Numerical simulation data for the dynamic properties of rainbow metamaterials

Meng, Han, Chronopoulos, Dimitrios and Fabro, Adriano T. (2020) Numerical simulation data for the dynamic properties of rainbow metamaterials. Data in Brief, 28. p. 104772. ISSN 2352-3409

[img]
Preview
Text
1-s2.0-S2352340919311278-main.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
[img]
Preview
Text
Numerical_simulation_data_v2.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (711kB) | Preview
Official URL: https://doi.org/10.1016/j.dib.2019.104772

Abstract

Simulation data are presented for identifying and analysing the dynamic properties of the rainbow metamaterials as presented in the articles “Rainbow metamaterials for broadband multi-frequency vibration attenuation: numerical analysis and experimental validation” (Meng et al., 2019 [1]) and “Optimal design of rainbow elastic metamaterials” (Meng et al., 2019 [2]). In this data article, the frequency response functions and mode shapes of the rainbow metamaterials are numerically calculated by Finite Element models set up in Ansys Mechanical APDL. Harmonic analysis was performed to figure out the receptance function values of the rainbow metamaterials within the frequency regime 0–500 Hz. Modal analysis was applied to estimate the mode shapes, which could be used to explain the critical peaks and dips in the receptance function curve. Source files of Finite Element models are provided in the data. The Finite Element simulation is not only an effective alternative way to estimate the dynamic properties of the rainbow metamaterials, the mode shape analysis, which is unlikely to be achieved with the analytical model, provides direct insights into the underlying vibration mechanism of the rainbow metamaterials.

Item Type: Article
Uncontrolled Keywords: Rainbow metamaterial, Finite element, Frequency response functions, Mode shape, Resonators
Subjects: H100 General Engineering
H900 Others in Engineering
Department: Faculties > Engineering and Environment > Mechanical and Construction Engineering
Depositing User: Rachel Branson
Date Deposited: 18 Aug 2020 08:42
Last Modified: 18 Aug 2020 08:45
URI: http://nrl.northumbria.ac.uk/id/eprint/44116

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics