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Abstract: As o�shore wind turbines are moving to deeper water depths, mooring systems are
becoming more and more signi�cant for �oating o�shore wind turbines (FOWTs). Mooring line
failures could a�ect power generations of FOWTs and ultimately incur risk to nearby structures.
Among di�erent failure mechanics, an excessive mooring line tension is one of the most essential
factors contributing to mooring failure. Even advanced sensing o�ers an e�ective way of failure
detections, but it is still di�cult to comprehend why failures happened. Unlike traditional parametric
studies that are computational and time-intensive, this paper applies deep learning to investigate the
major driven force on the mooring line tension. A number of environmental conditions are considered,
ranging from cut in to cut out wind speeds. Before formatting input data into the deep learning model,
a FOWT model of dynamics was simulated under pre-de�ned environmental conditions. Both taut
and slack mooring con�gurations were considered in the current study. Results showed that the most
loaded mooring line tension was mainly determined by the surge motion, regardless of mooring line
con�gurations, while the blade and the tower elasticity were less signi�cant in predicting mooring
line tension.

Keywords: FOWT; mooring line tension; deep learning

1. Introduction

Renewable energy is clean and environmentally friendly, which plays a crucial role in decreasing
global carbon emissions [1]. Among di�erent types of renewables, wind energy is one of the most
fast-growing sectors [2]. In the UK, the renewable share of electricity generations has been continuously
increasing in the past few years, where wind energy has dominated the share of electricity generations
since 2011 [3]. Due to the evolution of wind turbines, the price of electricity generated from o�shore
wind is becoming less and less expensive. Under these circumstances, the possibility has been improved
to meet the UK government’s target on replacing traditional energy supply with renewable energy.
It is a remarkable fact that o�shore wind generation has more than doubled in 2018, compared with
2013, at which the generated power was raised from 1.15 � 104 to 2.67 � 104 GWh [3].

In recent years, a continuous shift from onshore to o�shore has been seen in the wind industry,
where o�shore turbines are believed to have the advantages of o�ering supplementary and higher
quality renewable energy than the onshore ones [4]. On the other hand, there are new challenges
arising from o�shore winds, such as a severer operating environment and a multifaceted terrain [5].
Therefore, it is indispensable to improve the e�ciency and the reliability of o�shore wind turbines by
supplementary exploring of the operating mechanism in a harsher environment [6].
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Floating platforms are becoming more and more popular, as �xed ones are no longer suitable for
larger water depth [7�9]. For �oating structures, a station-keeping system is a fundamental constituent
to inhibit the platform from drifting away in the sea environment. Unlike o�shore oil and gas platforms,
whose mooring systems are for station-keeping purposes only, wind turbine mooring systems also
contribute to power outputs for ocean renewable devices [10]. More speci�cally, mooring line broken
will change the platform’s orientation [11], resulting in an in�uence on wind tuebine power generation.
In addition, Li et al. [12] concluded that damaged mooring could induce surge motion, resulting in
an impulsive alteration of power generations for rotating turbines. Station-keeping methods can be
categorized into moorings systems, dynamic position systems or a combination of both. Currently,
almost all �oating o�shore wind turbines (FOWTs), including concept-designed ones, operate at a
water depth less than 500 m. For this reason, the most common station-keeping method for FOWT is
to apply a spread mooring system with catenary chains.

Due to the availability of datasets for FOWTs, wind turbine failure mode analysis has mainly
focused on �xed foundation types with a special emphasis on the electrical part of wind turbines,
such as drivetrain, gearbox, generator, control system and so forth. However, mooring systems are still
one of the most essential components for FOWTs. For this reason, many investigators have focused on
comparing mooring line tensions between damaged and intact conditions. For example, Seebai and
Sundaravadivelu [13] compared the response amplitude operator (RAO) of a Spar-type FOWT support
structure in regular waves based on a 1:100 model test. It was concluded that there was an ignorable
di�erence on the surge RAO between intact and damaged mooring lines. Bae et al. [14] studied
transient e�ects of broken mooring lines based on the redevelopment of a numerical model through a
coupled analysis between an aero-hydro-servo-elastic (AHSE) model and a �nite element analysis
(FEA) model for mooring line dynamics. Case studies on a semi-submersible type of FOWT showed
that damaged mooring lines could incur a signi�cant large drift motion of FOWT, which could be a risk
to nearby structures. A similar phenomenon from damaged mooring lines was also investigated by
Ma et al. [15], who concluded that when the most loaded mooring line breaks, the standard deviation
of platform motion responses has an unapparent di�erence between intact and damaged conditions.
Moreover, mooring system dynamics of a submerged �oating wind turbine were studied by Li et al. [16],
suggesting an increased platform motion was driven by the broken mooring line condition.

