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Abstract 

Using nano-enhanced phase change materials is a widespread passive method to improve the 

melting performance, and also the storage capacity of the thermal energy storage units. In this 

study, the effects of CuO nanoparticles  0 1.5%   and new proposed stair fins on the 

efficiency improvement of latent heat thermal energy storage units are investigated. The stair fins 

are arranged in both upward and downward directions from the heated walls and the stair ratio is 

in the range of 0.67 / 4.0b c  . One of the vertical walls of the PCM enclosure is subject to 

uniform temperature and the other three walls are insulted. The numerical results show that by 

adding nanoparticles with volume concentration of 1.5%   for b/c=0.67 to the flow, the energy 

storage capacity is enhanced by 9.1% compared to the pure PCM with downward fins. The 

maximum energy storage capacity of 474.1 kJ is achieved by using descending stair fins with 

b/c=4.0 and 1.5%  which is much higher compared to the cases without nano additives. 

Besides, the melting performance is significantly improved by adding the nanoparticles. In fact, 

nanoparticles improve the thermal conductivity of the fluid and also act as a heat sink to absorb 

the heat from the fins. The downward fins with larger stair ratios (b/c=4.0) perform significantly 

better than the upwards ones which is because of the free convection effects and the 

recirculations flows on the upper face of these fins.  

 
1 Corresponding author, M. Hatami, Tel/Fax:+98-935-860-2679, E-mail: m.hatami@xjtu.edu.cn  
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1. Introduction 

Phase Change Materials (PCMs) are extensively used in thermal energy storages because they 

can collect or release thermal energy through the melting and freezing process of their phase 

exchange. Moreover, they can easily be used multiple times to save thermal energy.  Due to this 

important characteristic, PCMs have many applications in energy storage, saving energy in 

buildings, solar systems, food industry, cooling and heat exchanger applications, reducing energy 

costs and providing thermal comfort in air conditioning and ventilation equipment. So, the PCMs 

usage has numerous advantages from the heat recovery, cost minimizing, energy saving, which 

can consequently lead to reductions in the use of fossil fuels.  

Xu et al. [1] used the paraffin wax as triplex-layer phase change materials to investigate the 

storage performance in a latent heat thermal energy storage (LHTES) section numerically.  They 

also employed metal fins with different inclination angles to have a faster heat transfer process. 

Pirasaci [2] applied the PCM into the exterior walls of the residential-apartment to investigate the 

heating and cooling process in different seasons and found that winter heating energy 

requirement is reduced by the PCM layer integrations. Another application of PCMs in building 

energy savings by using - encapsulated PCMs (Nano-PCM) and shape-stabilized PCMs is 

described by Wijesuriya et al. [3]. Also, Ručevskis et al. [4] presented a parametric study and 

design optimization of a PCM thermal energy storage system with active control for cooling 

buildings and reported that optimized cases could reduce the indoor air temperature by 9.5 ͦ C, on 

average. Yang et al. [5] used a double PCM with suitable thermal properties using lauryl alcohol 
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and  stearic acid with nanoparticles (LA-SA/Al2O3) for cooling and heating systems and found 

that 0.5% volume fraction of Al2O3 nanoparticles can improve the thermal conductivity of LA-

SA by about 43%. Another study on the energy saving in buildings using various configurations 

and types of PCM is performed by Markarian and Fazelpour [6]. An electricity energy saving of 

4.5–5.5% was observed for the climates and cities investigated in their study. Furthermore, 

Rathore et al. [7] experimentally investigated the effects of macro-encapsulated PCM on energy 

saving augmentation in buildings. They reported between 40% to 59% reduction in thermal 

amplitude, between 7 %-9% reduction in maximum temperature of all walls, and 38.76% 

reduction in cooling loads by using PCM in building walls and roof.  

In addition to applications for energy saving in buildings, PCM has many applications in thermal 

energy storage (TES), photovoltaic thermal generators [8], thermoelectric generators [9], thermal 

control units (TCU) and solar still (SS) [10]. Solar applications of PCM in particular have 

received considerable attention in recent years by researchers due to its importance in renewable 

energy sector, in particular solar powered building and Solar-power plants. Recently, Palacio et 

al. [11] experimentally applied the PCM for a conventional flat plate solar collector (FPSC). 

