inside
the computational domain, the outer boundaries (the boundaries of the global computa-
tional domain) depend on the physical setting.

CPU1 CPU2

CPUO \ \ / cPU3

n_y_global

» CPU7
CPU4 <

‘///// n_x_global

CPU8

CPU11

CPU9 CPU10

Figure 4.2: Divided computational domain into subdomains.

The code, by its construction, is a reconfigurable code. To reduce the 2D configuration
to 1D, all variables in the y-direction are set to zero and leave 10 cells in the y-direction to
account for the calculation of the boundaries and accommodate the finite volume scheme.

Boundary conditions are problem specific and are determined by the physical setup. Usu-

71

one subdomain - example in 1D

(AL

CPU2

Figure 4.3: Example of one subdomain with a neighbouring subdomain (blue).

ally, we have an idea or information about what we expect to happen at the boundary and
yet we still have to decide which the right ones are that are to be applied. If there are
too many or not enough or inappropriate conditions applied, the mathematical problem
is ill-posed and will have no or false solutions (LeVeque, 2002, p. 60). To accommodate

for various problems, various boundary conditions are implemented in the code that can

be exchanged or chosen as needed for every boundary of the domain. For now, these
are periodic, continuous, fixed, and fixed zero value boundary conditions. Boundaries
are represented as two additional rows in the computational grid 1994). We call
the two boundary cells ghost cells; the ones at the beginning of the grid we call ghost
cells at i =0 and i = 1 and the ghost cells at the end of the domain are at i =n_x—1 and
i =n_x—2. Therefore, the two first grid cells are at i =2 and i = 3 and the two last cells are
at i = n_x—4 and n_x —3 of the computational domain. Figure 4.3| depicts the idea. The
blue arrows in this graphic illustrate that the information of the two neighbouring cells are

needed to calculate the solution for one cell. This also shows the necessity of boundaries.

72

Periodic boundary conditions describe a computational domain, where anything that
leaves the domain on one side, must appear on the other side, which means that the ghost
cells at the beginning of the domain (at i = 0 and i = 1) take the same values as the cells
at the end of the domain (at i = n_x—4 and n_x — 3) and the ghost cells at the end of
the domain at (i =n_x—1 and i = n_x —2) must take the same values as the cells at the
beginning of the domain i =2 and i = 3. Continuous boundary conditions are implemented
to make the computational domain finite and describe the absorption of a long wavelength
wave that hits the boundary without reflection (LeVeque, 2002, p. 134). Therefore, the
ghost cells at i = 0 and i = 1 take the same values as the first two cells ati =2 and i = 3 and
the ghost cells at the end of the domain i =n_x—1 and i = n_x — 2, take the values of the
last inner cell of the domain ati =n_x—4 and n_x—3. As a result, the gradient vanishes
at the boundaries and reflectivity is low. This is also a good approximation of so-called
free boundaries. The fixed boundary conditions impose the ghost cell values that were
set at the beginning of the run at every time step, and the fixed zero boundary conditions

impose a zero value to the ghost cells at every time step.

4.2 Code Structure and Functions

This code solves a system of partial differential equations. This can be done for multiple
fluids in multiple dimensions and the extension is very simple from a software engineer-
ing point of view as the structure of the code allows to do so. The code uses Message
Passing Interface (MPI) to make computation parallel and faster. The implementation of
MPI has been done for 2D only.

The code is written in C++ and starts from the main.cpp function. Figure 4.4 comprises
the overall structure of the code and its major functions. The purpose of the functions are
described below. To give an idea of the overall structure: the simulation starts with initial
conditions, which determine the time evolution of the simulation. From there, the solution
for the next time step is calculated, starting with the function apply_RK.cpp. In this il-
lustration, the colours represent different levels: all the functions inside the purple frames
are part of the apply_RK.cpp function, all the functions inside the yellow frame are part
of the calc_residual.cpp function and all the functions in with the turquoise frames, are
inside the numerical_flux.cpp function. In apply_RK.cpp, the residuals (the divergence

of the flux terms) are calculated first. In order to calculate the fluxes, the numerical flux is

73

main.cpp

v
initial_condition.cpp
v
— [apply_RK.cpp|— _calc_ . calc: ullx, ulx,
residuals.cpp uux, urx values left & right

] r from interface
numerical are computed

_flux.cpp '
} get_pflux.cpp
\ residuals !
calc are calculated| | with numerical & physical
sources_cpp flux (left & right of the
- interface), the flux at the
v interface is calculated
calculation
| of solution

save_bin.cpp

'

timep=timep+dtime

Figure 4.4: Flow diagram with the major functions of the code.

computed first. This requires the extrapolation of the cell centre in order to calculate the
fluxes at the interfaces. Once the physical flux (the flux term in the equations) is deter-

mined, the residuals and source terms are computed and the solution is advanced in time.

main.cpp

In this function, all other functions are declared and the memory is allocated for the ar-
rays. The initial condition function, the functions to calculate the temperature and convert
primitive variables to conservative variables are called and boundary conditions are ap-
plied. The only variables that need to be adjusted in this function are ch and cp for the
divergence cleaning scheme and the time timep at which the simulation is wished to be
stopped.

If there is a certain physical time the simulation is supposed to stop, this can be set as

74

follows.

timep=timep+dtime; //physical time
if (timep >= 3.) break;

This would stop the simulation after 3 time units in physical time. The main function
calls the function RK.app, where the majority of the functions are called and the solution

is calculated.

initial_condition.cpp:

Here, initial conditions are set. Usually, they are given in terms of the primitive variables
like density and pressure and are then converted to conservative variables. Various initial
conditions have been implemented so far and are given a number, as done in the follow-

ing: This can be done like this:

if type == number {initial conditions}

Each initial condition is, therefore, given a different number. This number then has to

be changed in the constants.h file like:

const int type = number;

Depending on the situation to be simulated (the initial conditions), the physical dimension
has to be adjusted. This can be done in constants.h:

const double start_x_global = 0.;

const double start_y_global = 0.;

const double ende_x_global = 1.;

const double ende_y_global = 1.;

apply_BC.cpp:

Boundary conditions can be changed in apply_BC.cpp, where we indicate at which end

75

of the domain the boundary is applied to in the following manner :

bc_type[rho_1_][0][0] = O; Jleft
be_type[rho_1_][0][1] = 0; /Jright
be_type[rho_1_][1][0] = 2; //bottom
be_type[rho_1_][1][1] = 2; jltop

The above is an example of the boundaries in each direction for the density rho.
Different types of boundaries can be applied and are assigned the following numbers:

0 - periodic boundary conditions

1 - continuous boundary conditions

2 - global fixed boundary conditions

3 - global zero value boundary conditions

where the according number is entered (like in the example above) for the boundary (left,

right, top, bottom) and quantity (rho, mom_x etc) of choice.

get_pflux.cpp:
This function calculates the physical flux exactly according to the flux terms in the equa-
tions in conservative form. This is done for the whole system of equations, in every

direction.

RK.cpp:

This function contains different functions for the time stepping scheme, like the first or-
der Runge-Kutta scheme, i.e. the explicit Euler scheme, or the forth order Runge-Kutta
scheme, which are apply_RK1.cpp and apply_RK4.cpp, respectively. Each of them
calls the functions calc_residuals.cpp and calc_sources.cpp, where the flux terms and
source terms, respectively, are obtained. With the residuals and source term, the solutions

is calculated and integrated in time.

calc_sources.cpp:
In this function, the source terms are calculated for each quantity of our system of equa-
tions, which is then added to the residual term. The function (calc_rates.cpp) is called

here as well, which calculates the ionisation and recombination rates.

76

calc_rates.cpp:

In this function, the collision, ionisation, and recombination rates are calculated.

calc_residuals.cpp:
To calculate the residuals, the numerical_flux.cpp function is called, which returns the

flux terms, with which the residuals are calculated, using a central scheme.

calc_temperature.cpp:

The temperature for each fluid is computed in this function.

con_to_prim.cpp:

Here, the primitive variables are obtained from conservative variables.

numerical_flux.cpp:

In this function, the values left and right of the interface ul and uu are calculated for each
conservative variable and are then called ulmh and urmh. At ulmj and urmh the sound
speed and the Alfvén speed are calculated and the fastest propagation speed is determined.
Then the physical flux (the flux terms like in the equations) is computed with the function
get_pflux.cpp, left and right from the interface (therefore, the function is called twice
and returns the array fIr and fIl). Then the overall flux is computed. The array flux
is returned, which contains the value for the flux at the interface between ul and uu. In
calc_residuals.cpp, the flux between two interfaces is then calculated for all interfaces of

the whole computational domain, before the residuals for the whole domain is calculated.

prim_to_con.cpp:

Here, the conservative variables are obtained from primitive variables.
save_bin.cpp:

The arrays are saved as binaries with this function. Where the data will be saved to and

under what name, can be set as follows.

77

filename = “/path/to/destination/folder/name_of_data_"-+timestep;

Furthermore, the number of time steps for which the data will be saved, can be deter-

mined in the constants.h file.
const int1_t_save = 10;
This saves every ith (here, every 10th) time step.

timestep.cpp:
In this function, the maximum information propagation speed is calculated and the time

step is determined.

4.3 Code Tests

Having established how the code is set up and how the equations are solved in time and
space, we now turn to its applications and the tests performed in order to verify the code
and ensure that it does what it is supposed to do, i.e. to demonstrate its accuracy and
stability. Therefore, to model the interaction of neutral and ionised fluids, the two sets of
hydrodynamic and MHD equations are solved. The general form of the equations is as

follows:

aal:+V-FL(U) = S. 4.1

Here, U is the state or solution vector, FL(U) is the flux vector of U, and S denotes the

source term. In Cartesian geometry, the system is written out as follows:

oU oF oG oH

ou oF 0G M _ o 42
ot T ox oy oz (4.2)

78

where F, G, and H are the flux vectors in the x, y, and z-direction, respectively. The
equations in the system of equations have the form of a diffusion-advection system of
equations and is in dimensionless form. To secure and demonstrate that our code is accu-
rate, various test simulations are performed. The following tests, such as the Sod shock
tube test, the Brio-Wu shock test, or the 2D Orszag-Tang (OT) vortex simulation, have
been carried out extensively and widely and, therefore, provide a good basis for the test-
ing of our code. Firstly, the hydrodynamic test simulations are presented, before turning

to MHD simulations and then, in the next chapter, the two-fluid simulations.

4.3.1 Hydrodynamic Simulations

For 2D hydrodynamics, which describes the neutral fluid, the vectors U, F and G are

written as follows:

P PVx Py
2
+ P
U= PVx , F= PVx s G= p\;xvy (43)
pVy PVxVy pvy+P
€ ve(e+ P) vy(e+P)

Here, p is the fluid density, v, and v, are the fluid velocities in the x and y-direction,
respectively. The total energy density e (kinetic and thermal energy) and the gas pressure

P are connected through the ideal gas equation of state, so that

e=pv?/2+P/(y-1). (4.4)

2

X

adiabatic index. With the neutral fluid code, the Sod shock tube test is performed (Sod,

This closes the system of equations. Furthermore, v? is defined as v? = v2 + v% and vy is the
1978). When a fluid travels at supersonic speeds it creates a large change in pressure in
a very short time, or, in other words, a shock front, which suddenly changes the state
of the gas and usually leaves it with a higher pressure and temperature (Norman and
Winkler, [1985). This test is one of the most fundamental ones for numerical codes and
their ability to solve non-linear hyperbolic PDEs with discontinuous solutions, because

there is an exact solution to compare the numerical solution to. An exact solution to

79

this initial value problem is presented in Lora-Clavijo et al|(2013). The test results in
x-direction are presented in Fig. 4.6l This is a 1D simulation and the reduction of the
code to 1D is achieved by setting the values of every variable in the y-direction to zero
and reducing the grid cells in the y direction to 10 grid cells. Von Neumann, i.e. zero
gradient boundary conditions are used. Non-linear equations of fluids inhere three types
of non-linear "waves": the rarefaction wave, the contact discontinuity and the shock front
(Norman and Winkler, [1985)), which all occur in this Sod shock simulation too. Initial

conditions for the problem in x-direction are:

_p _
P =1
for x <0.5,
vy, = 0
vy = 0
U={r" o
p = 0.125
P = 0.1
for x > 0.5.
ve = 0
vy = 0

These initial conditions describe the idea of a long 1D tube, which is divided in two
halves, filled with fluids of different thermodynamic parameters like density and pressure
(Danaila et al., 2007). According to|Danaila et al.|(2007), the high-pressure part (x < 0.5,
here: left) is called the driven section, whereas the low-pressure part (x > 0.5, here: right)
is called the working section. At time 7 = 0, the gas is at rest. A sudden breakdown of the
wall between the two parts, leads to a process that aims to even out the pressure and aims
for pressure equilibrium, where the gas at high density and pressure expands through a
rarefaction (or expansion) wave and generates a high-speed flow, which propagates into
and pushes the gas of the working section. This rarefaction wave propagates continuously
to the left within in a well-defined region, which grows with time. When the gas with
low pressure is pushed by the gas of high pressure and density coming from the left, it
generates a shock wave propagating to the right, where the two gases, the expanded and
the compressed one, are separated by a contact discontinuity that travels at a constant

velocity (Danaila et al., 2007). Therefore, the contact discontinuity is a transition layer

80

which separates the fluids of significantly different densities and temperatures, but where
the pressure is continuous and therefore there is no fluid flow across this surface (Norman
and Winkler, |[1985). With the Sod shock tube test, any hydrodynamic code can be tested
for its accuracy and capability to resolve the shocks and contact discontinuities mentioned
above. An evolution of the Sod shock tube simulation can be seen in Fig. {.5] It shows
the dynamics during the shock development and, furthermore, reveals its self-consistent
character. It can be seen that the shape which can be seen at the end of our simulation
already establishes at the beginning of the simulation and only spreads out with time.
Moreover, it reveals that the first discontinuity which propagates to the right is not a
shock, but a contact discontinuity, where the pressure is constant. From this evolution, the
velocity at which the shock propagates can be determined as well and is about v = 0.85,
from time ¢ = 0.025 to t = 0.2. For this simulation, a ratio of specific heats of y = 1.4
is used. The simulation is stopped at time ¢ = 0.2 and also compared to Danaila et al.
(2007), where a match of the solutions can be confirmed. A good resolution of the sharp
change in the gradients can, for instance, be found with the OSPRE limiter with 1024
grid cells which is depicted in Fig. 4.6] Often, also a lower grid resolution is used in
the literature (Danaila ez al., |2007). Overplotting the exact solution (solid line), allows
a better understanding of the resolution in the shock regions and the accuracy of our
numerical method. This also shows that the solution for the Sod shock tube test with
the Minmod limiter and 1024 grid cells, as depicted in Fig. does not resolve the
sharp gradient (around x = 0.675) as well. This test is simulated with two different flux
limiters, the OSPRE limiter and the Minmod limiter, and in five different resolutions:
128, 256, 512, 1024, and 2048 grid cells, to check the convergence of the code with
each limiter. As previously discussed, a numerical method is said to be convergent if
the numerical solution of the discrete expression approaches the exact solution of the
differential equation as the grid size and time step go to zero (Kuzmin, [2010). Practically,
convergence of a numerical scheme can be shown by running the same simulation with
different resolutions, where this method also shows the global order of accuracy of the
scheme used.

The convergence is investigated by calculating the numerical error (NE) for both lim-

iters as a function of the resolution, to see how the limiters compare and it is plotted in

81

time t = 0.025 time t = 0.025 time t = 0.025
T T T T

1.0 T T 1.0 T T T T 1.0 T T
08 0.8 R
@ 06F > 061 B o
E E 5
3 g H
2 < 8
04 2 0af B 5
0.2 0.2 B
0.0 . 0.0
0.0 02 0.0 0.2 0.4 06 o8 1.0
x
time t = 0.05
1.0 T 1.0 T T T T
08 0.8 B
o 0.6 > 06 g o
> > ¢
2z 2 5
@ s 2
g ° @
04 2 04r B &
0.2 0.2 R
0.0 L 0.0 L L n L
0.0 a2 0.0 0.2 0.4 a6 0.8 1.0
x
time t = 0.1
1.0 T 1.0 T T T T
0.8 a8 R
@ 06 > 061 R o
> 2 g
i g]
2 g 8
g 2 8
© 04 2 04f- i 5
0.2 0.2 B
0.0 L L L L 0.0 L L L L
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 08 1.0
x x x
time t = 0.15 time t = 0.15 time t = 0.15
1.0 T T T T 1.0 T T T T 1.0 T T T
08 0.8 B
Q 06F > 061 B o
2 E g
3 pal 2 gaf B 5
0.2 a2 B
0.0 L L L L 0.0 L L L L
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 o8 1.0
x x
time t = 0.2 time t = 0.2
10 T T T T 1.0 T T T T
0.8 B a8l B
2 061 B > 0.6 4 o
> > ©
G B 2
2 8 H
3 T g
© 04 B 2 g4 i 5
0.2 R a2 R
0.0 L L L L 0.0 L L L L
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 08 1.0
x x x

Figure 4.5: Evolution of the Sod shock tube simulation. From left to right, the density p,
the velocity component v, and the gas pressure P are displayed, from time 7 = 0.025 to
t = 0.1 (top to bottom).

82

Sod Shock Tube Test
1.0 L

0.8

0.6

density p

0.4

0.2

5

ool . 0oy
0.0 0.2 0.4 0.6

©
sl
=}

Figure 4.6: Exact solution of the Riemann problem (solid line) and the numerical solution
simulated with the hydrodynamic code (asterisks), using the OSPRE flux limiter and a
1024 grid cell resolution.

Sod Shock Tube Test
B —

0.8

0.6

density p

0.4

0.2

ool . 0oy
0.0 0.2 0.4 0.6 0.8

o

Figure 4.7: Exact solution of the Riemann problem (solid line) and the numerical solution
simulated with the hydrodynamic code (asterisks), using the Minmod flux limiter and a
1024 grid cell resolution.

83

Fig.[4.8] The NE is calculated as follows:
1 ¢ INU-A)|
NE=—) ————, 4.5
D 4.5)

where NU represents the numerical solution, A the analytical solution and N the number
of grid points in the x-direction. The summation is over all grid cells. Note that Fig. 4.§|
is shown as a logarithmic plot, where the logarithm of the NE is plotted as a function of
the number of grid points N. As demonstrated in Fig. 4.8] for a resolution of 1024 grid
cells and with the OSPRE limiter, the exact solution is already replicated very well and
for higher grid densities the accuracy does not improve significantly. With the Minmod
limiter the same level of accuracy can be achieved, but at a higher grid resolution.

The black solid line shows the error for the OSPRE limiter and the red solid line the
one for Minmod limiter at each grid size. For both error calculations, it can be seen that
the errors for the OSPRE limiter are smaller than those for the Minmod limiter. However,
the limiters converge similarly, where the overplotted linear functions (dashed for the
Minmod limiter and dotted for the OSPRE limiter) reveal the gradient with which the
convergence takes place, where the NE with the OSPRE limiter converges with a slope of
m = —0.76 and with the Minmod limiter with a slope of m = —0.80. The dash-dotted line
serves as a guide for the deviation from a linear function with a slope of m = —1.

To check the convergence of the error for the smooth parts of the function, the NE
for the rarefaction wave part of the function (from x = 0.29 to x = 0.43 in Fig. {4.6) is
investigated, which can be seen in Fig. 4.9 The numerical error decreases with an in-
creasing number of grid cells, i.e. with smaller dx, and shows that the smaller the grid
cells are, the more the computed solution approaches the analytical solution. For this
shock-free region, it shows that in smoother regions the error converges faster than for
the overall simulation (which include the shock regions), with an order of one, where the
slope for the OSPRE limiter is m = 0.99 and the slope for the Minmod limiter is m = 0.98.
Clearly, neither of the two limiters is fundamentally better here. It can be said that our
hydrodynamic code replicates the analytical solution of the Sod-shock tube test with high

accuracy, using any of the two limiters.

84

Sod Shock Tube Test Numerical Error
i i i T i i i T i i i T i i i

\ — Minmod limiter

— — — slope m = -0.76

log(NE)

—2.4 N =
I = -0 LN]

-2.6 NN -
| —-— slope m = —1 A]

-2.804 . . . | . . . | . . . | . ‘\ . L]
128 256 512 1024 2048

Figure 4.8: Logarithm of the Numerical Error (log(NE)) of the Sod shock tube test con-
ducted with the OSPRE limiter (black solid line) and Minmod limiter (red solid line),
plotted as a function of grid points (N). The dash-dotted line has a slope of -1 and serves
as a guide for the OSPRE limiter’s slope (dotted line) and the Minmod limiter’s slope
(dashed line).

4.3.2 Magnetohydrodynamic (MHD) Simulations

For 2D ideal MHD simulations, the vectors U, F and G are written as follows (Balsaral,
2004):

&5

-2.0
-2.5

(m

Z

>

9
-3.0
-35

Rarefaction Numerical Error

Minmod limiter i

128

Figure 4.9: The logarithm of the Numerical Error (log(NE)) of the Sod shock tube test
conducted with the OSPRE (black solid line) and Minmod limiter (red solid line) for the

smooth rarefaction wave region.

PVx
PVy

EER

PVx
pv2+ P+ B?/8m— B2 /4n
pvxvy — BBy /4n
(€+ P+ B?/8m)v,— By(v-B)/4n
0
vxBy —vyBy
PVy
pvxvy — BBy /4n
pv§ +P+B%/8n— B§/47r

(€+ P+ B%/8m)vy— By(v-B)/4n|

VyBy —vyBy
0

(4.6)

This system essentially describes an electrically charged fluid, whose dynamics is in in-

teraction with the electromagnetic field. Here, By and By, are the x- and y-components of

86

the magnetic field, respectively. The total energy € also includes the magnetic energy:
e=pv?/2+P/(y—1)+B?/8n, 4.7

with B? = B)% + B%. The source term S may include resistivity, viscosity, gravity or a
divergence cleaning term.

The 1D MHD code is tested with the Brio-Wu shock test, which is the MHD coun-
terpart of the Sod shock tube test and is initialised with a discontinuity in the density
and pressure. It provides initial conditions for the propagation of non-linear compressive
waves and to test wave and shock capturing properties of an MHD solver. It involves
two fast rarefaction waves, a slow compound wave, a contact discontinuity and a slow
shock wave (Stone et al.l [1992)). According to Stone et al.|(1992), the convexity of the
MHD equations implies that different modes of the same MHD wave family can prop-
agate with the same velocities and, therefore, unlike in pure hydrodynamics, there can
exist compound waves that consist of a shock wave attached to a rarefaction wave of the
same family and this means that a slow shock can be attached to a slow rarefaction wave.

Initial conditions are taken from [Brio and Wul (1988)):

] P
P = 1
ve = 0
for x < 50,
vy = 0
B, = 0.75
= 1
U = Y T
p = 0.125
P = 0.1
ve = 0
for x > 50.
vy = 0
. = 075
y = -1

87

This leads to an angle between the magnetic field lines and the shock normal of tan 6 =
4/3. The evolution of the Brio-Wu shock simulation can be seen in Fig. 4.10] Like in the
Sod shock tube test, this time evolution shows the dynamics during the shock development
and reveals its self-consistent character. However, the shape which can be seen at the end
of the simulation at time ¢ = 10 only really establishes around time # = 4. Moreover, it
reveals that the first discontinuity that propagates to the right is not a shock, but a contact
discontinuity, where the pressure is constant. From this evolution, the velocity at which
the shock propagates can be determined as well and is about v = 1.37, from time ¢ = 2
to ¢ = 10. The result is compared with the numerical solution in Stone et al.|(1992), and
we, therefore, choose the same physical dimensions (x € [0,100]) and specific heat ratio
(y =2), and stop the simulation at time ¢ = 10, which is presented in Fig.4.T1] The spatial
dimension is normalised to 1 and the resolution is 1024 x 10 (x and y dimension). Our
solution matches the results of the reference Stone et al. (1992). Again, the convergence
for this simulation is studied and the numerical error is calculated for the two different
limiters, as done in section {.3.1] for the Sod shock tube test. Unlike in the Sod shock
tube test case, however, there is no analytical solution. Therefore, a self-convergence
test is performed, where the reference is our own numerical solution with a 2048 grid
cell resolution. The NE convergence (according to Eqn. (4.3.1))) is depicted in Fig.
The red solid line is the NE for the Minmod limiter and the black solid line the one for
the OSPRE limiter, where the dashed or dotted line shows the slope for each limiter,
respectively. Again, the dash-dotted line serves as a guide for the deviation from a linear
function with a slope of m = —1. We want to point out that for this error calculation and
the resulting convergence plot, we cannot compare the two limiters or make conclusion
about the superior limiter here, as the reference solution is not the same, because one
reference solution was obtained using the OSPRE limiter and the other one using the
Minmod limiter. However, assuming that for each of the limiters the high resolution
solution i1s more accurate than the low resolution solution, we want to see how fast the
solution converges as the grid cell density increases for each limiter. It can be observed
that the slope of the linear function is less steep for the Minmod limiter, where m = 1.026,
where for the OSPRE limiter the slope is m = 1.105, which means it moves faster to
its high resolution answer. But, again, using any of the two limiters does not lead to
fundamentally different results.

