Northumbria Research Link

Citation: Conroy, Ross, Zeng, Yifeng and Tang, Jing (2016) Approximating value
equivalence in interactive dynamic influence diagrams using behavioral coverage. In:
IJCAI'l6: Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence. AAAI Press/International Joint Conferences on Artificial Intelligence, pp. 201-
207. I1SBN 9781577357704

Published by: AAAI Press/International Joint Conferences on Artificial Intelligence
URL:

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/44592/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’'s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher's website (a subscription
may be required.)

[

% Northumbria . g

University UniversityLibrary

CUSTOMER

SERVICE
EXCELLENCE


http://nrl.northumbria.ac.uk/policies.html

Approximating Value Equivalence in Interactive Dynamic Influence Diagrams
Using Behavioral Coverage

Ross Conroy, Yifeng Zeng , Jing Tang
Teesside University, Middlesbrough, UK
{Ross.Conroy, Y.Zeng, x9019186} @tees.ac.uk

Abstract

Interactive dynamic influence diagrams (I-DIDs)
provide an explicit way of modeling how a sub-
ject agent solves decision making problems in the
presence of other agents in a common setting. To
optimize its decisions, the subject agent needs to
predict the other agents’ behavior, that is generally
obtained by solving their candidate models. This
becomes extremely difficult since the model space
may be rather large, and grows when the other
agents act and observe over the time. A recent pro-
posal for solving I-DIDs lies in a concept of value
equivalence (VE) that shows potential advances on
significantly reducing the model space. In this pa-
per, we establish a principled framework to imple-
ment the VE techniques and propose an approxi-
mate method to compute VE of candidate models.
The development offers ample opportunity of ex-
ploiting VE to further improve the scalability of I-
DID solutions. We theoretically analyze properties
of the approximate techniques and show empirical
results in multiple problem domains.

1 Introduction

Extending  single-agent  dynamic  influence  dia-
grams (DIDs) [Howard and Matheson, 1984], in-
teractive DIDs (I-DIDs) [Doshi et al, 2009;

Zeng and Doshi, 2012] are a graphical framework for
sequential multiagent decision making (planning) under
uncertainty. Since I-DIDs deal with decision problems from
an individual agents’ perspective, they become a general
decision making framework in both competitive and coop-
erative multiagent settings. Emerging I-DID applications
include supplying control policies in automated vehicle
routing problems [Luo et al., 2011], developing adversarial
models in money laundering activities [Ng er al., 2010],
designing intelligent non-player characters in real-time
strategy games [Conroy et al., 2015] and so on.

From a subject agent’s viewpoint, I-DIDs need to predict
behavior of other agents. The prediction is generally con-
ducted by solving a set of candidate models ascribed to other
agents since the true model of the other agents is often un-
known particularly in a competitive multiagent setting. The

candidate models could be many and are updated when the
other agents act and receive new observations over time. Con-
sequently, the subject agent needs to maintain an exponen-
tially growing space of candidate models, which is the main
computational complexity towards solving I-DIDs.

Most of the previous I-DID solutions focus on behavioural
equivalence (BE) techniques and reduce the model space by
grouping candidate models that generate identical policies for
other agents [Zeng and Doshi, 2012]. More recently, a fresh
idea of model reduction resorts to the concept of value equiv-
alence (VE) and groups models that bring identical expected
value to a subject agent [Conroy er al., 2016]. Compared to
the BE techniques, the VE method groups models that are
either behaviorially equivalent or distinct. Conceptually, VE
exhibits large potential to improve the scalability of I-DID so-
lutions. However, identifying VE seems not to be applicable
since it requires to compute optimal policies in an I-DID that
needs to be built for the subject agent. In an initial investi-
gation, Conroy et al. [2016] learn VE from available data of
agents’ interaction by recording their policies as well as val-
ues assigned to the policies. In this paper, we compute VE in
a general setting where candidate models of other agents are
known and an I-DID needs to be built to compute expected
values for the subject agent.

Ideally, expected values received by the subject agent are
calculated in a complete I-DID that expands all candidate
models of other agents. However, this is a bit contradictory
since we can’t build the complete model due to computational
and memory limits. Hence the challenge is: given the limited
model space, how can we compute VE in a sufficiently good
manner? To address this, we need to first select a subset of
candidate models to build an I-DID for the subject agent, then
calculate expected values of optimal policies resulting from
the incomplete I-DID.

The model selection is important since it impacts the solu-
tion quality of the incomplete I-DID. Intuitively, the resulting
I-DID model may generate near optimal policies if the se-
lected models can sufficiently represent the entire set of can-
didate models. We measure the model representativeness in
terms of its solution that prescribes agent’s behavior, and pro-
pose a behavioral coverage function to facilitate the model se-
lection process. As the policies resulting from the incomplete
I-DID don’t reflect a complete profile of the subject agent, we
cannot simply retrieve the expected value from the model. In-



stead, we calculate the expected values for the subject agent

in a simulated environment: given the (sub)-optimal policies,

the subject agent interacts with other agents who use policies

calculated from any of their candidate models. In this context,

we make the following contributions:

e We develop a principled framework for VE identification
given limited model space. It includes two phases: model
selection and value computation.

e We focus on the model selection and propose a behav-
ioral coverage function to choose top-/K models in order
to build an incomplete I-DID. We theoretically analyze the
proposed function and develop a greedy algorithm for the
top- K model selection.

e We empirically examine VE identification framework, dis-
cussing improvements driving a new line of I-DID re-
search.

2 Background: Interactive Dynamic Influence
Diagram

We briefly review the I-DID framework with elaboration in
the well-studied multiagent tiger problem [Gmytrasiewicz
and Doshi, 2005]. We then describe two types of I-DID solu-
tions, namely behavioral equivalence (BE) and value equiva-
lence (VE). For details we refer to [Zeng and Doshi, 2012]

2.1 Representation

I-DIDs are used to represent sequential multiagent decision
making problems when a subject agent interacts with other
agents under uncertainty and partial observability. I-DIDs
model the predicted behavior of other agents by solving a
set of their candidate models. Actions of both the agents in-
fluence state S and rewards R. In Fig. 1 we show a level [
I-DID representation for agent ¢ modeling another agent j in
level [ — 1. Level refers to the recursive reasoning of both
agents, where level O is the lowest by not modeling the ac-
tions of others. I-DIDs achieve this by introducing a new
node to the framework, the model node, M;,;_;, modeling
the decision making process of agent j at level [ — 1. This
is accomplished by M} ;_; containing a candidate set of j’s
models from which their expected behavior can be calculated
Aj;. The connection between the model node and the pre-
dicted behavior is represented by a policy link (the dashed
line) connecting M, ;_; and A;. Each candidate model con-
tained within M ;1 can itself be a level [ — 1 I-DID or level
0 DID.

Figure 1: A generic two time-slice level [ I-DID for agent ¢ who
optimizes its decisions A; given observations O;.

Complexity arises towards modeling with I-DIDs due to
the update of the model node built up of all of j’s candidate
models. Such models require updating with every time step
via the model update link (the dotted arrow from M ;J_l to

M ﬁ_ll in Fig. 1), as agent j acts and receives observations
over time. The updated models differ in the beliefs that are
obtained for a pair of j’s actions and observations. Agent @
tracks the updates of 7 models with the number of models
growing in a new model node. The number of models grows
exponentially for each time step. The number of models in
ML isupto MY, [|A;]|€;] where [MY, | is the num-
ber of models at time step ¢, and | 4;| and |€2;| are the largest
spaces of actions and observations respectively.

To solve I-DIDs we replace the model nodes and update
links with chance nodes and dependency links. This converts
the I-DID into a regular DID allowing for any DID solving
technique to be applied. Below we show the multiagent tiger
problem to elaborate the I-DID framework.

We show a level 1 I-DID for agent i considering two candi-
date models of agent j , mz-:(l) and mt-fj atLevel Oin Fig 2. The
I-DID has been converted to a regular DID where the chance
node Mod[M; o] represents j’s candidate models differing in
beliefs of the tigers location. Solving all candidate models
obtains j expected optimal decisions. The conditional proba-
bility table (CPT) in Fig. 4 show agent j’s optimal decisions
of OL and L when the candidate models have been solved for
level 0. These optimal decisions can then be mapped into the
predicted actions of j in A%.

Figure 2: Converted level 1 I-DID for agent i, tiger problem.

In Fig. 3 we show the model update of mt-ié and m§§ as
agent j receives one of two possible observations (either G L
or GR). This requires four new models to be generated in the
model node M; "

Figure 3: Details of the model update link where two models are
expanded into four models in M ;751.

Fig. 4 shows he CPT of M od[M;;gl}. For example, the first



row of the CPT shows m; 0 is updated into the model m”o1 !

when agent j takes the actlon OL at time ¢ and observes GL
at t + 1. As neither OR nor L is the optimal de(:1510n for

t,1
m;o, We assign a uniform distribution to indicate mb 70 does

not transform into any of the new models for these actions.

