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Multiphase wavetrains are multiperiodic travelling
waves with a set of distinct wavenumbers and
distinct frequencies. In conservative systems, such
families are associated with the conservation of
wave action or other conservation law. At generic
points (where the Jacobian of the wave action flux
is non-degenerate), modulation of the wavetrain
leads to the dispersionless multiphase conservation
of wave action. The main result of this paper is that
modulation of the multiphase wavetrain, when the
Jacobian of the wave action flux vector is singular,
morphs the vector-valued conservation law into
the scalar Korteweg–de Vries (KdV) equation. The
coefficients in the emergent KdV equation have a
geometrical interpretation in terms of projection
of the vector components of the conservation law.
The theory herein is restricted to two phases to
simplify presentation, with extensions to any finite
dimension discussed in the concluding remarks. Two
applications of the theory are presented: a coupled
nonlinear Schrödinger equation and two-layer
shallow-water hydrodynamics with a free surface.
Both have two-phase solutions where criticality and
the properties of the emergent KdV equation can be
determined analytically.

1. Introduction
There is a multitude of physical examples where
multiphase wavetrains arise naturally. In general, they
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are quasi-periodic solutions and so may have small divisor problems in establishing existence.
However, in the case where there is some underlying symmetry, multiphase wavetrains can be
characterized as relative equilibria and as such exist robustly in multiparameter families. For a
vector-valued field, u(x, t), satisfying the Euler–Lagrange equation associated with a Lagrangian
functional, an example of a multiphase wavetrain is a solution of the form

u(x, t) = û(θ1, θ2), θj = kjx + ωjt + θ0
j , j = 1, 2,

where (k1, k2), (ω1,ω2) are the, in general distinct, wavenumbers and frequencies.
In this paper, we are interested in the modulation of multiphase wavetrains in conservative

systems. This problem was first studied by Ablowitz & Benney [1], using Whitham modulation
theory. They derived the conservation of wave action for scalar fields with two phases in detail,
and showed how the theory generalized to N-phases. Examples in Ablowitz [2] show that, in
general, one should expect small divisors, but weakly nonlinear solutions could still be obtained.
However, for integrable systems, multiphase averaging and the Whitham equations are robust
and rigorous, and a general theory can be obtained [3]. On the other hand, if the system is
not integrable, but there is an N-fold symmetry, then again a theory for conservation of wave
action can be developed without small divisors and smoothly varying N-phase wavetrains [4].
In essence, the conservation of wave action is replaced by the conservation law generated by the
symmetry. There is now a vast literature on multiphase averaging and dispersionless Whitham
theory, but we are not going to pursue this direction further as the interest here is in how dispersion
can be generated in the modulation of multiphase wavetrains.

The strategy, in this paper, for generating dispersion in modulation equations deduced from
the multiphase conservation of wave action is motivated by the theory for the single-phase case
studied in [5–7], but has subtle new features. The starting point is a general class of partial
differential equations (PDEs) generated by a Lagrangian

L (V) =
∫ t2

t1

∫ x2

x1

L(V, Vx, Vt) dx dt, (1.1)

where V(x, t) is a vector-valued function of (x, t) on the rectangle [x1, x2] × [t1, t2]. It is
advantageous to first transform the Lagrangian density to multisymplectic form

L (Z) =
∫ t2

t1

∫ x2

x1

[
1
2
〈Z, MZt〉 + 1

2
〈Z, JZx〉 − S(Z)

]
dx dt, (1.2)

where now Z ∈ R
n for each (x, t) and n is assumed to be even. The structure operators M and

J are constant skew-symmetric n × n matrices and S : R
n → R is a given smooth function. The

transformation from (1.1) to (1.2), which is effectively a double Legendre transform, is discussed
in the previous papers [5–8]. The Euler–Lagrange equation deduced from the Lagrangian (1.2)
takes the tidy form

MZt + JZx = ∇S(Z), Z ∈ R
n. (1.3)

Suppose there exists a two-phase solution

Z(x, t) = Ẑ(θ , k, ω), θ =
(
θ1
θ2

)
, k =

(
k1
k2

)
, ω =

(
ω1
ω2

)
, (1.4)

satisfying (1.3) with
θj = kjx + ωjt + θ0

j , j = 1, 2 (1.5)

and
Ẑ(θ1 + 2π , θ2, ·) = Ẑ(θ1, θ2, ·) = Ẑ(θ1, θ2 + 2π , ·), ∀ k, ω.

This two-phase solution can also be interpreted as an interaction between two waves. Associated
with the two-phase solution is a vector-valued conservation law

At + Bx = 0, A =
(

A1
A2

)
, B =

(
B1
B2

)
, (1.6)
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which may be conservation of wave action, or a conservation law associated, via Noether theory,
to a two-dimensional Lie group symmetry of the PDE (1.3). Evaluation of the components of the
conservation law (1.6) on the two-phase solutions generates mappings

(k, ω) �→ A(k, ω) and (k, ω) �→ B(k, ω). (1.7)

The notation here is that (A, B) are the components of the wave action conservation law when
considered as functions of (x, t) and (A, B) when they are considered as functions of (k, ω), with
components

A(k, ω) =
(

A1(k, ω)
A2(k, ω)

)
and B(k, ω) =

(
B1(k, ω)
B2(k, ω)

)
.

In the generic case, the mappings (1.7) are bijective. The interest in this paper is when the mapping
k �→ B(k, ω) fails to be bijective, in particular it is assumed that

det[DkB] = 0, (1.8)

at some k0(ω), and the zero eigenvalue is assumed to be simple with eigenvector ζ ∈ R
2,

[DkB]ζ = 0. (1.9)

To simplify notation, the subscript on k0 is dropped, and it is clear in context whether k0
or k is intended. For each fixed ω, the condition (1.8) defines a curve in k space which is
called the criticality curve, or, as ω varies, the criticality surface. The matrix conditions (1.8)–
(1.9) for emergence of dispersion generalize the scalar condition in the single-phase case. The
condition (1.8) is a mathematical condition, but in §3f the connection with physical criticality is
discussed.