They used two different PCMs, and solar  collectors with different inclination angles for their 

analysis, from which they found that the thermal efficiency can increase from 26% to 28% for 

these cases. Vigneswaran et al. [12] performed an experimental study to investigate the thermal 

performance of three different passive solar stills with zero, one, or two PCMs. Their results 

show that the efficiency of solar still with one PCM is increased by 3.57% while the efficiency of 

the one with two PCMs by 7.57 % compared with the solar still with no PCM. Some of the 

researchers focused on the PCM applications in the heat exchangers due to their wide range of 

applications in industries. Mustafa et al. [13] and Mahdi et al. [14] used PCMs for double-pipe 
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helical-coil tube and shell and tube heat exchangers and examined the impact of different 

parameters on the melting process of PCMs.  

One widespread method of thermal performance improvement is extended surfaces or fins 

method [15-17], while another one is nanoparticle additives approach [18-24]. There are some 

researches who have focused on using both these methods of thermal storage improvements, 

simultaneously [25]. The recent review study of Qiu et al. [26] showed that nano PCMs play a 

vital role in solar thermal energy storage systems. The performance of the solar TES units can 

significantly be improved by utilizing the nanoparticles. Sarani et al. [27] investigated the effects 

of fins and nanoparticles on PCM solidification and energy storage numerically and found that 

applied discontinuous fins can recover the energy release time by 89% and 84% compared with 

continuous copper and aluminum fins, respectively. Kok [28] also examined the effect of fins 

and nanoparticles on the PCM energy storage efficiency, experimentally. He used Al2O3 and 

CuO nanoparticles in paraffin wax and observed that using CuO nano-PCM can improve the 

melting performance of LHTES unit.. Recently, Arıcı et al. [29] also investigated the PCM 

melting performance by interior fins and CuO nanoparticles which revealed that the modified 

fins can increase  the melting rate up to 52%. Gürtürk and Kok [30] and the Nóbrega et al. [31] 

investigated the fins effect on PCM melting process both experimentally and numerically. They 

proposed special fins to improve the PCM melting in non-melted regions in TES system. 

Another study on the fins arrangement and metal foam effects on PCMs is performed by Zhao et 

al. [32], which shows a 60% reduction in melting time can be achieved based on optimizing the 

number of fins. Santos et al. [33] enhanced the PCM solidification through finned pipes, and 

developed the correlations to examine PCM thermal performance. They also proposed new 

correlations to predict the melting interface within 4% error. Also, Li et al. [34] investigated the 
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effects of dispersing nano additives together with the insert of fins in solidification process and 

show that the longest fins and platelet shape nanomaterial had the fastest solidification process. 

Sathe and Dhoble [35] applied the inclined finned rectangular container in solar heat sinks fitted 

with external fins, and investigated the inclination angle effects on the thermal efficiency 

improvement. They showed that melting time increased with a decrease in inclination angles and 

the addition of fins number for all the PCM systems. Metal-oxides as potential nano-additives for 

paraffin in thermal storage applications are utilized by Khan et al. [36]. This study revealed that 

increasing the nanoparticles volume fraction will improve the charging rate of the melted PCM. 

For instance, the charging rate enhancement of SiO2 NE-PCM with 1% and 5% volume 

concentrations were around 29% and 41%, respectively. Nakhchi and Esfahani [37] employed 

the stepped fins for improving the efficiency of the PCM LHTES systems. Their simulations 

confirmed that their proposed stepped fins had a faster melting process than the typical 

horizontal fins inside LHTES units. A recent study of Ji et al. [38] revealed that using inclined 

fins can improve the melting performance and the capacity of the energy storage systems. 

However, they only used fins without stairs in their study. Only a few studies focused on using 

inclined fines on performance augmentation of LHTES systems. 

The above literature review illustrates that, although researches on latent heat storage (LHS) 

units have been performed in the past few years, there are no numerical or experimental studies 

to investigate the effects of using inclined fins, vertical heated walls, and nanoparticle additives 

simultaneously  to improve the thermal energy storage efficiency. This motivates us to propose 

novel stair fins to utilize the advantages of both inclined fins and vertical walls at the same time. 