In 2D MHD, the well known OT vortex simulation (Orszag and Tang, |1979) shows the

88

time t = 2

1.0 T 1.0 T T T T 1.0 T
08 0.8
a5 B
o
L bl o gsl
; 0.6 3 5 08
2 9 oop B H
2 B 8
© 04 S 5 04
g
£
-0.51 R
0.2 0.21
0.0 . -1.0 0.0 .
0.0 02 0.0 0.2 0.4 06 o8 1.0 a0 0.2
x
time t = 4
1.0 T 1.0 T T T T 1.0 T
08 081
a5 R
-
o 0.6 2 o 0B
N 2 ¢
@ o 00F B 2
2 2 I
9 g 4
= 041 & 5 0.4
£
-0.51 B
0.2 0.21
0.0 . -1.0 . . : . 0.0 .
0.0 a2 0.0 0.2 0.4 a6 0.8 1.0 a0 0.2
x
time t = 6
1.0 T 1.0 T \ T T 1.0 T
0.8 0.8
0.5 B
o
Q061 3 o 06
> & 2
2 g 00F - H
8 T 8
© 041 5 a 0.4
&
€
-0.51 R
0.2 0.21
0.0 . -1.0 . . | . 0.0 .
0.0 02 0.0 0.2 0.4 06 08 1.0 00 0.2
x
time t = 8
1.0 T 1.0 T T T 1.0 T
08 081
a5 R
o
Q 0.6 3 & 06F
= = ¢
a g 00F T 2
H q 4
© 04f s 5 04f
g
£
-0.51 R
0.2 0.21
0.0 L L L L -1.0 L L L L 0.0 L
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 o8 1.0 0.0 0.2
x x
time t = 10
1.0 T T T 1.0 T 1.0 T
0.8 0.8
a5 B
o
< 0.6 2 o 0B
N = ©
G o2 aofF N 2
8 T 8
© 041 & & 0.4
€
-0.51 B
0.2 0.21
0.0 -1.0 . 0.0
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 1.0 00 0.2 0.4 0.6 0.8 1.0

Figure 4.10: Evolution of the Brio-Wu shock. From left to right, the density p, the mag-
netic field component By and the gas pressure P are displayed, from time 7 =2 to r = 10
(top to bottom).

&9

density p

0.8

0.6

0.4

0.2

0.0

Brio—Wu Shock Test

J

[KK K X K X XK K KX
L ;()(J(

0.2 0.4

o
(@]

0.8

o

Figure 4.11: 1D MHD Brio-Wu shock test with the OSPRE limiter and a 1024 grid cell

resolution.

~

—-2.0

log(NE)

2.2

—-2.4

—-2.6

Brio — Wu Test Numerical Error

Minmod limiter

_ slope m

—_OSPRE limiter "~

slope m =

—-—linear function slope m

-1.105 .

~

-1.026

128

256

1024

Figure 4.12: Logarithm of the Numerical Error (log(NE)) as a function of grid cell reso-
lution (N) for the Brio-Wu shock test. This self-convergence test was conducted with the
OSPRE limiter (black solid line) and with the Minmod limiter (red solid line, where the
dotted line and the dashed line represents each slope, respectively. The dash-dotted line
serves as a guide.

90

transition to supersonic 2D MHD turbulence and tests a code’s robustness to MHD shock

formation, shock-shock interactions and how well the V- B = 0 constraint is satisfied.
Ryu et al.| (1998) and Londrillo and Zanna (2000) present the OT vortex in a compu-

tational domain of O to 1, a resolution of 256 X 256 or grid cells, the specific heat ratio

v =5/3 and the following initial conditions:

[p = yP
P = BB} /2
U~ vy = —Vvosin(2my)
vy = vosin(2mx)
B, = —Bgsin(2nry)
| By = Bpsin(4nx) |

Here, Bo = -1/ \/4_7r,ﬁ =10/3, P :,BB%/Z, vo = 1. The initial conditions of this simulation
are smooth and show a vortex profile in the velocity field and the magnetic field, which
quickly forms shocks and turns into turbulence, due to non-linear interactions (Orszag
and Tang}, |1979). The boundary conditions are periodic everywhere.

The evolution of the OT vortex shock simulation can be seen in Fig. [4.13] This time
evolution shows the dynamics during the vortex formation and the development of shock-
shock interactions. The scale at which the evolution is presented is optimised and changes
from time step to time step in order to enable the best possible presentation of the struc-
tures.

A replication of the OT vortex is shown in Fig. bottom row. The top row shows
a horizontal cut at y = 0.428 through the 2D plane and reveals the variation of the gas and
magnetic pressure along this line, which allows an additional and better comparison with
the reference plots. Comparing our solution (Fig. #.14) to the reference solution Fig. 3
in Ryu et al.| (1998)), shows that the solutions match well, however, small wiggles near
the boundaries, left (x = 0.0 to x = 0.05) and right (x = 0.95 to x = 1), can be observed in
our solution. The difference between ours and their procedure is the implementation of a
divergence cleaning scheme. The investigation of two difference divergence controlling

methods are presented in the following section.

91

I 2
N o
1 s

Density p

Gas Pressure P
ognetic Pressure Pq

=

time t = 0.2

Density p
Gos Pressure P
y
°
&
Mognetic Pressure Pq

bl
i
S

Density p
Gos Pressure P
°
G
Mognetic Pressure Pq

~

Gos Pressure P

o
)

Mognetic Pressure Pq

o
o
&

o2
=
3

0.0 0.2 0.4 06 0.8 1.0
x

time t = 0.48

0.30

0.25

0.20

Density p
Gos Pressure P
y
Mognetic Pressure Pq

0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.8 0.8 1.0

Figure 4.13: Evolution of the OT vortex. From left to right, the density, gas pressure and
magnetic pressure are displayed, from time ¢ = 0.1 to # = 0.48 (top to bottom).

92

Gas Pressure at y = 0.428 Magnetic Pressure at y = 0.428
T T T T T T T T

0.5F o.mL
E E 4
*

* * 1
0.081% % g i
L % xx PR
L% %]

U3 .
0.06F . i *]

= .

o . 1

i : T .
0.04 x % R
L * ¥ * * |
[. ;]
L * * * -
0.02F i x \Jﬂf :
L * 4

>
0.00L \ \ \ -

0.0 0.2 0.4 06 0.8 1.0

X

Magnetic Pressure

Figure 4.14: MHD Orszag-Tang vortex test for the gas pressure (left) and the magnetic
pressure (right). The 1D plot (top row) shows a cut through the 2D plots (bottom row) at
y = 0.428, where the solid line represents the variation of the gas and magnetic pressure
and the asterisks are an overplot of the grid points to reveal the resolution.

4.3.3 Divergence Control

In a two-fluid plasma simulation, we deal with one fluid being embedded in a magnetic
field. According to Maxwell’s equations, the divergence of the magnetic field is zero. Nu-
merically, this is not always assured due to truncation errors in the discretisation schemes
(Guillet ez al.,|2019). A non-zero numerical divergence can lead to non-physical plasma
behaviour or non-physical perturbations to the flow, such as plasma acceleration along the
magnetic field lines (Guillet ez al., 2019) or plasma flow orthogonal to the magnetic field
(Balsara and Kim) 2003). There are various techniques to deal with the numerical non-
zero divergence, where some involve the change of the discretisation scheme and others
just an addition to the scheme.

A divergence-free magnetic field can, for example, be guaranteed by solving for the vec-

93

tor potential (Brandenburg and Dobler, 2002 Botha, Rucklidge, and Hurlburt, 2006)) or
by using a staggered grid (Arber ef al., [2001). In the following, two schemes are com-
pared, which both involve an addition to the existing flux and source terms only, which
means that the existing numerical scheme can be used as it is. These two divergence
cleaning schemes are: the Powell source terms (Powell, |1994) and the hyperbolic diver-
gence cleaning by Dedner et al.| (2002). For the Powell scheme, a source term is added,

which is proportional to V- B and has the following form:

0
By
By

Spowell = = V-B.

v-B

Vx

| Yy |

For the hyperbolic divergence cleaning, or the Extended Generalised Lagrange Multiplier
formulation by Dedner ef al.|(2002), an additional scalar field ¥ is added to the system of
equations, which is updated at every time step and added to the flux term of the induction

equation and to the source term of the energy equation. Thus, the system of equations

(4.6) becomes:

94

PVx

€«m = a2

and the source term becomes:

Here,

PVx
pv2+ P+ B?/8n— B2 /4n
pvxvy — BBy /4n
(e+ P+ B?/8n)v,— B(v-B)/4n
b
vxBy —vyBy+¥
VB
PVy
pvxvy— BBy /4n
pvg +P+B%/87— B§/47T
(e+ P+ B?/8m)vy— By(v-B)/4n
ViBy —vyBy +¥
b

SEGLM =

c2V-B

0
—(V-B)B,
—(V-B)B,
“B.(VY) |.

~B,(V¥)

0

—(c;/cp)Y]

d
ch = sf(Cch d—’;) and ¢, =0.18¢,

-

-

(4.8)

4.9)

with the Courant-Friedrich-Lewy coefficient Ccrr = 0.4, to ensure that cj, is smaller than

the fastest propagation speed, so that the time step is not influenced by the speed of which

this information is carried away. cy, is the finite speed at which divergence errors are

propagated to the boundary (Dedner ef al.,|2002)) and was chosen in terms of the smallest

95

3 | i

|>. 1.4~ =

= | i

S

g L i
1.2— =
1O v N B R B I

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
scaling factor

Figure 4.15: Maximum of V- B as a function of the scaling factor sf in Eqn. (4.9)), for the
OT vortex simulation at time ¢t = 0.48.

maximum V- B that is yielded in test runs of the OT vortex. Fig.[d.15|shows the maximum
of V-B as a function of the scaling factor s f for the OT vortex simulation at time ¢ = 0.48.
In this plot, the divergence (vertical axis), does not have units as the equations have been
made dimensionless. It shows that the magnetic divergence is smallest when sf = 0.6.

In the OT vortex simulation divergence issues will result in distortions or noise in
smooth post-shock regions of the flow (Guillet et al.,[2019). We run the OT vortex simu-
lation with each of the divergence cleaning schemes in ideal MHD and plot the divergence
of the magnetic field (Fig. {.16) following [Guillet ez al| (2019), where V- B in cell K of

volume Vi is defined as:

1 1
|V'B|K:_f|V‘B|dX+_f IBVI?—BnIdS 4.10)
Vk Jk Vi Jsk

where | V- B | is the L; norm of the divergence of the magnetic field, B” = B - n, where n is
the face normal vector and B’ is the normal component of the magnetic field at the face

and defined as:

_ B} \pL + By ypr !

vor~'+ yor™!

B! : 4.11)

96

where B} and B} are the normal component of the magnetic field left and right of the
face, respectively. The same applies for pg and p;, which are the mass densities left and
right of the face. In order to obtain Fig. which shows the time series of the OT
vortex with the two different divergence controlling methods, the L; norm of the global

magnetic field divergence is calculated, which is given as:

1
VBl = — Vk|V-B |k, 4.12
IV-BI|; V; < |V-Bx (4.12)

where V is the volume (dxdy). With the definition of the normalised divergence, which
is:
divBpoym = ——— Ax, (4.13)

where | B |k is the modulus of B at cell K, the global divergence of the normalised diver-

|| || ‘ 7 § | | . (.)
Cil) Bn()l mlll [K Cil) E’l()l m I 1 |

In Fig. [4.16] the normalised divergence of the magnetic field (Eqn. (4.13))) is plotted at
time ¢ = 0.48. It can be seen that with the Dedner divergence cleaning method, the re-
gions in between the shock-shock interactions are smoother (at around x = 0.3 to x = 0.7
and y = 0.7 to y = 0.9), compared to Powell source terms and without any additional di-
vergence control. The Powell approach is based on a non-conservative addition to the
source term, which leads to an additional wave, which advects away the divergence with
the flow, whereas the approach by Dedner dampens the divergence and dynamically ad-
vects with help of an additional scalar field. The advantage of the Powell scheme is its
easy implementation to an already existing scheme without having to scale any free pa-
rameters like in the Dedner scheme. However, the Powell scheme only ensures that the
magnetic field is locally divergence free, inside a cell but not globally divergence free, as
the normal component of the magnetic field is not guaranteed to be continuous across cell
interfaces (Guillet ez al., 2019). The numerical divergence is mainly concentrated around
the shocks, as visible in all plots of Fig. 4.16l However, the scheme by (Dedner et al.|
2002) advects the divergence away quickly, which results in a more uniform background.
The Powell method however, does not deal with strong shocks or interacting shocks well,

as it does not advect the divergence away quickly enough and, therefore does not per-

97

form well for the OT vortex simulation without the adjustment of further parameters in
the code (Guillet ez al,2019). Furthermore, the Powell scheme, in fact, only advects the
divergence with the flow and does not eliminate it, which is why it can cause local accu-

mulation of divergence. Moreover, whenever there is numerical divergence errors, it will
locally inject conserved quantities and, therefore, does not ensure conservation anymore.
Latter, however, only has a small impact according to |Guillet et al| (2019)), but should
nevertheless be checked and considered when using Powell.

Powell Dedner

Figure 4.16: Orszag-Tang vortex simulation at time ¢ = 0.48. With Powell source terms,
Dedner’s hyperbolic divergence cleaning, and without any additional divergence control.

As mentioned before, Fig. [4.17] shows the global divergence (Eqn. #.12)) as a func-
tion of time with the two divergence control methods, where the solid line represents the
time series with the Dedner terms and the dotted line with the Powell terms. The OT
vortex is simulated up to time ¢ = 5 and the plot shows that the divergence increases only

at the beginning of the simulation and then stays roughly constant for the Powell scheme

98

global divergence time series

Figure 4.17: Plot of the logarithm of the normalised divergence of the magnetic field
as a function of time for the Orszag-Tang vortex up to time # = 5. The solid line is the
divergence with the hyperbolic divergence cleaning and the dotted line with the Powell
source terms.

and decreases for the Dedner scheme. Based on Fig. [4.17] it can be said that the Dedner
approach yields a smaller global divergence compared to Powell and, therefore, we will
be using Dedner for the remaining simulations in this thesis.

The OT vortex is simulated again, this time with the divergence cleaning method of
Dedner et al.| (2002) and present our plots in Fig. Again, the top row shows a hor-
izontal cut at y = 0.428 through the 2D plane and reveals the variation of the gas and
magnetic pressure along this line. The main difference now, compared to Fig. 4.14] (no
divergence cleaning), is the overall smoothness, especially visible in the 1D magnetic
pressure profile close to the boundaries, similar toRyu ef al|(1998). Before, in Fig. d.14]
small wiggles can be observed close to the left and right boundaries of the 1D profile of
the magnetic pressure, which disappear with the implementation of the divergence con-
trolling scheme and now our solution shows that a very good agreement with Fig. 3 in
Ryu et al.| (1998)) is achieved.

In order to test the scaling of the code relative to the number of CPUs, the OT vortex

problem with a 512 x 512 grid and stopped at time ¢ = 0.48 is run on Oswald (Northum-

99

Gas Pressure at y = 0.428
T T T T

Magnetic Pressure at y = 0.428
T T T T

0.5F E| 0.10
:] A i .
:] ! 'S
E | F x, 4
04F 3 - o .
: -] i L
i R] i i :
2 F : 7: j * X * 7
e f x E [.z -
E * 9 L * % x
[* | | - * * —
i \ 5 * W - *
: Wi ,; i \/ *\fiﬂ*
L % = [% % |
0.0t I I I I | 0.00 I I I I x
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2

0.5

Figure 4.18: MHD Orszag-Tang vortex test with Dedner’s hyperbolic divergence cleaning
for the gas pressure (left) and the magnetic pressure (right). The 1D plot (top row) shows
a cut through the 2D plots (bottom row) at y = 0.428.

100

Scaling
2.4 ‘ f

2.2 .

log(time)
oo
I
|

1.7 1 | | | | | [

4 8 16 32 64 128 256
Number of CPUs

Figure 4.19: Scaling results of the code with a fixed problem setup (2D two-fluid OT
vortex) and a varying number of CPUs.

bria’s High Performace Computer (HPC)) with varying numbers of CPUs, ranging from
4 to 256 CPUs. This scaling is shown in Fig. [4.19] where the y-axis shows the logarithmic
values of the real time needed for this simulation. For this test and the chosen number of

CPUs, the performance of the code scales as

time = 10> (number of CPUs)_O’75 .

101

Chapter 5

Two-Fluid MHD Code and Simulations

In the previous chapters, the hydrodynamic and MHD equations were introduced (Chap-
ter [2)), the numerical implementation and set-up were presented and the code verification
was demonstrated (Chapter). The partial ionisation effects captured with our two-fluid

MHD code and the simulations of partially ionised plasmas are presented in the following.

Firstly, for these simulations, the model has been non-dimensionalised. The advantage of
making equations non-dimensional and, therefore, unit-less is that it simplifies the prob-
lem formulation and can also reduces numerical round-off errors (Danaila et al.l 2007,
p. 218). Moreover, it can reduce the number of parameters involved or allows the better
comparison of parameters (Yunus A. Cengel, 2002, p. 356). This non-dimensionalisation
or scaling is done with help of a reference parameter, which can be a characteristic
scale or a physical quantity. In general, the benefit of non-dimensionalising in terms
of units of a physical quantity that makes sense for the problem under study, is that
the numbers we yield from running the code, immediately has physical meaning. In
MHD this could be a non-dimensionalisation in terms of the Alfvén velocity or the sound
speed for example. In this work, a non-dimensionalisation related to the Alfvén veloc-
ity is used, following Hillier, Takasao, and Nakamura (2016). The choice for the non-
dimensionalisation depends on the subject under study and often a few choices make
physical sense. For example, in Hillier; (2019), the system has been non-dimensionalised
in terms of the sound speed. Non-dimensionalisation works as follows. Basically, we say

that the quantity in the "real" world g,.,;, with dimensions and units, equals the quan-

102

tity, i.e. the number, in the code g oqe times some scaling factor ggcqiing, therefore, as
an example Greal = Gcode * qscaling. Therefore, the non-dimensionalised quantity in the
code Geode = Greal/qscaling- This means that the number the code yields, has to be mul-
tiplied by the scaling factor to obtain the physical quantity with dimensions and units.
This scaling factor has units and a certain size. If we want to normalise our quantity,
this size would be a set maximum of the quantity. For the simulations in this chapter,
the velocity is non-dimensionalised in terms of the Alfvén velocity v4, where the bulk
Alfvén velocity is normalised to 1 and the collision frequency is 1, too. The density p is
non-dimensionalised by the total density p;,, which is also normalised to 1. The time # is
given in terms of the inverse of the collision frequency and, therefore, itis t = 1/a(T0)p;or-
And since the velocity v = L/t or L = v4t, the previous non-dimensionalisation leads to
the non-dimensionalisation of the length scale with L = v /(a:(To)p:o:). This means that
after the fluid has traveled through one unit length, it is fully coupled. Because the total
density and the collision frequency are also normalised to 1, it follows from this normal-
isation that a.(Tp) = 1. The magnetic field is normalised by B = B,/ 4z, or, in terms
of the Alfvén velocity B = v4 y/o0r- The magnetic pressure becomes Pp = B2/2 and the
magnetic energy term becomes Ep = B2. If there was no magnetic field, i.e. B =0, the
non-dimensionalisation can also be done through the sound speed, or if the collision fre-
quency is zero, the time could also be non-dimensionalised in terms of the characteristic
length and time scales. The temperature is calculated with the ideal gas law and in non-
dimensionalised form it is given with T, = P,y,/p, and T), = P,y,/2p,, for the neutral
and ionised fluid, respectively.

5.1 Two-Fluid Simulations

The two sets of hydrodynamic and MHD equations are numerically solved and the fluids
are coupled through collisions, which is mathematically expressed with a collision fre-
quency term in the source term, Eqn. (2.142). First, for testing purposes, the two fluids
were decoupled by setting the collision rate to zero and each of the fluids are simulated
separately in the two-fluid code. Ionisation and recombination rates, ¥;,, and y,.., Eqns.
(2.144) and (2.143), respectively, can be turned on to investigate effects of ionisation and
recombination on the fluid structure in the simulation. With the two-fluid code, the 1.5D
slow-mode MHD shock as initialised in Hillier, Takasao, and Nakamural (2016) (with col-

103

Slow-Mode Shock Orszag-Tang Vortex

o

'S

o
I
IS
&

IS

S
I
IS
S

&
o
w
a

o o
o e
N w
G S

o]
o
N
o

ionisation and recombination rate

e © © © © o o o
o B B N N W W
o
ionisation and recombination rate

5]
e
o
«

G
o
-
S5

0.00 025 050 075 100 125 150 175 0.0 0.2 0.4 0.6 0.8 1.0 1.2
T T

Figure 5.1: The ionisation rate (solid line) and recombination rate (dotted line), accord-
ing to Eqn. (2.144) and Eqn. (2.143), respectively, for the slow-mode shock by Hillier,
Takasao, and Nakamural (2016)) left, where T, = 1.9 and for the OT vortex right, where
Thax =1.2.

lision terms only) is replicated to secure that also this two-fluid configuration of the code
is reliable and to use this simulation as a reference simulation. Additionally, ., and ;.
are activated and the effects of ionisation and recombination on this shock are investi-
gated. In 2D, the two-fluid Orszag-Tang vortex is initiated, first with collision frequency
rates only and then with ionisation and recombination rates included.
The effect of y;,, and vy,.. on the fluids, shock properties and the development of the
energy conversions throughout the simulation are investigated. As described before, the
momentum and energy variations, which result from changes in the ionised and neutral
fractions, are taken into account through the terms containing v;,, and vy,... The ionisa-
tion fraction can vary through vy;,, and y,. terms in the continuity equations. Because
the calculation of the ionisation and recombination rates require a maximum temperature
to adjust those rates to the system under study and maximise their effect, this maximum
temperature varies from problem to problem. Here, the maximum temperatures are ob-
tained from simulations without ionisation and recombination included. In Fig. [5.1] the
relation of ionisation and recombination is illustrated for both of the simulations that are
studied.

The plots show the ionisation and recombination cross-over for the slow-mode shock
(left) and for the OT vortex (right) as a function of temperature. It reveals that ionisation
and recombination both occur in both our simulation cases and at what temperatures ion-

isation dominates and when recombination dominates.

104

The ambient temperature T is calculated with Ty = P/pR,, with R, = 0.56 being the
gas constant, expressed in terms of the normalisation in |Hillier, Takasao, and Nakamura
(2016). The gas pressure and density are P = P, + P, and p = p, + p,, respectively. The
temperature is computed using T, = Pyy,/p, and T, = Py, /2p,. A specific heat ratio
of ¥ =5/3 and the Minmod limiter are used. Like in |Hillier, Takasao, and Nakamura
(2016), the dynamic timescales are assumed to be smaller than collisional timescales and,

therefore, a simple numerical scheme for the time integration can be applied.

5.1.1 1.5D Slow-Mode Shock

The solar corona is very hot, which means there is a lot of energy per unit mass. This en-
ergy might come from magnetic reconnection, as this can release a lot of stored magnetic
energy (Hillier, Takasao, and Nakamural, 2016). In magnetic reconnection there are two
important processes that release this energy, or in other words, convert magnetic energy
to fluid energy (kinetic, thermal): one is the Joule heating and the second is the work of
magnetic field on the plasma, post-reconnection. Fast magnetic reconnection is a result
of standing slow-mode shock created by magnetic field relaxation (Hillier, Takasao, and
Nakamura, [2016). Hence, slow-mode shocks are of interest because they are the source
of fast magnetic reconnection and, therefore, provide the mechanism for converting mag-
netic energy to fluid energy, i.e. the heating of the system.

In MHD, the three characteristic wave speeds, namely slow, Alfvén and fast, lead to a va-
riety of shock transitions (Snow and Hillier, 2019). The slow-mode or switch off shock is
the transition from super-slow to sub-slow flow speeds. |[Hillier, Takasao, and Nakamura
(2016) investigated a 1.5D slow mode or switch-oft shock and its evolution in time in a
partially ionised plasma and a two-fluid setting. In this setting, the initial conditions show
a constant pressure and density background, but a discontinuity in the vertical component
of the magnetic field. Note that|Hillier, Takasao, and Nakamura) (2016) set ionisation and
recombination rates to zero. We replicated the 1.5D two-fluid shock in Hillier, Takasao,
and Nakamura/ (2016)) to demonstrate the physical reliability of the two-fluid code and use
it as a reference solution in order to investigate the effects of the inclusion of y;,, and y,¢.

The same initial conditions are used as in Hillier, Takasao, and Nakamural (2016) and are:

105

>pp = {1Psot
P, = 20/($2+281)Pror
Vip = 0
Vyp = 0
B, = 0.3By ,
Pn = $2Prot
Py = 0/(&+200)Pio
Ven = 0
[Vyn = 0

—By, ifx>1,

By =
By, ifx<1.

P = 0.15 is the total gas pressure and By = 1 is the magnetic field. Initial charged and
neutral fluid fractions for the density are {1 = 0.1 and &> = 0.9, respectively. Continuous
boundary conditions are applied. The simulation is stopped at time ¢ = 1. Our numerical
result is presented in Fig. [5.3] and matches Fig. 2 in Hillier, Takasao, and Nakamura
(2016)). A self-convergence test is performed, with the equation given in Eqn. (4.3.1) and
displayed in Fig.[5.2] to test the code’s convergence for the shock simulation by Hillier,
Takasao, and Nakamural (2016). It can be said that the NE converges with a slope of
order 1, similar to the Sod shock tube and Brio-Wu shock test in Sec. 4.3.1] and 4.3.2]

respectively.

Due to the initial conditions, the development of the ionised fluid dominates the dy-
namics of this slow-mode shock evolution, as everything is in equilibrium, except the
magnetic field. The discontinuity in the vertical magnetic field component influences the
ionised fluid directly and influences the neutral fluid only through collisions of the neutral
fluid with the ionised fluid. A fast-mode rarefaction wave and a slow-mode shock form in
the ionised fluid. The rarefaction wave is visible in the plots of the By, v, and v, compo-
nents, between x = 2.7 and x = 3.4, in Fig. [5.3] and travels away from the initial position
of the discontinuity in the magnetic field at approximately the ion Alfvén speed (Hillier,
Takasao, and Nakamura, [2016). Behind the rarefaction wavefront, the ionised fluid moves
at a speed of 0.4 in the negative horizontal direction towards the slow-mode shock, while

the velocity of the neutral fluid is close to zero. This results in a drift velocity, vp = v, —v),

106

Hillier — self convergence test
I

I
N

____ Numerical Error

i
=z
=
° -20

2.2

----linear function slope m = -1
-2.4
-2.6 | . | T

n n n n n 1 n n P
256 512 1024 2048

N -
[e3)

Figure 5.2: Self convergence test for Hillier shock test with the Minmod limiter. The
logarithm of the Numerical Error (log(NE)) for the density as a function of grid cell
resolution (N) is plotted with the solid line, where our reference is our solution at a 4096
grid cell resolution. The dotted line is a reference slope.

and comes into play in the source terms, Eqn. (2.134), of the momentum equations. From
Eqn. (2.134), it can also be seen that this difference in speeds acts as an energy source
for the neutral fluid, while it extracts energy from the ionised fluid. Hillier, Takasao, and
Nakamura (2016) show that this results in a higher local temperature for the neutral fluid
at the slow-mode wavefront, as revealed by the temperature plot in Fig.[5.3] This results
in a Sedov-Taylor-like expansion of the neutral fluid, also known as a blast wave, which
manifests in the enhanced neutral gas pressure as well as the separation of the slow-mode
shock fronts in the neutral and ionised fluids. Furthermore, it leads to a depletion of the
neutral density around x = 0.