Given the basic state the strategy is to modulate using an ansatz, motivated by the one-phase
case in [5–7], but generalized to two phases

Z(x, t) = Ẑ(θ + εφ, k + ε2q, ω + ε4Ω) + ε3W(θ , X, T, ε), (1.10)

with slow time and space scales
X = εx and T = ε3t. (1.11)

The ansatz (1.10) is substituted into (1.3), everything is expanded in Taylor series in ε, and solved
order by order. The main result of this paper is that the ε5 equation is solvable if and only if the
following equation is satisfied:

(DkA + DωB)ζUT + D2
kB(ζ , ζ )UUX + K UXXX + DkB αXX = 0, (1.12)

where K and α ∈ R
2 are 2-vectors and their definitions materialize in the theory. The scalar

function U is obtained by projection

Pq := U(X, T)ζ , where P := ‖ζ‖−2ζζT.

Equation (1.12) is quite remarkable. First, it is a vector Korteweg–de Vries (KdV) equation—
almost. The extra fourth term changes it, and, as appears in the theory, the vector α is unknown
at this stage. Second, the coefficients of the first, second and fourth terms are all expressed purely
in terms of derivatives of the components of the conservation law and the eigenvector ζ , with the
latter determined by (1.9).

On the other hand, DkB is singular by assumption (1.8) and symmetric, so if the inner product
of ζ with equation (1.12) is taken, the last term drops out, and a scalar KdV equation emerges.
Projection of (1.12) onto the complement of the kernel of DkB provides an equation determining
α, which would be used at the next order.

Although this ansatz (1.10) looks like a straightforward generalization of the ansatz in the
single-phase case, there are subtle non-trivial differences in the multiphase theory. The Jordan
chain theory here (developed in §3b) intertwines the theory in the single phase case with the new
eigenvector ζ in (1.9). It is not a priori clear how two solvability conditions generate one equation,
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and here it is the projection and the essential role of α that are important (there is no analogue in
the single-phase theory).

In summary, the theory starts with a conservative PDE, generated by a Lagrangian in canonical
form (1.1)–(1.2), with a four-parameter family of two-phase wavetrains (1.4). When this four-
parameter family has a simple degeneracy (1.8), the modulation ansatz (1.10) satisfies the
Euler–Lagrange equation (1.3) up to fifth order in ε when (U, α) satisfy (1.12). Projection of (1.12)
in the direction of the kernel of DkB then generates a scalar KdV equation

ζT(DkA + DωB)ζUT + ζTD2
kB(ζ , ζ )UUX + ζTKUXXX = 0. (1.13)

In other words, it is the simple degeneracy (1.8) which is responsible for generating dispersion in
the modulation of multiphase wavetrains, and the coefficients of the emergent KdV equation can
be described in terms of the geometry of the mappings (1.7).

There are many examples of conservative PDEs with multiphase wavetrains. In this paper, we
include two representative examples. The first is two-layer shallow-water hydrodynamics with a
free surface, and the second example is a coupled nonlinear Schrödinger (NLS) equation. In both
cases, there is a natural two-parameter symmetry group, the first is associated with conservation
of mass in each layer, and the coupled NLS has a natural toral symmetry. A multiphase wavetrain
can be explicitly constructed in both cases and parameter values identified where the determinant
condition (1.8) is satisfied. Potential generalizations are discussed in the concluding remarks
section.

2. Governing equations and wavetrain properties
The governing equation is (1.3) with MT = −M, JT = −J, and, for simplicity, J is assumed to be
invertible. Non-invertible J just requires an additional assumption on the kernel of J.

Suppose there exists a two-phase solution of the form (1.4). Substitution into (1.3) gives the
following governing equation for the two-phase wavetrain:

(ω1M + k1J)Ẑθ1 + (ω2M + k2J)Ẑθ2 = ∇S(Ẑ). (2.1)

In the absence of symmetry, solution of this problem may encounter small divisors. However, we
assume throughout that Ẑ is a smooth function of θ , k and ω. A class of systems for which this
is true in general is symmetric systems when the multiphase wavetrains are relative equilibria
associated with the symmetry, and both the examples in this paper have this property.

Linearizing (1.3) about the two-phase solution leads to the linear operator

Lv = D2S(Ẑ)v − (ω1M + k1J)vθ1 − (ω2M + k2J)vθ2 . (2.2)

One can verify that this operator is formally self-adjoint with respect to the inner product

⟪·, ·⟫=
(

1
2π

)2 ∫ 2π

0

∫ 2π

0
〈·, ·〉 dθ1 dθ2, (2.3)

where 〈·, ·〉 is the standard inner product on R
n.

In the modulation analysis, equations for the derivatives of Ẑ, with respect to the phases, the
wavenumbers and the frequencies, are needed, and we find that

θi : (ω1M + k1J)Ẑθ1θi + (ω2M + k2J)Ẑθiθ2 = D2S(Ẑ)Ẑθi ,

ki : (ω1M + k1J)Ẑθ1ki + JẐθi + (ω2M + k2J)Ẑθ1ki = D2S(Ẑ)Ẑki ,

ωi : (ω1M + k1J)Ẑθ1ωi + MẐθi + (ω2M + k2J)Ẑθ1ωi = D2S(Ẑ)Ẑωi .
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These can be summarized as

LẐθi = 0, (2.4a)

LẐki = JẐθi (2.4b)

and LẐωi = MẐθi , i = 1, 2. (2.4c)

The first of these equations highlights that the zero eigenvalue of L is not simple, and so we make
the assumption that

ker(L) = span{Ẑθ1 , Ẑθ2} (2.5)

and it is no larger. The second and third equations ((2.4b) and (2.4c)) suggest that there are two
different Jordan chains, and these two chains will feature prominently in the modulation analysis.
We also require the second derivatives with respect to wavenumber, and they can be summarized
as

LẐkiki = 2JẐθiki − D3S(Ẑ)(Ẑki , Ẑki ), i = 1, 2 (2.6a)

and
LẐk1k2 = JẐθ2k1 + JẐθ1k2 − D3S(Ẑ)(Ẑk1 , Ẑk2 ). (2.6b)