Moreover, using nanoparticle additives is employed to improve the efficiency of energy storage 

equipment. In the present study, performance improvement of latent heat thermal energy storage 
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units using both newly designed stair fins and nanoparticles will be investigated to find the most 

appropriate design for the stair fins. A common PCM, lauric acid, is used with Al2O3 

nanoparticles as additives in this study. The effects of design parameters on the melting 

performance and the temperature distribution inside a rectangular enclosure are numerically 

investigated. The impact of the natural convection on the melting process is thoroughly discussed 

by utilizing the enthalpy-porosity method. Finally, the average power and thermal storage 

capacity for different fin geometries and nanoparticles volume fraction, together with 

thermoeconomic analysis are provided. 

2. Physical description 

Fig. 1 shows the schematic view of the LHTES enclosure fitted with three stair fins. The 

enclosure is filled with Lauric acid enhanced with CuO nanoparticles. The selected PCM has 

good latent heat with excellent chemical sustainability. The height of the enclosure (L) is kept 

constant at 120 mm with the width (D) of 50 mm. The right wall was isothermally heated at 

333K and the other three walls are insulated. The initial temperature of the nano-enhanced PCM 

is 300K. The stair ratios of the fins are varied from 0 (horizontal fin) to 4 in both upward and 

downward directions. The details of the geometrical parameters are provided in Table 1. The 

thickness of the stair fins    is varied between 1 to 3mm. The fins are made from aluminum 

plates with 5mm thickness   . The simulations are performed for three different numbers of 

fins (2-4) with different fin spacing (s). The details of the thermophysical properties of the 

selected materials are illustrated in Table 2. Lauric acid is selected as the main PCM material and 

CuO nanoparticles with different volume fractions are the additives in the main PCM fluid.  
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Fig. 1 Schematic of the LHTES unit with stair-fins and by nano-enhanced PCM domain. 

Table 1 details of the various fin geometries. 

Stair width (b), mm Stair height (c), mm  , degree Stair ratio (b/c) Fin type 
25.0 0 0 0 Straight fins 
10.0 15.0 33.7 0.67 Down/Up 
12.5 12.5 45.0 1.0 Down/Up 
15.0 10.0 56.3 1.50 Down/Up 
17.5 7.5 66.8 2.33 Down/Up 
20.0 5.0 76.0 4.0 Down/Up 

 

Table 2 Thermophysical properties of nano-enhanced lauric acid and aluminum [39-41]. 

Properties [units] Lauric acid (solid/liquid) CuO 
nanoparticles Al 

Melt temp. [°K] 316.5/321.2 - - 
Cp [J.kg-1K-1] 2180/2390 0.540 0.87 

Latent heat [J.kg-1] 187200 - - 
 [kg.m-3] 940.0/885.0 6500 2719 

k [W.m-1K-1] 11.6 10 - 11.4 10  18.0 202.4 
  [K-1] 48 10  68.5 10  - 
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Viscosity (μ) [Pa.s] 
1968

exp 4.25
273.15T


     

 - - 

 

3. Mathematical formulation 

In this study, the enthalpy-porosity method within Ansys Fluent 19.3 software is employed for 

the numerical simulations. This method has been widely employed in the melting performance 

evaluation of PCMs in energy storage units [42]. Based on this method, different phase is 

assumed as porous media with the porosity of the fluid portion the whole domain.  

This method utilizes various phases as a porous medium in which, porosity is identical to the 

PCM contribution in the model, and it is varied from 0 (solidus) to 1 (liquidus). Besides, the 

Boussinesq assumption is utilized for the buoyancy force evaluations. The governing equations 

for the two-dimensional, transient and incompressible nano-PCM flows in an enclosure can be 

expressed by [41] 

 Mass conservation: 

   
0

t x

v

y

u   
  

  
 (1) 

 momentum 

1
nf nf

nf

u u u P u u
u v

t x y x x x y y
 


                                  

 (2) 

   1
nf nf nf mnf

nf

v v v P v v
u v T T

t x y y x x y
g

y
   


                                    

 (3) 

Where u, v, t, P and nf are the velocity components in x and y directions, time, pressure and 

nanofluid, respectively. This source term in the mushy zone can be expressed as: 
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 2
3