The simulation of the slow-mode shock is repeated with the inclusion of y;,, and y e,
Eqns. (2.144) and (2.145). Figure [5.4] shows the result with ionisation rate (y;,,) and
recombination rate (y..) and is compared with Fig. [5.3] which is without y;,, and yy.c,

where both figures show the shock structure at time 7 = 1. Figure [5.5] shows the ratio
(without y;,, and e / with y;,, and y,..) for each quantity.

Starting the comparison with the temperature plots, it can be observed that the temper-
ature profile changes with the inclusion of y;,, and y,... With the collision term only, i.e.

without y;,, and y,.., the temperatures of both fluids are similar except at the slow-mode

107

2.0

gas pressure
density
o

0.5

0.0

temperature

Figure 5.3: Replication of |Hillier, Takasao, and Nakamura (2016) slow mode shock.
From left to right are presented the spatial distribution of the vertical magnetic field com-
ponent B, gas pressure, mass density, horizontal velocity component v, vertical velocity
component vy, and the temperature for the neutral (red) and ionised (black) fluid at time
r=1.

shock front, where T}, > T, by a factor of 0.7. In contrast, with y;,, and .. the tem-
peratures are the same at the shock front and elsewhere T, < T, by a factor of 0.6. This
is because y;,, and .. influence the densities of the fluids and act as sinks and sources,
which affects their temperature. The temperature dependence of y;,, and y,.. are given
in Eqns. (2.144) and (2.145)), and illustrated Fig. [5.1] left for this slow-mode shock simu-
lation. For example, for the initial ambient neutral temperature 7, = 0.25, the y;,, = 0.1
and y,.. = 0.45. The expressions for the source terms, Eqn. (2.134), show that this leads
to a source in the plasma continuity equation and a sink in the neutral continuity equation.
In addition to the temperature differences, these terms cause a change in the mass density
and gas pressure of both the ionised and neutral fluid. For the mass densities, p,, increases
by a factor of 2.2 and p, decreases by a factor of 0.8. For the gas pressure, both P, and
P, decrease by one order of magnitude with the inclusion of y;,, and ;..

The source terms in the momentum equations, Eqn. (2.134)), show that y;,, and ¥,

108

2.0

gas pressure
density

0.4 T T T 1

0.2F

0.2}

v
o
o
L L
Vy
|
;\
temperature

—-0.4F

-0.6 L L L -3

Figure 5.4: Hillier slow mode shock with ionisation and recombination rates, Eqns.
and (2.143)), included. From left to right are presented the spatial distribution
of the vertical magnetic field component By, gas pressure, mass density, horizontal ve-
locity component vy, vertical velocity component vy, and the temperature for the neutral
(red) and ionised (black) fluid at time ¢ = 1.

come into effect when the velocities are non-zero. From Fig. [5.3] and Fig.[5.4] it can be
seen that v, and v, are zero only where the rarefaction wave and slow-mode shock have
not affected the background plasma. This means that y;,, and y,.. influence the physics
only in the region between the rarefaction wavefront and the slow-mode shock.

In the magnetic field plot, it can be seen that the rarefaction wavefront without vy,
and Yyec, as in Fig. [5.3] has a finite width of 0.7, from x = 2.7 to x = 3.4. With y;,, and
Yrec» as in Fig.[5.4] it has a finite width of 0.5, from x = 2.1 and x = 2.6, which means that
it moves more slowly in the x-direction. The fast mode rarefaction wave is responsible for
driving the inflow of material towards the slow-mode shock. For this slower rarefaction
wave, the inflow speed of the ionised fluid is halved when ¥;,, and y,.. are included. This
is in contrast with the speed of the neutral fluid in the x-direction, which stays similar in

magnitude.

109

2.0 T T T 6 T T T 2.0

EN
T

gas pressure

J 2
—

0.5 \k—\//—‘

temperature

Figure 5.5: Hillier shock, ratios of quantities without to with ionisation and recombina-
tion. The ratio of the ionised fluid is presented in black and the ratio of neutrals in red.

Furthermore, the structure of the slow-mode shock is affected by the inclusion of y;,,
and y,... Post-shock, there is a high-velocity jet in the y-direction. With vy;,, and y,ec,
the speed of this jet, visible in vy, decreases to half for the ionised fluid and increases
marginally for the neutral fluid. In the x-direction, the post-shock speeds, as can be seen
in vy, of the ionised fluid as well as the neutral fluid decrease to half, with the inclusion
of ¥ion and y,e.. The position of the slow-mode shock fronts are similar, as can be seen
in Figs.[5.3]and [5.4] The slow-mode shock shows sub-structures which are present with
or without the inclusion of y;,, and y,... The post-shock pressure and mass density of the
neutral fluid decrease by a factor of 0.7 for both quantities, with the inclusion of y;,, and
Yrec. In contrast, for the ionised fluid, the gas pressure stays the same, whereas the mass
density increases by a factor of 2.4, with the inclusion of y;,, and y,ec.

To further investigate and understand the evolution of the shock when y;,, and v,
are included, the time series of the kinetic, thermal, and magnetic energies are plotted in
Fig.[5.6] These quantities are obtained by summing over the whole domain for each time

step. This reveals the energy conversion throughout the shock evolution. The green lines

110

represent the simulation with y;,, and ;.. included. The solid line is the ionised fluid and
the dotted line the neutral fluid. Table[S.1|depicts the difference in energies at the initial

state and at r = 0.2 for simulations with and without ionisation and recombination.

111

Cll

Eatr=0 Eatr=1 AE Eatr=1 AE difference ratio

with fromt=0 with fromt=0 in of E

Yion ="Yrec=0 tot=1 YionsYrec tor=1 AE atr=1
Einetic ionised 0 145.6 +145 97.4 +97 48 0.67
Einetic neutral 0 36.1 +36 28.4 +28 8 0.79
Eherma 1onised 168.7 303.3 +80% 367.2 +117% 37% 1.21
Ehermar neutral 754.1 890.9 +18% 758.2 +0.005% 18% 0.85
Emagnetic 2230.8 1777.8 -20% 1902.7 -15% 5% 1.07

Table 5.1: 1.5D slow-mode shock: energies with and without the inclusion of y;,, and y,,., at time ¢ = 1.

The table is structured as follows. The first column (E at ¢t = 0) contains the energy
values of each fluid at the beginning of the simulation, i.e. time ¢t = 0. The second column
(E at t =1 with Yion = Yrec = 0) contains the values of the energies at the end of the
simulation, i.e. at t = 1 when ionisation and recombination terms are not included, i.e.
the fluids are only coupled through collisions. If we subtract the amount of energy at the
beginning of the simulation from the energy at the end (E at t =1) - (E at t = 0)), the
difference of the energy (AE from t =0 to t = 1) is obtained and this difference for the
simulations without ionisation and recombination, is presented in the third column (AE
fromt =0 to t =1). This tells us how much energy is gained or lost over the time of the
simulation. For this third column, the kinetic energies are not given in percentage unlike
the other energies, because they are initialised with zero velocity. Hence, the numbers
given are in non-dimensionalised units. The fourth column (E at t = 0) contains the energy
values of each fluid at the end of the simulation, i.e. time ¢ = 1, when ionisation and
recombination rates included. If we subtract the energy at the beginning from the energy
at the end (Eatt=1 - E at t =0), but this time for simulations with ionisation and
recombination included, the difference of the energy that is gained or lost over time, is
obtained and they are presented in the fifth column, AE from t =0 to t = 1. The sixth
column (difference in AE), reveals the difference in energy (that is gained or lost over the
simulation) with ionisation and recombination and without. The seventh column shows
the ratios of the energies (with y;,, and y,. / without y;,, and vy,..) at the end of the
simulation, 1.e. at t = 1. Note that this last column shows the difference of the energy
values only at the end of the simulation and does not reflect the overall change over time
or how much this change actually contributes to the overall energy gain or loss over time.

First of all, it can be said that the total energy is conserved; the loss of magnetic energy
is balanced by the gain of kinetic and thermal energy. That the energy is conserved can be
determined from Table [5.1] by adding up the energies at the beginning of the simulation
when time 7 = 0 and comparing those with the magnitude of energy at the end of the
simulation, when ¢ = 1. This confirms the conservation of energy with a deviation of
0.0032% with collision rates only and of 0.0095% with vy;,, and vy,.., over the time span.
From the source terms, Eq. (2.134), it can be seen that the y;,, and vy, play a role in the
momentum and energy equations only when the velocities are non-zero. In the momentum
equations, the terms containing the velocities are of similar size, which means that none

of them dominates the physics. Similarly, in the energy equations, all the terms affect

113

the time evolution of the energy in a similar way. This means that vy;,, and Y, do not
influence the energy evolution in a qualitative way, as shown in Fig. [5.6] where it can be
seen that the graphs do not change their shape, but only the magnitude of the quantities
change.

To investigate the effect of y;,, and 7y,.., the simulation without these terms is used
as the reference against which the changes in energy are measured. From Table [5.1] it
can be seen that the kinetic energy of both, the ionised and neutral fluid, increases by a
smaller amount with the introduction of y;,, and y,... This is due to the lower velocities
of both fluids when v;,, and vy,.. are included. This is also reflected in the ratio (with
Yion and Y. / without y;,, and y,..) of the kinetic energy, where the ratios are 0.67 and
0.79 for the ionised fluid and the neutral fluid, respectively. These ratios demonstrate
that the overall change in kinetic energy for the neutral fluid is less than for the ionised
fluid. For both fluids the thermal energy increases overall, but when v;,, and ;.. are
included, the effect on the ionised fluid is larger than on the neutral fluid, as shown by
the ratios in Table [5.1 The decrease of the thermal pressure of the neutral fluid is due
to the decrease of its density and gas pressure. In Fig. [5.6] an overall decrease of the
magnetic energy is revealed. In Table [5.1]the ratio of the magnetic energy at # = 1 shows
that the decrease is reduced with the inclusion of y;,, and y,... This is because the whole
process is slowed down; the discontinuity in the magnetic field accelerates the ionised
fluid, which then gains kinetic energy. With v;,, and y,.., the ionised fluid accelerates
more slowly, therefore, the velocity has decreased and the energy stays with the magnetic

energy instead of being converted to kinetic energy.

114

Kinetic Energy

150

o
]
T

u
o
T

Eyin ionised

Eyin neutral ,

1 L
0.4 0.6

Time in Seconds

0.8

Thermal Energy

1000 [

800 -

@

(e}

o
T

IS

o

o
T

Eherm 10Nised
Il

I
Q.2 0.4 0.6

Time in Seconds

0.8

1.0

2400
2200 F S

2000

Magnetic Energy

1800

1600 I I I I
0.0 0.2 0.4 0.6 0.8 1.0
Time in Seconds

Figure 5.6: Kinetic energy, thermal energy and magnetic energy time series for the Hillier,
Takasao, and Nakamura (2016) slow mode shock with collision rates only (black lines)
and additional ionisation and recombination rates (green lines). The solid lines represent
the ionised fluid and the dotted line the neutral fluid.

5.1.2 2D Orszag-Tang Vortex

We revisit the OT vortex simulation and run it this time with the two-fluid code, or in
other words, in a partially ionised plasma setting. The conventional OT vortex simulation
(Orszag and Tang| 1979) shows the transition to supersonic 2D MHD turbulence and tests
a code’s robustness to MHD shock formation, shock-shock interactions and how well the
V-B = 0 constraint is satisfied. This solenoidal condition is obtained from Maxwell’s
equations. Numerically, this is not always assured due to truncation errors in the discreti-
sation schemes (Guillet ez al., 2019). Therefore, the divergence cleaning scheme intro-
duced by Dedner et al| (2002) is implemented in the code and presented in Sec. 4.3.3]
Ryu et al.| (1998) simulate the OT vortex for ideal MHD equations and our successful
replication of it, with a resolution of 512 x 512 pixels, is presented in Sec. The

115

initial conditions in 2D for the two-fluid OT vortex are:

pp = yP

P, = PBB}2

Vyp = —Vosin(2my)
Vyp = Vosin(2mx)
B, = -—Bpsin(2ny)
By = Bysin(4nx) .
Pn = yP

P, = PBBY2

Vin = 0
[Vyn = 0

Here, By = —1/ V4n, p=10/3, P= ,BB(Z) /2, vo = 1 and the boundaries are periodic every-
where. For verification purposes, the two fluids were decoupled in the code by setting the
collision frequency, ionisation, and recombination terms to zero. This means, the equa-
tions have a RHS of zero. A solution exactly like in Fig. {.18] for the ionised fluid is
retrieved, while the neutral fluid stays in equilibrium and does not form a vortex. Now,
coupling the two fluids again by switching on the collision terms in the source term and
repeating the simulation, a vortex formation in both fluids can be observed. For this sim-
ulation, the collision frequency lies between 0.8 and 1 and the initial neutral fraction is
50%. The OT vortex plots for the coupled two fluids are shown in Fig. The horizon-
tal cut at y = 0.428 through the 2D plane (1D plots) reveals the variation of the gas and
magnetic pressure along this line. As can be seen in the plots of the neutral gas pressure
and temperature, the neutral fluid forms a vortex as well, which, however, is less defined.
This is expected, because even though neutrals do not react to the forces of the magnetic
field and their initial velocity is zero, they are coupled to the ionised fluid and, therefore,
move with the ionised fluid. To what extent they move with the ionised fluid and form
a vortex, depends on the strength of the coupling. If the coupling is strong, momentum
is exchanged quicker and the neutral fluid would form a vortex quicker too. If there is
weak coupling, and collisions between the neutral fluid and the ionised fluid are rare,
it would take more time for the neutral fluid to form a vortex. The collision frequency
evolves in time and lies between 0.8 and 1 for the OT vortex simulation, calculated with

Eqn. (2.142). vyion and yy,. are included and the OT vortex simulations is run again, which

116

is shown in Fig.[5.8] As the changes are not visible in the 2D plots of this figure, the 1D
cut through the computational domain serves as the better means of comparison.

The OT vortex simulation with collision terms only and with ionisation and recombi-
nation included are compared. In order to do so, we also plot the spatial distribution of the
magnetic field component By, the gas pressure, the mass density, the velocity components
vy and vy, and the temperature along a line across a shock region in the OT vortex simu-
lation, as marked in Fig.[5.9] For this region, the Figures[5.10]and [5.11] reveal the spatial
distribution and magnitude of the physical quantities therein. They depict the behaviour
of the fluids along the marked line across the shock front, where most changes happen,
as it is highly dynamic and non-linear. That means, if we want to see the differences, this
region is the best place to look at. An even better insight is given when looking at each of
the fluids individually. In Fig.[5.12] the physical quantities along the line across the shock
for the ionised fluid only are plotted and in Fig. [5.13] the quantities for the neutral fluid
only are plotted, where the solid line represents the simulation with collisions only and
the dotted line the simulation with y;,, and ;..

Additionally, the energy conversion during the vortex formation is of interest. Plotting
the energy time series (Fig. [5.14) illustrates the difference between the energy conversion
during the vortex formation when only collision rates are included (black lines) and when,
additionally, y;,, and y,.. are included (green lines). Throughout the simulation, the total
energy is conserved.

Table[5.2]depicts the difference in energies at the initial state and at ¢ = 0.2 for simula-
tions with and without ionisation and recombination. In the previous section, Sec.[5.1.1]
the headers of this table have been explained in more detail. That the energy is conserved
can be determined from Table [5.2] by adding up the energies at the beginning of the simu-
lation when time 7 = 0 and comparing those with the magnitude of energy at the end of the
simulation, when ¢t = 0.48. This confirms the conservation of energy with a deviation of

0.0019% with collision rates only and of 0.0013% with y;,, and y,.., over the time span.

117

lonised — Gas Pressure

lonised — Gas Pressure at y = 0.428
T T T T

0.5F
E 0.4
0.4F E
£ x x 3 0.3
3F x X 3
E * *] a
g * p] *
C * X |
4 E
2f /3 i#] 0.2
E * * 7
JE /‘%—} E
E (9% 0.1
O,OE I I L L B
Q.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Neutral — Gas Pressure at y = 0.428 Neutral = Gos Pressure
0135 T T T T
[0.134
0.132
0.130
0.130
&E &E
0.128
0.125
0.126
0.124
0.120
0.0 0.0 0.2 0.4 0.6 0.8 1.0
X
Magnetic Pressure
1.0
0.100 0.30
0.08 0.8 0.25
[0.20
0.06 0.6
a® i ” 0.15%
0.04 0.4
[0.10
0.02 0.2
L 0.05
0.00[0.0 0.00
0.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Neutral — Temperature
1.0
1.2 1.05
0.8
1.04
1.0
0.6 1.03
0.8+ > -
0.4 1.02
0.6
1.01
0.2
0.4 1.00
0.0 |8
0.0 0.2 0.4 0.6 0.8 1.0
X X

118

Figure 5.7: Two-fluid Orszag-Tang vortex test. The cut through the computational domain
(1D plots) shows the variation of the physical quantity in the 2D plane at y = 0.428 for the
ionised fluid’s gas pressure (top row), the neutral fluid’s gas pressure (second row) and the
magnetic pressure (third row). The bottom row plots show the temperature distribution
for each fluid.

lonised — Gas Pressure

lonised — Gas Pressure at y = 0.428
T T T T

05F
0.4; 3 0.4
£ 4
, i
E * * 7
E x X E
OYBE M x E 0.3
n™ M S q o
E *]
E i El
0.2F * K 4
C *] 0.2
x El
E * El
0.1 -
E El 0.1
0.0E) 3
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Neutral — Gas Pressure at y = 0.428 Neutral — Cas Pressure
0.145[T T T T
[0.145
0.140 =
[0.140
Oﬂ357 =
u 0.135 4
O,WBO’ ¥ -
r H] 0.130
X]
0125 \/ 0.125
0.120L | | | |]
a.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x X
Magnetic Pressure at y = 0.428 Magnetic Pressure
O]O T T T T A‘o
[i 0.25
0.08 & 0.8
x]
x [0.20
0.06 * . 0.6
L x x
- .] - 0.15 4=
L . . x
0.04 M x 0.4
r x . 0.10
X
L .
0.02 \4 7 02 0.05
L
L =]
0.00 | | | | ¥ 0.0 0.00
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x X
lonised — Temperature Neutral — Temperature
.
1.0 . \ 1.0 s
V) 1.0
0.8 0.9 0.8
' 1.10
0.6 0.8 0.6
> O‘7F > 1.05 —
0.4 0.4
0.6
1.00
0.2 0.5 0.2
0.95
0.0 0.4 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

119

Figure 5.8: Two-fluid Orszag-Tang vortex test, with y;,, and y,. included. The cut
through the computational domain (1D plots) shows the variation of the physical quantity
in the 2D plane at y = 0.428 for the ionised fluid’s gas pressure (top row), the neutral
fluid’s gas pressure (second row) and the magnetic pressure (third row). The bottom row
plots show the temperature distribution for each fluid.

Neutral Fluid — Gas Pressure

lonised Fluid — Gas Pressure

0.145
0.4 0.8
0.140
0.3 0.6
a® - 0.135 4>
0.4
0.2 0.130
0.2
0.125
0.1
oo
0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 5.9: 1D profiles of physical parameters along the blue line are presented in
Fig.[5.12]for the ionised fluid and for the neutral fluid in Fig.[5.13|

0.0 " " " 0.30 " " " 0.30 " " "
0.25 1
-0.1F 9 0.25F]
g
2 0.20 1 >
0 b=
@ -0.2F] 2 £ 0.20F 1
a [}
o 0.15 B ©
(o]
o
-0.3F 9 0.15F 1
0.10 1
-0.4 . . . 0.05 . . . 0.10L . . .
0.20 0.25 030 0.35 0.40 0.20 025 030 0.35 0.40 020 0.25 030 0.35 0.40
X X X
19 " " " 08 " " " 12 " " "
1.0 1 0.6F 1 -
1.0F 1
0.8 1 0.4F 1 o
5
°
<06 1 0.2 1 % 0.Bf 1
a
E
0.4] 00F] =
0.6 1
0.2 1 -0.2F 1
0.0 L L L —-0.4 L L L 0.4 L L L L
0.20 025 030 0.35 0.40 0.20 025 0.30 0.35 0.40 0.20 0.25 0.30 0.35 0.40

X

X

X

Figure 5.10: 1D profiles - no ionisation and recombination rates. From left to right are
presented at time 7 = 0.48: the spatial distribution of the magnetic field component B, gas
pressure, mass density, velocity components v, and vy, and the temperature.

120

0.0

o —0.2F

=03

-0.4

L

L

L

gas pressure

0.20

0.25

0.30

0.35

0.40

0.4

0.2

0.0

0.20

0.25

0.30
X

0.35

0.40

0.30

0.25

0.20

0.15

0.10

0.05

L

L

L

0.20

0.25

0.30

0.35 0.40

0.8

0.6

0.4

0.2

0.0

-0.2

L

L

L

-0.4
0.20

0.25

0.30
X

0.35 0.40

0.30

0.25

0.15

0.10

0.20

temperature
o =
o o

o
<))

0.4

0.20

0.25

0.30

0.35

0.40

L

L

L

0.25

0.30
X

0.35

0.40

Figure 5.11: 1D profiles - with ionisation and recombination rates. From left to right are
presented at time ¢ = 0.48: the spatial distribution of the magnetic field component By, gas
pressure, mass density, velocity components v, and vy, and the temperature.

121

0.0 T T T 0.30 T T T
0.25 1
—0.1 k!]
.
2 0.20]
?
o -0.2 3 I 4
Q.
0 0.15]
o
o
-0.3 9 1
0.10 9
-0.4 . . . 0.05) . . 0.10 . . .
0.20 025 030 035 040 0.20 025 0.30 0.35 0.40 020 0.25 0.30 0.35 0.40
X X X
12 . . . 0.8 . . . 0.9 . . .
1.0 9 0.6F . 9 08 3
0.8 } 0.4F | } v
. 307 k|
N o
> 0.6 B S 021 N B ©
R g
B E 06 9
0.4 1 0.0F N] 2
0.2f] —0.2f . 05]
0.0 L L . -0.4 . . . 0.4 . . .
020 025 030 035 040 020 025 030 035 0.40 020 025 030 035 0.40
X X X

Figure 5.12: Ionised fluid: collision rate only (solid line) and with ionisation and recom-
bination rates in (dotted line). From left to right are presented at time ¢ = 0.48: the spatial
distribution of the magnetic field component By, gas pressure, mass density, velocity com-
ponents v, and vy, and the temperature.

122

0.135 T T 0.23 T T T
® 0.130f ! g 0.22 /]
> .
13 ! >
n = .
[n v
g ; 2 ,
(9] | © '
& 0.125 4 0.21F ' 9
01200 . . 0.20 . . .
0.20 025 0.30 035 0.40 020 025 0.30 035 0.40
X X
0.25 . . . 0.95
110} ’ 1
3 0.20F - .]
0.20F i 1 -.
. i o 1.08 . 1
. 015} ~ 1 E ' |
. . = . \
> 0.15F T q >n o P \
.. S 1.06f- " . i
o.10F .] E .
. 3 .
0.10F g i ["]
\ 0.05 \] 1.04 J\
0.05 . . . 0.00 . . . 1.02 . . ,
020 025 030 035 0.0 020 025 030 035 0.0 020 025 030 035 0.40
X X X

Figure 5.13: Neutral fluid: collision rate only (solid line) and with ionisation and recom-
bination rates in (dotted line). From left to right are presented at time 7 = 0.48: the spatial
distribution of the gas pressure, mass density, velocity components v, and vy, and the
temperature.

123

3x10* 7.0x10*
F o 6‘5><WO“7 Eiherm 10NIsEd -
2x104F E.in ionised r
> F > L
g § 6.0x10*
S WF] W [
o 1x10°f 3 E r
2 E 1 5 5.5x10*
X r q = r
[E,, neutral] =
O reeemre = [
E 50x10% - e ~
—1x10*t 4.5x10%L
0.0 0.1 0.2 0.3 0.4 05 0.0 0.1 0.2 0.3 0.4 05
Time Time
1.6x10*
5 1.4x10*
©
2
[}
Q
©
2
g
= 1.2x10%
1.0x10* I I | |
0.0 0.1 0.2 0.3 0.4 0.5

Time

Figure 5.14: Kinetic energy, thermal energy and magnetic energy time series for the
Orszag-Tang vortex with collision rates only (black lines) and additional ionisation and
recombination rates (green lines). The solid lines represent the energy of the ionised fluid

and the dotted line the energy of the neutral fluid.

124

Eatr=0 Eatr=048 AE E atr=0.48 AE difference ratio

4!

with fromt=0 with fromt=0 in of E

Yion =Yree =0 tot=0.48 Yion>Yrec tor=0.48 AE atr=0.48
Erinetic ionised 28973.3 10968.8 -62% 9064.3 -69% 7% 0.83
Erinetic neutral 0 111.3 +111 604.4 +604 493 5.43
Eiermar 1onised 52151.9 67523.9 +29% 68185.7 +31% 2% 1.01
Eiherma neutral 521519 49941.9 +4% 51504.5 +1% 3% 1.03
Emagnetic 10430.4 15158.9 +45% 14346.6 +37% 8% 0.95

Table 5.2: Orzsag-Tang vortex: energies with and without the inclusion of y;,, and y,,., at time ¢ = 0.48.