The assumption (2.5) along with the formal self-adjointness of L give the solvability
condition for

LW = F as ⟪Ẑθ1 , F⟫= ⟪Ẑθ2 , F⟫= 0. (2.7)

(a) Conservation laws
When the Lagrangian is in canonical form (1.2), the components of the conservation law evaluated
on the two-phase wavetrain, whether the conservation laws are deduced from symmetry or
they are components of wave action conservation, have a geometrical form and can be readily
deduced. The canonical Lagrangian (1.2), evaluated on the two-phase wave train and averaged, is

L (k, ω) = 1
(2π )2

∫ 2π

0

∫ 2π

0

⎡
⎣ 2∑

j=1

[
1
2
ωj〈Ẑ, MẐθj 〉 + 1

2
kj〈Ẑ, JẐθj 〉

]
− S(Ẑ)

⎤
⎦dθ1 dθ2.

The wave action vector, or symmetry-induced density, is

A(k, ω) =
(

A1
A2

)
:=
(

Lω1

Lω2

)
= 1

2

(
⟪MẐθ1 , Ẑ⟫
⟪MẐθ2 , Ẑ⟫

)
,

and the associated flux vector is

B(k, ω) =
(

B1
B2

)
:=
(

Lk1

Lk2

)
= 1

2

(
⟪JẐθ1 , Ẑ⟫
⟪JẐθ2 , Ẑ⟫

)
.

By definition,

DkA =
(
∂k1A1 ∂k2A1
∂k1A2 ∂k2A2

)
= DωBT, DkB =

(
∂k1B1 ∂k2B1
∂k1B2 ∂k2B2

)
,

D2
kB =

(
∂k1k1B1 ∂k2k1B1
∂k1k1B2 ∂k2k1B2

∂k1k2B1 ∂k2k2B1
∂k1k2B2 ∂k2k2B2

)
.

The entries of these tensors are related to solutions via

∂kjAi = ⟪MẐθi , Ẑkj⟫, (2.8a)

∂kjBi = ⟪JẐθi , Ẑkj⟫ (2.8b)

and ∂kjkmBi = ⟪JẐθikm , Ẑkj⟫+ ⟪JẐθi , Ẑkjkm⟫. (2.8c)
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Note that
∂kiBj = ⟪JẐθj , Ẑki⟫= ⟪LẐkj , Ẑki⟫= ⟪Ẑkj , LẐki⟫= ⟪Ẑkj , JẐθi⟫= ∂kjBi (2.9)

as well as
∂kjAi = ⟪MẐθi , Ẑki⟫= ⟪Ẑωi , JẐkj⟫= ∂ωiBj.

We say that a conservation law is critical in the multiphase case if the zero determinant
condition (1.8) is satisfied. The details of the modulation analysis when (1.8) is satisfied now
follow.

3. Multiphase modulation leading to the Korteweg–de Vries equation
With the assumption (1.8), the proposed modulation ansatz is (1.10), with

q =
(

q1
q2

)
:=
(
φ1
φ2

)
X

and Ω =
(
Ω1
Ω2

)
:=
(
φ1
φ2

)
T

. (3.1)

These arise from the phase consistency conditions relating ki,ωi to θi. In particular, the above
definitions impose that qT = ΩX, which is vector-valued conservation of waves. The strategy is to
substitute the ansatz into the Euler–Lagrange equation (1.3), expand everything in Taylor series
in ε and solve the equations at each order in ε. The Taylor expansion of W is

ε3W = ε3W3 + ε4W4 + ε5W5 + · · · .

The full details of the Taylor expansions are lengthy and cumbersome, and are a generalization
of [5–7], and so only a summary of the key steps of the expansion are recorded below, with
particular attention on the essential differences owing to the multiphase wavetrain.

The ε0 equation just returns the equation for the basic state (2.1). The ε1 equation is

φ1LẐθ1 + φ2LẐθ2 = 0.

Both the linear operator terms present in the above are zero by (2.4a), and so this is trivially
satisfied, for any φ1 and φ2, by the basic state. The ε2 terms are

q1LẐk1 + q2LẐk2 − (φ1)XJẐθ1 − (φ2)XJẐθ2 = 0.

Using (2.4b), we have
(q1 − (φ1)X)JẐθ1 + (q2 − (φ2)X)JẐθ2 = 0.

Because JẐθ1 
= 0 and JẐθ2 
= 0 (or else the multiphase wavetrain would degenerate to a single-
phase wavetrain or an equilibrium), we recover that q1 = (φ1)X and q2 = (φ2)X.

(a) Third order
At third order, the equations become more interesting. We find that

LW3 = (q1)XJẐk1 + (q2)XJẐk2 . (3.2)

Apply the solvability condition (2.7),

(q1)X⟪Ẑθ1 , JẐk1⟫+ (q2)X⟪Ẑθ1 , JẐk2⟫= 0

(q1)X⟪Ẑθ2 , JẐk1⟫+ (q2)X⟪Ẑθ2 , JẐk2⟫= 0,

or equivalently, after using (2.4b),

0 =
(
∂k1B1 ∂k2B1
∂k1B2 ∂k2B2

)(
(q1)X

(q2)X

)
= [DkB]qX. (3.3)

To avoid triviality of the modulation (i.e. when (q1)X = (q2)X = 0), the requirement to proceed to
the next order is that the 2 × 2 matrix DkB must be singular. In the case where det[DkB] 
= 0,
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and so qX = 0 leads to W3 = 0 (mod the kernel of DkB), the theory fails and dispersion does
not emerge. When det[DkB] 
= 0, the relevant modulation equation is dispersionless multiphase
Whitham equations, albeit with a time scale T = εt.

It is at this point in the analysis where the assumption (1.8) becomes important. With the
assumption that the zero eigenvalue of DkB is simple with eigenvector (1.9), it follows from (3.3)
that we must have

qX =
(

(q1)X

(q2)X

)
= UXζ , (3.4)

for some new slowly varying function U(X, T). In principle, U(X, T) also depends on ε, but here
only the leading-order term is needed so U(X, T) ≡ U(X, T, ε)|ε=0. Integrating (3.4),

q(X, T, ·) = U(X, T)ζ + V(T). (3.5)

The function of integration V(T) can be neglected as it does not affect the leading-order KdV
equation that arises at fifth order.