1
mushyS A V






    

  (4) 

where 65 10mushyA    is mushy zone constant and 0.001  is a small parameter to avoid zero 

divisions in the numerical simulations. The liquid fraction    can be expressed as: 

0  if 

  if 

1  if 

solidus

solidus
solidus liquidus

liquidus solidus

liquidus

T T
T

T T

T T
H L T

T

T T



 



        

 




  (5) 

 Energy equation [43] 

 
2

2

2

2

nf

p nf

kT

t c

T T

x y
   

     
 (6) 

The sensible enthalpy is defined as [44]: 

refTref
T

ph c dTh     (7) 

The density and specific heat capacity of the nano-PCM material are computed by utilizing these 

equations [41]: 

 1nf f p       (8) 

      1p p pnf f p
c c c        (9) 

Where the subscriptions p and f refer to the nanoparticles and fluid, respectively. The other 

thermo-physical properties (thermal conductivity, and expansion coefficient) of CuO-PCM can 

also be calculated as [41]: 
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 
 

2 2

2

p f f p

nf f

p f f p

k k k
k

k

k
k

kk k





  


  
 (10) 

      1
nf f p

        (11) 

In the present study, Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm 

is utilized for the analysis together with PRESTO! Scheme which is a well-known method in 

modelling free-convection heat transfer problems. The maximum number of the iterations at 

each time step is 75. Moreover, second-order upwind scheme is utilized to discretize the 

governing equations, while second-order implicit scheme is also utilized for temporal 

discretizing. The under-relaxation parameters for density, pressure, velocity, temperature, and LF 

are 0.9, 0.3, 0.68, 1 and 0.9, respectively. The convergency of the parameters are assumed to 

reach 10−6 for the mass and momentum equations, and 10−8 for the temperature equation.  

Fig. 2 illustrates the grid independency study performed in the present work to select appropriate 

number of elements (N) and time step  t . It can be seen that different number of elements 

(N=14801, 19365 and 26147) were employed in the present study to capture the liquid fraction of 

nano-enhanced PCM inside LHTES enclosure fitted with stair fins over time. It can be seen that 

the difference the liquid fraction between N=19365 and 26147 is around 0.16%, which is small 

and negligible. Therefore N=19365 is selected for further simulations. Before performing further 

simulations, it was necessary to find an appropriate time-step for the transient phase-change 

analysis of nano-enhanced PCM inside LHTES unit. The time-steps were selected in the range of 

times steps utilized in the numerical study of Karami et al. [45]. They employed horizontal fins 

inside thermal energy storage unit filled with lauric acid without nanoparticles additives. The 

size of the enclosure in their study was identical to the present numerical analysis  50 120mm . 
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Three different time steps of 0.03, 0.07 and 0.18sec were employed to find the required time 

step. By comparing the time of the total melting process  mt , it was observed that the deviations 

in the melting time between the 0.03, 0.07sec time steps is 0.05%. Consequently, 0.07t  sec is 

the most appropriate time step for both accurate prediction, and effective computational cost of 

the transient liquid fraction of the nano-PCM melting, and it is selected for further simulations.  

  

Fig. 2 grid and time-step independency study. 

4. Results and discussion 

4.1.  Validation  

for validation purposes the liquid fraction of the LHTS unit filled by lauric acid with 99% purity 

with three horizontal fins was compared with experimental and numerical data available in the 

literature. The comparisons were made for t= 900sec and 2700sec. It can be seen that the liquid 

fraction (LF) contours in this study agree with the previous studies inside enclosures equipped by 

typical horizontal fins with the same materials. This validation indicates that the present 

numerical results are trustworthy.  
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Kamkari et al. [46] 

(Exp.) 

Karami et al. [45] 

(Num.) 

Present study 

 

a) t= 900 sec 

  
 

Kamkari et al. [46] 

(Exp.) 

Karami et al. [45] 

(Num.) 