Theoretically, there are seven mechanics contributing to mooring line failure, which are wear,
fatigue damage, abrasion, corrosion, damage, �awed materials and excessive tension [17]. Among them,
especially the failures related to an excessive mooring line tension, one area that needs to be investigated
is the level of signi�cance of di�erent factors to the failures. To this end, this study developed a novel
mothed based on deep learning to study the inherent driven force on mooring line tensions.

To sum up, the originality and main contributions to the current knowledge gap from this
investigation are summarized as follows.

(1) Advanced sensing and condition monitoring (CM) provide an e�ective way of collecting data
and detecting failures, but it is unable to explain the inherent driven force on these failures.
To date, it is not clear what factors a�ect the FOWT mooring line tension. To tackle this problem,
this paper studies the driven force of mooring line tension based on an advanced AHSE model
and deep learning, taking into account di�erent environmental conditions.

(2) The global performance of wind turbine dynamics necessitates a coupled analysis of
hydrodynamics, aerodynamics, structural dynamics, controls and so forth, which are highly
dependent on environmental conditions. Consequently, traditional parametric studies have
di�culty in analysing the in�uence on the mooring line tension under various conditions.
Simply changing environmental parameters and operating conditions will result in an excessive
number of case studies in the time domain, prominently increasing computation costs and
sometimes are impractical to be realised. To this point, this paper applied deep learning to build
a model for investigating the mechanism of mooring line tension. Therefore, the in�uence of
various environmental parameters can be accounted for automatically.
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(3) Learned from o�shore platforms, it is well known that mooring line tension is driven by the
6 Degree of Freedom (DOF) dynamic responses of the support structure. However, due to the
large height-to-width ratio, the contribution from the upper structure, such as the tower and
blades of the FOWT on the mechanism of mooring line tension, is not clear [18]. To solve this
problem, the inputs of the deep learning model includes the 6-DOF motion responses of the
platform and upper structure de�ections. These in�uences are almost unable to be analysed
through conventional parametric studies. In this paper, both linear relationships (correlation
analysis) and nonlinear relationships (deep learning model) are considered and discussed.

(4) We have focused on direct drive train wind turbines, which are believed to be more popular and
suitable for �oating wind turbines due to their larger loading capacities. The pitch control for
the direct drive train for �oating wind turbines has been redeveloped, and its accuracy has been
validated against a gearbox wind turbine.

This paper is organized as follows: Section 2 introduced the numerical model of dynamics for
FOWT and the designed deep learning con�guration. In Section 3, an introduction was presented on
the main properties of the FOWT structure and the drive train. The direct drive wind turbine and
the corresponding control methods were then validated against the traditional National Renewable
Energy Laboratory (NREL) 5MW wind turbine with gearbox. Case studies were presented along with
the load cases (LCs). In Section 4, a comparison was displayed between di�erent LCs on the ranking of
contributing factors. Finally, based on the discussion of case studies in Section 4, conclusions were
given in Section 5 for o�shore wind turbine design.

2. Methodology

A process graph, which meticulously described the used methodology in this paper, is shown in
Figure 1. A total number of twelve LCs (1) were simulated by the AHSE model in the time domain (2).
Further details on the LCs will be introduced in Section 4.1. Time history was generated based on the
most-loaded line tension, platform 6-DOF motion responses and tower and blade displacements (3).
The output time history from the AHSE model was pre-processed in terms of correlation coe�cients
(4) and a heat map (4). A deep learning neural network model was trained (5), tested (6) and validated
(7) based on the data from (3), using the line tension as the output while using the other generated time
history from the AHSE model as inputs. Based on the built deep learning model, a ranking in terms
of the level of signi�cance of the input features was carried out (8), identifying the most important
feature on the most loaded mooring line tension. After the ranking, case studies using the time-domain
AHSE model were investigated and discussed through a comparison between elastic and non-elastic
models of the blade and the tower (9~10). In addition, the e�ects of taut mooring line con�guration are
discussed based on the same method as described in (1~8). Lastly, the results of case studies were
given in (11) along with the corresponding recommendations.

