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A combined theoretical and experimental study is carried out to investigate the 

anisotropic acoustic properties of sintered fibrous metals. In the theoretical model, 

based on the transversal and longitudinal dynamic mass densities and effective bulk 

modulus of randomly placed parallel fibers, the dynamic mass densities and effective 

dynamic bulk modulus of a sintered fibrous metal in the direction normal and parallel to 

its surface are obtained. Sound absorption coefficient, sound speed and attenuation 

coefficient in each of the two directions are calculated once the dynamic mass densities 

and effective dynamic bulk modulus are determined. For validation, experimental 

measurements are performed, with good agreement between theoretical prediction and 

measurement data achieved. Subsequent numerical investigations focus on the influence 

of fiber diameter and porosity on the anisotropic acoustical properties of the sintered 

fibrous metal. The sintered fibrous metal exhibits better sound absorption/attenuation 

performance in the normal direction than in the parallel direction. The anisotropy in 

acoustical properties increases with decreasing fiber diameter and porosity due mainly 

to increasing interactions between adjacent fibers.  

Keywords: A. Fibres; B. Mechanical properties; C. Anisotropy; D. Acoustic emission 

1. Introduction 

Fibrous materials are widely applied in the noise control area, either isolated or 

composited with other structures, for their good sound insulation and absorption ability 

[1-5]. In particular, fibrous materials made of metal fibers (e.g., stainless steel) through 

sintering process have promising potential for high-temperature noise control. The 

present paper aims to investigate theoretically the sound absorption performance of this 
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kind of fibrous materials, with particular focus placed upon its anisotropic acoustic 

properties.  

A multitude of theoretical models have been proposed to estimate the acoustical 

properties of fibrous materials. Due to the complex morphology of fibrous materials, 

one common approach is developing theoretical models based on empirical modeling. 

For typical instance, Delany and Bazley [6] presented a simple power-law function 

between the measured characteristic impedance and sound absorption coefficient as well 

as flow resistivity. Subsequently, Miki [7] and Komatsu [8] modified the Delany-Bazley 

model for more accurate predictions. Allard and Champoux [9] proposed a new 

empirical model by taking into account the physical properties of fibrous materials, and 

found that this model was valid at low frequencies in contrast with the Delany-Bazley 

model. Other empirical models were also proposed, such as those by Garai and Pompoli 

[10] and Narang [2] for polyester fibrous materials. In addition to empirical modeling, 

attempts have also been made to develop theoretical models based on idealized 

geometry of fibrous materials. For example, Tarnow [11,12] calculated the 

compressibility and dynamic resistivity by treating the fibrous material as array of 

periodically arranged parallel fibers, while Dupere et al. [13,14] modeled sound 

propagation both normal and parallel to array of parallel fibers and rigid spheres. Sun et 

al. [15] established that the model of Dupere et al. was suitable for sintered fibrous 

metal materials for high temperature applications. A theoretical model was proposed by 

Attenborough [16] for rigid fibrous soils and sands, which however needs five physical 

parameters. Kirby and Cumming [17] presented an improved model based on parallel 

fiber microstructure, targeting in particular sound absorbing properties at low 

frequencies.  

Although numerous studies have been carried out to explore the acoustical properties 

of rigid fibrous materials, none concerned the acoustic anisotropy of fibrous materials. 

In the present study, a combined theoretical and experimental approach is employed to 

reveal the anisotropic acoustical properties of sintered fibrous metals. First, the dynamic 

mass density (i. e. the ratio of the pressure gradient to the averaged fluid acceleration) 

and effective bulk modulus ( i. e. the ratio of the pressure increase to the decrease of 

relative volume) for sound propagating normal and parallel to randomly placed parallel 

fibers are calculated theoretically to estimate the dynamic mass density and effective 
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bulk modulus of a sintered fibrous metal along both parallel and normal directions. Next, 

the validity of the model predictions is checked against experimental measurements, 

with good agreement achieved. The model is subsequently used to analyze the acoustic 

anisotropy of the material in terms of sound absorption coefficient, sound speed and 

attenuation coefficient. The influence of fiber diameter and porosity on the acoustic 

anisotropy is quantified. 