The equation for W3 in (3.2) can now be cast into the form

LW3 = UX(ζ1JẐk1 + ζ2JẐk2 ), (3.6)

with solution

W3 = α1(X, T)Ẑθ1 + α2(X, T)Ẑθ2 + UXξ5, (3.7)

where α = (α1,α2) is unknown at this point, and ξ5 is the solution of

Lξ5 = ζ1JẐk1 + ζ2JẐk2 . (3.8)

Equation (3.8) is solvable due to the fact that ζ ∈ Ker[DkB]. The solution for ξ5 coalesces the two
Jordan chains in (2.4c), leading to a 2 ⊕ 4 Jordan block structure. We digress here to identify further
properties of the symplectic Jordan chain arising in this case.

(b) Jordan chain theory interlude—multiple blocks
Jordan chain theory plays a key role in the modulation theory for the emergence of the KdV
equation for the one-phase case in [5–7]. Here, a non-trivial generalization of that theory is
required. There are two Jordan chains, but they intertwine. With the assumption (2.5), the zero
eigenvalue of L has geometric multiplicity two. Hence, there are two Jordan blocks

LẐθ1 = 0

LẐk1 = JẐθ1

⎫⎬
⎭ and

⎧⎨
⎩

LẐθ2 = 0

LẐk2 = JẐθ2 .

However, the existence of a solution to (3.8) suggests that a longer Jordan chain will exist.
Introduce the labelling

ξ1 = Ẑθ1 , ξ2 = Ẑθ2 , ξ3 = Ẑk1 , ξ4 = Ẑk2 .

The existence of a solution to (3.8) defines ξ5 and, because all symplectic Jordan chains have an
even number of elements, the next element is ξ6 satisfying

Lξ6 = Jξ5. (3.9)

By changing basis, the 2 ⊕ 4 structure of the two Jordan chains emerges

L(−ζ2ξ1 + ζ1ξ2) = 0

L(−ζ2ξ3 + ζ1ξ4) = J(−ζ2ξ1 + ζ1ξ2)

}
and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L(ζ1ξ1 + ζ2ξ2) = 0

L(ζ1ξ3 + ζ2ξ4) = J(ζ1ξ1 + ζ2ξ2)

Lξ5 = J(ζ1ξ3 + ζ2ξ4)

Lξ6 = Jξ5.
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The left-hand chain terminates at two, due to the fact that zero is a simple eigenvalue of DkB.
It is assumed that the right-hand chain terminates at four. Define

Kj := ⟪Jξj, ξ6⟫, j = 1, 2. (3.10)

Then, non-solvability of Lξ7 = Jξ6 ensures that K 2
1 + K 2

2 > 0.

(c) Fourth order
After simplification, absorbing the relevant terms into the linear operator, and replacing q with
Uζ , we find that

LW̃4 +Ω1LẐω1 − (φ1)TMẐθ1 +Ω2LẐω2 − (φ2)TMẐθ2 − UXXJξ5 = 0, (3.11)

with

W̃4 = W4 − (α1)XẐk1 − (α2)XẐk2 − ζ1Uα1Ẑθ1θ1 − (ζ2Uα1 + ζ1Uα2)Ẑθ1θ2

− ζ2Uα2Ẑθ2θ2 − φ1UX(ξ5)θ1 − φ2UX(ξ5)θ2 . (3.12)

The time derivatives in φ1,φ2 cancel theΩ1,Ω2 terms by (2.4c). Hence, using the top of the Jordan
chain,

W̃4 = UXXξ6 + γ1(X, T)ξ1 + γ1(X, T)ξ2. (3.13)

Therefore, the complete solution at this order for W4 is

W4 = γ1ξ1 + γ2ξ2 + (α1)Xξ3 + (α2)Xξ4

+ ζ1Uα1Ẑθ1θ1 + (ζ2Uα1 + ζ1Uα2)Ẑθ1θ2 + ζ2Uα2Ẑθ2θ2

+ φ1UX(ξ5)θ1 + φ2UX(ξ5)θ2 + UXXξ6, (3.14)

where γ1(X, T) and γ2(X, T) are arbitrary at this stage.

(d) Fifth order
After simplification, the ε5 terms are

LW̃5 = ζ1UT(MẐk1 + JẐω1 ) + ζ2UT(MẐk2 + JẐω2 ) + UXXXJξ6

− ζ2UUX(D3S(Ẑ)(Ẑk2 , ξ5) − J(ξ5)θ2 − ζ2JẐk2k2 − ζ1JẐk1k2 )

− ζ1UUX(D3S(Ẑ)(Ẑk1 , ξ5) − J(ξ5)θ1 − ζ2JẐk1k2 − ζ1JẐk1k1 )

+ (α1)XXJẐk1 + (α2)XXJẐk2 , (3.15)

where W̃5 includes all terms that can be absorbed into L as in (3.12). However, the explicit
expression for W̃5 is not needed as the solvability condition delivers the required vector KdV
equation (1.12).

The key terms on the right-hand side are proportional to UT, UXXX, UUX and αXX, so the
form of (1.12) is emerging. Application of the two conditions for solvability (2.7) produces two
equations. The solvability conditions are applied term by term. The coefficients of the UT term
involve

⟪Ẑθi , MẐkj + JẐωj⟫= −⟪MẐθi , Ẑkj⟫− ⟪JẐθi , Ẑωj⟫= −∂kjAi − ∂ωjBi.