2.1. AHSE Modelling

In terms of domain of analysis for wind turbine loads and dynamic responses,
numerical simulations of o�shore wind turbines can be divided into frequency-domain and time-domain
methods. The frequency-domain method can be applied to analyse numerous LCs, but a steady-state
assumption must be de�ned when using the frequency-domain method. On the other hand,
the time-domain method has the advantage over the frequency domain method of dealing with nonlinear
phenomena. Thus, the time-domain method was applied in this study. Numerical simulations of FOWT
have been intensively studied in the past few decades, especially bene�ting from the fast-developing
numerical techniques such as computational �uid dynamics (CFDs) [19], the �nite element method
(FEM) [20], smoothed particle hydrodynamics (SPHs) [21], and so forth. Regarding o�shore �oating
wind turbine dynamics analysis, a multi-body method plus modal analysis is the most popular one.
The CFD method o�ers a high-�delity numerical tool in wind turbine dynamic analysis, but the
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relatively long simulation time is a remaining issue. A de-coupled method is often applied to this
method, without consideration of the �oating system, especially when calculating a large number of
simulations under several environmental conditions. As wind turbines are becoming increasingly larger,
gravity and inertia loads are treated as signi�cant as aerodynamic loads [22]. Thus, an advanced AHSE
method, taking consideration of the interaction between each sub-body while capturing aerodynamics,
hydrodynamics, structural dynamics and corresponding controls of the wind turbine structure, was
applied in this paper [23].
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2.1.1. Aerodynamics

The Blade Element Momentum (BEM) method was applied for the aerodynamics. The BEM
theory [24] can be divided into a coupled analysis of the momentum and the blade element method [25].
Using the BEM method, the original 3D blade problem is transferred into 2D aerofoil, which is
considered more e�cient in terms of running speed compared with advanced CFD methods. Besides,
forces on blade elements are determined by lift and drag coe�cients [26]. Furthermore, to overcome
the shortcomings in the BEM method, tip-loss and hub-loss models were added into BEM calculations.
Further information on this correction can be found in [25].
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2.1.2. Hydrodynamics

As for hydrodynamics, water waves were modelled by assuming �uids were non-compressible,
non-rotational and in-viscous. Potential �ow theory was applied to solve the wave�structure interaction
problems. The velocity potential (F) can be divided into harmonic and time-independent parts:

F = Re
�
’ei!t) (1)

here i2 = �1, the same as Equations (2) and (3).
The time-independent incident wave potential can be written as

’ =
igA
!

cos h[k(z + H)]
coshkH

e�ikxcos��ikysin� (2)

For irregular waves, the superposition theory was applied, for which each wave component was
modelled using the Airy wave theory. The wave elevation time history �(t) of a random wave can be
written as

�(t) =
1

2�

Z 1

�1
w(!)

q
2�S�(!)ej!td! (3)

Frequency-domain hydrodynamic coe�cients and second-order wave forces were calculated
using the panel method. Using the perturbation theory for velocity potential, body and free-surface
conditions, an approximation up to the second order was considered. The hydrostatic matrix can be
evaluated by calculating surface integrals on the mean wetted body surface. Wave exciting forces in
the ith direction were calculated by a direct integration of hydrodynamic pressure from the di�raction
potential:

Fi
ext = �i!�

x

Sb

ni’Dds (4)

The second-order wave forces (including sum and di�erence terms) on the �oating structure were
evaluated by the direct method [27]. For small-scale structures, hydrodynamics of the �oating bodies
were evaluated by the Morison equation [28].

2.1.3. Structural Dynamics

For the structure above sea level, a combined mode shape and multi-body dynamics method
were applied to evaluate motion responses. For the three-blade wind turbine with a direct drivetrain,
the number of DOFs for the wind turbine above sea level was 15. More speci�cally, there were two
fore-aft and two side-to-side bending modes for the tower. Drivetrain rotational motion and nacelle
yaw motion formed two DOFs. In addition, each blade had two �apwide modes and one edgewide
mode. Further details on the de�nition of DOFs of the FOWT can be found in [29]. For the supporting
platform, the rigid body assumption was applied. Another 6 DOFs (surge, sway, heave, pitch, roll and
yaw, see Figure 2) were applied to describe platform dynamic motions in the sea environment.