Now, comparing the plots without y;,, and ;.. (Fig.[5.7), to the plots with y;,, and
Yrec (Fig.[5.8)), the most obvious difference is the neutral gas pressure, which has increased
and is about a quarter of the magnitude of the ionised fluid’s gas pressure. The peaks of
the neutral gas pressure increased by 5% for the left peak at x = 0.27 and by 8% for the
right peak at x = 0.58. The gradient leading to each peak changes from m = 0.035 to
m = 0.074 for the left peak and from m = 0.03 to m = 0.074 for the right peak. From
Fig. [5.8] the damping of the magnetic field is manifested in a smoother profile, where
small-scale spatial variations in the amplitude at around x = 0.5 are smaller than with
collision rates only (Fig.[5.7).

Compared to simulations with collision rates only, the lower magnetic field pressure,
with y;,, and vy, included, might be caused by the slower development of the vortex
formation. This is also visible in the magnetic energy plot in Fig.[5.14] where the magnetic
energy increases. From Table [5.2]it can be seen that there is an increase of 37% when vy,
and vy, are included, compared to 45% without vy;,, and y,... This slowing down of
the development is visible in the plots of Fig. where vy;,, and y,.. are included: the
velocity plots show that the x- values are positive, which means the shock is travelling
in the positive x-direction. Because the shock front is found at a lower x value, it can be
inferred that the shock has not traveled as far as without y;,,, and vy,.., where the difference
in the shock position for the ionised fluid is Ax = 0.012. One can also see this in the energy
plots, Fig. [5.14] where a stronger decrease in kinetic energy of the ionised fluid can be
observed when vy;,, and ;.. are included. Table [5.2] shows that this difference in the
change of kinetic energy for the ionised fluid is 7%. The neutral temperature values lead to
a domination of ionisation rate over the recombination rate, Fig. [5.I] From Eqn. (2.134),
it follows that this leads to a sink in the momentum equation for the ions and a source of
momentum for the neutrals.

Looking at the neutral fluid plots (Fig. [5.13), it can be seen that it is the other way
around: the shock front has traveled further in the neutral fluid, when including vy;,, and
Yrec, Where Ax = 0.010, and the velocities have more than doubled. This is also reflected
in Table[5.2] where the ratio (with vy;,, and ;.. / without ;,, and y,..) shows an increase
of the neutral fluid’s kinetic energy of 5.43. For the ionised fluid (Fig.[5.12)), with y;,, and
Yrec included, there are changes in the v, and v, velocities (each decreases by 7%), in the
temperature (increases by 10%) and a shift of the shock front (with Ax = 0.012).

The bigger change can be seen for the neutral fluid when compared to the ionised fluid.

126

At the shock front, as in Fig. [5.13] the temperature of the neutral fluid increases from
T =1.045 (without y;,, and yye) to T = 1.12 (with y;,, and y,..). The neutral gas pressure
and mass density show a different behaviour around the shock. Post-shock (x = 0.2 to
x = 0.26), with y;,, and vy,.. included, the gas pressure and mass density show a lower
value than before the shock (from x = 0.28 to x = 0.4), compared to without y;,, and .
Similarly, the y-component of the magnetic field in Fig. [5.12] shows a lower magnitude
post-shock (by 20%) and a higher magnitude pre-shock, when v,, and y,.. are included.
Furthermore, the total gas pressure over the whole domain increases for the ionised fluid
and decreases for the neutral fluid, which is reflected in the thermal energy plot, Fig.[5.14]
However, this decrease of the neutral fluid’s thermal energy is less by 3% when v;,,, and
Yrec are included, while the increase of the ionised fluid’s thermal energy is by 2%, see
Table[5.2] Figure[5.14]and Table[5.2]show that the magnetic energy increases without y;,,
and y,.c by 45% and with v, and y,.. included by 37%, which implies that less energy
has been converted to magnetic energy over the vortex formation.

Finally, we want to briefly compare the two-fluid OT vortex simulation to the ideal
MHD, single-fluid simulation of the previous chapter, Sec. [4.3.2] where a fully ionised,
ideal plasma is assumed. Therefore, the energy plots in Fig. [5.14] are compared to
Fig. It can be observed that the sole inclusion of collisions slows down the pro-
cess or inhibits the driving mechanism, which is the velocity field; without collisions, the
kinetic energy loss is smaller, and hence, the energy stays in the velocity field and drives
the vortex, where also a stronger increase of magnetic energy can be observed. As less
magnetic energy is converted to thermal energy in the ideal MHD simulation, the thermal
energy increases less strong. This suggests that collisions inhibit the vortex formation and
evolution, and the inclusion of ionisation and recombination does so even stronger, so that

the driver is even less efficient.

127

3.0x10*] 6.4x10%
[6.2x10*
2.5x10*
L T
= 5 6.0x10%
o e
‘-‘C—‘ 47 w of
o 2.0x10 5 5.8x10°F
2 i £
£ © [
< [= 5.6x10*
1.5%10%
[5.4x10*
1.0x104L . . .] 5.2x10%L
0.1 0.2 0.3 0.4 05 0.1 0.2 0.3 0.4 05
Time Time
1.6x10*
& 1.4x10*
L
2
()
0
©
g
g
= 1.2x10%
1.0x10* . . |
0.1 0.2 0.3 0.4 05
Time

Figure 5.15: Ideal MHD (single fluid): Kinetic energy, thermal energy and magnetic
energy time series for the Orszag-Tang vortex.

128

Chapter 6

Conclusions

6.1 Conclusion With Regards to Two-Fluid Simulations

The two systems of equations (hydrodynamic and MHD) are coupled with a collision
term @, and form a two-fluid code. To determine if the two-fluid code produces expected
results, the 1.5D slow-mode shock, which is simulated in Hillier, Takasao, and Nakamura
(2016) (with collision terms only), is replicated and our results show a good agreement.
Also with collision rates only, the OT vortex is initialised in the two-fluid setting.
Furthermore, the effects of ionisation and recombination on the slow-mode shock and
the Orszag-Tang (OT) vortex simulation are studied and in order to achieve this, ionisation
and recombination rates, y;,, and y,.., respectively, are added. The effect of ionisation
and recombination on both fluids, the ionised and the neutral fluid, are compared to simu-
lations where collisions are the only coupling mechanism between the fluids. This means
that now the two fluids do not only interact through collisions, but ionisation and recom-
bination are an additional coupling mechanism and their effect on the fluid properties and
the energy conversion is studied. Mathematically, this is manifested in the source terms
in Eqn. (2.134)), where terms related to ionisation and recombination (y;,, and y..) act as
sinks and sources in the density, momentum and energy equations. As can also be seen
in the source term expression, Eqn. (2.134), is that if the velocities are all zero, then y;,,
vrec and a. do not come into effect, because all of these terms are related to the velocity
of the fluids, either the drift velocity (vp = v, —v)) or the velocity of the individual fluid.

If both fluids’ velocities are non-zero and exactly the same, the drift velocity is zero and

129

there are no collision effects, as both fluids move as one, but there are effects related to
Yion and Y,e¢, as these are dependent on the individual fluid velocity. If the velocities of
both fluids are different, there exists a drift velocity which affects the collision term and,
therefore, shows that the degree of coupling through collisions is dependent on the drift
velocity. This drift velocity changes with the inclusion of y;,, and Y.

For example, in the 1.5D slow-mode shock simulation, the ionised fluid’s velocity de-
creases with y;,, and y,.. with respect to the neutral fluid’s velocity, which can be seen in
the velocity plots of Fig. and, therefore, the drift velocity decreases. Our solution of
the slow-mode shock as in [Hillier, Takasao, and Nakamural (2016]), serves as a reference
solution where only collisions are included. The discontinuity in the magnetic field is re-
sponsible for the domination of the ionised fluid in terms of the dynamics and the neutral
fluid is only affected as it is coupled to the ionised fluid through collisions. Additionally,
we add v;,, and v,.. and investigate the effect on the shock properties of both fluids. y;,,
and 1y, are in the source terms, Eqn. (2.134)), of the continuity equation and are responsi-
ble for the mass exchange and the resulting change of the temperature of both fluids. y;,,
and y,.. terms influence the development of the shock by slowing down the ionised fluid
and the rarefaction wave development, visible in the shift of the wavefront by Ax = 0.7,
see Fig.[5.4] This is due to the increasing interaction of the two fluids when y;,, and y;,.
terms are added to the source terms, which results in an enhanced momentum exchange,
where the momentum is transferred from the ionised fluid to the neutral fluid.

In that process, the kinetic energy does not increase as much as without y;,, and y,..
and there is less energy conversion from magnetic energy to kinetic energy, while the
total energy is conserved, see Fig. [5.60] An overview of the energy changes relative to
simulations where ;o = ¥yec = 0, at time ¢ = 0.48, can be found in Table[5.1] The overall
kinetic energy of both fluids increases. However, with y;,, and vy,.., the increase is less by
48 normalised units for the ionised fluid and for the neutral fluid it is less by 8 normalised
units, which can be seen in Table 5.1 The energy that has not been converted to kinetic
energy stays with the magnetic energy, where an overall decrease can be observed, but
with ¥, and y,.., this decrease is less by 5% (Table [5.1).

Furthermore, it can be said that y;,, and y,.. influence the shock evolution and struc-
ture in both fluids, which can be seen in their density or velocity profiles (Fig.[5.4). The
density of the ionised fluid increases by a factor of 2.4, whereas the density of the neutral

fluid decreases by a factor of 0.7, due to a source and a sink in the source term of each

130

fluid’s continuity equation, respectively. The velocities in the x-direction decrease to half
for both fluids. The post-shock jet, visible in the velocity in the y-direction, halves for the

ionised fluid and marginally increases for the neutral fluid with y;,, and y,¢c.

In 2D, the OT vortex simulation in the two-fluid setting is performed, with the initial
conditions leading to a vortex formation in the ionised fluid only and the successful cou-
pling between the ionised and neutral fluid can be confirmed, as a vortex has formed in
the neutral fluid as well. If there was no coupling through collisions, the neutral fluid
would stay in equilibrium as it initially has zero velocity and does not react to forces of
the magnetic field. Similarly to the slow-mode shock, y;,, and y,.. also have an effect of
slowing down the ionised fluid (the velocity decreases by 7%) and the development of the
vortex formation, but it speeds and heats up the neutral fluid, the velocity doubles and the
temperature increases from 7' = 1.045 to T = 1.12. This, again, is due to the additional
interaction of the fluids when v;,, and vy,.. terms are added to the source term. Further-
more, recombination dominates for most parts of the simulation, which leads to heating
of the neutral fluid, visible in its energy source term, Eqn. (2.134).

Moreover, there is a shift of the shock front, visible in every plot of Fig. [5.12] and
Fig. for the ionised fluid (Ax = —0.012) and the neutral fluid (Ax = +0.010), respec-
tively. Whereas, compared to collision terms only, the shock has not traveled as far in the
ionised fluid, it has traveled further for the neutral fluid when v;,, and 7y,.. are included.

Figure [5.14]illustrates the energy conversion throughout the vortex evolution. The to-
tal energy is conserved. Regarding the thermal energy, the ionised fluid shows an overall
increase, while the neutral fluid shows an overall decrease (Fig.[5.14). With vy;,, and y,,
the thermal energy increases by additional 2% for the ionised fluid, see Table [5.2] and
decreases by 3% less for the neutral fluid. During the vortex formation, the overall kinetic
energy decreases for the ionised fluid and increases for the neutral fluid. In Table[5.2]the
ratio (with y;,, and y,.. / without vy,,, and y,..) shows an increase of the neutral fluid’s
kinetic energy of 5.43 with y;,, and y,.. included. It can also be seen that the kinetic en-
ergy of the ions decreases more by 7% with the inclusion of v;,, and y,... The magnetic
energy increases overall without vy;,, and y,.. and with y;,, and y,... It increases less by
8% at time t = 0.48 with y;,, and vy, as can be seen in Table

To sum up the two-fluid investigations: The ionised and neutral fluids are connected

131

through a collision rate as well as ionisation and recombination rates (o, and yre). A
1.5D slow-mode shock that is initialised with a discontinuity in the magnetic field is stud-
ied, as well as a 2D Orszag-Tang vortex, which is initialised with a vortex profile in its
velocity field and magnetic field. y;,, and ;.. are included in both systems and the resul-
tant time evolution are measured. Quantitative changes to the energy flows are measured
that are specific to each system. However, the overall time evolution of each system stays
similar to its behaviour without y;,, and y,.. for the duration of the simulations. Note
that the details of the energy evolution across both systems are different, since they are
initialised in fundamentally different ways. A common phenomenon across the systems
can be observed, namely that the inclusion of v;,, and vy,.. results in the decrease of the

movement of the ionised fluid.

6.2 Summary

Partially ionised plasma is ubiquitous in space and in order to simulate astrophysical phe-
nomena accurately, a 2D two-fluid MHD code is developed to account for partially ionised
plasma effects, based on the finite volume Kurganov-Tadmor scheme and written in C++.
The advantage of this scheme is that it is Riemann-solver free, which makes computation
faster, and it also exhibits a small numerical viscosity, independent of Az, which makes
the code stable and accurate for much smaller time steps than usual schemes allow for.

The code consists of two sets of equations, one for the neutral fluid (hydrodynamic
equations) and one for the ionised fluid (ideal MHD equations). The system of equations
is integrated in time with the forward Euler or fourth-order Runge-Kutta scheme. The
performance of our code is validated by comparing our equations and initial conditions to
a published reference and the code is verified by performing tests in the hydrodynamic,
ideal MHD, and the two-fluid setting in 1D and 2D.

The 1D hydrodynamic sod shock tube test and its MHD equivalent, the Brio-Wu shock
test, are very common tests to check a code’s ability to handle discontinuities and shocks,
in a neutral fluid and with a magnetic field, respectively. Our results show a very good

agreement between our simulations and the reference solutions.

In 2D, the MHD code is tested with the Orszag - Tang (OT) vortex simulation, which

132

is commonly used in numerical MHD to test shock formation, shock-shock interactions,
and to reveal the transition to supersonic turbulence. The vortex is initialised with a
smooth profile in the velocity field and in the magnetic field, but quickly turns turbulent.
Furthermore, two divergence controlling schemes are explored, the Powell source terms
(Powell, |1994) and the Extended Generalised Lagrange Multiplier (EGLM) by Dedner
et al.| (2002)). The results of the simulations with these schemes are compared to (Guillet
et al.|(2019). The divergence controlling method by |Dedner et al.|(2002) yields the better
result, i.e. a smaller global divergence of the magnetic field and a smoother solution in the
non-shock regions. Our OT vortex simulation is compared to Fig. 3 in Ryu et al.| (1998)).
Besides the 2D illustration of the vortex, Ryu ef al.| (1998) also show a 1D cut through
the 2D computational plane, for a better comparison. Both, our 1D and 2D plots, match
theirs and we, again, find that our code provides the expected and correct solution. In the
two-fluid regime, the successful verification can be confirmed too. Additionally, simula-
tions with the two-fluid code reveal the effects of ionisation and recombination that lead

to interesting fluid behaviour and energy conversion, as discussed in the previous Section,
Sec.

To conclude, the code developed here provides a new tool to study magnetised plas-
mas, including the more complex partially ionised plasma. Due to the separate treatment
of the species independently of their coupling degree, the range of its application is high;
with this code, the solar atmosphere could be studied not only in the partially ionised
plasma regime, i.e. the lower solar atmosphere, but also in the fully ionised plasma or the
ideal MHD regime, i.e. the solar corona. As partially ionised plasmas and their proper
two- or multi-fluid description have not been established for a long time in solar physics,
the code offers an additional tool to investigate an enormous amount of physical phenom-
ena and situations that could contribute to solving open questions about the Sun, like the

coronal heating problem.

133

Chapter 7
Future Avenues of Investigation

The code developed here provides a tool to unlock new investigations into the lower solar
atmosphere and will allow new physics on the Sun to be explored. As discussed in the
introduction, phenomena like magnetic reconnection or wave damping are influenced by
the partial ionisation state of a plasma and show different characteristics, compared to the
single-fluid MHD simulations, and this also depends on the ionisation fraction. In the
solar atmosphere, the density, temperature and pressure varies by one hundred orders of
magnitudes throughout the solar atmosphere and this can make the code with the current
ionisation and recombination rates unstable. This means that for the purpose of studying
the solar atmosphere in the future, more elaborate ionisation and recombination rates and
a time stepping scheme that can account for the collision time scale, have to be imple-
mented. Currently, there is a separation of flux and source term time integration. This
means that for the simulations with the current code to be very accurate, both, flux and
source terms, have to have the same magnitude and act on same length and time scales.
However, if collisions are very frequent for example, the source term dominates and an
advanced time stepping scheme, which accounts for the time of the collisions, has to be
applied. The aim is to implement the solar atmosphere in the initial conditions and have
a self-constistent two-fluid model where ionisation and recombination terms handle the
conversion of species self-consistently, as well as the energy and temperature profiles.
Furthermore, in order to continue the investigation that has started with this project,
some more cases could be studied to confirm the findings of this work and improve our

understanding about ionisation and recombination effects in a partially ionised plasma.

134

The Orszag-Tang vortex offers a wide range of investigations, as it exhibits many complex
flow features and, for example, could be studied in terms of varying coupling degrees.
Another aspect that could also be explored is instabilities. In the following, prelim-
inary results are presented. With a finite difference code, which is central in space and
forward in time, the Rayleigh-Taylor instability and the Kelvin-Helmholtz instability are

simulated in the hydrodynamic regime.

7.1 Rayleigh-Taylor Instability (RTI)

With a finite difference code, which was written in the beginning of this PhD project,
the effect of gravitational acceleration on the Rayleigh-Taylor instability (RTI) was sim-
ulated and we would like to revisit it the two-fluid regime. The RTI is the instability
of the interface between two fluids of different densities, where the denser fluid is on
top of the lighter fluid or when they are accelerated towards each other (Chandrasekhar,
1961, p. 428). This is interesting because on the Sun, as a self-gravitating fluid body,
the gravitational acceleration does not simply depend on the gravitating mass, as New-
ton’s law states. In this more complex case, the gravitational acceleration depends on
the density distribution within the star. According to the standard model of our Sun, the
density varies by ten orders of magnitudes and the gravitational acceleration changes by
one order of magnitude. This variation may affect various instabilities present in the solar
plasma. The effects of spatially varying gravitational acceleration on the Rayleigh-Taylor

instability (RTI) are simulated. The initial conditions are:

_p _ |
P = 25+
P8y fory <0,
Vy = 0
v, = 0
U={:"
p = 2
P = 25+
pey fory > 0.
vy = 0
vy = 0

135

where a random perturbation is applied at the interface. A set-up of the simulation is
illustrated in Fig.

y
dx = dy = 0.002
0.75 . N_y = 751
closed boundaries
3
2 =2
3 p =254+ pgy
2 p2 =1
9o
g
J g
075 N_x = 251
-0.25 0.25

Figure 7.1: Set-up for the simulation of the RTI.

The RTI describes the instability of a dense fluid on top of a light fluid, due to gravity
or acceleration of the fluid system. In that process, a certain flow pattern, characteristic
for the RTI, evolves, which yields information about the physical properties of the fluids
involved (e.g. density ratio, velocity) (Kull, [1991). Considering a magnetic field, various
astrophysical phenomena can be described (solar atmospheric flux tubes, prominences)
and conclusions about the magnetic field strength can be drawn (Diaz, A. J., Khomenko,
E., and Collados, M., 2014}, Hillier, [2016)).

The code developed solves the governing fluid dynamic equations with a FD Lax-
Friedrichs scheme, which is second-order (central difference) in space and first-order
(forward Euler) in time. The flow structures are compared for three different gravitational
acceleration set-ups, illustrated in Fig. at different times.

In Fig. [7.3] the density plots are shown. From left to right, the gravitational accel-
eration varies from case 1 to case 3 as illustrated in Fig. and from fop to bottom the
evolution at different times 79 = Os,#; = 35,#, = 65 is shown.

In Fig.[7.4] the velocity plots of the same are shown.

It would be interesting to study the case of varying gravitational acceleration further,

analysing it with the linear stability analysis, with a magnetic field (i.e. in MHD) and also

136

We distinguish 3 cases with
gravitational acceleration g pointed in
negative vertical direction y:

1) constant g at any 3) height-varying g :
point in the box : g = -1 gly)=-2+y

2) height-varyingg: g (y) =-1 +y,
i.e. g decreases with height and is lowest at the top boundary
and highest at the bottom boundary

Figure 7.2: RTI, three cases of gravitational acceleration.

in the two-fluid setting. Furthermore, a more evolved code like our new two-fluid MHD
code, would allow studying fine structures of the RTI more thoroughly, due its higher

accuracy and resolution.

7.2 Kelvin-Helmholtz Instability (KHI)

The KHI is a common instability in fluid dynamics, but also fundamental in magnetised
plasmas. KHIs can be seen in various astrophysical phenomena (McNally, Lyra, and
Passy, [2012). For this instability to develop, there is usually either a shear in the velocity
of the fluid or two fluids are in pressure equilibrium, but have significantly different den-
sities and opposing velocities, which leads to the formation of vortices. Those vortices
are sources of secondary instabilities, which can then lead to creation of turbulence (Mc-
Nally, Lyra, and Passy, [2012)). If the code successfully produces KHIs, it shows that it
can handle multi-phase flows and the interaction between them. The initial condition for

this simulation of the KHI are:

137

2.0 2.0 2.0
0.6 0.6 0.6
0.4 18 0.4 18 0.4 18
.) 0.2 1.6 0z 1.6
. >~ 0.0 >~ 0.0
. : ~0.2 : -0.2 14
. . —0.4) —-0.4 1.2
. -0.6 -0.6

. . 1.0

—0.2-0.1 0.0 0.1 0.2 ~0.2-0.1 0.0 0.1 ~0.2-0.1 0.0 0.1
X
2.0
0.6 0.6
0.4 1.8 0.4
. 0.2
. ~ 0.0
. : -0.2
. -0.4
. -0.6
—0.2-0.1 0.0 0.1 0.2 ' ~0.2-0.1 0.0 0.1 ~0.2-0.1 0.0 0.1 0.2
X X
0.6
0.4
0.2
~ 0.0
-0.2
—0.4
-0.6
~0.2-0.1 0.0 0.1 0.2 ~0.2-0.1 0.0 0.1 ~0.2-0.1 0.0 0.1 0.2
X X

Figure 7.3: RTI density plots for the three different gravitational acceleration values (left
to right: case 1, case 2 and case 3, as in Fig.[7.2] at three instances in time, top to bottom
row: t =0, t = 3sec and t = 6sec.

p =1
P =1
for0.3>y>0.7,
ve = 0
vy = 0
u={" '
= 0.5
P 138
P =10
fory>0.3 and <0.7.
vy = -1
vy = 0]

0.005

0.000

—0.00

—0.01

-02-0.1 0.0 0.1 0.2
X

0.6

0.4

0.2

> 0.0

-0.2
—0.05

-0.4
-0.10

-0.6
-0.15

-0.2-0.1 0.0 01

0.005

0.000

—0.00

—0.01

-0.2-0.1 0.0 0.1 02
X

0.6
0.4
0.2
0.0 _0.02
—0.04
-0.6 —0.06

-0.2

~0.4

—-0.2-0.1 0.0 0.1

0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
-0.2 ' - -0.2
—-0.4
0.1
-0.6 -0.6

-0.2-0.1 0.0 0.

-0.2-0.1 0.0 0.1

0.005

0.000

-0.00

-0.01

-0.2-0.1 0.0 0.1 0.2
X

-0.2-0.1 0.0 0.1 0.2
X

0.6
1.0
0.4
0.2 0.5
> 00
0.0
-0.2
—-0.4 05
—-0.6

-0.2-0.1 0.0 0.1 0.2

Figure 7.4: RTI velocity plots for the three different gravitational acceleration values (left
to right: case 1, case 2 and case 3, as in Fig.[7.2] at three instances in time, top to bottom

row: t =0, t = 3sec and t = 6sec.

with a perturbation pert = 0.005sin(12.56x) at the interfaces. The KHI simulation is

plotted in Fig.[7.3]

2D two-fluid simulations of the KHI have been investigated by (2019) in terms

of their dynamics when the two fluids are decoupled and when the magnitude of their

coupling varies. They found that the density of the two fluids can be coupled, while the

velocity is decoupled. It would be interesting to see if this velocity decoupling still occurs

139

KHI

1.0 1

0.8

0.6 1

0.4 1

0.21

0.0
0.0

Figure 7.5: Kelvin-Helmholtz instability.

when ionisation and recombination take place.

140

0.9

0.8

e
N

0.6

0.5

density r

Appendix A

Running the Code

The code can be compiled and run as follows.
Compiling the code :

In the terminal ($ indicates the terminal environment) type:

$ make clean (not necessary if the header file has not been changed)

$ make
Running the code:

$ mpirun -n number of cores ./code
Here, the number of cores requested for running the simulation is determined by the
number of central processing units (CPUs) in x and y direction, n_cpu_x and n_cpu_y,
respectively, which can be found in constants.h.

number of cores = n_cpu_x * n_cpu_y;

Reading in data in IDL, can be done as in Fig. [A.I] This is an example how to read

in data for the ideal MHD simulations. The assoc-function in IDL assigns a block of

141

path = ‘/path/to/data/*
file = file_search(path+’name_of_data*’, COUNT=nFiles)
;this corresponds to n_x_global and n_y_global in constants.h
n_x = 512
n_y = 512
for 1 = @, nFiles-1 do begin
close, 1
openr, 1, file[i]
a = assoc(l, dblarr(n_x, n_y))
x = a(®)
y = a(l)
rho_1l = a(2)
mom_x_1=a(3)
mom_y_1=a(4)
mom_z_1 = a(5)
ene_1=a(6)
b_x = a(7)
y = a(8)
z = a(9)
x = a(l2)
y = a(1ll)
z = a(l2)
a(13)
tem_1 = a(l4)
endfor
close, 1
end

o
3
1]
[EEY
]

Figure A.1: Example of IDL routine to read in the data created by the code.

size n_x X n_y to every quantity that has been saved in the code. This means, the order
in which the data for each quantity are saved in the c++ programme is important for the

assignment of each block in the idl programme.