2. Theoretical model 

Consider a sintered fibrous metal as shown in Fig. 1. As the metal fibers having 

equal diameter ( ~ 50 μm ) randomly lie in parallel planes, the fibrous metal may be 

regarded as a transversely isotropic material. In the present study, for convenience, the 

plane parallel to all the fibers is referred to as the "fiber plane". With reference to 

Figs. 1(a) and (b), the acoustical properties of the sintered fibrous metal in the direction 

normal to the fiber plane are expected to be different from those in the direction parallel 

to it. Since the stiffness and density of the metal fibers are much larger than that of the 

fluid (air in the current study) saturated in the fibrous metal, the fibers are regarded as 

rigid bodies.  

The dynamic mass densities of the sintered fibrous metal in different directions are 

calculated based on the array of randomly placed parallel fibers as shown in Fig. 2(a). 

The dash lines marked around the fibers are called Voronoi polygons, which represent 

the interaction of adjacent fibers in the parallel fiber array. For simplicity, each Voronoi 

polygon is approximated by a circle having the same area; see Fig. 2(b). The porosity of 

the parallel fiber array is identical to that of the considered sintered fibrous metal.  

Consider first sound propagating parallel to the parallel fiber array, namely, parallel 

to the z -direction of Fig. 2. Since the void space among these fibers is small, the 

viscosity of the saturated fluid is significant and should be taken into account in 

acoustic modeling. The fluid motion is governed by the viscous Navier-Stokes equation, 

as: 

 2 0 1
z z

i p
u u

z



 


  


 (1) 

where zu  is the fluid velocity in the z -direction,   is the angular frequency,   

denotes the dynamic viscosity, p  is the fluid pressure and 0  is the fluid density. By 
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approximating the Voronoi polygons by circles having the same area [12], the general 

solution for Eq. (1) can be written in the form [18]:  

   0 0 0 0

1
z

p
u r A Ke r B Be r

i z

 

  

    
            

 (2) 

where      ker keim m mKe x x i x  ,      ber beim m mBe x x i x  , kerm , keim , berm , 

beim  are the Kelvin functions, ( r , ) are the polar coordinates (Fig. 2), and 0A  and 

0B  are unknown coefficients to be determined by applying relevant boundary 

conditions.  

Due to the viscosity of the fluid, the velocity at the interface between the fluid and 

the fiber is zero:  

  , 0z r a
u r 


  (3) 

where a  is the fiber radius. Besides, no shear stresses exist on the outer boundaries of 

the fibers, therefore, for a circle with radius outr , the boundary condition is [13]:  
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 Upon substitution of Eq. (2) into Eqs. (3) and (4), the coefficients 0A  and 0B  are 

obtained as: 
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The velocity zu  is determined by substituting Eqs. (5) and (6) into Eq. (2), from 

which the mean velocity zu  is calculated as: 

      2 2

1 1
, 2

outr

z out z z
S a

out

u r u r dS u r rdr
S r a

 
 

 
   (7) 

where 
2 2

outS r a    is the area occupied by the fluid in one cell.  

For the parallel fiber array of Fig. 2(a), the Voronoi polygon with area S  has a 

probability  p S dS  in the interval between S  and S dS  [12]: 



 5/22 

  
 

1
1

exp  
S S

p S
S S S







   

        
 (8) 

where    is the gamma function with 3.61  , 
2

1

a
S





 is the mean area of the 

polygons for parallel fibers, and   is the porosity (i. e. the fraction of the volume of 

voids over the total volume) of the parallel fiber array. Therefore, with the random 

distribution of fibers accounted for, the mean velocity of fluid flow in the z -direction 

is  

          2, , 2z z out z out out out out
S a

u u r p S dS u r p r r dr    


     (9) 

Finally, the longitudinal ( z -direction) dynamic mass density of the parallel fiber array 

is obtained as: 
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For sound propagating normal to the fiber axis (i.e., x -direction in Fig. 2), the fluid 

velocity is governed by the viscous Navier-Stokes equation as:  

 
2 0 1i p
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u u  (11) 

where  ,r u  is the fluid velocity vector, which has two components, ru  and u , in 

the ( r , ) polar coordinates (Fig. 2). The velocity should be zero on the fiber surface, 

yielding: 

  , 0
r a

r 


u  (12) 

Also, the vorticity should be zero on the outer boundary [13]: 

 curl 0
outr r

u  (13) 

From Eqs. (11), (12) and (13), the fluid velocity can be obtained as [13]:  
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where 0
0R a




 . The mean velocity in the x -direction can thence be calculated as: 
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Further, given the random distribution of the parallel fibers, the mean velocity in the 

x -direction is given by:  

          2, , 2x x out x out out out out
S a

u u r p S dS u r p r r dr    


     (16) 

Finally, the transversal dynamic mass density of the parallel fiber array is calculated as:  

  
 

1 1
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Next, to calculate the effective bulk modulus of the sintered fibrous metal, the 

distribution of temperature in the parallel fiber array of Fig. 2 should be obtained. The 

temperature distribution is independent of sound propagation direction, governed by the 

thermal conduction equation as [19]:  

      2
0, ,t pk T r i c T r i P         (18) 

where  ,T r   is the temperature rise,  P   is the pressure rise, tk  is the thermal 

conductivity of the fluid, and pc  is the specific heat per unit mass at constant pressure.  

 With isothermal condition assumed, the temperature rise at the fiber surface is zero:  

  , 0
r a

T r 


  (19) 

The thermal flux should also be zero on the outer boundary. For a circular boundary 

with radius outr , this becomes: 
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 Due to the similarity between Eqs. (1) and (18), the solution of temperature rise can 

be expressed by using the velocity solution of Eq. (1). The mean velocity  zu   can 

be expressed as    
1
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, then the mean temperature rise can be given 

by:  
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where Pr /p tc k  is the Prandtl number. Correspondingly, the effective bulk 

modulus is calculated as: 
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where   is the specific heat ratio of the fluid, 0P  is the static pressure of air, and 

according to the state equation of air,    0 0 0d / / /P P T T     . 

As shown in Fig. 1, when a sound wave propagates normal to the fiber plane, the 

sound is perpendicular to all the fibers in the fibrous metal. Therefore, the dynamic 

mass density of the fibrous metal may be approximated by the transversal dynamic mass 

density of the parallel fiber array, as:  

 N   (23) 

In reality, as the fibers are not parallel but overlapped in the fibrous metal as shown in 

Fig. 1, a modified factor considering the microstructure of the fibrous material is added 

to the dynamic mass density, yielding: 

 N N Nm    (24) 

where Nm  is assumed equal to the square root of the tortuosity of the sintered fibrous 

metal in the direction normal to the fiber plane. Depending upon the microstructure of 

the fibrous metal, the tortuosity may be obtained by applying the self-consistent 

approximation method. Thus, in the direction normal to the fiber plane, the tortuosity is 

determined by [20]:  
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where  Nc   is the sound speed in the fibrous metal in the direction normal to the 

fiber plane. This sound speed can be estimated by:  
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where  Nk   is the complex wave number in the fibrous material, given by:  
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Therefore, the tortuosity in the direction normal to the fiber plane can be written as:  
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Equations (24) and (28) are solved by an iterative process. First, a value for N  is 

chosen, for example 1.5N  , then the corresponding value of the dynamic mass 

density N  is computed by (24). Based on this value of N , a new value of N  is 

obtained by (28) from which a new value of N  is calculated. This iteration process is 

repeated until a stable value of N  is obtained.  

It has been established that the in-plane permeability of two-dimensional (2D) 

cross-plies and 2D randomly overlapping fiber structures is close to the averaged value 

of the transversal and longitudinal permeabilities of parallel fiber arrays [21,22]. As the 

dynamic mass density is inversely proportional to the permeability, in the present study, 

the averaged value of the transversal and longitudinal dynamic mass densities of the 

parallel fiber array is employed to approximate the dynamic mass density of the sintered 

fibrous material in the direction parallel to the fiber plane:  

 
2

P

 
 

   (29) 

Further, due to the complex architecture of the sintered fibrous metal (see Fig. 1), 

the concept of modified factor is applied to calculate more accurately the dynamic mass 

density in the direction parallel to the fiber plane, as: 
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 P P Pm    (30) 

where Pm  is the modified factor that is equal to the square of tortuosity in the direction 

parallel to the fiber plane. Similar to the above iterative process for N , Pm  can also 

be determined using the self-consistent approximation approach. 

 Once the dynamic mass densities P  and N  as well as the effective bulk 

modulus effK  are known, the wavenumbers ( Pk , Nk ) and the characteristic impedances 

( PZ , NZ ) for sound propagation parallel and normal to the fiber plane can be obtained 

as:  

 ,  P P eff N N effZ K Z K     (31) 
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P N
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k k
K K


 


   (32) 

Correspondingly, the sound speed and attenuation in the two directions are given by: 
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For a rigid-backed sintered fibrous metal sample with its surface normal to the fiber 

plane, its sound absorption coefficient for normal incident sound is:  
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  (34) 

where cot( )sN N N NZ iZ k d   is the surface impedance of the sample and Nd  is the 

thickness of the sample.  

Similarly, for a rigid-backed sintered fibrous metal sample with its surface parallel 

to the fiber plane, its sound absorption coefficient for normal incident sound is: 
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0 0
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 (35) 

where cot( )sP P P PZ iZ k d   is the surface impedance of the sample and Pd  is the 

thickness of the sample.  

3. Experimental measurements 

The proposed theoretical model for sound propagation in sintered fibrous metals is 
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validated against experimental measurement results. The sound absorption coefficients 

of sintered fibrous metal samples (Fig. 3) are measured in the B&K 4206 impedance 

tube by applying the transfer function method. The tested sample is mounted at one end 

of the tube, while plane sound waves are generated at the other end of the impedance 

tube. The sound pressures in the impedance tube are measured by two wall-mounted 

microphones at two fixed locations. The reflection coefficient and sound absorption 

coefficient can then be calculated by the measured sound pressures [23]. In total, four 

groups of sintered fibrous metal samples having the same porosity (90%) and fiber 

diameter (50 μm ) are measured. From group to group, the thickness of the samples 

varies as 20 mm, 27 mm, 35 mm and 57 mm. As shown in Fig. 4, each group contains 

two different kinds of samples. The surface of one kind of sample is parallel to the fiber 

plane, while the surface of the other is normal to it. The physical parameters of the test 

samples are listed in Table 1. In the present study, the sintered fibrous metal is 

manufactured using randomly distributed stainless steel fibers of different length (10 

mm~ 50 mm) but same diameter which are bonded to constitute a whole sample via 

furnace sintering. Thus the fiber diameter is known in the manufacturing process, while 

the porosity of the sample is obtained by comparing its density with that of the fibers. 

The experimentally measured and theoretically predicted sound absorption 

coefficients are compared in Fig. 5 for all the four groups of sintered fibrous metal 

samples. The theoretical curves exhibit the same trends as those of the measured ones, 

capturing in particular all the peaks and dips. The discrepancies between the 

experimental and theoretical results may be attributed to the idealized handling of the 

connections between the fibers in the theoretical model. It can also be seen from Fig. 5 

that the samples with incident surfaces parallel to the fiber plane always have a bigger 

sound absorption coefficient than that with incident surface normal to the fiber plane. In 

order to explain this trend, the sound speed and attenuation of sintered fibrous metals 

predicted using the theoretical model for sound incidence parallel and normal to the 

fiber plane are compared in Fig. 6.   

As shown in Fig. 6, the speed of sound propagation parallel to the fiber plane is 

smaller than that normal to it at low frequencies, approaching the latter as the frequency 

exceeds about 1000 Hz. Correspondingly, within the considered frequency range, the 

attenuation of sound propagation parallel to the fiber plane is bigger than that normal to 



 11/22

it. Together with the sound absorption comparison in Fig. 5, the present results 

demonstrate that the sound absorption ability of the sintered fibrous metal is better in 

the direction parallel to the fiber plane than that in the direction normal to it.  

4. Anisotropic acoustic properties of sintered fibrous metal 

In this section, the proposed theoretical model, validated against experimental 

measurements, is employed to investigate the effects of morphological parameters (fiber 

diameter and porosity in particular) of the sintered fibrous metal on its anisotropic 

acoustical properties. A more fundamental understanding on sound propagation in this 

kind of materials is provided.  