After solving the hydrodynamics of the wave-�oating body interaction in the frequency domain,
the platform of the FOWT was determined by the following 6-DOF motion equation:

M
..
x + C

.
x + Kx = F1(t) + F2(t) + Fw(t) (5)

Mooring lines are slender bodies, while the bending moment is usually ignored. Mooring lines
can be modelled by massless springs with equivalent sti�ness [30] via the catenary equation [31,32].
These methods o�er an extremely fast solution in the model of mooring line dynamics but are limited to
static analyses of mooring lines only [33]. When coupling with the �oating body dynamic analysis, the
above methods can be carried out in a quasi-statically coupled or non-coupled approach. When water
depth becomes larger, dynamic behaviours of mooring lines cannot be ignored. Unlike the static method,
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advance numerical methods, for example the �nite element method [34] and the �nite di�erence
method [35], can take consideration of the dynamic behaviour of the mooring line. The lumped mass
and spring model, having the advantage of a high e�ciency in computation [33], was applied in this
paper. The lumped mass and spring method can be categorized into the FEM approach for which the
shape function is reduced to a line [36]. It is one of the most widely applied numerical methods in
o�shore engineering.
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The lumped mass (mode) is connected by a massless spring and damper system. In numerical
simulations, each node’s space position is determined by a space vector r [37]:
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The forces on the mooring line were evaluated by Morison’s equation [28]. The drag and inertial
forces on a session length dz are

dF =
1
2
�CDDU2dz +

1
4
�CM�D2 @U

@t
dz (8)

2.2. Correlation Analysis

Before feeding data into deep neural networks, a correlation analysis was carried out to investigate
linear relationships between the most loaded line tension and the other DOFs. In general, if two
features of P and Q are measured on N individuals to the database of (P1, Q1)~(Pi, Qi)~(PN, QN),
the Pearson product-moment correlation coe�cients R can be expressed as

P =
1
N

NX

i=1

Pi (9)

Q =
1
N

NX

i=1

Qi (10)

R =

PN
i=1

n�
Pi � P

��
Qi �Q

�o

qPN
i=1

�
Pi � P

�2
qPN

i=1

�
Qi �Q

�2
(11)

The Pearson product-moment correlation coe�cients are widely used to identify the linear
relationship between any two parameters or variables. Theoriticaly, it provides a value between +1
and �1, where +1 represents a fully positive linear correlation, 0 indicates no linear correlation and �1
characterises a fully negative linear correlation.

2.3. Deep Learning Modelling

In this investigation, Keras and TensorFlow were used to develop a deep learning neural network,
where input tensors were passed into a deep learning con�guration and then output as another tensor
(see Figure 4). In this study, di�erent deep learning con�gurations were manually evaluated based on
their comparative performances by trial and error. During testing and validation, the best-performing
network was identi�ed as a stacked sequential model with �ve layers, enclosing 50 neurons in the
�rst and the �fth layers (see Figure 4B,F) and 100 neurons in the second, the third and the fourth
layers (see Figure 4C�E). As a result, a feedforward deep learning neural network with �ve layers was
identi�ed to create the association between used features (see Figure 4A) and outputs (see Figure 4G).
The built deep learning neural network was trained by displaying selected features (platform motions,
blade de�ections and tower base de�ections) and desired outputs (most loaded mooring line fairlead
tension). Details about the inputs in the case studies are displayed in Section 4. A scaler (Min�Max)
was used to scale training, testing and validation datasets into the range between 0 and 1 after
tensors �owing into di�erent layers of the deep learning model. The expression of the scaler could be
expressed as

Fscaled =
fi �min( f )

max( f ) �min( f )
(12)

Because all layers shared identical interior structures, only layer 1 was further expanded (see
Figure 4B) to visualize the components inside layers. Each layer in the deep learning con�guration
contained three major components:

� Using Xavier’s weights initialization method [38], the present neuron and previous neurons were
determined by a weight vi j (see Figure 4B);
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� In the deep learning con�guration, each neuron was also determined by a bias (b j), for which the
defaults initial bias was set as zero;

� The outputs of the layer were controlled by an activation function (ReLU(HNi)), using the
non-linear activation functions of Recti�ed Linear Unit (ReLU) (see Figure 4B).