Therefore, defining the vector e by

e := −
(
⟪Ẑθ1 , ζ1(MẐk1 + JẐω1 ) + ζ2(MẐk2 + JẐω2 )⟫
⟪Ẑθ2 , ζ1(MẐk1 + JẐω1 ) + ζ2(MẐk2 + JẐω2 )⟫

)
,
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the vector coefficient of UT is

e =
(
ζ1(∂k1A1 + ∂ω1B1) + ζ2(∂k2A1 + ∂ω2B1)
ζ1(∂k1A1 + ∂ω1B2) + ζ2(∂k2A2 + ∂ω2B2)

)

=
(

(∂k1A1 + ∂ω1B1) (∂k2A1 + ∂ω2B1)
(∂k1A1 + ∂ω1B2) (∂k2A2 + ∂ω2B2)

)(
ζ1
ζ2

)

= [DkA + DωB]ζ .

For the coefficient of UXXX, use (3.10) and define K = (K1, K2)T. Solvability of the αXX terms is
similar to the construction in §3a and solvability gives a term [DkB]αXX. By combining terms, and
multiplying by −1, solvability of (3.15) gives

e UT + f UUX + K UXXX + [DkB]αXX = 0. (3.16)

To confirm that this is the same as (1.12), it remains to show that

f = D2B(ζ , ζ ) := d2

ds2 B(k + sζ , ω)

∣∣∣∣∣
s=0

. (3.17)

With f = ( f1, f2), solvability of (3.15) gives, for j = 1, 2, that

−fj = −ζ2⟪Ẑθj , (D3S(Ẑ)(Ẑk2 , ξ5) − J(ξ5)θ2 − ζ2JẐk2k2 − ζ1JẐk1k2 )⟫

− ζ1⟪Ẑθj , (D3S(Ẑ)(Ẑk1 , ξ5) − J(ξ5)θ1 − ζ2JẐk1k2 − ζ1JẐk1k1 )⟫. (3.18)

To relate these terms to derivatives of B(k, ω), use (2.8c) to obtain

ζ1∂k1k1Bj + ζ2∂k1k2Bj = ζ1(⟪JẐθjk1 , Ẑk1⟫+ ⟪JẐθj , Ẑk1k1⟫) + ζ2(⟪JẐθjk2 , Ẑk1⟫+ ⟪JẐθj , Ẑk1k2⟫)

= −⟪Ẑθjk1 , ζ1JẐk1 + ζ2JẐk2⟫− ⟪Ẑθj , ζ1JẐk1k1 + ζ2JẐk1k2⟫

= −⟪Ẑθjk1 , Lξ5⟫− ⟪Ẑθj , ζ1JẐk1k1 + ζ2JẐk1k2⟫.

Differentiating (2.4a) with respect to kj, LẐθikj = −D3S(Ẑ)(Ẑkj , Ẑθi ) + JẐθiθj , hence

ζ1∂k1k1Bj + ζ2∂k1k2Bj = −⟪LẐθjk1 , ξ5⟫− ⟪Ẑθj , ζ1JẐk1k1 + ζ2JẐk1k2⟫

= ⟪D3S(Ẑ)(Ẑk1 , Ẑθj ) − JẐθjθ1 , ξ5⟫− ⟪Ẑθj , ζ1JẐk1k1 + ζ2JẐk1k2⟫

= ⟪Ẑθj , D3S(Ẑ)(Ẑk1 , ξ5) − J(ξ5)θ1 − ζ1JẐk1k1 − ζ2JẐk1k2⟫.

Similarly, it can be shown that

ζ1∂k1k2Bj + ζ2∂k2k2Bj = ⟪Ẑθj , D3S(Ẑ)(Ẑk2 , ξ5) − ζ1JẐk1k2 − ζ2JẐk2k2 − J(ξ5)θ2⟫.

Substitute these expressions into (3.18)

fj = ζ1(ζ1∂k1k1Bj + ζ2∂k1k2Bj) + ζ2(ζ1∂k1k2Bj + ζ2∂k2k2Bj), j = 1, 2,

and so

f =
(
ζ 2

1 ∂k1k1B1 + 2ζ1ζ2∂k1k2B1 + ζ 2
2 ∂k2k2B1

ζ 2
1 ∂k1k1B2 + 2ζ2ζ2∂k1k2Bj + ζ 2

2 ∂k2k2B2

)
= D2B(ζ , ζ ).

Projection of (3.16) in the direction of the kernel of DkB then gives the scalar KdV equation (1.13).
In the one-phase case, the modulation equation arising at fifth order is precisely the KdV

equation. Here, the intermediate equation (3.16) arises and it is indeterminate, because αXX is
unknown at this order. Hence, it is not a coupled KdV equation. It is at best an inhomogeneous
coupled KdV equation with an indeterminate inhomogeneity. It is here that the eigenvector ζ

associated with the zero eigenvalue of DkB plays a central role. Projection of (3.16) in the direction
of ζ then delivers a fully determined scalar KdV equation. Projection of (3.16) in the direction of



10

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160456

...................................................

the complement of the kernel of DkB gives a defining equation for αXX, which is not needed until
the next order.

The above analysis also gives an indication of how a true fully determined coupled KdV
equation can arise: when DkB has a double-zero eigenvalue with two independent eigenvectors,
with the system once again emerging when one projects in the direction of the kernel.

(e) Modulation of steady multiphase wavetrains
The reduction to KdV is essentially the same when the multiphase wavetrain is steady

Z(x, t) = Ẑ(θ1, θ2, k), k =
(

k1
k2

)
, (3.19)

with θj = kjx + θ0
j , j = 1, 2. In this case, there is no frequency modulation, but the resulting

equation is the same as (1.12) with the first coefficient replaced by

DkA + DωB = DkA + DkAT.

Then, all coefficients depend only on k and so can be computed from the steady solution. This
simplification is useful in examples.

The justification of this claim is as follows. The (φi)T terms in (3.11) now are no longer cancelled
with the Ωi terms, as these are not present, and so the additional solvability requirement is

⟪Ẑθi , MẐθj⟫= 0, i, j = 1, 2. (3.20)

This has to be true, because the zero eigenvalue is of even multiplicity and this is part of the
Jordan chain formed by M instead of J. Therefore, there exists κi such that

Lκi = MẐθi .

This means that an additional term of the form (φi)TMẐθi appears as part of the solution in (3.14).
The presence of these terms at the next order shows the vector coefficient e is now given by

e = −
(
⟪Ẑθ1 , ζ1(MẐk1 + Jκ1) + ζ2(MẐk2 + Jκ2)⟫
⟪Ẑθ2 , ζ1(MẐk1 + Jκ1) + ζ2(MẐk2 + Jκ2)⟫

)

= DkAζ +
(
⟪JẐθ1 , ζ1κ1 + ζ2κ2⟫

⟪JẐθ2 , ζ1κ1 + ζ2κ2⟫

)

= DkAζ +
(
⟪Ẑk1 , ζ1MẐθ1 + ζ2MẐθ2⟫

⟪Ẑk2 , ζ1MẐθ1 + ζ2MẐθ2⟫

)

= DkAζ + DkAζT

as required.

(f) Frommathematical criticality to physical criticality
The emergence of the KdV equation owing to degeneracy of the Jacobian DkB is a mathematical
result. The result is based on the abstract properties of a Lagrangian, and is deduced without any
recourse to physical input. One interpretation of the importance of the mapping k → B(k, ω) can
be seen by characterizing the Euler–Lagrange equation (2.1) as a constrained variational principle:
multiphase wavetrains are critical points of the Lagrangian taking the wave action and wave
action flux as constraints, then frequency and wavenumber are Lagrange multipliers. The values
of k, ω in the resulting solution Ẑ(θ , k, ω) of the Euler–Lagrange equation (2.1) are determined by
the values of the constraints. Therefore, the mappings (k, ω) �→ (A, B) need to be non-degenerate in
order to solve for (k, ω) in terms of the values of the constraint sets. Breakdown of this mapping,
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det[DkB] = 0, we call (mathematical) criticality, although we generally use the term ‘criticality’
without qualification.

All the steps in the theory follow from mathematical considerations. Hence, it is all the
more remarkable that it is an excellent model for capturing criticality in physical systems.
The connection is easy to see in simple models such as one-layer shallow-water flow where
criticality corresponds to Froude number unity. The Froude number unity condition can than
be re-characterized as the appearance of a zero eigenvalue which, in turn, can be related to
mathematical criticality (see §8 of [5]). In the fluid mechanics literature, criticality, in more
complicated systems, is often associated with the appearance of zero eigenvalues (see [9] for an
extensive discussion of this viewpoint). It is the appearance of zero eigenvalues that connects the
two theories: zero eigenvalues are an essential part of both mathematical and physical criticality.

While the connection can be made fairly precise in fluid mechanics, in other systems,
such as the coupled NLS equations arising as a model for Bose–Einstein condensates and
nonlinear optics, the connection is not as clear because of the absence of a concept of physical
criticality. Nevertheless, the mathematical theory applies to give results which then have physical
implications. Below, two examples are given. The first from fluid mechanics shows how the theory
of this paper gives a new mechanism and simplified derivation of the emergence of KdV in two-
layer shallow-water hydrodynamics. The second example shows how a single KdV equation can
emerge at criticality for coupled NLS equations, showing how the mathematical theory can evoke
new results for the physical system, without the need to understand the physical mechanism
behind the criticality condition for NLS.

4. Example 1: two-layer shallow-water flow
A natural application of the multiphase theory presented here is the case of shallow-water
hydrodynamics with two layers of differing density bounded above by a free surface. The
conservation laws in this case are mass conservation in each layer, and they are associated with
the potential symmetry. The basic multiphase wavetrain in this case is just uniform flow (constant
depth and velocity in each layer).

The governing equations for this system are

(ρ1η)t + (ρ1ηu1)x = 0, (4.1a)

(ρ2χ )t + (ρ2χu2)x = 0, (4.1b)

(ρ1u1)t +
(ρ1

2
u2

1 + gρ1η + gρ2χ
)

x
= a11ηxxx + a12χxxx (4.1c)

and (ρ2u2)t +
(ρ2

2
u2

2 + gρ2η + gρ2χ
)

x
= a21ηxxx + a22χxxx, (4.1d)

with

a11 = −1
3
ρ1gη2

0 − ρ2gη0χ0 − 1
2

gχ2
0 ,

a12 = a21 = −1
6
ρ2gη2

0 − 1
4
ρ2gη0χ0 − ρ2

2
2ρ1

gη0χ0 − 5
12
ρ2gχ2

0 ,

a22 = − ρ2
2

2ρ1
gη0χ0 − 1

3
ρ2gχ2

0 .

In these equations, ρ1, η, u1 are the density, depth and horizontal velocity in the lower layer,
and ρ2, χ , u2 are the density, depth, and horizontal velocity in the upper layer. In the dispersion
coefficients, η0 and χ0 are quiescent depths in the two layers. The dispersionless version of these
equations is derived in Baines [10], and the dispersive terms are derived in Donaldson [11] (see
also [12]).

The first two equations (4.1a) and (4.1b) are the system’s conservation laws and the symmetry
associated with them is a constant shift of the velocity potentials which are defined by u1 = (ψ1)x
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and u2 = (ψ2)x. Steady multiphase wavetrains associated with this symmetry take the form

ψ1 = θ1 := k1x + θ0
1 and ψ2 = θ2 := k2x + θ0

2 ,

where k1 and k2 are constant velocities in each layer. Substitution into the governing equations
requires that k1 and k2 satisfy

1
2
ρ1k2

1 + ρ1gη0 + ρ2gχ0 = R1 and
1
2
ρ2k2

2 + ρ2gη0 + ρ2gχ0 = R2, (4.2)

where R1, R2 are constants of integration (Bernoulli constants in each layer). These two equations
are used to express η0 and χ0 in terms of k1 and k2 in the conservation laws.