Present study 

b) t= 2700 sec 

Fig. 3 Validation of the current numerical simulations with previous experimental and numerical 

studies on LHTES enhanced with three straight fins  

To show the effect of downward and upward fins on the liquid fraction at different b/c ratios 

during time spending, Fig. 4 is depicted. As seen in this figure, for both upward and downward 

fins, PCMs starts to melt from the bottom and right corners, due to fins existence, then the 

melting is extended to the central section, and eventually shift at the top right corner to complete 
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the process, especially for upward fins. At initial time steps (t=1000sec) there is not a significant 

difference between the upward and downward fins, but at later times (t=4000sec) melting area 

for upward fins at the top of the enclosure is higher due to the natural convection flow arises with 

these fin geometries. This forces the flow upward due to decreasing the density caused by heated 

fins. It should be pointed out that the total melting time for downward stair fins is lower 

compared to the upward one (See Fig. 10). This lower melting time for the downward stir fins is 

mainly due to the more uniform temperature distribution inside the enclosure. The natural 

convection effects help to accelerate the melting process in the upper side, and the downward 

stair fins can intensify the melting speed in the lower side of the enclosure. The effect of the b/c 

ratio can be found from Fig. 4. As seen, for both upward and downward fins, for the small b/c 

ratio (0.67-1.0) melting process is fast at the beginning (t=1000sec), but it slows with increasing 

the melting process time (t=4000sec). This phenomenon can be explained by two main factors. 

Firstly, by increasing the b/c, the heated surface is increased, and consequently, more heat will 

transfer to PCM and melting will be faster. Secondly, lower b/c ratios make a region between the 

fins in which the fluid is trapped, due to natural convection in larger times. At the initial stage of 

melting process (at t=1000sec), however, this region helps to have more heat transfer and 

consequently faster melting.  

Downward fins Upward fins 
t=1000 sec t=2000 sec t=4000 sec t= 1000 sec t=2000 sec t=4000 sec 
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a) b/c=0.67 

      
b) b/c=1.0 

      
c) b/c=1.50 

      
d) b/c=2.33 

      
e) b/c=4.0 
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Fig. 4 Contours of liquid fraction inside stair-finned enclosure filled by nano-PCM material at 

different melting times for 0.5%  , 2mm  . 

Fig. 5 depicts the effects of fin spacing (s) on the melting process of nano-enhanced PCM inside 

LHTES enclosure fitted by downward stair fins with b/c=1.5. The results are presented for two 

different melting times (t=900 and 1800sec). It can be seen that the phase-change process 

significantly improved by using s=24 mm (N=4) compared to the other cases. In fact, using more 

fins can reduce the total melting time. However, using more fins reduces the PCM inside the 

enclosure which consequently reduces the energy storage capacity of the system. The vortex 

generations and recirculating flows near the junction between the horizontal and vertical fins can 

intensify the melting. Using four stair fins can reduce the total melting time up to 48% compared 

to the case with N=2.  

The effects of fin thickness  1,2,3mm  inside latent heat thermal energy storage units filled 

with nano-PCM material on the total melting time is provided in Table 3. It can be seen that the 

melting time can be reduced by using thicker stair-fins. However, the storage capacity is reduced 

by utilizing the thicker fins, which is due to the smaller PCM capacity inside the enclosure. The 

results show that the total melting time can be reduced by 35.7% by raising the fins thickness 

from 1mm  to 3mm for b/c=4.0.  
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 a) s=40 mm (N=2) b) s=30 mm (N=3) c) s=24 mm (N=4) 

Fig. 5 The effects of fin spacing (s) on the melting performance inside LHTES enclosure filled 

with nano-PCM with downward stair fins (b/c=1.5, 0.5%  ) 

Table 3 The effects of fin thickness on total melting time  mt inside LHTES unit filled with 

nano-PCM  1%  with different stair ratios. 

Fin thickness 
Total melting time  mt , sec 

b/c=1 b/c=1.5 b/c=4.0 

1mm   8122.14 6428.42 4866.02 

2mm   7228.95 5517.08 3968.40 

3mm   6321.80 4609.25 3128.53 
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Fig. 6 demonstrates the temperature contours for the discussed geometry of fins, upward and 

downward at different b/c ratios. Due to heated fins, it can be seen that greater temperatures 

occur around the fins. At the initial times (t=100, 400sec) there is no significant difference 

between the temperatures for upward and downward fins. However, at later stages (t=700, 

1000sec) the temperatures around the downward fins is much greater than upward fins due to 

trapped region of heat at the bottom of fins, while for upward fins the fluid flows upward due to 

natural convection and lower density fluid. Fig. 6, shows that upward stair fins have more 

uniform temperature distributions because melted nano-PCM with high temperature flows to the 

upper side, easily without any obstacle (contrary to the downward stairs cases) due to the impacts 

of free convection. The main reason for the heat retention between the downward fins is that heat 

tends to move upward due to the natural convection. However, in the presence of downward fins 

heat will be trapped between the stair walls and the enclosure walls. However, in the upward 

fins, the heat can easily go up, because the vertical obstacle in the presence of the stair fins is 

removed.   