Consequently, the following expressions are implemented in each deep learning layer:

HNi =
mX

j=1

fivi j + b j (13)

h = ReLU(HNi) = max(0, HNi) (14)Energies 2020, 13, x FOR PEER REVIEW 9 of 23 
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The classic train�test�validation work�ow was followed while building the deep learning model.
Initially, the deep learning neural network was trained (see Figure 4I) by displaying both input features
and outputs to di�erent layers. After that, based on the trained deep neural networks, testing and
validation datasets were fed into the networks to carry out forecasting. The deep learning con�guration
was fully de�ned as a computational graph, in which each layer of the neural network was linked so
that data �ooded from the �rst layer through to the last layer. The inputs were randomly alienated into
three groups�training group with 2.38 � 105 data units (60%), testing group with 7.92 � 104 data units
(20%) and validation group with 7.92 � 104 data units (20%). In the designed deep learning model,
mean square error (MSE) was used as the cost function to measure how far predictions deviated from
simulation results (see Figure 4H), which can be stated as

MSE =
1
p

pX

i=1

2
66664
(Mprediction)i � (Msimulation)i

(Msimulation)i

3
77775

2

(15)

for testing and validation data (see Figure 5).
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3. Wind Turbine Properties

3.1. Structure Speci�cations

In this study, the target wind turbine is the DeepWind semisubmersible-type FOWT
(see Figure 2) [39]. For this turbine, the rated power was 5 MW. Major properties, including
rotor blade, nacelle and tower, were identical to the NREL 5MW baseline wind turbine. The �oating
structure was a semisubmersible type with one main column and three o�set columns. The connection
between these columns included several small-scale members. Total platform mass, including ballast,
was 1.3473E+7 kg, and the draft of the platform was 20 m. Further speci�cations of the platform are
given in [39].

Regarding the mooring system, a spread mooring with three catenary chains was selected.
Each chain had a degree of 120� between adjacent chains (see Figure 6). The total mooring chain length
was 825.5 m, and the mass per unit length in water was 108.63 kg/m. The top end of the mooring line
was always submerged in water, with the fairlead position located at a depth of 14 m below the SWL.
Speci�cations of the platform and mooring lines can be found in [39].

Energies 2020, 13, x FOR PEER REVIEW 10 of 23 

��

 

Figure 5. Variations of training, testing and validation mean square errors (MSEs) along 200 epochs 

in the designed deep learning configuration. 

3. Wind Turbine Properties 

3.1. Structure Specifications 

In this study, the target wind turbine is the DeepWind semisubmersible-type FOWT (see Figure 
2) [39]. For this turbine, the rated power was 5 MW. Major properties, including rotor blade, nacelle 
and tower, were identical to the NREL 5MW baseline wind turbine. The floating structure was a 
semisubmersible type with one main column and th ree offset columns. The connection between these 
columns included several small-scale members. Total platform mass, including ballast, was 
1.3473E+7 kg, and the draft of the platform was 20 m. Further specifications of the platform are given 
in [39]. 

Regarding the mooring system,a spread mooring wi th three catenary chains was selected. Each 
chain had a degree of 120° between adjacent chains (see Figure 6). The total mooring chain length 
was 825.5 m, and the mass per unit length in water was 108.63 kg/m. The top end of the mooring line 
was always submerged in water, with the fairlead position located at a depth of 14 m below the SWL. 
Specifications of the platform and mooring lines can be found in [39]. 

 

Figure 6. Wind/wave directions and mooring line orientations. 

3.2. Direct Drive Wind Turbine 

Figure 6. Wind/wave directions and mooring line orientations.



Energies 2020, 13, 2264 10 of 21

3.2. Direct Drive Wind Turbine

3.2.1. Control methodology

The baseline control method was applied in this study, but with a couple of modi�cations to �t
the direct drive and the �oating wind turbine. The original baseline control was designed for a �xed
wind turbine with gearbox, consisting of a generator-torque controller and a blade pitch to feather
control. Further details on the �ve regions of the control method can be found in [40]. To adapt the
collective blade pitch control to a �oating wind turbine with direct drive, two modi�cations were made.
The �rst modi�cation, as described in [41], included a reduction of proportional gain and integral gain
to 0.006275604 and 0.0008965149 s, respectively. As can be seen in Figure 7, in total, there were four
regions of operations for the FOWT. Region 1 and 4 were related to wind speeds that were equal to
below cut-in and above cut-out, respectively. Therefore, power generation in these two regions was
zero. The control law in region 2 was to achieve the maximum energy extraction, while region 3 relied
on blade pitch control to regulate power outputs. Meanwhile, the control law in region 3 relied on a
constant generator torque of 43093.55 Nm [40]. To adapt the control method to a direct drive wind
turbine, the second modi�cation included a re-development of the collective blade pitch control for a
FOWT using an identical scaling method as proposed by Slot et al. [41]. A summary of modi�cations
regarding the blade pitch control parameters is shown in Table 1. Other parameters were the same as
the scaled parameters that were presented in [41].

Table 1. Blade pitch control parameter modi�cations [39,41].

Parameter Gearbox Wind Turbine Direct Drive Wind Turbine Scaling Factor

Proportional Gain 0.006275604 0.608733588 Gearbox Ratio
Integral Gain 0.0008965149 0.0869619453 Gearbox Ratio

Generator speed at the
high-speed shaft end (Rad/s) 122.9096 1.2671 Gearbox Ratio
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3.2.2. Validation of Control Method

To validate the developed control method for a direct drive wind turbine, comparisons of blade
pitch angles, speeds and power outputs were carried out between wind turbines with gearbox and
with direct drive. The validation case studies were simulated at an average wind speed of 18 m/s
under turbulent wind only conditions. As presented in Figure 8, output powers and blade pitch
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angles showed excellent agreement between wind turbines with and without gearbox, which further
proved the accuracy of the current control method. Similar to the conclusion shown by Slot et al. [41],
comparing with the case of gearbox, a direct drive wind turbine tended to generate smoother rotor
torque time signals (see Figure 8).
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4. Case Studies and Discussion

4.1. Load Cases and Inputs for the Deep Learning Model

For parked wind turbines, the global performance and the e�ect from mooring line tension are
identical to traditional oil and gas platforms. Therefore, case studies of this investigation have focused
on wind turbine operating conditions only. A number of wind speeds were considered ranging from
cut-in to cut-out scenarios. A list of case studies is shown in Table 2.
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Table 2. Load cases [42].

Load Case Number Wind Speed (m/s) HS (m) TP (s)

1 4 1.7 11.6
2 6 1.9 11.3
3 8 2.1 11.0
4 10 2.4 10.8
5 12 2.8 10.7
6 14 3.2 10.7
7 16 3.7 10.8
8 18 4.2 10.8
9 20 4.7 11.0
10 22 5.4 11.1
11 24 6.0 11.3

Inputs of the designed deep learning model were generated from a time-domain AHSE model
as described in Section 2.1. For the present case studies, a total number of ten inputs were selected
(see Table 3), which were the 6-DOF platform motion responses, the two tip de�ections of blades and
the two tower top de�ections.

Table 3. Input features of deep learning neural networks.

Parameter Description

Blade
TipDxb1 Blade 1 �apwise tip de�ection
TipDyb1 Blade 1 edgewise tip de�ection

Tower
TTDspFA Tower-top fore-aft de�ection
TTDspSS Tower-top side-to-side de�ection

Platform

PtfmSurge Platform Surge Motion
PtfmSway Platform Sway Motion
PtfmHeave Platform Heave Motion

Ptfmroll Platform Roll Motion
PtfmPitch Platform Pitch Motion
PtfmYaw Platform Yaw Motion

4.2. Load Cases and Inputs for the Deep Learning Model

Before processing the results from the AHSE model into the deep learning neural network, it is
necessary to pre-process and analyse the data properties. To this end, a series of histograms of the most
loaded mooring line tension was generated, based on the AHSE results. All the distributions satis�ed
the normal distribution. More speci�cally, the majority of counts were located in the middle of the
distribution graph, while the tails had the minimum number of counts. Figure 10 shows an example of
the histogram of mooring line tension of load case 11 (see Table 4) for slack mooring system.

Using the heatmap, the correlation between the input features and the most loaded mooring
line tension is put forward through a calculation of Pearson product-moment correlation coe�cients
(Figure 11). The individual coe�cients contained in a matrix are represented by colours from red to
blue. As presented in Figure 11, mooring line tension was strongly correlated with the platform surge
motion, followed by the pitch and the tower top fore-aft de�ection. On the other hand, compared with
the surge or the tower top fore-aft de�ection, the platform heave motion had a correlation coe�cient
of 0.26, indicating a less signi�cant relationship with the mooring line tension. However, correlation
analysis is designed for analysing linear relationships only. The inherent mechanism in determining
mooring line tension may not necessarily follow a linear relationship. To this end, a machine learning
approach capable of dealing with nonlinear relationships is used and presented in Section 4.3.
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Table 4. Comparison of statistical data (slack mooring line).