(a) Conservation laws and criticality
The first two equations of this system (4.1a) and (4.1b) form the conservation laws for the system.
Therefore, we have

A1 = ρ1η, A2 = ρ2χ , B1 = ρ1ηu1, B2 = ρ2χu2. (4.3)

Evaluating them on the basic state, and differentiating, gives the following necessary condition
for the emergence of the KdV equation:

det[DkB] =

∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎝
ρ1η0 − ρ1k2

1
g(1 − r)

ρ2k1k2

g(1 − r)

ρ2k1k2

g(1 − r)
ρ2χ0 − ρ2k2

2
g(1 − r)

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
= 0,

where r = ρ2/ρ1, which upon expansion is

ρ1ρ2η0χ0(1 − r − F2
1)(1 − r − F2

2) − ρ2
2 k2

1k2
2

g2 = 0 ⇒ (1 − F2
1)(1 − F2

2) = r, (4.4)

where we have introduced the Froude numbers

F2
1 = k2

1
gη0

, F2
2 = k2

2
gχ0

. (4.5)

The condition for the emergence of KdV agrees with the classical criticality condition found in
the literature [13–15]. The sign of det[DkB] in [14] was linked to the stability, with det[DkB]< 0
being necessary (but not sufficient) for flow instability. This loss of stability was shown to lead to
the presence of hydraulic jumps within the flow. Assume that the trace of DkB is non-zero, and
so the zero eigenvalue is simple with eigenvector

ζ =
(

−ρ2k1k2
gρ1η0(1 − r − F2

1)

)
.

(b) Emergence of Korteweg–de Vries at criticality
The relevant coefficient matrices for the vector KdV equation (1.12) are

DkA = 1
g(1 − r)

(
−ρ1k1 ρ2k2
ρ2k1 −ρ2k2

)
,

D2
kB = 1

2g(1 − r)

(
−6ρ1k1 2ρ2k2
2ρ2k2 2ρ2k1

2ρ2k2 2ρ2k1
2ρ2k1 −6ρ2k2

)
.

Now, we project to obtain the coefficients of the reduced KdV equation, using the theory of §3.
The first term projects to

ζT(DkA + DkAT)ζ = −2g2ρ2
1ρ2χ0η

2
0(1 − r − F2

1)
(

k1

gη0
(1 − F2

2) + k2

gχ0
(1 − F2

1)
)

.
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For the second derivative

ζTD2
kB(ζ , ζ ) = 3 g2ρ3

1ρ2k2η
2
0(1 − r)2(1 − r − F2

1)(χ0r(1 − F2
2)F2

1 − η0(1 − F2
1)2F2

2).

Because the dispersion vector K is a coefficient of a linear term, it can be calculated using the
dispersion relation (associated with the linearization about the basic state) or using the Jordan
chain. The details are omitted and we just state the result,

K = − 1
g(1 − r)

(
ρ1k1T1
ρ2k2T2

)
,

with

T1 = ζ2(a11r + (1 + r)a12 + a22)k2 − ζ1(a11 + 2a12 + a22)k1

gρ1(1 − r)
,

T2 = ζ1(a11r + (1 + r)a12 + a22)k1 − ζ2(a11r2 + 2a12r + a22)k2

gρ2(1 − r)
.

This projects to

ζ1K1 + ζ2K2 = gρ2
1η

2
0χ0(1 − r − F2

1)
(
a11r(1 − F2

2) − 2ra12 + (1 − F2
1)a22).

Therefore, the reduced scalar KdV equation after simplification is

ρ2χ0

(
k1

gη0
(1 − F2

2) + k2

gχ0
(1 − F2

1)
)

UT

− 3
2
ρ1ρ2k2(χ0r(1 − F2

2)F2
1 − η0(1 − F2

1)2F2
2)UUX

− χ0

2g
(a11r(1 − F2

2) − 2ra12 + (1 − F2
1)a22)UXXX = 0. (4.6)

The purpose here is to show that, once the singularity condition (1.8) is established, the
coefficients in the emergent KdV equation are determined via elementary calculations. The
derivation of a single KdV for two-layer flow is not new (see [12,15] and references therein;
the coefficient of the nonlinearity here agrees with that in [12,15]). It is how the KdV
arises that is new and of interest here. Further details, including physical implications, the
multisymplectic formulation of the problem and discussion of validity will be given elsewhere.
The multisymplectic formulation can be obtained as the tensor product of the multisymplectic
formulation of the single-layer shallow-water equations in §8 of [5].

5. Example 2: NLS× NLS→ KdV reduction
Another example where a two-phase wavetrain arises naturally is the coupled NLS equation. To
illustrate, we use a coupled NLS equation which appears in the theory of water waves [16] and in
models for Bose–Einstein condensates [17]

i∂tΨ1 + α1(Ψ1)xx + (β11|Ψ1|2 + β12|Ψ2|2)Ψ1 = 0 (5.1a)

and

i∂tΨ2 + α2(Ψ2)xx + (β21|Ψ1|2 + β22|Ψ2|2)Ψ2 = 0, (5.1b)

for complex-valued functions Ψ1(x, t) and Ψ2(x, t) and real constants αi, βij, with β21 = β12.
For convenience, define β = β11β22 − β12β21 
= 0. There is a natural toral symmetry in that
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(eiθ1Ψ1, eiθ2Ψ2) is a solution for any (θ1, θ2) ∈ S1 × S1 whenever (Ψ1,Ψ2) is a solution. A two-phase
wavetrain associated with this symmetry is

Ψ1(x, t) =Ψ
(0)
1 eiθ1 , Ψ2(x, t) =Ψ

(0)
1 eiθ2 , (5.2)

where the phases are taken to be steady: θ1 = k1x + θ0
1 and θ2 = k2x + θ0

2 . Substitution of (5.2)
into (5.1) requires k and the amplitudes to be related by

|Ψ (0)
1 |2 = 1

β
(β22α1k2

1 − β12α2k2
2), |Ψ (0)

2 |2 = 1
β

(β11α2k2
2 − β21α1k2

1).

In this section, the multiphase modulation theory of the paper is used to show that there is a large
range of parameters where the coupled NLS equation can be reduced to a single KdV equation. As
far as we are aware, this is the first time that NLS × NLS → KdV has been obtained. On the other
hand, there are results in the literature reducing NLS × NLS → KdV × KdV owing to Brazhnyi &
Konotop [18]. However, reduction to a coupled KdV requires additional parameters, and so will
be more rare than the reduction to a single KdV here (see comments at the end of §3d).

