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Abstract

The non-uniform dispersion process on the infinite integer line is a synchronous process where
n particles are placed at the origin initially, and any particle not exclusively occupying an integer
site will move at the next time step to the right adjacent integer with probability pn and to the left
with probability 1− pn independently. We characterize the longest distance from the origin when
the dispersion process stops, which is shown to be Θ(n) with high probability for fairly general
pn.
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1. Introduction

Let G = (V, E) be the integer line graph, where the vertex set V = Z and the edge set
E = {{i, i + 1} : i ∈ Z}. Let n ∈ Z+ := {0, 1, 2, · · · } be a non-negative integer. The dispersion
process [1] on G with parameter pn ∈ [0, 1] is defined as follows. At time t = 0, n particles are
placed at the origin. At any time step t ∈ Z+, if two or more particles sit on the same vertex,
all these particles move independently to the right neighbor with probability pn and to the left
neighbor with probability 1 − pn at time step t + 1. The process stops when all vertices in G are
occupied by at most one particle.

The dispersion process has a couple of unique features. Firstly, all n particles move away
from each other to find a private site in a synchronous manner following the identical rule. Sec-
ondly, a particle may (by chance) stop at a vertex for some time, move, and then stop again
following an irregular time pattern. Using the standard Landau asymptotic notations and random
graph convention [4], the authors of [1] show that (amongst other results) w.h.p. the longest
distance from the origin is O(n ln n) for pn ≡ 1/2 when the dispersion finishes. With a refined
argument, the upper bound is further reduced to O(n) in [2] still for the uniform version with
pn ≡ 1/2.

Along this direction of investigation, we in this letter study the longest distance for the non-
uniform dispersion process with general transition probability pn ∈ [0, 1]. The results are stated
and discussed in Section 2, and the proofs are given in Section 3.

2. Results

Theorem 1. Consider the dispersion process on G with parameter pn ∈ [0, 1].
Preprint submitted to Elsevier August 14, 2020
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Figure 1: The longest distance from the origin as a function of dispersion probability p for n = 5000 (squares) and
n = 8000 (triangles) particles. Inset shows the distance versus smaller p. Each data point is obtained by means of an
ensemble averaging of 20 independently-computed processes.

(i) If there exist two constants p and p such that 1 −
√

2
2 < p ≤ pn ≤ p <

√
2

2 for all n, then
w.h.p. the longest distance from the origin is Θ(n) when the dispersion process stops. The
dispersion process stops w.h.p. within O(n8) steps.

(ii) If pn = 0 or pn = 1, w.h.p. the longest distance from the origin is infinity, i.e., the dispersion
process never stops. If 0 < pn < 1, w.h.p. the dispersion process stops within Tn steps for
some Tn < ∞.

Recall that fn = Θ(gn) as n → ∞ if there exists constants c1, c2 > 0 and n0 such that
c1gn ≤ fn ≤ c2gn for n ≥ n0 [4]. We will prove the result by providing an upper bound and a
lower bound for the longest distance.

An omission from Theorem 1 is the lack of consideration of 0 < p ≤ 1 −
√

2
2 ≈ 0.29 (or

0.71 ≈
√

2
2 ≤ p < 1). The restriction of p and p is mainly due to the estimate of the expectation

of ỹ j(t) in (2), which is essential in bounding the tail probability (3). Obviously, if there is such
a p or p, the dispersion will eventually end w.h.p.; c.f. Theorem 1(ii). In Fig. 1, we show
the longest distance as a function for different constant probability pn ≡ p for n = 5000 and
n = 8000 particles. The distance increases rapidly as p deviates from the middle value 0.5. But
to determine the order of magnitude of the longest distance from the origin when p ≤ 1 −

√
2

2 (or

equivalently p ≥
√

2
2 ) remains open.

3. Proofs

We start with the statement (ii). Then we prove the lower bound and the upper bound for
statement (i). The following probabilistic inequality bounds the upper tail of the sum of a se-
quence of independent random variables, which has varied versions widely applied in random
structures; c.f. [3, 4].
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Lemma 1. ([2, Lemma 2.1]) Suppose that x1, x2, · · · , xr are independent non-negative integer
random variables such that P(x j ≥ k) ≤ σk for all j and some σ ∈ (0, 1). Let x =

∑r
j=1 x j and

µ = (1 − σ)−1. Then P(x ≥ (1 + ε)µr) ≤ e−cε2r for any ε ∈ [0, 1] and some c = c(σ) > 0.