  

t=100 sec t=400 sec t=700 sec t=1000 sec  

     

Melting Progress 

Heat 
retention 
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a) Downward stair fins  

    

 

b) Upward stair fins  
Fig. 6 Temperature contours inside downward and upward stair-finned enclosure filled by nano-

PCM material at different melting times for 0.5%  , b/c=1.0. 

Fig. 7 shows the effects of nanoparticles with different volume fraction on the melt fraction and 

temperature profiles at 600sec. As seen from the temperature contours, by increasing the 

nanoparticles volume fraction from 0 to 1.5% the melted area will increase due to higher thermal 

conductivity of nano-PCM and consequently, higher temperature around the fins. In fact, 

nanoparticles additives act as heat sinks and absorb the heat from fins, so it facilitates faster 

melting of PCM.  

Natural 
convection 
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0   0.5%   1%   1.5%    

     
0   0.5%   1%   1.5%    

Fig. 7 The effects of nanoparticles volume fraction   on the melting improvement inside stair-

finned enclosures at t=600 sec. 

Furthermore, nanoparticles make some recirculation zones, especially near the fin walls as 

presented in Fig. 8, which causes more turbulence and consequently, more heat transfer through 

these zones. These recirculation areas lead to a portion of the energy transported to the solid-

liquid interface and make a faster and better melting process in storage energy systems. It can be 

deduced that these recirculation zones are stronger at higher melting process times (t=1500 sec). 

Consequently, heat transfer rate will increase with time due to stronger recirculation areas around 
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the heated surfaces. Heat naturally tends to go up, but the cold and frozen area above the molten 

material interacts with the melted PCM and thus, prevents heat flow toward the upstream 

direction. As a result, a vortex flow forms on the fins, which increases the mixing of the current 

between the fan wall and the phase change material. 

 

 

 

 

a) t=500 sec 

 

 

 

 

 

b) t=1500 sec  

Fig. 8 Velocity vectors and recirculation flows over the stair fins at different melting times 

(b/c=2.33). 

Stronger 
recirculations 

Formation of small 
recirculations 

Flow direction 
near the walls 
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As mentioned above, the stair ratio (b/c) is one of the most critical parameters that affect the 

temperature distribution. This effect for nano-PCM is presented in Fig. 9 for t=1800sec. For 

lower b/c ratio (0.67), the temperature distribution is uneven due to heat retention between the 

fins and the enclosure insulated walls, which could not release in the whole enclosure domain. 

By increasing the b/c ratio up to 4.0, the heat propagation inside the enclosure becomes identical. 

Due to the natural convection flow, the temperatures distribution is more uniform. The results 

illustrate that the heat retention between the upward fins with b/c=0.66, and the enclosure upper 

makes the temperature distribution non uniform inside the energy storage unit. This has a 

negative effect on the energy saving efficiency inside the enclosure filled with nano-PCM 

material.  

 

     
a) b/c=0.67 b) b/c=1.0 c) b/c=1.50 d) b/c=2.33 e) b/c=4.0 

Fig. 9 The effects of stair ratio on the temperature distribution inside the nano enhanced PCM 

enclosure at t=1800 sec. 

Heat 
Retention   

Uniform 
Temperature Dist. 