Model Mean (kN) Min (kN) Max (kN)

Flexible 1498.02 1140.00 2097.00
Rigid 1496.93 1140.00 2092.00

Di�erence (%) 0.72 0.00 2.38

4.3. Level of Signi�cance

The level of signi�cance of features in simulating outputs was examined. Owing to the aim of this
investigation to identify the important input features and simulate mooring line tensions, the �nal
MSEs in the deep learning model were used to identify the features. For this reason, in the deep
learning model, only one feature was represented by its mean value in the validation loop at each trial.
Since just one feature was altered at one time, this analysis was repeated on all the ten inputs one by
one, as shown in Figure 12. Variations of MSEs along validation loops under each feature change are
presented in Figure 12. Basically, all the inputs in�uenced the accuracy of the predicted output of the
designed deep learning con�guration, as the column ‘original’ is located at the very left of Figure 12.
The platform surge had the largest �nal MSE, showing that it played a dominant role in the accuracy
of the designed neural networks. Furthermore, it has a much larger amplitude of the �nal MSE than
the others, unlike the blade and the tower bending e�ects (such as TipDyb1: blade 1 out-of-plane tip
de�ection, TTDspSS: tower top side-to-side de�ection, and TTDspFA: tower top fore-aft de�ection).
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4.4. Discussions

4.4.1. E�ects of Tower and Blade Flexibility�Slack Mooring Line

Based on the result from Section 4.3, a comparison between two case studies (1) enabling all
the blade and tower bending modes and (2) rigid body assumptions for the tower and blades were
carried out using the time-domain AHSE model, as shown in Figure 13. The average wind speed
was 24 m/s. The total simulation time was 15 min, with a total number of �ve realisations. Mooring
line top tension results from one of the realisations were shown in Figure 13. Results based on the
two modelling approaches, with or without the consideration of tower and blade elasticities, were in
excellent agreement with each other. For comparison, statistical data based on the results from Figure 13
are described in Table 4, which showed identical conclusions in Figure 13. In other words, the most
loaded line tension can be evaluated accurately with a model of rigid tower and blade.
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4.4.2. E�ects of Mooring Con�guration�Taut Mooring Line

Slack and taut mooring con�gurations are the most widely applied mooring types. Section 4.4.1
discussed the e�ects from tower and blade elasticities for a slack mooring line con�guration. In this
section, a further case study was investigated with a focus on the taut mooring system con�guration.
For consistency in this paper, both taut and slack mooring con�gurations followed a similar static
load�o�set graph (see Figure 14), in terms of the horizontal restoring force. The load�o�set graph
(see Figure 14) was generated based on the slack mooring con�guration, as shown in Table 2,
using OrcaFlex [43] for a number of horizontal o�sets ranging from 0 to 16 m. Based on the load�o�set
graph, taut mooring line con�gurations were determined through the mooring materials provided
by [44], while at the same time having the identical load�o�set behaviour as described in Figure 14.
Detailed properties for the taut mooring line, the corresponding fairlead and the anchor positions are
listed in Tables 5 and 6.Energies 2020, 13, x FOR PEER REVIEW 17 of 23 
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Table 5. Taut mooring line properties [43,44].

Parameter Value

Rope/Wire Properties nominal diam 0.2 m
Weight in air 0.313 kN/m (0.032 te/m)
Displacement 0.234 kN/m (0.024 te/m)

Weight in water 0.079 kN/m (0.0081 te/m)
Diam/Wt ratio 2.166 m/(kN/m) (21.245 m/(te/m))

EA 43.6E3 kN
Added mass 1.0
Line length 245 m

Table 6. Mooring line position.

Line No
Position

X (m) Y (m) Z (m)

Line1
Fairlead �40.868 0 �14
Anchor �200 0 0

Line2
Fairlead 20.434 35.3917 �14
Anchor 100 173.2 0

Line3
Fairlead 20.434 �35.3917 �14
Anchor 100 �173.2 0

Using the identical deep learning con�guration mentioned in Sections 2.2 and 2.3, a ranking of the
contributions of all the inputs on the mooring line top tension is displayed in Figure 15. Unlike slack
moorings, the contributions from inputs in taut mooring lines are purely dominated by surge motion.
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Similarly, a further veri�cation was performed using the time-domain AHSE model with rigid
tower and blade considered. The average wind speed was 24 m/s, and the corresponding wave
parameters for the random wave simulations were 6 m signi�cant wave height and 11.3 peak period
(Table 4). Figure 16 shows a comparison of mooring line 2 top tensions under rigid and elastic models
for the blade and tower.
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blades (taut mooring).