The saving procedure saves the x and y arrays and the whole solution vector, which means
all variables: density, momentum, energy, magnetic field, velocity, pressure and tempera-

ture.

Check list:
Before running the code, it is good to check the following points:

142

initial condition

boundary condition

save_bin name

time / duration of the simulation and time step number
CFL number and gamma

x and y dimensions

limiter

143

Appendix B

The Code

In the following, the entire 2D two-fluid code is presented, with all its functions. The
code is written in C++ and currently constructed for 2D simulations. In some functions
(e.g. get_pflux.cpp) of the code, the third dimension has been already added, even though
it has not been used yet.

144

CONSTANTS.H

//physical constants
extern double ch;
extern double cp;
extern double TO;
const int n_cpu_x = 2;
constint n_cpu_y = 2;

const double CFL = 0.2;

const int n_t = 10000000;
const int i_t_save = 500; //save every i_t-th timestep

const int type = 6; //type of initial condition

const double pi = 3.14159265;

const double k_B = 1.380658e-16; //Boltzmann constant in erg / K (cgs)
const double m_e = 9.1095e-28; //g

const double m_1 = 1.6726231e-24; //molar mass ion

const double m_2 = m_e + m_1; //mass hydrogen cgs

const double m_in=m_1*m_2/(m_1 + m_2);

const double sigma2 = 25e12; // sigma = 50km, sigma2 = sigma*sigma

const double Rg = 0.56; // Hillier
//const double Rg = 8.314€7; // gas constant in cgs units: erg K mol

const int n_var = 27; // see below
const int n_consVar = 14; //number of conservative variables (rho, mom_x, mom_y, ene, B)

const int n_dim = 2;
const int n_ghost = 2;

const double density_threshold = 1.0e-20;
const double pressure_threshold = 1.0e-20;

const double gam = 5./3.;
const int n_x_global = 512;
const int n_y_global = 512;

const int n_x = (n_x_global / n_cpu_x) + 2 * n_ghost;
const int n_y = (n_y_global / n_cpu_y) + 2 * n_ghost;

//spatial domain

/*

//Hillier

const double start_x_global = -5;
const double ende_x_global = 5.;

const double start_y_global = -5;

const double ende_y_global = 5.;
*/

//RTI
//const double start_x_global = -0.5;

145

//const double start_y_global = -0.75;
//const double ende_x_global = 0.5;
//const double ende_y_global = 0.75;

//Orszag Tang

const double start_x_global = 0.;
const double start_y_global = 0.;
const double ende_x_global = 1,;
const double ende_y_global = 1.;

/*
//solar atmosphere

const double start_x_global = 0.;
const double start_y_global = 0e8;

const double ende_x_global = 1e8;
const double ende_y_global = 1.9¢e8;
*/

const double dx = (ende_x_global - start_x_global) / (

1.0 * n_x_global);
const double dy = (ende_y_global - start_y_global) / (1.0 *

n_y_global);

// _1_mhd (ionised fluid)
constintrho_1_=0;
const int mom_x_1_
const int mom_y_1_
const int mom_z_1_
constintene_1_=4;

)

1
2
3

)
’

constintb_x_=5;
constintb_y_=6;
constintb_z_=7;
const int psi_ = 8;

// 2_ hydro (neutral fluid)
constintrho_2_=09;
const int mom_x_2_

=10
const intmom_y_2_=11;
constintmom_z_2_=12

const int ene_2__ 73;
constintv_x_1_=14;
constintv_y 1_=15;
constintv_z_1_=16;
const int pre_1_=17;

constintv_x 2_=18;
constintv_y 2_=19;
constintv_z_2_=20;
const int pre_2_ = 21;

146

const int a_ion_ = 22;
constint a_rec_ = 23;
const int f_col_ = 24;

constinttem_1_=25
const int tem_2_ = 26;

147

INITIAL CONDITION.CPP

/*
various initial conditions
* set the initial condition in constants: type = (number);
*/

#include<iostream>
#include<cmath>
#include"constants.h"
#include <string.h>
#include <fstream>
#include <sstream>
#include "mpi.h"

void get_xyindex(int, int*, int*);

void initial_condition(double*** u, double** x, double** y, double** gg)

{

int ij;
double radius, pert;

int ind_cpu, i_cpu_x, i_cpu_y;
double start_x_in_global, start_y_in_global;

MPI_Comm_rank(MPI_COMM_WORLD, &ind_cpu);

get_xyindex(ind_cpu, &i_cpu_x, &i_cpu_y);

//get_xyindex(ind_cpu, i_cpu_x, i_cpu_y);

start_x_in_global = start_x_global + i_cpu_x * dx * (n_x - 2 * n_ghost); //start of each cpu in global

frame
start_y_in_global = start_y_global + i_cpu_y * dy * (n_y - 2 * n_ghost);

//assign x and y values
for (i=0; i< n_x; i++)
for(=0;j<n_y;j++)

X[i][j] = start_x_in_global + i*dx - n_ghost*dx // for each cpu

for (i=0;i<n_x; i++)
for(j=0;j<n_y;j++)

ylilli] = start_y_in_global + j*dy - n_ghost*dy;

148

/!

/!

//1/i.c. for sod shock tube test in x

if (type == 1)
{

for (i=0;i < n_x; i++)

for(G=0;j<n_y;j++)
{

if (xi]li] < 0.5)

ufrho_1_][il[]
ulpre_1_Jil[]
ulvx_ 1]}
u[v_y_1J0]1]
ulv_2 1100~
ulo_x Jfil] =

ulb_y (]l 4

ulo_z_][]l = 0

ulrho_2_][il[i]
ulpre_2_](illi
ufv_x_2_][il[i]
ulv_y_2_][i0]
U[v_z_-2}J[I]h]

\‘OOO—‘—‘

oo
eoo

if (x[i]li] >= 0.5)

ulrho_1_][il[j] =
upre_1](i[] =
ulv_x_1](il] =
ufv_y_1_][illi] =
ufv_z_1_][ilil = 0,
ulb_x_][illi] = 0.75;
ulb_y_J[iJ] = -
ulb_z][l =

ulrho_2_][il[i]
ulpre_2_][il[]
ulv_x_2_]fil[i]
ulv_y_2_](illi]
;J[V_Z_-?_] [0l

OOOOO
_A_l

149

//i.c. for Kelvin Helmholtz instability
if (type == 4) {

for (i=0;i < n_x; i++)
for(G=0;j<n_y;j++)
pert= 0.06* sin(x[i][j]*12.56

//if ((y[il[i] < 0.4 + pert)
if (y[il[i] < 0.5 + pert)

{

ulrho_1_J[ill] = 1-;
ulv_x_1_][li] =0

1=0

1=0

ufb_x_][i]{i] = 0.;
ulo_y I = 1
ulb_z_](il[il = 0;

ufrho_2_][i][j

ulv_x_2_T[illi

ulv_y_2_]illj

ulv_z_2_J[illi
ulpre_2_][il[] = 1.;

oo~

|
]
]
]

}

else

{
ufrho_1_][il[j] = 0.5;

);

|| (y[illi] > 0.6 + pert)) //two interfaces
//one interface

=

=
i
-
)

ufvox 100 = -1

ulv_y_1_][i]li] = 0

ulv_z_1_][i][] = 0
ulpre_1_](l0] = 1.;

ulb_x][] = 0.;
ulb_y][] = 1.
ulb_z_]illil = 0.;

ulrho_2_]J[i][i] = 0.5;
ulv_x_2_][i6] = -1;
ulv_y_2_](illi] = 0.;
ulv_z_2_J[illi] = 0.;

ulpre_2 001 = 1

}

/*ulrho_]Ii01=x[]0l;
g/[pre_][i][i]=y[i] il

}
}

150

//i.c. for Rayleigh Taylor instability
if (type == 5) {

double p00 =2.5;

double k =0.;

double rho1 =1.;

double rho2 = 2.;

double g0 =-2.;

double p0 = p00 + rho2 * k *0.125;
double gg_ic[n_y];

//srand (time(NULL) + ind_cpu);
srand (ind_cpu);

for (i=0; i< n_x; i++)

for(=0;j<n_y;j++)
{

//gglilli] = -1.; //const gravitational acceleration

//gglillil = -1. * y[il[i]; //-1 gravitational acceleration

aglillil = g0 + k * y[il[j]; //-2 gravitational acceleration
g9g_ic(i] = -gglil[};

i{f ([0l < 0.)

u[rho_1_][il[j] = rhot;
ulv_x_1_](l[}]
ulv_y_1_]00]
ulv_z_1_]{i0]
ulb_x_Ji(l = 0;

ulb_y_]0i0] = 1.;

ulb_z (0] = 0.;
u[rho_2_][i][j] = rhot;
ufv_x_2_][i][j] = 0.;
ufv_y_2][] = 0.;
ulv_z_2_](i][i] = 0.;

i{f (vI0] > -0.1)

0.;
0.;
0,;

ulv_y_1_Jillil = 0.01 * (1. - 2. * rand() / (double)RAND_MAX);
ufv_y_2_Jlillil = 0.01 * (1. - 2. * rand() / (double)RAND_MAX);
}

ufpre_1_][il[i] = pO+ (-g0) * (0.5 *rho2 - rho1 * y[iJ[i]) - k * (0.125 *rho2 - 0.5 *

rho1 * y[il[i] * y[i0:;

ulpre_2_][illj] = pO+ (-g0) * (0.5 * tho2 - rho1 * yil[j]) - k * (0.125 * rho2 - 0.5 *

rho1 * y[il[il * y[i0;
}

151

else

{

ulrho_1_][i]{i] = rho2;
ufv_x_1_][i[i]
ulv_y_1_J[il[]
ulv_z_1_]0i0]
ulb_x Jfilf] = 0;

ulb_y_]00] = 1.;

ulb_z][l = 0.5
ulrho_2_][il[i] = rho2;
ufv_x_2_]Ii[j] = 0;
u[v_y_2_J[ilj] = 0.;
ufv_z_2 J[li] = 0.;

i{f (vl < 0.9)

ufv_y_1_][i][i] = 0.01 * (1. - 2. * rand() / (double)RAND_MAX);
ulv_y_2_J[i][i] = 0.01 * (1. - 2. * rand() / (double)RAND_MAX);
}

0.;
0,
0

u[pre_1_][i][i] = p0O + (-g0) * rho2 * (0.5 - y[iJ[i]) - k * rho2 * (0.125 -0.5 * y[i][i] * y[i]
)3

ulpre_2_][il[i] = pO + (-g0) * rho2 * (0.5 - y[i][j]) - k * rho2 * (0.125 -0.5 * y[i]
[l * ylilm;

//i.c. for Orszag Tang vortex test
if (type == 6) {
double beta, M, v0, BO, pO;

beta =10/3.;

M=1;

vo=1;

BO = -(1./sqrt(4.*pi));
p0 = beta * (B0*B0)/2.;
//TO = 1.0e-6;

for (i=0;i < n_x; i++)

for(G=0;j<n_y;j++)
{

// Ryu1998 and Londrillo2000

ulrho_1_][il[i] = gam * p0;
ulpre_1_]Ii][i] = pO;

//u[rho_1_][i][j] = (25./36.) * pi;
//ulpre_1_][il[i] = (6./12.) * pi;
ulv_x_1_JI] = - sin@."pi"y[ilf));
ulv_y_1_0i0] = sin@.*pi*x[il[il);

152

ulv_z_1f] = 0.
ulb_x_Jfil[] = - BO * sin(@*pi*y[li):
ufb_y Jfl[] = BO * sin(4."pi*x(il{]):
ulb_z Jiill] = 0

ufrho_2_]il[j] = gam * p0;
ufpre_2_][il[i] = pO;
ulv_x_2_][i][] = 0.;
ulv_y_2_][i][] = 0.;
ulv_z_2_]0il[i] = 0.;

TO = (u[pre_1_][i{] + ulpre_2 (L) / ((ulrho_1][0 + ulrho_2 () * Rg);

//i.c. for an explosion
if (type ==7)
{

double x0 = ende_x_global * 0.5;
double y0 = ende_y_global * 0.5;

for (i=0;i < n_x; i++)

for(G=0;j<n_y;j++)
{

ulrho_1_]J[i][i] = 0.01;
ulpre_1_][il[j] = 0.01;
ulv_x_1_][6] = 0.;
ufv_y_1_][illi] = O.;
ulv_z_1_][il[i] = 0.;
ulb_x_J[ilfi] = 0.;
ulb_y_]lilli] = 0.;
ulb_z_][i][i] = 0.;

ufrho_2_][il[i] = 1.;
ulpre_2_](i]{i] = 1. + exp((-(<[i] - x0)*(x{]0i] - x0) - (Y[- yO)*(y[il] - y0))/0.001) *

ulv_x_2_J[ilf] = 0
ulv_y_2 Jiill] = 0:
ulv_z_2 Jiill] = 0

pow(10.0,6.0);

153

//i.c. for flow with obstacle
if (type == 8)
{

for (i=0; i< n_x; i++)
for(j=0;j<n_y;j++)
{
i{f (0] <= 0.5) && (x[][] <= 0.5) && (x[iJj] >= 0.3)

ulrho_1_][illi] = 10.;
ulpre_1_][il[] = 1.;
ulv_x_1_][il[j] =
ulv_y_1_](il0] =
ulv_z_1_][illi] =
ulb_x_J(illi] = 0
ufb_y][]0l =
ulb_z_][i]{i] =

OO

ulrho_2_][illil
ulpre_2][Il
ulv_x_2][]
ulv_y_2_][il[i]
;J[v z_2_][i(

o nn
OC)O—‘—L

else

{
ufrho_1_](il[]
ulpre_1_](i[]
ufv_x_1_]00
ulv_y_1_]0i0]
uv_z 1_][][1]
ufb_x][]
ufb_y_]0]
ulb_z_ (0]

OO—l—‘O
_n

OO<3II I nn

_L

ulrho_2_][il[i]
ufpre_2_][i[]
ulv_x_2_][illi]
ulv_y_2_](illi]
;J[V A 1]

OO—l—‘O

/!

/!

154

//solar atmosphere

//reading in the VAL C model
//create new arrays

//

if (type == 10) {
std::string File;

File = "./initmod_hs.dat";
std::ifstream FileStream;

FileStream.open(File, std::ios::in);

if (! FileStream) std::cout << "unable to open file for reading" << std::endl;

int row;

//read in the first line of the file which contains the number of elements or rows

FileStream >> row;

double *rho, *z, *int_e;
rho = new double[row];

z = new double[row];
int_e = new double[row];

for (i = row-1; i >= 0; i--)
{
FileStream >> Z[i];

FileStream >> rholi];
FileStream >> int_el[i];

z[i] = -z[if;

//internal energy per unit volume
//int_eli] = int_e[i] * rholi]; //not for initmod data

FileStream.close();

//Aill y[I[] and u[l[I[] arrays with interpolated values

//z or y axis
/1. find dz

double dz, index;
int int_index, next_index;

dz = z[1] - z[0];

155

std::cout << "dz =" << dz << std::endl;

for (i=0;i<n_x; i++)

for (j=0;j<n_y; j++)

ggli][j] = -27400.0;
// index of y on z axis

index = (y[il[i] - z[0]) / dz;

//std::cout << index << std::endl;
int_index = index; //no need to cast
next_index = int_index + 1;

//interpolate the data

ulrho_1_][i][j] = 0.01*((rho[next_index] - rho[int_index]) * (index-int_index) + rho[int_index]);

ufpre_1_][il[j] = 0.01*(((int_e[next_index] - int_e[int_index]) * (index-int_index) +
int_e[int_index]) * (gam - 1.));

ulrho_2_J[i][i] = 0.99*((rho[next_index] - rho[int_index]) * (index-int_index) + rho[int_index]);
ufpre_2_][i][i] = 0.99*(((int_e[next_index] - int_e[int_index]) * (index-int_index) +
int_e[int_index]) * (gam - 1.));

ufv_x_1_]li[]
ufv_y_1_]0i0]
ufv_z_1_][0]

ufv_x_2_][i[]
ufv_y_2_]i(]
uv_z_2_][i[]

ufb_x_](i{i] = 50.;
ub_y_]0i0] = 85.;
ulb_z_][i][i] = 0.0;

0.0
0.0
0.0
0.0;
0.0
0.0;

//deallocate memory

delete [] rho;
delete [] z;
delete [] int_e;

}

/!
//Hillier

if (type == 11) {

156

double B0, zeta_1, zeta_2, rho_tot, P_tot;

rho_tot =1
P_tot =0.15;
BO=1;

zeta_1=0.1;
zeta_2 =0.9;

for (i=0; i< n_x; i++)

for(j=0;j<n_y;j++)
{

if (xi]li] <= 0.)

} ulb_y_]1illi] = BO;

else

ulb_y][] = -BO;

ulrho_1_]J[i][j] = zeta_1 * rho_tot;

ulpre_1_][illi] = (2. * zeta_1) / (zeta_2 + 2. * zeta_1)) * P_tot;
ulv_x_1_]0(] = 0.;

ufv_y_1Jil[] = 0.

ulv_z_1_]0i[] = 0.;

ulb_x_J[il[j] = 0.3 * BO;

ulb_z_](il{i = 0,;

ufrho_2_][i][i] = zeta_2 * rho_tot;

ulpre_2_][illi] = (zeta_2 / (zeta_2 + 2. * zeta_1)) * P_tot;
ulv_x_2_][i][[] = 0;

ufv_y_2_][illi] = O.;

ulv_z_2_][ilil = 0;

uftem_1_][i][i] = u[pre_1_][i][})/ (2. * Rg * u[rho_1_][il[il); //temperature MHD / charged fluid
uftem_2_][i][i] = u[pre_2_][il[i] / (Rg * u[rho_2_][il[j]); /temperature HD / neutral fluid
//calculate ambient temperature:
TO = (u[pre_1_][[] + ulpre_2_1[l[i]) / ((ulrho_1_][i[i] + u[rho_2_][i][i]) * Rg); //case 3
}

//end

157

APPLY BC.CPP

#include <iostream>
#include <cmath>
#include "constants.h"
#include "mpi.h"

int ind_cpu(int i_cpu_x, int i_cpu_y)

{

return i_cpu_x + n_cpu_x * i_cpu_y;

}

void get_xyindex(int ind_cpu, int *i_cpu_x, int *i_cpu_y)

*i_cpu_y = ind_cpu/ n_cpu_x;
*i_cpu_x = ind_cpu - n_cpu_x * *i_cpu_y;

}

//index of neighbouring cpu

int neighbour(int i_cpu_x, int i_cpu_y, int dir, int boundary) //neighbour: 0 = left or bottom, 1 = right
or top

int neighbour_x, neighbour_y, ind_neighbour;
//check direction

if((dir == 0) && (boundary == 0)) //x direction, left neighbour

neighbour_x =i_cpu_x -1;
if (neighbour_x == -1) neighbour_x = n_cpu_x -1; //closes the circut in a row / column
neighbour_y = i_cpu_y; //upper and lower cpu index stays the same

if((dir == 0) && (boundary == 1)) //x direction, right

neighbour_x = i_cpu_x +1;
if (neighbour_x == n_cpu_x) neighbour_x = 0;
neighbour_y = i_cpu_y;

}

if((dir == 1) && (boundary == 0)) //y direction, bottom
neighbour_y =i_cpu_y -1;
if (neighbour_y == -1) neighbour_y = n_cpu_y -1;
neighbour_x = i_cpu_x;

}

if((dir == 1) && (boundary == 1)) //y direction, top
neighbour_y =i_cpu_y + 1;

if (neighbour_y == n_cpu_y) neighbour_y = 0;
neighbour_x = i_cpu_x;

158

}

ind_neighbour = neighbour_x + n_cpu_x * neighbour_y;
return ind_neighbour;

int is_inner(int i_cpu_x, int i_cpu_y, int i_dim, int i_boundary) //to check if a cpu's boundary is a
global boundary
{//return 0 if it is a global boundary

//0 = no inner, hence global boundary

if (i_dim == 0) && (i_cpu_x == 0) && (i_boundary == 0)) //x direction, first cpu, left boundary

return O;

}
if(i_dim == 0) && (i_cpu_x == n_cpu_x -1) && (i_boundary == 1))

return 0;

}
if((i_dim == 1) && (i_cpu_y == 0) && (i_boundary == 0))

return O;

}
if(i_dim == 1) && (i_cpu_y == n_cpu_y -1) && (i_boundary == 1))
return O;

else return 1;

void apply_BC(double*** u0, double** ufix)
{

//0 - periodic
//1 - continuous
//2 - fixed

int i_var, i_dim, i_boundary, i_ghost, i_run, ind_from_x, ind_to_x,ind_from_y,
ind_to_y, run_ind, i_buffer, i_boundary_to, i_boundary_from;

int ind_cpu;
inti_cpu_x, i_cpu_y;

159

int ind_neighbour_to, ind_neighbour_from;

int bc_type[n_var][n_dim][2]; //variables, dimension 0 = x-direction/ 1 =y-direction, boundary 0 =
bottom/left - 1 = top/right

int is_inner(int i_cpu_x, int i_cpu_y, int i_dim, int i_boundary); //declare function to check if it is a
global boundary

MPI_Status status;
//call index functions

MPI_Comm_rank(MPI_COMM_WORLD, &ind_cpu); // get the index of the cpu

//std::cout << "in apply_BC : ind_cpu: " << ind_cpu << std::endl;

get_xyindex(ind_cpu, &i_cpu_x, &i_cpu_y); // get the i_cpu_x and i_cpu_y or the index of the cpu
in x and y direction

//std::cout << "I_CPU_X, I_CPU_Y =" << i_cpu_x << " " << i_cpu_y << std::end|;

bc_type[rho_1_][0][0] = O; //left
bc_type[rho_1_][0][1] = 0; //right
bc_type[rho_1_][1][0] = O; //bottom //2 RTI
bc_type[rho_1_][1][1] = 0; /top //2 RTI

bc_type[mom_x_1_][0][0
bc_type[mom_x_1_][0][1
bc_type[mom_x_1_][1][0
bc_type[mom_x_1_][1][1

I ann
ocooo

bc_type[mom_y_1_][0][0] = O;
bc_type[mom_y_1_][0][1] = 0;
bc_type[mom_y_1_][1][0] = 0;
bc_type[mom_y_1_][1][1] = 0;

bc_type[mom_z_1_][0][0]
bc_type[mom_z_1_][0][1]
bc_type[mom_z_1_][1][0]
bc_type[mom_z_1_][1][1]

I nn
ooo0o

bc_typel[ene_1_][0][0] = 0
bc_typelene_1_][0][1] =0
bc_type[ene_1_][1][0] = O; //2rti
bc_typelene_1_][1][1] = O; //2rti

be_type[b_x_][0][0]
be_type[b_x_][0][1]
be_typel[b_x_][1][0]
be_type[b_x_][1][1]

bc_type[b_y_][0][0] =
bc_type[b_y_][0][1] =
be_type[b_y_][1][0] =
be_type[b_y_][1][1] =

bc_type[b_z_][0][0] = 0;

ocooo

160

bc_type[b_z_][0][1] = 0;
be_type[b_z_][1][0] = 0;
bc_type[b_z][1][1]1=0
bc_type[psi_][0][0] = O;
be_type[psi_][0][1] = 0;

bc_type[psi_][1][0] =
be_type[psi_][1][1] =

/!

bc_type[rho_2_][0][0] = 0; //left
bc_type[rho_2_][0][1] = O; //right
bc_type[rho_2_][1][0] = O; //bottom
bc_type[rho_2_][1][1] = O; //top

bc_type[mom_x_2_][0][0
bc_type[mom_x_2_][0][1
bc_type[mom_x_2_][1][0

[

]
%
bc_type[mom_x_2_][1][1]

oooo

bc_type[mom_y_2_][0][0] = 0;
bc_type[mom_y_2_][0][1] = 0;
bc_type[mom_y_2_][1][0] = 0;
bc_type[mom_y_2_][1][1] = 0;

bc_type[mom_z_2_][0][0]
bc_type[mom_z_2_][0][1]
bc_type[mom_z_2_][1][0]
bc_type[mom_z_2_][1][1]

cooo

bc_typelene_2_][0][0] =
bc_typelene_2_][0][1] =
bc_typelene_2_][1][0] =
bc_typelene_2_][1][1] =

for (i_var = 0; i_var < n_consVar; i_var++)

{

for(i_dim = 0; i_dim < n_dim; i_dim++)
{
if(i_dim == 0) //x direction
{

run_ind = n_y -1;

}

if(i_dim == 1) //y direction
{

run_ind = n_x -1;

}

161

//creating buffers

int buffer_size=(run_ind + 1) * n_ghost; //+1 because run_ind = n_x -1
double* sendbuffer = new double[buffer_size];

double* recvbuffer = new double[buffer_size];

for (i_boundary = 0; i_boundary <= 1 ; i_boundary ++)

{
for (i_ghost = 0; i_ghost < n_ghost; i_ghost++)

{

for (i_run = 0; i_run <= run_ind; i_run++)

{

if (i_dim == 0) // if in x direction

ind_from_y =i_run;
if (i_boundary == 0) // left boundary
{

ind_from_x = n_ghost + i_ghost;
}
if (i_boundary == 1) //right boundary
{
ind_from_x = n_x - 2 * n_ghost + i_ghost;

}

}
if (i_dim == 1) //y direction
{ ind_from_x = i_run;
if (i_boundary == 0) // bottom boundary
ind_from_y = n_ghost + i_ghost;