22 
 

As seen in this Fig. 10, a comparison between different b/c ratios for upward and downward fin 

stairs is performed. In both fin configurations (upward and downward), by increasing the b/c 

ratios, the final melted mass fraction is enhanced due to enhanced heat transfer from larger fins 

and the absence of trapped heat areas. It is worth mentioning that at early stage of melting 

process an opposite behavior can be observed. It can be deduced that the total melting time for 

the case of downward fins with b/c-4.0 can be reduced by 16.7% compared to the upward fins 

with the same stair ratio. As discussed earlier, this is mainly due to the more uniform temperature 

distribution inside the enclosure in the presence of downward stair fins compared to the upward 

fins. The downward fins help the melting process in the lower areas of the enclosure, while the 

melting would be higher in the upper side due to the natural convection effects and the 

recirculating flows.  

 

a) Downward stair fins 
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b) Upward stair fins 
Fig. 10 The effects of step ratio (b/c) on liquid fraction versus time for upward and downward 

stair fins  1%  . 

Fig. 11 confirms that using the nanoparticles enhances the melting process, significantly. Indeed, 

during the whole melting process time (0-80 min), greater nanoparticle volume fraction results in 

faster melting process which is due to better thermal conductivity and more heat transfer to PCM 

than smaller VF values. This behavior is also observed by other researchers, which approve the 

efficiency of using nanoparticles in these applications. As seen, when the φ=1.5%, 100% of 

PCM is melted after 80 min, while for φ=0%, approximately 85% of PCM is melted at the same 

time, so nanoparticle additives cause a faster melting process for PCM at thermal energy 

storages.  
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Fig. 11 The effects of nanoparticles volume fraction on melting performance inside LHTES unit 

fitted with downward stair-fins with b/c=4.0. 

The wall heat flux inside LHTES units for both upward and downward and b/c=0.67 and 4.0 

cases is presented in Fig. 12. In this figure, q” (t) can be described as q”(t)= Q(t)/A where Q(t) 

refers to the instant entire heat transfer rates to the PCM and A denotes the overall heat transfer 

surface as a sum of the base and fins. Approximately before t=16min, all the cases had a quick 

reduction in heat flux. Afterward, the behavior of the presented cases is different. Upward fins 

with b/c=0.67 have the minimum heat flux at larger times (t>16min). After that, downward fins 

with the same b/c ratio (0.67) presented lower heat flux. For the cases with b/c=4.0, it can be 

observed that a peak of heat flux is observed. This peak for the upward case occurs faster at 

45min about 1350 W/m2, so it makes a faster melting process compared to other presented cases.  
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Fig. 12 The effects of stair fin geometry on wall heat flux inside LHTES units for different 

times. 

Fig. 13 shows the effects of CuO nano additives on the mean temperature of the LHTES unit 

equipped with descending stair fins with various stair ratios. It is observed that the mean 

temperature rises up to 3.9o C by utilizing stair fins with larger ratios (b/c=4.0) compared to 

b/c=0.67 at a specific time. This is mostly because of the free convection effects and more 

uniform heat distribution inside the enclosure in the presence of the recirculation flows. The 

results show that the mean temperature could be augmented up to 8.1o C by using nano-PCM 

with 1.5%   compared to the pure lauric acid at b/c=4.0. Adding the nanoparticles to the pure 

PCM, improves the thermal conductivity of the phase change material. Consequently, the heat 

propagates much faster inside the enclosure and the mean temperature goes up.  
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Fig. 13 The effects of the nanoparticles volume fraction on the mean temperature of nano-

enhanced PCM with different stair-fin ratios. 

The effects of CuO nanoparticles volume fraction on the energy storage capacity (ESC) of the 

LHTES unit equipped by stair-fins with various shapes are depicted in Fig. 14. The results are 

provided for the downward stair fins with various b/c values. As expected, the energy storage 

capacity enhanced around 9.1% by adding CuO nanoparticles with a volume concentration of 

 1.5%  to the lauric acid for b/c=0.67. The results illustrate that the maximum energy storage 

capacity of 474.1 KJ could be achieved by using descending stair fins with b/c=4.0 and 

1.5%  . The thermal energy storage capacity is improved 21.8%, 22.0%, 18.6% and 16.7 by 

raising the stair ratio from 0.67 to 4.0 for 0  , 0.5, 1, and 1.5%, respectively. As discussed 

earlier, the melting performance of the LHTES enclosure can be improved significantly by using 

stair fins with larger stair ratios. This is due to the more uniform heat distribution inside the 

enclosure by utilizing downward fins.  
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Fig. 14 The effects of the nanoparticles volume fraction on the energy storage capacity (ESC) 

inside LHTES unit with different stair-fin configurations. 