(a) Conservation laws and criticality
The components of the conservation law associated with the toral symmetry are

A1 = 1
2 |Ψ1|2, A2 = 1

2 |Ψ2|2, B1 = α1�(Ψ ∗
1 (Ψ1)x) and B2 = α2�(Ψ ∗

1 (Ψ2)x),

where an asterisk denotes complex conjugation and � denotes the imaginary part of the bracketed
expression. Evaluate (A, B) on the basic state

A(k) = 1
2

⎛
⎜⎜⎝

1
β

(β22α1k2
1 − β12α2k2

2)

1
β

(β11α2k2
2 − β21α1k2

1)

⎞
⎟⎟⎠ and B(k) =

⎛
⎜⎜⎝
α1k1

β
(β22α1k2

1 − β12α2k2
2)

α2k2

β
(β11α2k2

2 − β21α1k2
1)

⎞
⎟⎟⎠ .

Differentiating B(k)

DkB =

⎛
⎜⎜⎝
α1|Ψ (0)

1 |2(1 + β22E2
1) −2α1α2k1k2β12

β

−2α1α2k1k2β12

β
α2|Ψ (0)

2 |2(1 + β11E2
2)

⎞
⎟⎟⎠ ,

where

E2
1 = 2α1k2

1

β|Ψ (0)
1 |2

, E2
2 = 2α2k2

2

β|Ψ (0)
2 |2

. (5.3)

The zero determinant condition (1.8) then requires

(1 + β22E2
1)(1 + β11E2

2) − β12β21E2
1E2

2 = 0. (5.4)

Suppose the trace of DkB is non-zero and choose the eigenvector as

ζ =

⎛
⎜⎝

2α1α2k1k2β12

β

α1|Ψ (0)
1 |2(1 + β22E2

1)

⎞
⎟⎠ . (5.5)

The condition det[DkB]< 0 has been shown to relate to the stability of these wavetrains.
Examples of this instability criterion have been derived for specific systems by Roskes [16] and
Law et al. [19]. A general result for conservative systems in terms of the conservation of wave
action was derived in [4]. The condition det[DkB] = 0 is therefore of interest both as a necessary
condition for emergence of the KdV equation and as an instability boundary.
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(b) Emergence of Korteweg–de Vries at criticality
The relevant matrices needed for the emergent vector KdV equation (1.12) are

DkA = 1
β

(
α1β22k1 −α2β12k2

−α1β12k1 α2β11k2

)

and D2
kB = 2

β

(
3α2

1β22k1 −α1α2β12k2

−α1α2β12k2 −α1α2β12k1

−α1α2β12k2 −α1α2β12k1
−α1α2β12k1 3α2

2β11k2

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.6)

The first of these projects to

ζT(DkA + DkAT)ζ = α3(|Ψ (0)
2 |2(β22 + βE2

2)k1 + |Ψ (0)
1 |2(β11 + βE2

1)k2), (5.7)

where α3 = 2α2
1α2β

−1|Ψ (0)
1 |2(1 + β22E2

1). The second matrix has the projection

ζTD2
kB(ζ , ζ ) = 3α1α2α3|Ψ (0)

1 |2(|Ψ (0)
1 |2(1 + β22E2

1)(β11 + βE2
1) − |Ψ (0)

2 |2(1 + β11E2
2)β12). (5.8)

The dispersion coefficient ζTK can be calculated, using the dispersion relation from the
linearization or by constructing explicitly the Jordan chain. The details are lengthy and will be
given elsewhere. The result is

ζTK = 1
4α3(β11β22E2

2E2
1(α1β22|Ψ (0)

2 |2 + α2β11|Ψ (0)
1 |2) + α2E2

1β
2
12|Ψ (0)

1 |2

+ E2
1(α1β

2
22|Ψ (0)

2 |2 + α2β
2
12|Ψ (0)

1 |2) + E2
2(α2β

2
11|Ψ (0)

1 |2 + α1β
2
12|Ψ (0)

2 |2)). (5.9)

Substitution of (5.7)–(5.9) into (1.13) then delivers the emergent scalar KdV equation in this case.
Further details, including physical implications, the multisymplectic formulation of the problem
and discussion of validity are given elsewhere. The multisymplectic formulation can be obtained
as the tensor product of the multisymplectic formulation of the single NLS equation in §9 of [5].

6. Concluding remarks
This paper has shown that systems generated by a Lagrangian that have two conservation laws
and possess two-phase wavetrain solutions can lead to the emergence of a scalar KdV equation,
when the mapping from wavenumber space into the flux vector is singular. It appears that the
theory will generalize to m-dimensional Lie groups with m> 1 when the group is Abelian, with
the condition that DkB have a simple zero eigenvalue, regardless of the dimension m. If the
zero eigenvalue is not simple, then potentially a true vector-valued KdV equation is expected to
emerge, but emergence of the coupled KdV is higher codimension, that is, it requires additional
parameters.

Analysis of systems with a one-parameter Lie group has shown that, with additional
conditions, other equations are generated by the modulation, e.g. the two-way Boussinesq
equation [7] and the KP equation [12] in the 2 + 1 case. That theory should also generalize to
the multiphase case. In the case of the Boussinesq equation, we would expect this to occur when
the time term in the scalar KdV equation vanishes, which implies that the system

DkBαXX = −(DkA + DωB)ζ

is solvable. With this additional condition and a suitable rescaling, one expects a similar approach
to that here will lead to a scalar two-way Boussinesq.

The analysis presented here appears to generalize quite naturally to multiphase wavetrains
with any finite number of phases (with attendant symmetries and conservation laws). In the
case of a simple zero eigenvalue, the results here are almost immediately applicable with some
small alterations to accommodate the additional phases. The extra phases also more readily allow
for situations where the geometric multiplicity increases and so the coupled KdV emerges as
discussed.

There is a dual version of the theory by switching space and time. Then, it is degeneracy of the
mapping ω �→ A(k, ω) that drives the theory, resulting in a scalar KdV equation with space and
time reversed.
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