Proof of Theorem 1 (ii). Firstly, it is obvious that if pn = 0 or pn = 1, the dispersion process
never stops. Next, recall that the infinite integer line G is an infinite Abelian Cayley graph with
the underlying group being the cyclic group Z. For 0 < pn < 1, the termination of the dispersion
process follows exactly the proof of [1, Theorem 8] by replacing 1/2 with pn. 2

Proof of Theorem 1 (i). We claim that the longest distance is at least b n
2 c, where b·c is the

round down operator. This can be shown by contradiction. If this is not true, there are at most
fn := 2(b n

2 c − 1) + 1 vertices in G which are occupied by particles. It is direct to show that the
inequality b n

2 c <
n+1

2 for any n ∈ Z+ holds by considering odd and even n. Therefore, fn < n. By
the pigeonhole principle, there are two particles sitting on the same vertex, which contradicts the
fact that the dispersion has stopped.

For the upper bound, we will adopt the proof technique of [2] by considering the ordered
dispersion process where each particle is given a label j ∈ [n] := {1, 2, · · · , n}. Denote by ξ j(t)
the position of particle j at time step t and let ηi(t) count the number of particles at vertex i ∈ Z at
time t. At each time step t, all particles are relabeled such that j1 < j2 implies ξ j1 (t) ≤ ξ j2 (t). This
means the labels of particles are always increasing along the real axis and all particles sitting on
the same vertex can essentially be arbitrarily labeled. Graphically, we can think of the particles
as piled in stacks located at vertices of G. We agree that the lowest labelled particle in the left to
right ordering of the particles is at the bottom of the stack and the highest at the top; see Fig. 2.

Figure 2: Schematic illustration of main parameters.

For j ∈ [n − 1], let x j(t) = ξ j+1(t) − ξ j(t) be the distance between particles j + 1 and j at time
t. Clearly, ξn(t)− ξ1(t) =

∑n−1
j=1 x j(t) and x j(t) ∈ Z+. Set the increment y j(t) = x j(t+ 1)− x j(t) and

the index subset θ(t) = { j : x j(t) ≥ 2} ⊆ [n − 1]. For each vertex i ∈ Z satisfying ηi(t) ≥ 2, we
define independently a binomial random variable bi(t) ∼ Binominal(ηi(t), pn), which represents
the number of particles that will move from i (at time t) to i+ 1 (at time t+ 1). Recall that ηξ j(t)(t)
means the number of particles staying at the same vertex as j at time t, and bξ j(t)(t) of them will
move to the right in the next time step. We define a random variable ỹ j(t) for j ∈ [n − 1] and
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t ∈ Z+ as follows.

ỹ j(t) =



2, ηξ j(t)(t) ≥ 2, ηξ j+1(t)(t) ≥ 2, j ∈ θ(t), bξ j(t)(t) = 0, bξ j+1(t)(t) = ηξ j+1(t)(t);
−2, ηξ j(t)(t) ≥ 2, ηξ j+1(t)(t) ≥ 2, j ∈ θ(t), bξ j(t)(t) > 0, bξ j+1(t)(t) < ηξ j+1(t)(t);

1, ηξ j(t)(t) ≥ 2, ηξ j+1(t)(t) = 1, j ∈ θ(t), bξ j(t)(t) = 0;
−1, ηξ j(t)(t) ≥ 2, ηξ j+1(t)(t) = 1, j ∈ θ(t), bξ j(t)(t) > 0;

1, ηξ j(t)(t) = 1, ηξ j+1(t)(t) ≥ 2, j ∈ θ(t), bξ j+1(t)(t) = ηξ j+1(t)(t);
−1, ηξ j(t)(t) = 1, ηξ j+1(t)(t) ≥ 2, j ∈ θ(t), bξ j+1(t)(t) < ηξ j+1(t)(t);

0, otherwise.

(1)

Intuitively, ỹ j(t) governs the amount of change for adjacent stacks of particles in one step; c.f.
Fig. 2. By straightforwardly checking all situations of the numbers of particles staying with
particles j and j+1 as well as the distance between particles j and j+1 following [2], we see that
y j(t) ≤ ỹ j(t) for all j ∈ θ(t). Given the configuration at time t, we have the following estimates for

the conditional probabilities: P(ỹ j(t) = 2) = (1 − pn)ηξ j (t)(t) p
ηξ j+1(t)(t)
n ≤ (1 − p)2 p2, P(ỹ j(t) = −2) =(

1 − p
ηξ j (t)(t)
n

)(
1 − (1 − pn)ηξ j+1(t)(t)) ≥ (1 − p2)(1 − (1 − p)2), P(ỹ j(t) = 1 w.r.t. the 3rd line of (1)) =

(1− pn)ηξ j (t)(t) ≤ (1− p)2, P(ỹ j(t) = −1 w.r.t. the 4th line of (1)) = 1− (1− pn)ηξ j (t)(t) ≥ 1− (1− p)2,

P(ỹ j(t) = 1 w.r.t. the 5th line of (1)) = p
ηξ j (t)(t)
n ≤ p2, and P(ỹ j(t) = −1 w.r.t. the 6th line of (1)) =