4.1 Influence of fiber diameter 

Figure 7 plots the predicted sound absorption coefficient of rigid-backed sintered 

fibrous stainless steel sheet as a function of frequency for three different fiber diameters, 

40 m, 50 m and 60 m, both for sound propagating normal and parallel to the fiber 

plane. For the plotting, the porosity and sheet thickness are fixed at 90% and 20 mm, 

respectively. It can be seen from Fig. 7 that the sound absorption coefficient increases as 

the fiber diameter is decreased. For the cell shown in Fig. 2(b), the specific contact area 

between the saturated fluid and fibers in the fibrous metal is: 

 
 2 1

cS
a


  (36) 

The specific contact area (SCA) is the contact area between the fluid and fibers in unit 

volume of the material. It can be deduced from (36) that the specific contact area 

between the fluid and fibers grows as the fiber diameter decreases for a given porosity. 

The viscous effect is intensified as the specific contact area is increased, beneficial for 

enhanced sound absorption.  

Figure 8 plots the sound speed and attenuation coefficient as functions of frequency 

for selected fiber diameters (porosity 90% and sheet thickness 20 mm). The results of 

Fig. 8 show that the sound speed decreases while the attenuation coefficient increases 

with decreasing fiber diameter. These trends can also be attributed to the increased 

viscous effect as the fiber diameter is decreased. Figures 7 and 8 also reveal the 

difference in acoustical properties between normal and parallel incidence when the fiber 

diameter is varied. Here we define three parameters to represent the difference in 
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acoustical properties: 

Sound absorption difference: 
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  (37) 

Sound speed difference: 
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Attenuation difference: 
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  (39) 

The sound absorption difference (SAD), sound speed difference (SPD) and 

attenuation difference (AD) is able to characterize the relative differences of the 

acoustic properties in the two principle directions of sintered fibrous metals. It can be 

seen from Fig. 9 that the acoustical property differences all decrease as the fiber 

diameter is increased, implying that the acoustic anisotropy of the sintered fibrous metal 

is weakened by increasing the fiber diameter. As the fiber diameter is increased while 

the porosity is fixed, the space between the fibers is enlarged, which weakens the 

interaction among the fibers. Therefore, fiber distribution plays a less important role in 

the acoustical properties of the sintered fibrous metal.  

4.2 Influence of porosity 

Figure 10 plots the predicted sound absorption coefficient of rigid-backed sintered 

fibrous stainless steel sheet as a function of frequency for three different porosities, 0.8, 

0.85 and 0.9, both for sound propagating normal and parallel to the fiber plane. The 

fiber diameter and sheet thickness are fixed at 50 μm  and 20 mm, respectively. As the 

porosity is decreased, the sound absorption coefficient curve shifts to lower frequency 

as a whole. This can be explained by comparing the sound speeds calculated with 

different porosities shown in Fig. 11(a). As is known, the sound absorption peak 

appears when the distance between the incidence and reflected sound is equal to 1/4 

wavelength, namely: 
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p

c
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where p  is the wavelength of sound at the peak frequency pf , and c  is sound 

speed in the fibrous metal. From Fig. 11(a) it is seen that the sound speed decreases 

with decreasing porosity, causing reduced peak frequency. In addition, Fig. 11(b) 

presents the variation trend of the attenuation coefficient with porosity. The attenuation 

coefficient decreases as the porosity is increased. As shown in Eq. (36), the specific 

contact area decreases with increasing porosity and fixed fiber diameter, weakening 

therefore the viscous effect. Correspondingly, the sound speed increases while the 

attenuation coefficient decreases.  

It can be seen from Fig. 12 that the difference in acoustical properties shown in 

Figs. 10 and 11 decreases in general with increasing porosity except that the difference 

in sound speed fluctuates in the high frequency range (> 1500 Hz). As the porosity is 

increased, the space between adjacent fibers is enlarged. As aforementioned, the 

acoustic anisotropy of the sintered fibrous metal is weakened as the space between 

fibers is increased. Given that the sound absorption peaks at quarter-wavelength 

resonance, it is thus understandable for the fluctuation appearing in Fig. 12(a).  

5. Conclusions 

The anisotropic acoustical properties of sintered fibrous metal (stainless steel) are 

investigated both theoretically and experimentally. Built upon the idealized model of 

randomly placed parallel fiber array, the dynamic mass density and effective bulk 

modulus of sound propagation both normal and parallel to the fiber plane are calculated 

by solving the velocity and temperature fields in the array. Acoustical properties 

including sound absorption, sound speed and attenuation coefficient of sintered fibrous 

metal sheets are obtained as functions of morphological parameters such as porosity, 

fiber diameter and sheet thickness. Experimental measurements are carried out to 

validate the theoretical model predictions, with good agreement achieved. The model is 

subsequently employed to quantify the influence of fiber diameter and porosity on the 

acoustic anisotropy of the sintered fibrous metal. The main findings are summarized as 

follows:  

1) As the fiber diameter (other relevant parameters fixed) is decreased, the sound 
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absorption coefficient of sintered fibrous metal increases due mainly to enhanced 

viscous effect,  

2) The sound absorption coefficient decreases with increasing porosity (other relevant 

parameters fixed) due to shift of sound absorption peak towards low frequency. 

3) The sintered fibrous metal exhibits anisotropic acoustical properties, having higher 

sound absorption/attenuation coefficient and lower sound speed in the direction 

parallel to the fiber plane than those in the direction normal to it. The difference in 

acoustic properties between parallel and normal directions decreases with increasing 

fiber diameter or increasing porosity due to reduced fiber distribution effect (i.e., 

fiber interaction effect).  
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List of figures 

 

 

(a) 

 

(b) 

Fig.1 Photographs of sintered fibrous metal: (a) surface parallel to fiber plane; 

(b) surface normal to fiber plane. 

 

 

 

(a) 

 

(b) 

Fig. 2 (a) Schematic illustration of parallel fiber array with Voronoi outer boundaries; 

(b) cross section of one cell with approximated circular outer boundary 
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Fig. 3 Test samples of sintered fibrous metal 

 

 

(a) 

 

(b) 

Fig. 4 Schematic illustration of sintered fibrous metal: (a) sound incidence normal to 

fiber plane; (b) sound incidence parallel to fiber plane 
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Fig. 5 Comparison between experimental measurements and model predictions for 

sound absorption of rigid-backed sintered fibrous stainless steel samples having 

different thicknesses 

 

 

Fig. 6 Sound speed and attenuation coefficient of sintered fibrous metal for sound 

incidence parallel and normal to the fiber plane 
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Fig. 7 Sound absorption coefficient of sintered fibrous metal sheet for selected fiber 

diameters with fixed porosity of 90% and sheet thickness of 20 mm 

 
  

 

Fig. 8 Sound speed and attenuation coefficient of sintered fibrous metal sheet for 

selected fiber diameters with fixed porosity of 90% and sheet thickness of 20 mm 
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(a) 

 

(b) 

Fig. 9 Anisotropic acoustic properties of sintered fibrous metal sheet for selected fiber 

diameters (porosity 90% and sheet thickness 20 mm): (a) sound absorption difference; 

(b) sound speed and attenuation differences 

 

 

Fig. 10 Sound absorption coefficient of sintered fibrous metal sheet for selected 

porosities with fixed fiber diameter of 50 μm  and sheet thickness of 20 mm 
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Fig. 11 Sound speed and attenuation coefficient of sintered fibrous metal sheet for 

selected porosities with fixed fiber diameter of 50 μm  and sheet thickness of 20 mm 

 

 

(a) 

 

(b) 

Fig. 12 Anisotropic acoustic properties of sintered fibrous metal with different 

porosities (fiber diameter 50 μm and sheet thickness 20 mm): (a) sound absorption 

difference; (b) sound speed and attenuation difference
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List of table 

 

Table 1. Physical parameters of sintered fibrous metal samples 

Physical parameter Value 

Air density 3
0 1.29 kg/m   

Specific ratio 1.4   

Prandtl number Pr 0.702  

Sound speed 343 m/sc   

Kinematic viscosity 5 21.46 10  m / s    

Static pressure of air 5
0 1.0132 10  PaP    

Fiber diameter a =50 μm  

Porosity  =90% 

 

 

 

 