}
if (i_boundary == 1) //top boundary

ind_from_y = n_y - 2 * n_ghost + i_ghost;
}

//construct sendbuffer
i_buffer = i_run + i_ghost * run_ind; //index of my buffer
//filling sendbuffer
sendbuffer[i_buffer]= uQl[i_var][ind_from_x][ind_from_y];

}//irun
}// i_ghost

162

//close loop to fully create sendbuffer to be able to call mpi_sendrecv and send it
to neighbour and receive from neighbour

i_boundary_from = i_boundary; //send from this boundary
i_boundary_to =1 - i_boundary_from; //opposite boundary - receive into this
boundary

ind_neighbour_to = neighbour(i_cpu_x,i_cpu_y,i_dim,i_boundary_from); //
neighbour of the boundary we are at (i_boundary_from), so the one we send it to
ind_neighbour_from = neighbour(i_cpu_x,i_cpu_y,i_dim,i_boundary_to); //
neighbour of the opposite boundary (i_boundaru_to), the one we get the boundary from: if we are
at left boundary we receive from the RIGHT NEIGHBOUR'S inner cells at left boundary

//call mpi_sendrecv to send the buffer to and receive one from (for
parameter details check MPI_sendrecv example online)
MPI_Sendrecv(sendbuffer, buffer_size, MPI_DOUBLE, ind_neighbour_to, 10,
recvbuffer, buffer_size, MPI_DOUBLE, ind_neighbour_from, 10,
MPI_COMM_WORLD, &status);

//MPI_Barrier(MPI_COMM_WORLD);

//unpack recvbuffer and fill boundaries

for (i_ghost = 0; i_ghost < n_ghost; i_ghost++)
{

for (i_run = 0; i_run <= run_ind; i_run++)

{
if (i_dim ==0) // if in x direction
ind_to_y =i_run;
if (i_boundary == 1)
{ ind_to_x = 0 + i_ghost;
i}f (i_boundary == 0)
ind_to_x =n_x-1*n_ghost + i_ghost;

}

}

if (i_dim == 1) //y direction
{ ind_to_x =i_run;
if (i_boundary == 1)
ind_to_y = 0 + i_ghost;

}
if (i_boundary == 0)

163

{
ind_to_y =n_y - 1 *n_ghost + i_ghost;
}
}

i_buffer = i_run + i_ghost * run_ind; //index of my buffer

uQ[i_var][ind_to_x][ind_to_y] = recvbuffer|i_buffer];

}//i_run

} //i_ghost

} //i_boundary
// delete memory for buffers

delete [] sendbuffer;
delete [] recvbuffer;
}//i_dim

Y //i_var

for (i_var = 0; i_var < n_consVar; i_var++)
{
for(i_dim = 0; i_dim < n_dim; i_dim++)
{
if(i_dim == 0) //x direction

{

}
if(i_dim == 1) //y direction
{

run_ind = n_y -1;

run_ind = n_x -1;

for (i_boundary = 0; i_boundary <=1 ; i_boundary ++)
for (i_ghost = 0; i_ghost < n_ghost; i_ghost++)

for (i_run = 0; i_run <= run_ind; i_run++)

164

//if outer boundary (= is_inner==0), apply global boundary conditions
if (is_inner(i_cpu_x, i_cpu_y, i_dim, i_boundary) == 0)
{ //otherwise, periodic boundary conditions are applied

//"preparations” for continuous BC:
if (i_dim == 0) // if in x direction
{
ind_to_y =i_run;
ind_from_y = i_run;

if (i_boundary == 0)
{

ind_to_x = 0 + i_ghost;
ind_from_x = n_ghost;// + i_ghost;

}

if (i_boundary == 1)
{

ind_to_x = n_x - 1 * n_ghost + i_ghost;

ind_from_x = n_x - 2* n_ghost + 1; // + i_ghost;
}
}

if (i_dim == 1) //if in y direction
{

ind_to_x =i_run;
ind_from_x = i_run;

if (i_boundary == 0)
{
ind_to_y = 0 + i_ghost;
ind_from_y = n_ghost;// + i_ghost;

}
if (i_boundary == 1)
{
ind_to_y = n_y - 1 * n_ghost + i_ghost;
ind_from_y =n_y - 2 *n_ghost + 1; // + i_ghost;

}

//apply continuous boundary conditions
if (bc_typeli_var][i_dim][i_boundary] == 1)
{
uQli_var][ind_to_x][ind_to_y] = uO[i_var][ind_from_x][ind_from_y];
}

//apply global fixed boundary conditions
if (bc_typeli_var][i_dim][i_boundary] == 2)

165

uQ[i_var][ind_to_x][ind_to_y] = ufix[i_var][ind_to_x][ind_to_y];
}

//apply global zero value boundary conditions
if (bc_type[i_var][i_dim][i_boundary] == 3)

uQ[i_var][ind_to_x][ind_to_y] = 0.;

} //is_inner

}//i_run

} //i_ghost

} //i_boundary
}//i_dim

} //i_var

166

MAIN.CPP

#include <cstdlib>
#include <cmath>
#include <array>
#include <locale>
#include <iostream>

#include <string.h>
#include <fstream>
#include <sstream>

#include"constants.h"
#include"mpi.h"
#include<stdio.h>

using namespace std;

double ***f, ***res, ***u0, ***ufix;
double ***nflux;

double **x, **y, **gg;

inti, j, k, i_t;

double dtime, timep, a, d_xy, vmax, ch, cp; //a = coefficient for timestepping in Runge Kutta
double T0=0.; //ambient temperature for Hillier simulation

int numprocs, ind_cpu; //number of processors and rank

int main(int argc, char** argv) {

//declare functions

void alloc_mem_arr2D(double** &);

void alloc_mem_arr3D(double*** &);

void alloc_mem_arr4D(double*** &);

void initial_condition(double** , double** , double**, double**);
void prim_to_con(double***);

void con_to_prim(double**);

void calc_rates(double ***);

void apply_BC(double***, double***);

void calc_residuals(double™*, double™, double***, double**, double™*);
double timestep(double***);

void dealloc_mem_arr2D(double™);
void dealloc_mem_arr3D(double***);
void dealloc_mem_arr4D(double****);

void apply_RK4(double **, double **, double **, double ***, double ***, double ***, double ****,
double, double);

void apply_RK1(double **, double **, double **, double ***, double ***, double ***, double ****,
double, double);

void apply_RK2(double **, double **, double **, double ***, double ***, double ***, double ****,
double, double);

void save_binary(int, double***, double** ,double**);

167

int density_barrier(double**);
void calc_temperature(double ***u0);

//MPI

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs); //get the number of processors and
assign it to numprocs

MPI_Comm_rank(MPI_COMM_WORLD, &ind_cpu); //get the number of rank (=cpu) and assign
it to myid

if (numprocs != n_cpu_x * n_cpu_y)

std::cout<<"number of processors does not match"<<std::endl;
abort();

alloc_mem_arr2D(x);
alloc_mem_arr2D(y);
alloc_mem_arr2D(gg);
alloc_mem_arr3D(u0);
alloc_mem_arr3D(ufix);
alloc_mem_arr3D(res);
alloc_mem_arr4D(nflux);
initial_condition(u0, x, y, 9g);

iit=0.;
calc_temperature(u0);
prim_to_con(u0);

calc_rates(u0);
save_binary(i_t, u0, x, y);

for (k = 0; k < n_var; k++)
{
for (i=0; i< n_x; i++)
for(=0;j<n_y;j++)

ufix[K] (0] = uOLK]L;

}

apply_BC(u0, ufix);
timep = 0.; //start of physical time
//start solving equations

for (inti_t=1; i_t< n_t; i_t++)

{

168

calc_temperature(u0);
con_to_prim(u0);
dtime = timestep(u0);
d_xy = fmin(dx,dy);

//for hyperbolic div cleaning
ch = 0.5%(CFL * d_xy / dtime);
cp = 0.18%*ch;

apply_RK1(x, y, gg, u0, ufix, res, nflux, dtime, timep);

//density_barrier(u0);

save_binary(i_t, u0, x, y);

timep=timep-+dtime; //physical time

//if (timep >= 1.) //Hillier
if (timep >= 0.48) //OT Ryu

i_t =100000;
save_binary(i_t, u0, x, y);
break;

}

dealloc_mem_arr2D(x);
dealloc_mem_arr2D(y);
dealloc_mem_arr2D(gg);
dealloc_mem_arr3D(u0);
dealloc_mem_arr3D(ufix);
dealloc_mem_arr3D(res);
dealloc_mem_arr4D(nflux);

MPI_Finalize();
return 0;

}

169

RK.CPP

#include<iostream>
#include<cmath>
#include "constants.h"

void calc_residuals(double**, double**, double***, double***, double****);
void apply_BC(double***, double ***);
void calc_sources(double **, double **, double**, double ***, double ***, double, double);

Hekok,

void apply_RK1(double **x, double **y, double** gg, double ***u, double *** ufix, double ***res,
double ***nflux, double dtime, double timep)

{
inti, j, k;
apply_BC(u, ufix);
calc_residuals(x, y, u, res, nflux);
calc_sources(x, y, gg, u, res, timep, dtime);

for (k = 0; k < n_consVar; k++)

{
for (i=n_ghost; i < n_x-n_ghost+1; i++)
for (j =n_ghost; j < n_y-n_ghost+1; j++)
} ulKIMi0l = ulK]GG] + res[K]ML] * dtime;
}
}
}
//
//
//RK4

void apply_RK4(double **x, double **y, double** gg, double ***u, double *** ufix, double ***res,
double ***nflux, double dtime, double timep)
{

inti, j, k;

double ***u1, ***u2;

u1 = new double*[n_var];
for (i = 0; i < n_var; ++i)

u1[i] = new double*[n_x];

for (j =0; j < n_x; j++)
uli]li] = new double[n_y];

u2 = new double**[n_var];
for (i = 0; i < n_var; ++i)

170

u2[i] = new double*[n_x];
for (j =0; j < n_x; j++)
u2[i][i] = new double[n_y];

apply_BC(u, ufix);

//k1
calc_residuals(x, y, u, res, nflux);
calc_sources(x, Y, gg, u, res, timep, dtime);

for (k = 0; k < n_consVar; k++)

{

for (i=n_ghost; i < n_x-n_ghost+1; i++)

{

for (j =n_ghost; j < n_y-n_ghost+1; j++)
res[k][il[j] = dtime * res[K][i][il;

1K1l = uIKIG + (1. 7 6.) * res[K][illil; // RK update u
w2[KIIil] = ulkIili + resIkiillil * 0.5; //RK

apply_BC(u2, ufix);

//k2
calc_residuals(x, y, u2, res, nflux);
calc_sources(x, y, gg, u2, res, timep, dtime);

for (k=0; k<n_consVar; k++)

{

for (i=n_ghost; i < n_x-n_ghost+1; i++)

{

for (j =n_ghost; j < n_y-n_ghost+1; j++)

res[K][i][i] = dtime * res[K][i][i];
ul[K][6] = ut K106 + (1. 7 3.) * res[K][i][i]; // update u RK
u2[K]fl =}U[k][i][j] + res[K][il[i] * 0.5;

}

apply_BC(u2, ufix);
//k3

calc_residuals(x, y, u2, res, nflux);
calc_sources(x, y, gg, u2, res, timep, dtime);

171

for (k=0; k<n_consVar; k++)

{

for (i=n_ghost; i < n_x-n_ghost+1; i++)

{

for (j =n_ghost; j < n_y-n_ghost+1; j++)

res[K][i][j] = dtime * res[K][i][i];
ul[K][il] = ut K[l + (1. 7 3.) * res[K][i][i]; // update u
u2[K][0 = U[;<][i][j] + res[K][i][];

}

apply_BC(u2, ufix);
//k4

calc_residuals(x, y, u2, res, nflux);
calc_sources(x, y, 9g, u2, res, timep, dtime);

for (k=0; k<n_consVar; k++)

{

for (i=n_ghost; i < n_x-n_ghost+1; i++)

{

for (j =n_ghost; j < n_y-n_ghost+1; j++)
res[k][il[j] = dtime * res[K][i][il;
ulK][ill] = ut [KI[0) + (1. /7 6.) * res[K][il[j]; // update u = advanced solution
}

}
}

for (i = 0; i < n_var; ++i)
for (j =0; j < n_x; j++)
delete [] u1[il[i;
delete [] ul[i];
delete [J ut;
for (i = 0; i < n_var; ++i)
for (j =0; j < n_x; j++)
delete [] u2[i][il;
delete [] u2[i];
delete [] u2;

return;

172

CALC RESIDUALS.CPP

/*
* function to calculate residuals

*

#include<iostream>
#include<cmath>
#include"constants.h"

void calc_residuals(double** x, double* y, double*** u0, double*** res, double**** nflux)

{

void numerical_flux(int, double*, double*, double*, double*, double*);
inti, j, k;

double ullx[n_var], ulx[n_var], uux[n_var] ,urx[n_var];

double ully[n_var], uly[n_var], uuy[n_var] ,ury[n_var];

double flux1[n_var], flux2[n_var];

for (i=n_ghost; i <n_x-n_ghost+1; i++)

for (j =n_ghost; j < n_y-n_ghost+1; j++)

for (k = 0; k < n_var; k++)

{
//in x direction
ulix[k]=uO[K][i-2][]] ;
ulx[K]=uO[K][i-1][il;
uux[k]=uO[K][il[i];
urx[K]=uO[K][i+1][;

// in y direction
ully[K]=uO[K][il[i-2] ;
uly[K]=uO[K][i[i-1];
uuy[K]=uO[KI[i[];
ury[K]=uO[K][il[j+1];

}

//call numerical flux function in x and y direction and fill array flux1 and flux2, respectively
numerical_flux(0,ullx,ulx,uux,urx,flux1);
numerical_flux(1,ully,uly,uuy,ury,flux2);

for (k=0; k < n_consVar; k++)

nflux[O][K][i][[]=flux1[k];
nflux[1][Kk][i][]=flux2[K];

173

}
//2) calculate residuals based on numerical flux and fill the array res[][]
for (k = 0; k < n_consVar; k++)
{ for (i=n_ghost; i <n_x-n_ghost+1; i++)
for (j =n_ghost; j < n_y-n_ghost+1; j++)

res[K][il[i] = -((nflux[0][k][i+1][i]-nflux[O][K][i[{])/(x[i+1][]-x[i][i]) // O- x direction
+(nflux[11[K][i][+11-nflux[1][K][GD/(y[il+1]-y00D); // 1 -y direction

174

NUMERICAL FLUX.CPP
/*here included are:
* limiter function

* numerical flux function
*/

#include<iostream>
#include<cmath>
#include"constants.h"
//limiter function

double limiter(double r)

{

//return (1.50*(r*r+r)/(r*r+r+1.0)); //ospre limiter
return (fmax(0, fmin(1, r))); //Minmod

//numerical flux function
void numerical_flux(int dir, double* ull, double* ul, double* uu, double* ur, double* flux)

double limiter(double r);
void get_pflux(int, double*, double®);

double ru[n_var]; //size of all variables, but further down, only loop through n_consVar
double rl[n_var];

double ulmh[n_var];

double urmh[n_var];

double fll[n_var];

double flr[n_var];

// limited interpolated values of the state vector at the cell centres

double nom1, denom1, nom2, denom2;

double pl_1, pr_1, pl_2, pr_2, csl_1, csr_1, csl_2, csr_2;

double aaa_1, aaal_1, aaa2_1, aaa_2, aaal_2, aaa2_2, aaa2, result, B_tot_I, B_tot_r, va_l, va_r;

int k;

for (k = 0; k < n_consVar; k++)

nom1 = (uu[k] - ullk]);
denom1 = (ur[k] - uulk]);

if (fabs(nom1) < 1.0e-14)

nom1 =0
denom1 =1.0;

175

}

if (nom1 > 1.0e-14) && (fabs(denom1) < 1.0e-14))

nom1 = 1.0e14;
denom1 =1.0;
}
if (nom1 < -1.0e-14) && (fabs(denom1) < 1.0e-14))
nom1 =-1.0e14;
denom1 = 1.0;
}

rulk]= nom1/denom1; //ratio of the gradients
nom2 = ul[k]-ull[k];
denom?2 = uu[k]-ullk];

// ; this part is just to check that we don't divide by 0
if (fabs(nom2) < 1.0e-14)

nom2 = 0.0;
denom?2 = 1.0;

}
if (nom2 > 1.0e-14) && (fabs(denom?2) < 1.0e-14))

nom2 = 1.0e14;
denom?2 = 1.0;

}

if (nom2 < -1.0e-14) && (fabs(denom?2) < 1.0e-14))

nom2 = -1.0e14;
denom?2 = 1.0;

}
//checking ends here

rl[k] = nom2 / denomz2; //=ratio of the gradients

for (k = 0; k < n_consVar; k++)

//call function to calculate the limit for each variable
ulmh(k] = ul[k] + 0.50 * limiter(rl[k]) * (uu[k] - ul[k]);
urmh[k] = uulk] - 0.50 * limiter(ru[K]) * (ur[k] - uu[K]);

}

//check
B_tot_| = ulmh[b_x_] * ulmh[b_x_] + ulmh[b_y_] * uimh[b_y_] + uimh[b_z_] * ulmh[b_z_];
B_tot_r = urmh[b_x_] * urmh[b_x_] + urmh[b_y_] * urmh[b_y_] + urmh[b_z_] * urmh[b_z_J;

176

//pressure left and right
pl_1 = (uimh[ene_1_] - 0.5 * ((ulmh[mom_x_1_] * ulmh[mom_x_1_]

+ ulmh[mom_y_1_] * ulmh[mom_y_1_]

+ ulmh[mom_z_1_] * uimh[mom_z_1_]) / ulmh[rho_1_] + B_tot_l)) * (gam - 1.0) ; //
total ene - kin enein x and y

pr_1 = (urmhl[ene_1_] - 0.5 * ((urmh[mom_x_1_] * urmh[mom_x_1_]
+ urmh[mom_y_1_] * urmh[mom_y_1_]
+ urmh[mom_z_1_] * urmh[mom_z_1_]) / urmh[rho_1_] + B_tot_r)) * (gam - 1.0) ;

//pressure left and right HYDRO
pl_2 =(uimh[ene_2_] - 0.5 * (uimh[mom_x_2_] * uimh[mom_x_2_]

+ ulmh[mom_y_2_] * ulmh[mom_y_2_]

+ ulmh[mom_z_2_] * ulmh[mom_z_2_]) / uimh[rho_2_]) * (gam - 1.0); //total ene -
kineneinxandy

pr_2 =(urmh[ene_2_] - 0.5 * (urmh[mom_x_2_] * urmh[mom_x_2_]

+ urmh[mom_y_2_] * urmh[mom_y_2_]

+ urmh[mom_z_2_] * urmh[mom_z_2_]) / urmh[rho_2_]) * (gam - 1.0); // divided
my rho because mom*mom

//speed of sound left and right MHD
csl_1=1.0* sgrt(gam * pl_1 / uimh[rho_1_]);
csr_1=1.0* sqrt(gam * pr_1 / urmh[rho_1_]);

va_| = sqrt(B_tot_I / (2. * uimh[rho_1_]));
va_r = sqrt(B_tot_r/ (2. * urmh[rho_1_]));

csl_1 =sqrt(va_l *va_l + csl_1 *csl_1);
csr_1 =sqrt(va_r *va_r + csr_1*csr_1);

//speed of sound left and right HYDRO
csl_2 =1.0 * sqrt(gam * pl_2 / uimh[rho_2_]);
csr_2 = 1.0 * sgrt(gam * pr_2 / urmh[rho_2_]);

// take the absolute values and select the max value = aaa

aaa_1 = fmax(fabs(ulmh[mom_x_1_ + dir] / uimh[rho_1_] + csl_1), fabs(urmh[mom_x_1_ + dir] /
urmh[rho_1_] + csr_1)); //max characteristic speed- y component +1

aaal_1 = fmax(aaa_1, fabs(ulmh[mom_x_1_ + dir] / ulmh[rho_1_] - csl_1));

aaa2_1 = fmax(aaal_1, fabs(urmh[mom_x_1_+ dir] / urmh[rho_1_] - csr_1));

// take the absolute values and select the max value = aaa HYDRO

aaa_2 = fmax(fabs(uimh[mom_x_2_ + dir]/ ulmh[rho_2_] + csl_2), fabs(urmh[mom_x_2_ + dir] /
urmh[rho_2_] + csr_2)); //max characteristic speed- y component +1

aaal_2 = fmax(aaa_2, fabs(ulmh[mom_x_2_ + dir] / ulmh[rho_2_] - csl_2));

aaa2_2 = fmax(aaal_2, fabs(urmh[mom_x_2_ + dir] / urmh[rho_2_] - csr_2));

177

aaa2 = fmax(aaa2_1, aaa2_2);

//calculate physical flux left and right
get_pflux(dir,urmh,fir);
get_pflux(dir,ulmh,fll);

for (k = 0; k < n_consVar; k++)

flux[k] = 0.5 * (flr[k] + fl[k] - @aaa2 * (urmh[k] - ulmh[k]));

178

GET PFLUX.CPP

/*
* calculate physical flux
*/

#include<iostream>
#include<cmath>
#include"constants.h"

void get_pflux(int direction, double* u0, double* fl)

doublev_x_1,v_y_1,v_z 1, B_x, B_y, B_z, B_tot, pre_1, vdotB;
doublev_x_2,v_y 2,v_z 2, pre_2;

v_x_1 =u0[mom_x_1_]/ uO[rho_1_];
v_y_1=u0[mom_y_1_]/uO[rho_1_];
v_z_1=u0[mom_z_1_]/ uO[rho_1_];

B_x = uO[b_x_];
B_y =u0[b_y_];
B_z=u0[b_z_J;
//hydro

v_x_2 = u0[mom_x_2_] / uO[rho_2_];
v_y_2 =u0[mom_y_2_]/ uO[rho_2_];
v_z_2 = u0[mom_z_2_] / uO[rho_2_]J;

B_tot=B_x*B_x + B_y *B_y + B_z * B_z; //squared mag field vector = magnitude
pre_1 = (uO[ene_1_] - 0.5 * ((uO[mom_x_1_] * v_x_1
+u0[mom_y_1_]*v_y_1

+uO[mom_z_1_]*v_z_1) + B_tot)) * (gam - 1.) + 0.5 * B_tot; //total e - ekin +
emag

pre_2 = (uO[ene_2_] - 0.5 * (uO[mom_x_2_] *v_x_2
+ uO[mom_y_2_]*v_y_2
+u0[mom_z_2_]*v_z 2))*(gam-1.);

vdotB=v_x_ 1*B x+v.y 1*B_y+v_z 1*B_z

if (direction == 0) //x-direction

fl[rho_1_] = uO[mom_x_1_];

fllmom_x_1_] = u0[mom_x_1_]*v_x_1-B_x*B_x + pre_1;
filmom_y_1_]=u0[mom_y_ 1]*v.x 1-B x*B_y;
fllmom_z_1_] = u0[mom_z_1_] * v_x_ 1 -B x*B_z;
fllene_1_] = v_x_1 * (uO[ene_1_]+ pre_1) - B_x * vdotB;

fllo_x_] = 0. + uO[psi_J;

filb_y_]=(v_x_1*B_y-v_y_1*B_x) + uO[psi_];

fllb_z]=-(v_z_1*B_x-v_x_1*B_z) + uQ[psi_];

fl[psi_] = (ch*ch) * B_x; //for hyperbolic divergence cleaning Dedner2002

179

//hydro

fl[rho_2_] = uO[mom_x_2_];

fllmom_x_2_] = u0[mom_x_2_] * v_x_2 + pre_2;
fllmom_y_2_] = uO[mom_y_2_]*v_x_2;
fllmom_z_2_] = u0[mom_z_2_] * v_x_2;

//from energy equation

fllene_2_] =v_x_2 * (uO[ene_2_] + pre_2);

if (direction == 1) //y-direction

{
filrho_1_] = u0[mom_y_1_];

* *

fllmom_x_1_] =u0[mom_x_1_]*v_.y 1-B_y*B_x;
fllmom_y_1_]=u0[mom_y_1_]*v_.y 1-B_y*B_y+pre_1;
fllmom_z_1_]=u0[mom_z_1]*v_y 1-B_y*B_z;
fllene_1_]=v_y_1 *(uO[ene_1_] + pre_1) - B_y * vdotB;
fllb_x_]=-(v_x_1*B_y-v_y_1*B_x) + uQ[ps| |_],

fllo_y_] = 0. + uO[psi_];
filo_z]=(_y_1*B_z-v_z 1*B_y) + uO[psi_];
fllpsi_] = (ch*ch) * B_y;

//hydro

fl[rho_2_] = uO[mom_y_2_];

fllmom_x_2_] = u0[mom_x_2_]*v_y 2;
fllmom_y_2_]=uO[mom_y_2_]1*v_y_2 + pre_2;
fllmom_z_2_] =u0[mom_z_2_]*v_y_2;
fllene_2_] =v_y_2 * (uO[ene_2_] + pre_2);

}

if (direction == 2) //z-direction

{
flfrho_1_] = uO[mom_z_1_];

fllmom_x_1_] =u0[mom_x_1_]*v_z_1-B_z*B_x;
fllmom_y_1_]=u0[mom_y_1_]*v_.z 1-B_z*B_y;
fllmom_z_1_]=u0[mom_z_1_]*v.z 1-B_z*B_z+pre_1;
fllene_1_] =v_z_1 *(uO[ene_1_] + pre_1) - B_z * vdotB;
fllb_x_]=(v_z_1*B_x-v_x_1*B_z) + uO[psi_];

filb_y]=-(v_y_1*B_z-v_z 1*B_y) + uO[psi_];

fllb_z_] = 0. + uO[psi_J;
fllpsi_] = (ch*ch) * B_z;

//hydro

fl[rho_2_] = uO[mom_y_2_];
fllmom_x_2_] = u0[mom_x_2_]*v_z_2;

180

filmom_y_2_] = u0[mom_y_2_] *v_z_2;
fllmom_z_2_] =u0[mom_z_2_]*v_z_2 + pre_2;
fllene_2_] =v_z_2 * (uO[ene_2_] + pre_2);