1−p
ηξ j (t)(t)
n ≥ 1−p2. Therefore, we have for any j ∈ θ(t), |ỹ j(t)| ≤ 2 and the conditional expectation

of ỹ j(t) is upper bounded by the three quantities (1− p)2 − 1+ (1− p)2 = 2(1− p)2 − 1 := δ1 < 0,
p2 − (1 − p2) = 2p2 − 1 := δ2 < 0, and 2(1 − p)2 p2 − 2(1 − p2)(1 − (1 − p)2) = 1

2
(
(1 + δ1)(1 +

δ2) − (1 − δ1)(1 − δ2)
)

:= δ3 < 0. In other words,

E(ỹ j(t)) ≤ max{δ1, δ2, δ3} := δ < 0, (2)

where, similarly as P(·), E(·) represents the conditional expectation given the configuration at
time t throughout the paper.

Set x̃ j(0) = 3 > x j(0) = 0 for any j ∈ [n − 1], and define x̃ j(t + 1) = max{3, x̃ j(t) + ỹ j(t)}
if j ∈ θ(t) and x̃ j(t + 1) = 3 if j < θ(t). An application of mathematical induction yields
x j(t) ≤ x̃ j(t) for all t ∈ Z+, j ∈ [n − 1], and ỹ j(t) = 3 − 3 = x̃ j(t + 1) − x̃ j(t) for j < θ(t).
Noting that ξn(t) − ξ1(t) =

∑n−1
j=1 x j(t) ≤

∑n−1
j=1 x̃ j(t), we may bound the sum by modeling each

x̃ j(t) (t ∈ Z+) as a random walk having a wall at 3 and moving a distance bounded by ỹ j(t)
satisfying (2) when j ∈ θ(t) or staying put at 3 when j < θ(t). As in [2], there is σ ∈ (0, 1) such
that P(x̃ j(t) ≥ 3 + k) ≤ σk for any k > 0 and t ∈ Z+. In fact, in view of the boundedness of ỹ j(t)
and (2), we have 0 ≤ ỹi(t)+2

4 ≤ 1, E
( ỹ j(t)+2

4
) ≤ δ+2

4 , and k − δt > 0 for any t ∈ Z+. Drawing on e.g.
[3, Theorem 21.6], we have

P(x̃ j(t) ≥ 3 + k) ≤P(ỹ j(t) + · · · + ỹ j(0) ≥ k)

=P
( ỹ j(t) + 2

4
+ · · · +

ỹ j(0) + 2
4

≥ k + 2t + 2
4

)
≤ exp

(
−

(
k+2t+2

4 − (δ+2)t
4

)2

2
[

(δ+2)t
4 + 1

3

(
k+2t+2

4 − (δ+2)t
4

)] )
≤e−c(k+t) ≤ e−ck := σk. (3)

for some constant c > 0.
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Consider the vertices in G that hold at least one particle at time t. We label these vertices
sequentially from left to right and denote by I j(t) the label of stack holding particle j at time
t. In view of the above comments and definition of ỹ j(t), we know that for j, j′ ∈ [n − 1] and
|I j(t) − I j′ (t)| ≥ 3, the two random variables ỹ j(t) and ỹ j′ (t) are independent. Divide the particles
[n − 1] into b(ln n)2c sets Ji := { j ∈ [n − 1] : j( mod b(ln n)2c) = i}, where i = 1, 2, · · · , b(ln n)2c.
Clearly, |Ji| =

⌊ n−1
(ln n)2

⌋
. Set γi(t) :=

∑
j∈Ji

x̃ j(t) for i = 1, 2, · · · , b(ln n)2c. Define A be the event
that at some time t ≤ n8 there exists a vertex in G holding at least b(ln n)2c/2 particles such that
all of them move to the same direction. Therefore,

P(A) ≤n8 · n · 2
(
p
b(ln n)2c

2
n + (1 − pn)

b(ln n)2c
2

)
≤2n9

(
p
b(ln n)2c

2 + (1 − p)
b(ln n)2c

2

)
= o(1), (4)

as n→ ∞. By considering separately the cases |I j(t) − I j′ (t)| = 1 and |I j(t) − I j′ (t)| = 2 following
[2], we obtain that conditional on the event A not occurring, ỹ j(t) and ỹ j′ (t) are independent,
where j, j′ ∈ Ji for i = 1, 2, · · · , b(ln n)2c. Since γi(t) − 3|Ji| =

∑
j∈Ji

(x̃ j(t) − 3), we have

P
(
γi(t) − 3|Ji| ≥

2|Ji|
1 − σ

)
≤ e−c|Ji |, (5)

for some constant c > 0, capitalizing on the analysis in the previous paragraph and Lemma 1.
Therefore,

P
(
∃i ∈ [b(ln n)2c], t ≤ n8 : γi(t) ≥ |Ji|

(
3 +

2
1 − σ

))
≤n8b(ln n)2ce−c|Ji |

=e−Ω
(

n
(ln n)2

)
. (6)

Hence, with probability at least 1 − e−Ω( n
(ln n)2

)
= 1 − o(1), for any fixed t ≤ n8 we have

n−1∑
j=1

x̃ j(t) =
b(ln n)2c∑

i=1

γi(t) ≤ b(ln n)2c|J1|
(
3 +

2
1 − σ

)
= O(n), (7)

as n→ ∞.
Next, we will show that the dispersion process comes to an end w.h.p. within time t ≤ n8.