Compared with slack mooring lines, a more obvious di�erence was identi�ed when it came to taut
mooring lines (see Figure 13; Figure 16). However, the di�erences remained within 5% (see Table 7).

Table 7. Comparison of statistical data (taut mooring line, average wind speed of 24 m/s).

Model Mean (N) Minimum (N) Maximum (N)

�exible 860,955.51173 313,500 1,313,000
rigid 863,705.90408 328,400 1,305,000

Di�erence (%) 0.3 4.8 0.6

5. Conclusions

A novel methodology has been developed to quantify the driven forces on FOWT mooring
line tension. The input features of deep learning neural networks were extracted from a nonlinear
time-domain AHSE model under various environmental conditions. A deep learning model was
trained, tested and validated to investigate the level of signi�cance of di�erent input features on
the mooring line tension. In the proposed deep learning model, a total number of ten features
was used as the inputs, while the most loaded mooring line tension was chosen as the output
variable. The advantage of the proposed model lies in its accounting for di�erent environmental
conditions automatically.

Key conclusions of this paper are summarised as follows:

� A deep learning model has been successfully built to rank the level of contributions to predicting
the most loaded mooring line tension. Its accuracy has been validated against the nonlinear
time-domain method.

� A numerical model has been developed on blade pitch control for a direct drive train con�guration
with FOWT, while its accuracy has been validated against gearbox wind turbine. Good agreement
has been achieved in terms of blade pitch angles for above-rated wind conditions because of the
perfect match of shaft speed.

� For the slack mooring con�guration, the most loaded mooring line tension is mainly dominated
by the platform surge motion, while the pitch and the heave have almost equal contributions to
the tension, but not as important as surge. For taut mooring lines, the most loaded line tension is
purely determined by surge, while other parameters are less signi�cant.
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� Compared with surge motion, blade and tower elasticities are insigni�cant for predicting FOWT
most loaded mooring line tension, regardless of the mooring system types (slack or taut).

Author Contributions: Conceptualization, X.L. and Z.L.; Methodology, Z.L.; Investigation, X.L. and Z.L.;
Writing�original draft preparation, X.L. and Z.L.; Writing�review and editing, X.L. and Z.L.; Supervision, X.L.;
Software, Z.L.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the EPSRC Doctoral Training Partnership (EP/R513222/1).

Acknowledgments: The authors sincerely thank the support from Dr. Jason Jonkman from NREL on FAST.

Con�icts of Interest: The authors declare no con�icts of interest.

Nomenclature

Latin symbols
A Wave amplitude
bj Bias associated with neuron j
C Damping matrix
Cd Drag coe�cients
Cm Mass coe�cients
D Element diameter
fi Original value/Input of neuron j
F Force
F1 1st-order wave forces
F2 2nd-order wave forces
Fw Wind induced forces
Fext Wave exciting force
Fscaled Normalized value
g Gravitational acceleration
h Output of neuron j
H Water depth
HNi Net input of neuron j in the output or deeper hidden layer
i, j Member index
k Wave number
K Hydrostatic sti�ness matrix
M Mass matrix
Mprediction Predicted value from the deep learning model
Msimulation Recorded value in simulations
max(f ) Maximum value in the span
min(f ) Minimum value in the span
n Unit vector
p Number of tests
N Number of individuals
P Feature 1
Q Feature 2
R Correlation coe�cients
Re the real part
s Integration variable
Sb Body surface
S�(!) Wave spectral density
t Time
U Velocity
vij Weights that linked neuron i and j
w(!) Fourier transform
Wi Net buoyancy of each segment
x, y & z Space coordinates
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Greek symbols
� Wave elevation time history
’ Velocity potential
’D Di�racted potential
r Space vector
� Incident wave direction
� Water density
! Circular frequency

Abbreviations

AHSE Aero-hydro-servo-elastic
BEM Blade Element Momentum
CFD Computational �uid dynamics
CM Condition monitoring
DOF Degree of freedom
FEA Finite element analysis
FEM Finite element method
FOWT Floating o�shore wind turbine
LCs Load cases
MSE Mean square error
NREL National Renewable Energy Laboratory
RAO Response amplitude operator
ReLU Recti�ed linear unit
SPH Smoothed particle hydrodynamics
SWL Still-water level
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