181

CALC SOURCES

#include<iostream>
#include<cmath>
#include"constants.h"

void calc_rates(double ***);
void calc_temperature(double ***);

void calc_sources(double **x, double **y, double** gg, double ***u, double ***res, double timep,
double dtime)

{

inti, j;

double rho_change_1, rho_change_2, mom_x_change, mom_y_change, mom_z_change,
ene_change, amplitude, period, radius;

double rho_change;

double v2_tot_1, v2_tot_2;

doublev_x_1,v_y_1,v_z 1;

doublev_x_2,v_y 2,v_z 2;

double t0, x0, a_col_0, B_tot;

amplitude = 2e3;
period = 180.;
t0 = 4. * period;
X0 = 0.5 * ende_x_global;
//y0=0,;
7
//date: 02.02.2018 added gravity sources (rho*g bzw rho*g.v)
for (i=n_ghost; i < n_x-n_ghost+1; i++)
{

for (j =n_ghost; j < n_y-n_ghost+1; j++)

{
res[mom_y_1_][i][j] = res[mom_y_1_][il[i] + ulrho_1_]{il[il * ggfilil;
res[ene_1_][i][i] = res[ene_1_][{][j] + ulmom_y_1_]{illi] * gg[i]lil;

res[mom_y__2__][i][i] = res[mom___y_2_][i][i] + u[rho__2__][i][j] * gg[i][i];
;es{ene,ZJ[I][l] = res[ene_2_][i][i] + u[mom_y_2_][i][i] * gglilli];
*/

/ffirst calculate rates for the source terms
calc_temperature(u);
calc_rates(u);
IEor (i=n_ghost; i < n_x-n_ghost+1; i++)

for (j =n_ghost; j < n_y-n_ghost+1; j++)

{

182

v_x_1 = u[mom_x_1_][il[j] / ulrho_1_][il[j;
v_y_1 = u[mom_y_1_][i][] / u[rho_1_][i[];
v_z_1 =u[mom_z_1_][il[i] / u[rho_1_][il[il;

//hydro

v_x_2 = u[mom_x_2_][il[i] / u[rho_2_][il[jl;
v_y_2 = u[mom_y_2_][il[j] / u[rho_2_][i[il;
v_z_2 = u[mom_z_2_][i][j] / u[rho_2_][il[il;

//add hyperbolic Div cleaning Dedner2002

double divB, gradPsi_x, gradPsi_y, vdotB;

double v_x, v_y, v_z;

double rho_1_divB, mom_x_1_divB, mom_y_1_divB, mom_z_1_divB, b_x_1_divB,
b_y_1_divB, b_z_1_divB, ene_1_divB, psi_divB;

divB = 0.5 * ((u[b_x_][i+1][i] - ulb_x_][i-1][])/(dx) + (u[o_y_]li][i+1] - ulb_y_][i]{i-1])/(dy));

// divB = ((u[b_x_][i+1][j] + ulb_x_1[l[)/2.- (ulb_x_][i-1][] +ulb_x_1[l[i)/2.)/dx + ((u[b_y_][i]
[i+1] + ub_y_](llil)}/2.- (ulb_y_][i{i-1] + ulb_y_][i[)/2.)/dy;

gradPsi_x = 0.5 * ((u[psi_][i+1][] - ulpsi_][i-1][)/(dx));
gradPsi_y = 0.5 * ((ulpsi_][illi+1] - ulpsi_][i][i-1])/(dy));

v_x = u[mom_x_1_][il[j] / ulrho_1_][il[il;
v_y = u[mom_y_1_][i][j] / u[rho_1_]i][i];
v_z = u[mom_z_1_][il[j] / u[rho_1_][il[i];

vdotB = v_x * u[b_x_][il[i] + v_y * ulb_y_][ill] + v_z * ulb_z_][il[i;
rho_1_divB =0,

mom_x_1_divB = -divB * u[b_x_][il[il;

mom_y_1_divB = -divB * u[b_y_][i[il;

mom_z_1_divB = -divB * u[b_z_][il[i];

b_x_1_divB=0

b_y_1_divB=0;

b_z 1 divB=0,;

ene_1_divB = (- u[b x_][i]i] * gradPsi_x) + (-u[b_y_][i][i] * gradPsi_y);
psi_divB = -(ch*ch / cp*cp) * u[psi_l[i[];

//source terms
7
rho_change = 0.;

mom_x_change = 0.;
mom_y_change = 0.;

183

sigma2));

mom_z_change = 0.;
ene_change =0.;
*/

rho_change = u[a_ion_][i][j] * u[rho_2_][il[i] - u[a_rec_][il[] * ulrho_1_][il[il;

mom_x_change = u[f_col_][i][j] * u[rho_1_][i][j] * ulrho_2_][il[j] * (v_x_2 - v_x_1)
- ufa_rec_][i][j] * u[mom_x_1_][i][i]

+ ula_ion_][i[] * umom_x_2_][il[il;
mom_y_change = u[f_col_][i][i] * u[rho_1_][il[i] * u[rho_2_][i][] * (v_y_2 - v_y_1)

- ufa_rec_][il{i] * ulmom_y_1_][il[i]
+ ufa_ion_][i][i] * u[mom_y_2_][i][{];
mom_z_change = u[f_col_][i][j] * u[rho_1_][i]j] * ulrho_2_J[i][i] * (v_.z 2 -v_z_1)
- ufa_rec_][il[j] * uimom_z_1_][il[i]
+ ufa_ion_][i][j] * u[mom_z_2_][il[i];

ene_change = u[f_col_][i][i] * ulrho_1_][il[j] * u[rho_2_][i][i]
(0.5 (v2_tot_2 - v2_tot_1) + 3 * Rg * (u[tem_2_][i][i]-u[tem_1_][il[j]))
- 0.5 * u[a_rec_][il[i] * ulrho_1_][i][j] * v2_tot_1
+ 0.5 * u[a_ion_][i][j] * u[rho_2_][i][i] * v2_tot_2;

e
//add an acoustic source

radius = sqri((x[illi] - x0) * (x[][}] - x0) + (Y[illil - yO) * (y{illi] - yO));

mom_x_change = 0.;
mom_y_change = 0.;
mom_z_change = 0.;

ene_change = amplitude * sin((timep * 2. * pi) / period) * exp(-((radius * radius) /

* exp(-((timep - t0) * (timep-t0)) / ((1.*period) * (1.*period)));
*/

// residuals plus source terms

res[rho_1_][i][i] = res[rho_1_][il[j] + rho_change + rho_1_divB;
res[rho_2_][i][i] = res[rho_2_][il[j] - rho_change;

184

res[mom_x_1_][i][j] = res[mom_x_1_][i][j] + mom_x_change + mom_x_1_divB;
res[mom_x_2_][il[j] = res[mom_x_2_]i][j] - mom_x_change;

res[mom_y_1_][i][i] = res[mom_y_1_][i][j] + mom_y_change + mom_y_1_divB;
res[mom_y_2_][il[i] = res[mom_y_2_][il[j] - mom_y_change;

resimom_z_1_][i][j] = resimom_z_1_][i][ij] + mom_z_change + mom_z_1_divB;
resimom_z_2_][i][j] = res[mom_z_2_][i][ij] - mom_z_change;

res[ene_1_][il[j] = res[ene_1_][i][i] + ene_change + ene_1_divB;
res[ene_2_][i][j] = res[ene_2_][i][i] - ene_change;

res[psi_][il[i] = res[psi_][il[]] + psi_divB;
}

void calc_rates(double ***u)

/*
double T_in, beta, lonis_coeff, Rec_coeff;

for (i=n_ghost; i < n_x-n_ghost+1; i++)

for (j =n_ghost; j < n_y-n_ghost+1; j++)

//new rates from Moore & Fung 1972
T_in = (u[tem_1_][i][i] + ultem_2_][i][j]}) * 0.5;
beta = 158000. / T_in;

lonis_coeff = 2.34e-8 / sqrt(beta) * exp(-beta);
Rec_coeff = 5.2e-14 / sqrt(beta) * (0.4288 + 0.5 * log(beta) + 0.4698 /cbrt(beta));

uff_col_][ilil = 1./ (m_1 + m_2) * Sig_in * sqrt(8 *k_B * T_in / pi * m_in);
ufa_ion_][i][i] = u[rho_1_][il[j] / m_2 * lonis_coeff;
ufa_rec_][i][i] = u[rho_1_][il[i] / m_1 * Rec_coeff;

*/
//Hillier
inti, j;
double a_col_0, T_max;

a_col 0=1;
T_max =1.2; /0T

185

calc_temperature(u);

/*

for (i = n_ghost; i < n_x -n_ghost+1; i++)

for (j = n_ghost; j < n_y -n_ghost+1; j++)

{

*/

//ulf_col_][i][]] = 0.;

ulf_col_J[i][j] = a_col_0 * sqrt((u[tem_2_][il[i] + u[tem_1_][il[i})/ (2. * TO));
//std::cout << u[f_col_][i][i] << std::endl;

//ula_ion_][i][i] = 0.;

//ula_rec_][il[i] = 0.;

//add differently calculated rates

//Millier
//ula_ion_][i][i

] =0.5* (tanh(u[tem_2_][i][j] - 0.3) / 2. + 0.5);
//ula_rec_][i][j]

=05

=0.5" (1 - ufa_ion_](i{);

//Tmax from OT plots:

ula_ion_][i][j] = 0.5 * (tanh(u[tem_2_][i][j] - T_max/2.)/ 2. + 0.5);

// u[a_rec_][i][i] = 0.2 * (tanh((1./uftem_1_][i][i]) - T_max/2.) / 2. + 0.5);
ula_rec_J[i][j] = 0.5 * (1 - u[a_ion_]il[il);

186

SAVE BIN.CPP

#include<iostream>
#include<cmath>

#include"constants.h"
#include"mpi.h"
#include <string.h>
#include <cstring>
#include <fstream>
#include <sstream>

void save_binary(int i_t, double** u0, double** x, double* y)

{

MPI_File outfile;
MPI_Status status;
MPI_Offset offset;
MPI_Datatype bufd;
MPI_Offset filesize;
int len, pos;
inti_cpu;

double *obuffer;

inti,j,k;
int bufsize;
int glodim[2];

int locdim[2];
int start[2];

if ((i_t % i_t_save == 0) || (i_t == 100000))
{

str1 = std::to_string(i_t);
len = str1.length();

num = std::string(9, '0');
pos =9. - len;

timestep= num.replace(pos, len, str1);

filename = "./DATA/data_OT"+timestep;

//create pointer to the char that allocates memory and
char * cfilename = new char [filename.length()+1]; //+1 because of the null termination

187

//char * strcpy (char * destination, const char * source);
std::strcpy(cfilename, filename.c_str();
//cfilename now contains a c-string copy of filename

MPI_Comm_rank(MPI_COMM_WORLD, &i_cpu);

glodim[0] = n_x_global;

glodim[1] = n_y_global;

locdim[0] = n_x_global/n_cpu_x;
locdim[1] = n_y_global/n_cpu_y;

start[0] = locdim[0] * (i_cpu % n_cpu_x);
start[1] = locdim[1] * (i_cpu / n_cpu_x);

bufsize = (n_x - 2 * n_ghost) * (n_y - 2 * n_ghost);
obuffer = new double[bufsize];

MPI_Type_create_subarray(n_dim, glodim, locdim, start, MPI_ORDER_FORTRAN,
MPI_DOUBLE, &bufd);

MPI_Type_commit(&bufd);

MPI_File_open(MPI_COMM_WORLD, cfilename, MPI_MODE_CREATE | MPI_MODE_WRONLY,
MPI_INFO_NULL, &outfile);

// MPI_File_open(MPI_COMM_WORLD, filename.c_str(), MPI_MODE_CREATE |
MPI_MODE_WRONLY, MPI_INFO_NULL, &outfile);

for (j = n_ghost; j < n_x - n_ghost; j++)

for (k = n_ghost; k < n_y - n_ghost; k++) obuffer[(j - n_ghost) + (n_x - 2 * n_ghost) * (k -
n_ghost)] = x[]K];
}

MPI_File_get_size(outfile, &filesize);

MPI_File_set_view(outfile, filesize, MPI_DOUBLE, bufd, "native", MPI_INFO_NULL);
MPI_Barrier(MPI_COMM_WORLD);

MPI_File_write_all(outfile, obuffer, bufsize, MPI_DOUBLE, &status);
MPI_Barrier(MPI_COMM_WORLD);

for (j = n_ghost; j < n_x - n_ghost; j++)
for (k = n_ghost; k < n_y - n_ghost; k++) obuffer[(j - n_ghost) + (n_x - 2 * n_ghost) * (k -
n_gh?st)] = yliIk];

MPI_File_get_size(outfile, &filesize);

MPI_File_set_view(outfile, filesize, MPI_DOUBLE, bufd, "native", MPI_INFO_NULL);
MPI_Barrier(MPI_COMM_WORLD);

MPI_File_write_all(outfile, obuffer, bufsize, MPI_DOUBLE, &status);
MPI_Barrier(MPI_COMM_WORLD);

for (i=0; i< n_var; i++)

for (j = n_ghost; j < n_x - n_ghost; j++)

188

for (k = n_ghost; k < n_y - n_ghost; k++) obuffer[(j - n_ghost) + (n_x - 2 * n_ghost) * (k -
n_ghost)] = uOi][][K];
}

MPI_File_get_size(outfile, &filesize);

MPI_File_set_view(outfile, filesize, MPI_DOUBLE, bufd, "native", MPI_INFO_NULL);
MPI_Barrier(MPI_COMM_WORLD);

MPI_File_write_all(outfile, obuffer, bufsize, MPI_DOUBLE, &status);
MPI_Barrier(MPI_COMM_WORLD);

}

MPI_File_close(&ouftfile);
MPI_Type_free(&bufd);

delete [] obuffer;

}

//return 0O;

}

189

CALC TEMPERATURE.CPP

#include<iostream>
#include<cmath>
#include"constants.h"
void calc_temperature(double ***u0)
inti,j;
for (i = n_ghost; i < n_x-n_ghost+1; i++)
for (j = n_ghost; j < n_y-n_ghost+1; j++)
. 5/u0[tem_1_][i][j] = (uO[pre_1_]J[il[i] * m_1) / (k_B * uO[rho_1_][i][j]); /temperature MHD / charged
ﬂufd//UO[teme][i][j] = (uO[pre_2_]J[ili] * m_2) / (k_B * uO[rho_2_][i][jl); //temperature HD / neutral

fluid

uO[tem_1_][i][i] = uO[pre_1_][il[i)/ (2. * Rg * uO[rho_1_][il[i]); //temperature MHD / charged fluid
uOftem_2_][i][i] = uO[pre_2_][il[i] / (Rg * uO[rho_2_][i][il); //temperature HD / neutral fluid
}

190

PRIM TO CON.CPP

/*
* obtain conservative variables (eg momentum, energy) from primitive variables
* (eg velocity, pressure)

* convert_primitive_to_conservative

*/

#include<iostream>
#include<cmath>
#include"constants.h"

void prim_to_con(double*** u0)

{
inti, j;
double B_tot;

for (i =0; i < n_x; i++)
for (j = 0; j<n_y; j++)
B_tot = u0[b_x_](il{j] * u0[b_x_][il[i] + u0[b_y_[il[i] * u0fb_y_[il[i] + u0[b_z_][i{j] * u0[b_z_][i]
//velocity to momentum
uO[mom_x_1_][il[i] = uO[v_x_1_][il[i] * uO[rho_1_][il[il;

u0[mom_y_1_]il[]] = uO[v_y_1_][i[j] * uOfrho_1_]{[];
uo[mom_z_1_]J[il[i] = u0[v_z_1_]il[il * uO[rho_1_]fil[il;

[il;

//pressure to energy with equation of state

uO[ene_1_][i][i] = uO[pre_1_][il[i] / (gam - 1.) + 0.5 * (uO[mom_x_1_][il[j] * uO[v_x_1_][il[i]
+u0[mom_y_1_Jflfj] * uolv_y_1_Jil[j]
+ u0[mom_z_1_][il[j] * uO[v_z_1_][il[j] + B_tot);

//hydro

uO[mom_x_2_][i][i] = uO[v_x_2_][il[i] * uO[rho_2_][il[il;

u0fmom_y_2_]il[j] = uO[v_y_2_]filli] * u0[rho_2_][i[il;

uO[mom_z_2_][i][j] = uO[v_z_2_][i][i] * uO[rho_2_][il[i];

uO[ene_2_][il[j] = uO[pre_2_][il[i] / (gam -1.) + 0.5 * (uO[mom_x_2_][il[j] * uO[v_x_2_][il[i]
+ u0[mom_y_2_][i]fj] * uO[v_y_2_][i][]
+ u0[mom_z_2_][i][j] * uO[v_z_2_][i[il);

191

CON TO PRIM.CPP

#include<iostream>
#include<cmath>
#include"constants.h"

void con_to_prim(double** u0)

int i,j;
double B_tot;

// get primitive variables (p, v) from conservative variables (e, mom)
for (i=0; i< n_x;i++)
{

for (=0; j< n_y; j++)

{

B_tot = u0[b_x_][]{i] * uO[b_x_]i[] + uOfb_y][] * u0lb_y][] + uO[b_z_][]{] * uO[b_z_I]fl;

//MHD
uO[v_x_1_][il[i] = u0[mom_x_1_][i][i] / uO[rho_1_][il[il;
uO[v_y_1_][illi] = u0[mom_y_1_][i][j] / uO[rho_1_]i][i];
uO[v_z_1_][il[l] = u0[mom_z_1_][il[i] / uO[rho_1_][i[il;

//gas pressure
uO[pre_1_][iI[i] = (uOfene_1_][iil - (uO[v_x_1_][il{i] * uO[mom_x_1_](il[i]
+ uOv_y_1_]0i[] * u0[mom_y_1_][il[j]
+ uO[v_z_1_][ilfi] * uO[mom_z_1_J[i][i]) + B_tot)*0.5)* (gam - 1.);

//hydro

uO[v_x_2_][il[i] = u0[mom_x_2_][i][i] / uO[rho_2_]il[il;

uO[v_y_2_][ili] = u0[mom_y_2_][il[j] / uO[rho_2_]i][j];

uO[v_z_2_][i]j] = u0[mom_z_2_][i][j] / uO[rho_2_][i][il;

uO[pre_2_][i][i] = (uO[ene_2_][i][i] - 0.5 * (uO[v_x_2_][il[j] * u0[mom_x_2_][il[i]
+ u0[v_y_2_](i][i] * u0[mom_y_2_][iI[}]
+u0[v_z_2_][i][j] * u0[mom_z_2_][i](i})) * (gam - 1.);

192

TIMESTEP.CPP

/*
* calculate timestep with CFL condition

* obtain the maximum velocity by comparing both max velocities
*/

//calculate timestep with CFL condition dt = 0.2 * dx / v_max

//1. calculate speed of sound
//2. calculate maximum velocity v_x and v_y
//3. get the maximum of both
//dt = 0.2 * dx / v_max
#include <iostream>
#include <cmath>
#include "constants.h"
#include "mpi.h"

double timestep(double***u0)
{
inti, j;
double dt, dt_global, d_xy, cs_max, alfven_max, vabs_max, vmax, B_tot, B_x, B_y, B_z;
doublev_x_1,v_y_1,v_z 1,pre_1,v.x 2,v.y 2,v_z 2, pre_2;
double cs_max_1, cs_max_2, vabs_max_1, vabs_max_2;

int ind_cpu;

double v_max_global, cs_1_max_global, cs_2_max_global;

cs_max_1=0.0;
cs_max_2 = 0.0;
alfven_max = 0.0;
vabs_max_1 = 0.0;
vabs_max_2 = 0.0;
vmax = 0.0;

for (i=n_ghost; i <n_x-n_ghost+1; i++)
for (j=n_ghost; j < n_y-n_ghost+1; j++)
v_x_1 = u0[mom_x_1_][i][i] / uO[rho_1_][il[il;

v_y_1 = u0[mom_y_1_][i][i] / uO[rho_1_1[il[j];
v_z_1 = u0[mom_z_1_][i][j] / uO[rho_1_][il[i];

—_

B_x = uO[b_x_][il[il;
B_y = uO[b_y_][ilfil
B_z = uO[b_z_]il[i];

//hydro

v_x_2 = u0[mom_x_2_][i][i] / uO[rho_2_][il[il;
v_y_2 = u0[mom_y_2_][il[j] / uO[rho_2_][il[il;
v_z_2 = u0[mom_z_2_][il[j] / uO[rho_2_][il[jl;

193

B_tot=B x*B_x+B_y*B_y+B_z*B_z

pre_1 = (u0[ene_1_][i][i] - 0.5 * (uO[mom_x_1_][i][i] * v_x_1
+ uO[mom_y_1_J[i][i] * v_y_1
+ uO[mom_z_1_][i][j] * v_z_1) + B_tot) * (gam - 1.); //total e - (ekin +
emag)

pre_2 = (u0[ene_2_][illi] - 0.5 * (uUO[mom_x_2_][il[i] * v_x_2
+ u0[mom_y_2_][il[j] *v_y_2
+u0[mom_z_2_[i][j] *v_z_2)) * (gam - 1.);

cs_max_1 = fmax(cs_max_1, sqrt(gam * pre_1 / uO[rho_1_][i][j])); //max sound speed MHD

cs_max_2 = fmax(cs_max_2, sqrt(gam * pre_2 / uO[rho_2_][i][i])); //max sound speed
HYDRO

vabs_max_1 = fmax(vabs_max_1,(sqrt(v_x_1*v_x_1 +
vy 1*v.y 1+
v_z_1*v_z_1))); //maximum flow speed MHD

vabs_max_2 = fmax(vabs_max_2,(sqrt(v_x_2 *v_x_2 +
V.Yy2*v.y2+
v_z 2 *v_z_2))); /maximum flow speed HYDRO

alfven_max = fmax(alfven_max, B_tot / sqrt(2. * uO[rho_1_][il[i]));

cs_max_1 = sqgrt(cs_max_1 * cs_max_1 + alfven_max * alfven_max);

cs_max = fmax(cs_max_1, cs_max_2);

vabs_max = fmax(vabs_max_1, vabs_max_2);

vmax = fmax(cs_max,vabs_max);

d_xy = fmin(dx,dy);

dt = CFL * d_xy / vmax; //for regular grid

// dt = 0.00001;

MPI_Allreduce(&dt, &dt_global, 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD);

MPI_Allreduce(&cs_max_1, &cs_1_max_global, 1, MPI_DOUBLE, MPI_MAX,

MPI_COMM_WORLD);

MPI_Allreduce(&cs_max_2, &cs_2_max_global, 1, MPI_DOUBLE, MPI_MAX,

MPI_COMM_WORLD);

MPI_Allreduce(&vabs_max, &_max_global, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
MPI_Comm_rank(MPI_COMM_WORLD, &ind_cpu);

//if (ind_cpu == 0) std::cout << "IN DT::: CS1=" << cs_1_max_global << " CS2=" <<
cs_2_max_global << " VMAX=" << v_max_global << " DT =" << dt_global << std::endl;

194

return dt_global;

}

195

ALLOCATE MEMORY
#include<iostream>
#include<cmath>
#include"constants.h"

void alloc_mem_arr2D(double** &arr2D)
inti,j,k;

arr2D = new double*[n_x];
for (i=0; i< n_x; i++)

arr2D[i] = new double[n_y];

}

}

#include<iostream>

#include<cmath>

#include"constants.h"

void alloc_mem_arr3D(double*** &arr3D)
inti,j, k;

arr3D = new double**[n_var];
for (i=0; i < n_var; ++i)

arr3D[i] = new double*[n_x];

for (j =0; j < n_x; j++)
arr3D[i][j] = new double[n_y];

}
void alloc_mem_arr4dD(double**** &arr4D)
inti,j,k;

arr4D = new double***[n_dim];
for (i = 0; i < n_dim; ++i)

arr4D[i] = new double**[n_var];
for (j =0; j < n_var; j++)
{arrdDIi][j] = new double*[n_x];
for (k =0; k < n_x; k++)

arr4D[i][j][k] = new double[n_y];}

196

DEALLOCATE MEMORY

#include<iostream>
#include<cmath>
#include"constants.h"
void dealloc_mem_arr2D(double** arr2D)
inti,j, k;
for (i=0; i< n_x; i++)
delete [] arr2D[i];

}
delete [] arr2D;

#include<iostream>

#include<cmath>

#include"constants.h"

void dealloc_mem_arr3D(double*** arr3D)

inti,j, k;

for (i = 0; i < n_var; ++i)
for (j =0; j < n_x; j++)
delete [] arr3D[i][i];
Lelete [arr3DIi];

delete [] arr3D;

#include<iostream>

#include<cmath>

#include"constants.h"

void dealloc_mem_arr4D(double**** arr4D)

{
inti,j, k;

for (k = 0; k < n_dim; k++)

for (i = 0; i < n_var; ++i)

197

for (j =0; j < n_x; j++)

delete [] arrdDIK][i[i];

}
delete [] arrd4DIK][i];
}
delete [] arr4D[K];

delete [] arr4D;

198

Bibliography

Alvarez Laguna, A., Ozak, N., Lani, A., Deconinck, H., Poedts, S.: 2018, Fully-implicit
finite volume method for the ideal two-fluid plasma model. Computer Physics Commu-
nications 231, 31 -44. doi:10.1016/).cpc.2018.05.006.

Alvarez-Laguna, A., Ozak, N., Lani, A., Mansour, N.N., Deconinck, H., Poedts, S.:
2018, A versatile numerical method for the multi-fluid plasma model in partially-

and fully-ionized plasmas. Journal of Physics: Conference Series 1031, 012015.
doi:10.1088/1742-6596/1031/1/012015.

Arber, T.D., Haynes, M., Leake, J.E.: 2007, Emergence of a Flux Tube through a Partially
Ionized Solar Atmosphere. 666, 541 —546. doi:10.1086/520046.

Arber, T.D., Longbottom, A.-W., Gerrard, C.L., Milne, A.M.: 2001, A Staggered Grid,
Lagrangian-Eulerian Remap Code for 3-D MHD Simulations. Journal of Computa-
tional Physics 171(1), 151 -181. doi;10.1006/jcph.2001.6780.

Arregui, I.: 2015, Wave heating of the solar atmosphere. Philosophical Trans-
actions of the Royal Society of London Series A 373, 20140261-20140261.
doi:10.1098/rsta.2014.0261.

Atkinson, K.: 1989, An introduction to numerical analysis, Wiley, lowa. ISBN
9780471624899.

Ballester, J.L., Alexeev, 1., Collados, M., Downes, T., Pfaff, R.F., Gilbert, H., Kho-
dachenko, M., Khomenko, E., Shaikhislamov, L.E,, Soler, R., Vazquez-Semadeni, E.,
Zagarashvili, T.: 2017, Partially Ionized Plasmas in Astrophysics. ArXiv e-prints.

Balsara, D.S.: 2004, Second-Order-accurate Schemes for Magnetohydrodynamics with
Divergence-free Reconstruction. 151, 149 —184. doi:10.1086/381377.

199

http://dx.doi.org/10.1016/j.cpc.2018.05.006
http://dx.doi.org/10.1088/1742-6596/1031/1/012015
http://dx.doi.org/10.1086/520046
http://dx.doi.org/10.1006/jcph.2001.6780
http://dx.doi.org/10.1098/rsta.2014.0261
http://dx.doi.org/10.1086/381377

Balsara, D., Kim, J.: 2003, An intercomparison between divergence-cleaning and stag-
gered mesh formulations for numerical magnetohydrodynamics. The Astrophysical
Journal 602. doi:10.1086/381051.

Biberman, L.M., Vorob’ev, V.S., Yakubov, I.T.: 1969, On the Theory of Ionization and
Recombination in a Low-temperature Plasma. Soviet Journal of Experimental and The-
oretical Physics 29, 1070.

Bittencourt, J.A.: 2004, Fundamentals of plasma physics, 3rd edn. Springer, New York.

Botha, G., Rucklidge, A., Hurlburt, N.: 2006, Converging and diverging convection
around axisymmetric magnetic flux tubes. Monthly Notices of the Royal Astronomical
Society 369, 1611 —1624. doi:10.1111/}.1365-2966.2006.10480.x.

Boyd, T., Sanderson, J.: 2003, The physics of plasmas, Cambridge University Press,
Cambridge. ISBN 9780521459129.

Braginskii, S.I.: 1965, Transport Processes in a Plasma. Reviews of Plasma Physics 1,
205.

Brandenburg, A., Dobler, W.: 2002, Hydromagnetic turbulence in computer simula-
tions. Computer Physics Communications 147(1-2), 471-475. doi:10.1016/S0010-
4655(02)00334-X.

Brio, M., Wu, C.C.: 1988, An upwind differencing scheme for the equations
of ideal magnetohydrodynamics. Journal of Computational Physics 75, 400—-422.
doi:10.1016/0021-9991(88)90120-9.

Cap, F.: 1994, Lehrbuch der plasmaphysik und magnetohydrodynamik, Springer, Vienna.
ISBN 9783709166222.

Cavalli, F., Naldi, G., Puppo, G., Semplice, M.: 2006, A comparison between relaxation
and Kurganov-Tadmor schemes. ArXiv Mathematics e-prints.

Chandrasekhar, S.: 1961, Hydrodynamic and hydromagnetic stability, Dover Books on
Physics Series, Dover Publications, New York. ISBN 9780486640716.

200

http://dx.doi.org/10.1086/381051
http://dx.doi.org/10.1111/j.1365-2966.2006.10480.x
http://dx.doi.org/10.1016/S0010-4655(02)00334-X
http://dx.doi.org/10.1016/S0010-4655(02)00334-X
http://dx.doi.org/10.1016/0021-9991(88)90120-9

Chen, E.: 1984, Introduction to plasma physics and controlled fusion, Introduction to
Plasma Physics and Controlled Fusion, Springer, Los Angeles. ISBN 9780306413322.

Danaila, 1., Joly, P., Kaber, S., Postel, M.: 2007, An introduction to scientific computing
- twelve computational projects solved with matlab, 2nd edn. Springer, France. ISBN
0-387-30889-X.

Davidson, P.: 2001, An introduction to magnetohydrodynamics, 2nd edn. Cambridge Uni-
versity Press, England. ISBN 0-521-79487-0.

Davis, S.F.: 1987, A simplified tvd finite difference scheme via artificial viscosity. SIAM
Journal on Scientific and Statistical Computing 8(1), 1 —18.

de Pontieu, B., Haerendel, G.: 1998, Weakly damped Alfven waves as drivers for spicules.
Astronomy and Astrophysics 338, 729 —736.

Dedner, A., Kemm, F., Kroner, D., Munz, C.D., Schnitzer, T., Wesenberg, M.: 2002,
Hyperbolic Divergence Cleaning for the MHD Equations. Journal of Computational
Physics 175, 645 —-673. doi:10.1006/jcph.2001.6961.

Denner, F., Evrard, F., Serfaty, R., [van Wachem], B.G.: 2017, Artificial viscosity model
to mitigate numerical artefacts at fluid interfaces with surface tension. Computers Flu-
ids 143, 59 —72. doi:https://doi.org/10.1016/j.compfluid.2016.11.006.

Diaz, A. J., Khomenko, E., Collados, M.: 2014, Rayleigh-taylor instability in partially
ionized compressible plasmas: One fluid approach. A&A 564, A97. doi:10.1051/0004-
6361/201322147. https://doi.org/10.1051/0004-6361/201322147.

Draine, B.T., Roberge, W.G., Dalgarno, A.: 1983, Magnetohydrodynamic shock waves in
molecular clouds. 264, 485 —507. doi:10.1086/160617.

Felipe, T., Khomenko, E., Collados, M.: 2010, Magneto-acoustic Waves in Sunspots:
First Results From a New Three-dimensional Nonlinear Magnetohydrodynamic Code.
719(1), 357-377. doi:10.1088/0004-637 X/719/1/357.

Goedbloed, J.P.H., Poedts, S.: 2004, Principles of Magnetohydrodynamics: With Appli-
cations to Laboratory and Astrophysical Plasmas, Cambridge University Press, Cam-
bridge. doi:10.1017/CBO9780511616945.

201

http://dx.doi.org/10.1006/jcph.2001.6961
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2016.11.006
http://dx.doi.org/10.1051/0004-6361/201322147
http://dx.doi.org/10.1051/0004-6361/201322147
http://dx.doi.org/10.1086/160617
http://dx.doi.org/10.1088/0004-637X/719/1/357
http://dx.doi.org/10.1017/CBO9780511616945

Gonzalez-Morales, P.A., Khomenko, E., Downes, T. P., de Vicente, A.: 2018, Mhdsts:
a new explicit numerical scheme for simulations of partially ionised solar plasma.
A&A 615, A67. doi:10.1051/0004-6361/201731916. https://doi.org/10.1051/0004-
6361/201731916.

Grant, ., Phillips, W.R.: 1999, Electromagnetism, 2nd edn. Wiley, England. ISBN 978-
0-471-92712-9.

Griffiths, D.J.: 1999, Introduction to electrodynamics, 3rd edn. Prentice Hall, USA. ISBN
0-13-805326-X.

Gudiksen, B.V., Carlsson, M., Hansteen, V.H., Hayek, W., Leenaarts, J., Martinez-Sykora,
J.: 2011, The stellar atmosphere simulation codebifrost. Astronomy Astrophysics
531, A154. doi:10.1051/0004-6361/201116520. http://dx.doi.org/10.1051/0004-
6361/201116520.

Guillet, T., Pakmor, R., Springel, V., Chandrashekar, P., Klingenberg, C.: 2019, High-
order magnetohydrodynamics for astrophysics with an adaptive mesh refinement dis-
continuous Galerkin scheme. 485(3), 4209 —4246. doi;10.1093/mnras/stz314.

Harten, A.: 1982, High Resolution Schemes for Hyperbolic Conservation Laws. Journal
of Computational Physics 49, 357 —393.

Hartley, P., Wynn-Evans, A.: 1979, An introduction to numerical analysis, Stanley
Thornes Ltd., England. ISBN 0859504263.

Hesthaven, J.S.: 2018, Numerical methods for conservation laws, 1st edn. Siam, Philadel-
phia, USA. ISBN 978-1-611975-09-3.

Hillier, A.: 2019, Ion-neutral decoupling in the nonlinear kelvin—helmholtz instability:
Case of field-aligned flow. Physics of Plasmas 26, 082902. doi:;10.1063/1.5103248.

Hillier, A., Takasao, S., Nakamura, N.: 2016, The formation and evolution of
reconnection-driven, slow-mode shocks in a partially ionised plasma. Astronomy and
Astrophysics 591, A112. doi:10.1051/0004-6361/201628215.

Hillier, A.S.: 2016, On the nature of the magnetic rayleigh—taylor instability in as-

trophysical plasma: the case of uniform magnetic field strength. Monthly Notices

202

http://dx.doi.org/10.1051/0004-6361/201731916
http://dx.doi.org/10.1051/0004-6361/201116520
http://dx.doi.org/10.1093/mnras/stz314
http://dx.doi.org/10.1063/1.5103248
http://dx.doi.org/10.1051/0004-6361/201628215

of the Royal Astronomical Society 462(2), 2256 —2265. doi:10.1093/mnras/stw1805.
http://dx.doi.org/10.1093/mnras/stw1805.

Jiang, G.S., Levy, D., Lin, C., Osher, S., Tadmor, E.: 1997, High-resolution non-
oscillatory central schemes with non-staggered grids for hyperbolic conservation laws.
SIAM J. Numer. Anal 35, 2147 —2168.

Keppens, R.: 2007, Radiative transfer and numerical mhd. Summer School.

Khodachenko, M.L., Arber, T.D., Rucker, H.O., Hanslmeier, A.: 2004, Collisional and
viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere.
422, 1073 -1084. doi:10.1051/0004-6361:20034207.

Khomenko, E., Collados, M.: 2012, Heating of the Magnetized Solar Chromosphere
by Partial Tonization Effects. The Astrophysical Journal 747, 87. doi:10.1088/0004-
637X/747/2/87.

Khomenko, E., Collados, M., Diaz, A., Vitas, N.: 2014, Fluid description of
multi-component solar partially ionized plasma. Physics of Plasmas 21(9), 092901.
doi:10.1063/1.4894106. http://dx.doi.org/10.1063/1.4894106.

Kull, H.: 1991, Theory of the rayleigh-taylor instability. Physics Reports
206(5), 197 -325. doi:https://doi.org/10.1016/0370-1573(91)90153-D.
http://www.sciencedirect.com/science/article/pii/037015739190153D.

Kumar, N., Roberts, B.: 2003, Ion-neutral collisions effect on mhd sur-
face waves. Solar Physics 214(2), 241-266. doi:10.1023/A:1024299029918.
https://doi.org/10.1023/A:1024299029918.

Kurganov, A., Tadmor, E.: 2000, New high-resolution central schemes for nonlinear con-
servation laws and convection—diffusion equations. J. Comput. Phys. 160(1), 241 —
282. doi:10.1006/jcph.2000.6459. http://dx.doi.org/10.1006/jcph.2000.6459.

Kuzmin, D.: 2010, A guide to numerical methods for transport equations, 1st edn., Nuern-

berg, Germany.

Leake, J.E., Arber, T.D.: 2006, The emergence of magnetic flux through a partially
ionised solar atmosphere. A&A 450(2), 805 —818. doi:10.1051/0004-6361:20054099.

203

http://dx.doi.org/10.1093/mnras/stw1805
http://dx.doi.org/10.1051/0004-6361:20034207
http://dx.doi.org/10.1088/0004-637X/747/2/87
http://dx.doi.org/10.1088/0004-637X/747/2/87
http://dx.doi.org/10.1063/1.4894106
http://dx.doi.org/https://doi.org/10.1016/0370-1573(91)90153-D
http://dx.doi.org/10.1023/A:1024299029918
http://dx.doi.org/10.1006/jcph.2000.6459
http://dx.doi.org/10.1051/0004-6361:20054099

Leake, J.E., Lukin, V.S., Linton, M.G., Meier, E.T.: 2012, Multi-fluid Simulations of
Chromospheric Magnetic Reconnection in a Weakly Ionized Reacting Plasma. 760(2),
109. doi:10.1088/0004-637X/760/2/109.

LeVeque, R.J.: 2002, Finite-volume methods for hyperbolic problems, Cambridge Uni-

versity Press, Cambridge.

Londrillo, P, Zanna, L.D.: 2000, High-order upwind schemes for multi-
dimensional magnetohydrodynamics. The Astrophysical Journal 530(1), 508.
http://stacks.iop.org/0004-637X/530/i=1/a=508.

Lora-Clavijo, ED., Cruz-Perez, J.P., Guzman, E.S., Gonzalez, J.A.: 2013, Exact solution
of the 1D Riemann problem in Newtonian and relativistic hydrodynamics. ArXiv e-

prints.

Maneva, Y.G., Laguna, A.A., Lani, A., Poedts, S.: 2017, Multi-fluid modeling of magne-
tosonic wave propagation in the solar chromosphere: Effects of impact ionization and
radiative recombination. The Astrophysical Journal 836(2), 197. doi:10.3847/1538-
4357/aa5b83. http://dx.doi.org/10.3847/1538-4357/aa5b83.

Martinez-Gémez, D., Soler, R., Terradas, J.: 2017, Multi-fluid Approach to High-
frequency Waves in Plasmas. II. Small-amplitude Regime in Partially Ionized Media.
837(1), 80. doi:10.3847/1538-4357/aa5eab.

Martinez Sykora, J., De Pontieu, B., Hansteen, V., Carlsson, M.: 2015, The role of partial
ionisation effects in the chromosphere. Philosophical Transactions of the Royal Society
A 373. doi:https://doi.org/10.1098/rsta.2014.0268.

Martinez-Sykora, J., De Pontieu, B., Hansteen, V.H., Rouppe van der Voort, L.,
Carlsson, M., Pereira, TM.D.: 2017, On the generation of solar spicules and
alfvénic waves. Science 356(6344), 1269-1272. doi:10.1126/science.aah5412.
https://science.sciencemag.org/content/356/6344/1269.

Mathers, C.D., Cramer, N.F.: 1978, The effect of ionization and recombination on the re-
sistivity of a partially ionized plasma in a magnetic field. Australian Journal of Physics
31, 171. doi:10.1071/PH780171.

204

http://dx.doi.org/10.1088/0004-637X/760/2/109
http://dx.doi.org/10.3847/1538-4357/aa5b83
http://dx.doi.org/10.3847/1538-4357/aa5b83
http://dx.doi.org/10.3847/1538-4357/aa5eab
http://dx.doi.org/https://doi.org/10.1098/rsta.2014.0268
http://dx.doi.org/10.1126/science.aah5412
http://dx.doi.org/10.1071/PH780171

Mattis, D.C.: 1965, The theory of magnetism. an introduction to the study of cooperative
phenomena. 149, American Association for the Advancement of Science, Washington,
DC, 411-412. doi;10.1126/science.149.3682.411-a.

McNally, C.P,, Lyra, W., Passy, J.C.: 2012, A Well-posed Kelvin-Helmholtz Instability
Test and Comparison. 201, 18. doi;10.1088/0067-0049/201/2/18.

Meier, E.T., Shumlak, U.: 2012, A general nonlinear fluid model for reacting plasma-
neutral mixtures. Physics of Plasmas 19(7), 072508. doi:10.1063/1.4736975.

Norman, M.L., Winkler, K.: 1985, Supersonic Jets. Los Almos Science.

Orszag, S.A., Tang, CM.: 1979, Small-scale structure of two-dimensional
magnetohydrodynamic turbulence. Journal of Fluid Mechanics 90, 129-143.
doi:10.1017/5002211207900210X.

Pandey, B.P., Wardle, M.: 2008, Hall magnetohydrodynamics of partially ionized
plasmas. Monthly Notices of the Royal Astronomical Society 385(4), 2269 -
2278. doi:10.1111/..1365-2966.2008.12998.x. https://doi.org/10.1111/j.1365-
2966.2008.12998 .x.

Peiro, J., Sherwin, S.: 2005, Finite Difference, Finite Element and Finite Volume Methods
for Partial Differential Equations, 2415 —2446. doi:10.1007/978-1-4020-3286-8,27.

Popescu Braileanu, B., Lukin, V., Khomenko, E., De Vicente, A.: 2019, Two-fluid
simulations of waves in the solar chromosphere. ii. propagation and damping of

fast magneto-acoustic waves and shock. Astronomy Astrophysics. doi;10.1051/0004-
6361/201935844.

Powell, K.G.: 1994, An approximate riemann solver for magnetohydrodynamics.

Priest, E.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press, Cam-
bridge, UK.

Quarteroni, A., Sacco, R., Saleri, F.: 2006, Numerical mathematics (texts in applied math-
ematics), Springer, Berlin, Heidelberg. ISBN 3540346589.

205

http://dx.doi.org/10.1126/science.149.3682.411-a
http://dx.doi.org/10.1088/0067-0049/201/2/18
http://dx.doi.org/10.1063/1.4736975
http://dx.doi.org/10.1017/S002211207900210X
http://dx.doi.org/10.1111/j.1365-2966.2008.12998.x
http://dx.doi.org/10.1007/978-1-4020-3286-8_127
http://dx.doi.org/10.1051/0004-6361/201935844
http://dx.doi.org/10.1051/0004-6361/201935844

Raboonik, A., Cally, P.S.: 2019, Hall-coupling of Slow and Alfvén Waves at Low Fre-
quencies in the Lower Solar Atmosphere. 294(10), 147. doi:10.1007/s11207-019-
1544-1.

Roe, P.: 1986, Characteristic-based schemes for the euler equations. Annual Review of
Fluid Mechanics 18, 337 —365.

Rozhansky, V., Tsendin, L.: 2001, Transport phenomena in partially ionized plasma,
Taylor & Francis, St Petersburg.

Ryu, D., Miniati, F., Jones, T.W., Frank, A.: 1998, A Divergence-free Up-
wind Code for Multidimensional Magnetohydrodynamic Flows. 509, 244 -255.
doi:10.1086/306481.

Scheid, F.: 1968, Schaum’s outline of theory and problems of numerical analysis,

Schaum’s outline series, McGraw-Hill, New York.

Schnack, D.D.: 2009, Lectures in Magnetohydrodynamics: With an Appendix on Ex-
tended MHD, Lecture Notes in Physics, Springer, Berlin, Heidelberg. doi:10.1007/978-
3-642-00688-3.

Shyy, W.: 2006, Computational modeling for fluid flow and interfacial transport
(dover books on engineering), Dover Publications, Incorporated, New York. ISBN
0486453030.

Snow, B., Hillier, A.: 2019, Intermediate shock sub-structures within a slow-mode shock
occurring in partially ionised plasma. 626, A46. doi:10.1051/0004-6361/201935326.

Sod, G.A.: 1978, A Survey of Several Finite Difference Methods for Systems of Non-
linear Hyperbolic Conservation Laws. Journal of Computational Physics 27(1), 1-31.
doi:10.1016/0021-9991(78)90023-2.

Soler, R., Oliver, R., Ballester, J.L.: 2009, Magnetohydrodynamic waves in a
partially ionized filament thread. The Astrophysical Journal 699(2), 1553 —1562.
doi:10.1088/0004-637x/699/2/1553.

206

http://dx.doi.org/10.1007/s11207-019-1544-1
http://dx.doi.org/10.1007/s11207-019-1544-1
http://dx.doi.org/10.1086/306481
http://dx.doi.org/10.1007/978-3-642-00688-3
http://dx.doi.org/10.1007/978-3-642-00688-3
http://dx.doi.org/10.1051/0004-6361/201935326
http://dx.doi.org/10.1016/0021-9991(78)90023-2
http://dx.doi.org/10.1088/0004-637x/699/2/1553

Soler, R., Carbonell, M., Ballester, J.L., Terradas, J.: 2013, Alfvén waves in a partially
ionized two-fluid plasma. The Astrophysical Journal 767(2), 171. doi:10.1088/0004-
637x/767/2/171. http://dx.doi.org/10.1088/0004-637X/767/2/171.

Soler, R., Terradas, J., Oliver, R., Ballester, J.L.: 2017, Propagation of torsional alfvén
waves from the photosphere to the corona: Reflection, transmission, and heating
in expanding flux tubes. The Astrophysical Journal 840(1), 20. doii10.3847/1538-
4357/aa6d7f.

Spruit, H.C.: 2017, Essential magnetohydrodynamics for astrophysics, Garching.

Stone, J.M., Hawley, J.F,, Evans, C.R., Norman, M.L.: 1992, A test suite for magnetohy-
drodynamical simulations. 388, 415-437. doi:10.1086/171164.

Sweby, P.K.: 1984, High Resolution Schemes Using Flux Limiters for Hyper-
bolic Conservation Laws. SIAM Journal on Numerical Analysis 21, 995-1011.
doi:10.1137/0721062.

Tipler, P.A., Mosca, G.: 2009, Physik fiir Wissenschaftler und Ingenieure, 2nd edn. Spek-
trum Akademischer Verlag, Heidelberg. ISBN 978-3-8274-1945-3.

Toth, G.: 1994, Numerical Study of Two-Fluid C-Type Shock Waves. 425, 171.
doi:10.1086/173973.

Tsap, Y.T., Stepanov, A.V., Kopylova, Y.G.: 2011, Energy Flux of Alfvén Waves
in Weakly lonized Plasma and Coronal Heating of the Sun. 270(1), 205-211.
doi:10.1007/s11207-011-9727-4.

Versteeg, H., Malalasekera, W.: 2007, An introduction to computational fluid dynamics:
The finite volume method, Pearson Education Limited, Edinburgh. ISBN 978-0-13-
127498-3.

Vogler, A., Shelyag, S., Schiissler, M., Cattaneo, F., Emonet, T., Linde, T.: 2005, Simula-
tions of magneto-convection in the solar photosphere. Equations, methods, and results
of the MURaM code. Astronomy and Astrophysics 429, 335—351. doi:10.1051/0004-
6361:20041507.

207

http://dx.doi.org/10.1088/0004-637x/767/2/171
http://dx.doi.org/10.1088/0004-637x/767/2/171
http://dx.doi.org/10.3847/1538-4357/aa6d7f
http://dx.doi.org/10.3847/1538-4357/aa6d7f
http://dx.doi.org/10.1086/171164
http://dx.doi.org/10.1137/0721062
http://dx.doi.org/10.1086/173973
http://dx.doi.org/10.1007/s11207-011-9727-4
http://dx.doi.org/10.1051/0004-6361:20041507
http://dx.doi.org/10.1051/0004-6361:20041507

Vranjes, J., Poedts, S., Pandey, B.P., de Pontieu, B.: 2008, Energy flux of Alfvén
waves in weakly ionized plasma. Astronomy and Astrophysics 478, 553 —558.
doi:10.1051/0004-6361:20078274.

Waterson, N., Deconinck, H.: 2007, Design principles for bounded higher-order convec-

tion schemes a unified approach. Journal of Computational Physics 224, 182 —207.

Wendt, J., Anderson Jr., J.D., Degroote, J., Degrez, G., Dick, E., R., G., J., V.: 2009,
Computational fluid dynamics, 3rd edn. Springer, Berlin Heidelberg. ISBN 978-3-540-
85055-7.

Wilmot-Smith, A.L., Priest, E.R., Hornig, G.: 2005, Magnetic diffusion and the mo-
tion of field lines. Geophysical and Astrophysical Fluid Dynamics 99, 177-197.
doi:10.1080/03091920500044808.

Yunus A. Cengel, Y.C.: 2002, Heat transfer: a practical approach, 2nd edn. McGraw-Hill
Science/Engineering/Math, New York. ISBN 0072826207 9780072826203.

Zaqarashvili, T.V., Khodachenko, M.L., Rucker, H.O.: 2011, Magnetohydrody-
namic waves in solar partially ionized plasmas: two-fluid approach. 529, AS82.
doi:10.1051/0004-6361/201016326.

Zweibel, E.G.: 2015, In: Lazarian, A., de Gouveia Dal Pino, E.M., Melioli, C. (eds.) Am-
bipolar Diffusion, Astrophysics and Space Science Library 407, 285. doi:10.1007/978-
3-662-44625-6 1.

208

http://dx.doi.org/10.1051/0004-6361:20078274
http://dx.doi.org/10.1080/03091920500044808
http://dx.doi.org/10.1051/0004-6361/201016326
http://dx.doi.org/10.1007/978-3-662-44625-6_11
http://dx.doi.org/10.1007/978-3-662-44625-6_11

	Introduction
	Plasma Description
	Partially Ionised Plasma (PIP)
	Time and Length Scales
	Motivation and Structure of the Thesis

	Derivation of Governing Equations
	Derivation of the Fluid Approach and the Two-Fluid Model
	From kinetic theory to fluid theory
	Single-fluid MHD
	Two-Fluid (ion-neutral) MHD

	Derivation of the Hydrodynamic and MHD equations
	Derivation of Hydrodynamic Equations
	Derivation of Magnetohydrodynamic (MHD) Equations

	Two-Fluid Source Terms

	Numerical Methods – an Overview
	Partial Differential Equations (PDEs)
	Finite Volume (FV) Method
	The Kurganov-Tadmor Scheme

	The Code and Its Verification
	Code Setup
	Code Structure and Functions
	Code Tests
	Hydrodynamic Simulations
	Magnetohydrodynamic (MHD) Simulations
	Divergence Control

	Two-Fluid MHD Code and Simulations
	Two-Fluid Simulations
	1.5D Slow-Mode Shock
	2D Orszag-Tang Vortex

	Conclusions
	Conclusion With Regards to Two-Fluid Simulations
	Summary

	Future Avenues of Investigation
	Rayleigh-Taylor Instability (RTI)
	Kelvin-Helmholtz Instability (KHI)

	Running the Code
	The Code
	Bibliography