We have the following three pieces of argument.
(S1) Denote by α(t) the closest particle from the origin and l(t) its distance to the origin.

Suppose l(t) > 0 and let z(t) be the number of particles sitting together with α(t). If α(t) is on the
left-hand side of the origin, then

l(t + 1) − l(t) =


0, with prob. 1 if z(t) = 1;
−1, with prob. 1 − (1 − pn)z(t) ≥ 1 − (1 − p)2 if z(t) ≥ 2;

1, with prob. (1 − pn)z(t) ≤ (1 − p)2 if z(t) ≥ 2.
(8)

Note that l(0) = 0, l(1) = 1, and E(l(t+1)−l(t)) = −(1−(1−pn)z(t))+(1−pn)z(t) ≤ −1+2(1−p)2 =

δ1 < 0. Recall that δ1 is defined above (2). Hence, E l(t) ≤ 1 + (t − 1)δ1 for t ≥ 2. By using the
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Azuma-Hoeffding bound (e.g. [3, Theorem 21.15]), we have for t ≤ n8,

P(l(t) ≥ ln n) =P(l(t) ≥ 1 + (t − 1)δ1 − 1 − (t − 1)δ1 + ln n)
≤P(l(t) ≥ E l(t) − 1 − (t − 1)δ1 + ln n)

≤e1− (−1−(t−1)δ1+ln n)2

2t = o(1), (9)

as n → ∞. Therefore, w.h.p. we have l(t) = O(ln n) for any t ≤ n8. On the other hand, if α(t) is
on the right-hand side of the origin, then

l(t + 1) − l(t) =


0, with prob. 1 if z(t) = 1;
−1, with prob. 1 − pz(t)

n ≥ 1 − p2 if z(t) ≥ 2;
1, with prob. pz(t)

n ≤ p2 if z(t) ≥ 2.
(10)

Likewise, E(l(t + 1) − l(t)) = −(1 − pz(t)
n ) + pz(t)

n ≤ −1 + 2p2
= δ2 < 0, where δ2 is defined above

(2). Hence, E l(t) ≤ 1+ (t− 1)δ2 for t ≥ 2. Similarly, using the Azuma-Hoeffding bound we have
for t ≤ n8,

P(l(t) ≥ ln n) ≤ e1− (−1−(t−1)δ2+ln n)2

2t = o(1), (11)

as n→ ∞. Hence, w.h.p. again we have l(t) = O(ln n) for any t ≤ n8.
(S2) Assume that the dispersion process lasts for at leat n8 time steps. If the labels of particles

are not re-arranged after each step, a give particle performs a random walk R interrupted by
some periods when it stays put. After k steps, the distance of the particle to the origin can be
approximated by the normal distribution Normal(0, k(1 − pn)pn). Choosing k = n7, we have

P(|R| ≥ n2) = P
(∣∣∣∣∣ R√

n7(1 − pn)pn

∣∣∣∣∣ ≥ 1√
n3(1 − pn)pn

)
= 1 − o(1), (12)

as n → ∞. Thus, the random walk will reach w.h.p. a distance of n2 away from the origin after
n7 steps.

(S3) For t ≤ n8 and j ∈ [n − 1], we have

P(x j(t) ≥ (ln n)2) ≤P(x̃ j(t) ≥ (ln n)2)

≤σ(ln n)2−3 = n−Ω(ln n) = o(1), (13)

as n→ ∞ based on the previous analysis.
If the dispersion process does not stop within time t ≤ n8, it follows from (S1) and (S2) that

w.h.p. there exists a particle, say β(t), at some time t ≤ n8 which is at distance at least n2−O(ln n)
away from α(t). Thereby, there is a gap x j0 (t) = Ω(n) between the positions of two particles j0
and j0 + 1. [In fact, if this is not true, then the distance between β(t) and α(t) is o(n2) since there
are n particles in total. It contradicts the fact that the distance in question being n2 − O(ln n).]
Now, this contradicts (S3). Consequently, we have shown that the dispersion process must come
to an end w.h.p. within time t ≤ n8. Combining (7) and the conclusion of (S1), we finally
complete the proof of Theorem 1. 2
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