4.2. Economic analysis 

Selecting appropriate materials is an important parameter in the design of the latent heat thermal 

energy storage units. Performance improvement and economical requirements are the main two 

factors that should be considered in using nano enhanced PCM. The main objectives are having 

high efficiency together with low costs. For instance, some high thermal conductivity 

nanoparticles (Cu, CuO, etc.) are great additives in terms of the melting performance 

augmentation and the energy storage capacity, but these nanoparticles are very expensive 

compared to the other nano additives. Consequently, the amount of the nanoparticles used in the 

PCM can be an appropriate way to improve the energy saving and reducing the materials costs. 

For this purpose, a new parameter called thermal energy storage per material cost  cp can be 

defined as [47]: 
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where tm, a, Lh, and m denote melting time (sec), material cost per unit ($/kg), latent heat (J/kg), 

and mass (kg). This parameter can be made dimensionless by dividing it to the material costs 

without using nanoparticles (pure PCM) as follows [47]: 

   ,0
,0 ,0

/
/

PCMPCM h PCM h
c c c

m PCM PCMm p p PCM PCM m m p PCM

mm L m L
p p p

t a mt a m a m t t Nm m
   

 
 (13) 

In the above equation cp , N=ap /aPCM , and subscript 0 denote dimensionless ESC rate per 

material cost, price ratio, and pure PCM case without nanoparticles. Influenced by the market 

variations the price ratio (N) can be changed. For the case of pure PCM melting without CuO 

nanoparticle additives, cp would be equal to unity.  

Fig. 15 shows the variations of the cp with respect to the price ratio. It can be seen that using 

nanoparticles with different volume fractions significantly improves the economic efficiency up 

to 5-6 times compared to the case without nano additives  0  . It can be seen that when N is 

smaller than 8 (cheaper nanoparticles), the price efficiency is the highest for the case of 

1.5%  . This indicates that using cheaper nanoparticles with higher volume fractions is an 

appropriate approach for energy saving improvement of nano-PCM in LHTES units. However, 

the price efficiency becomes smaller by using more expensive nano additives. The efficiency is 

the highest for 0.5%  when the price ratio (N) is larger than 15.  
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Fig. 15 Variations of cp with price ratio (N) for nano-enhanced PCM with different volume 

fractions for downward stair fins with b/c=1.5. 

5. Conclusion 

In this study, the melting performance and energy storage capacity of LHTES units filled by 

nano-PCM is numerically examined. The effects of CuO nanoparticles together with both 

downward and upward stair fins with different stair ratios on the performance characteristics, 

temperature distribution, and the melting time are investigated. The results are compared with 

typical horizontal fins to show the improvement of the proposed stair fins. The main findings are 

summarized as follows: 

 Using nanoparticles together with stair fins can significantly improve the melting 

performance of the LHTES units. The vortex generation of the melted PCM near the stair 

fins can significantly improve the heat transfer inside the enclosure, which improves the 
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energy saving efficiency. Smaller stair ratios make a trapped region between the fins, 

which prevents the fluid from recirculation due to the natural convection. 

 The effects of nanoparticles volume fraction and the stair ratio of the fins in both upward 

and downward directions were investigated. The energy storage capacity could be 

increased around 9.1% by adding CuO nanoparticles with volume fraction of 

 1.5%  to the lauric acid for b/c=0.67.  

 The maximum energy storage capacity of 474.1 KJ could be achieved by using 

downward stair fins with b/c=4.0 and 1.5%  .  

 It can be seen that using nanoparticles with different volume fractions significantly 

improves the economic efficiency by up to 5-6 times compared to the case without nano 

additives  0  . It can be seen that when N is smaller than 8 (cheaper nanoparticles), 

the price efficiency is the highest for the case of 1.5%  . 

 For both upward and downward fins, for the small b/c ratios (0.67-1.0) the melting 

process is faster initially, but it becomes slower at later stages of the melting process time 

(t=4000 sec).  

 By raising the stair ratio from 0.67 to 4.0, the thermal energy storage capacity is 

improved by 22.0% for 1%  .. 
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