Decisions(A)
OL: Open the left door

Mod[M; ] oL OR L
ml‘0|,| 1 0 0 SRL‘S(?::" the right door
m,‘u"z 0 0 1 Observations(Growl)
GL: Growl from the left door
CPT of A} GR: Growl from the right door
<Af, Grow\f“> Mod[MJ‘g‘] mwmn mwm,z m‘vom‘z m‘vouu
<OL, GL> ;" 1 0 0 0
<OL, GR> ;o 0 1 0 0
<L, GL> m,,o"2 0 0 1 0
<L, GR> m;o"? 0 0 0 1
<OR, *> * 1/4 1/4 1/4 1/4
<L, > o’ 174 1 1A s | 14
<oL, *> myo? 174 1/4 1/4 1/4

CPT of Mod[M;o"*"]

Figure 4: The CPTs of the chance nodes A§ and Mod[M}}"].

2.2 Solutions

Solving a level [ I-DID includes two steps. We first need to
solve j’s candidate models at level /-1 and expand them in the
[-DID, converting the I-DID into a regular DID (as shown in
Fig. 2). After that, we can use any conventional DID tech-
nique to solve the converted model. The main complexity is
the exponential growth in the number of models over time.
Most existing research focuses on two types of model reduc-
tion techniques to compress the model space in I-DIDs.
Behavioral Equivalence (BE) groups candidate models with
identical policies for agent j at level [ — 1, as defined below.
Definition 1 (BE) Two models, m; and m;, of agent j, are
behaviorally equivalent if OPT(m;) = OPT(i;), where
OPT(-) denotes the solution of the model.

A model solution is generally represented by a policy tree. A
depth-T" policy tree contains a set of policy paths, 7;T=U hJT
where the policy path, h7, is an action-observation sequence

over T' planning horizons. We let hT = {af,o/™ }/ o,
where 0! is null with no observations following the final ac-

\ J
tion.

Value Equivalence (VE) groups models that generate the
same expected value for agent 7 at level [, as defined below.

Definition 2 (Value Equivalence) Tivo models of
agent j, mj;—1 and "hji;_1, are value equivalence if
VE (i g|mgi— = mgg1) = VI (maalig 1 < mjioa),
where VT (-) is the expected values for agent i given that
the model 1h;; is expanded by replacing mj;_1 with
mji—1 (Mmj—1 < Mmj_1 or vice versa) in a set of j’s
candidate models.

Expected value of agent i’s model m;; computed in Eq. 1.

VT(mzl)—p i1y A +ZPT Oz‘bllv )VT 1( 7.1)

ey
where p(bi i, ai)= >2  bii(s,mji-1) X0 Ri(s,af, a;)

5,mj 11 aj
x Pr(a;lmji-1).

Here, b; ;(s,m; ;—1) is the agent ¢’s belief over the physical
states and possible models of j atlevel [ — 1, a} is ¢’s optimal
action and m/, ;.1 18 the updated model of agent : contamlng the
updated behef at the next time step.

Note that agent ¢ assigns some probability mass to every
candidate model of agent j in the model node (M od[M}]).
When the replacement (m;;_1 <+ 771;;—1) occurs, we trans-
fer the probability mass over the two models. According to
Eq. 1, the VE models could be either behaviorally equivalent
or distinct. Hence using VE, compared to BE, could lead to
more reduction in the model space of agent j. The most re-
cent I-DID research [Conroy et al., 2016] proposes the VE
concept, but doesn’t develop applicable I-DID solutions.

3 Model Selection and Value Computation

VE determination needs to compute the expected value of
agent ¢, which requires building an I-DID for ¢ and solve the
model accordingly. An exact solution expands all candidate
models of agent j to build a complete I-DID. However, this is
not applicable. In this paper, we approximate the VE identifi-
cation given the limited model space in an incomplete I-DID.

3.1 Value Equivalence Identification Framework

Let M;;_1 be the set of all candidate models of agent j.
Through VE, we aim to reduce the set into the limited space
containing K models M ji—1- Alg. 1 shows a principled
framework for identifying VE of candidate models, which re-
sults in the compressed model space.

Algorithm 1 VE Identification Framework

1: function FRAMEWORK(m; ;, M ;—1, K, N)

2 Initialize M, < 0, Ite=0

3 while |.M]l || < KA te+ |IME 1| < |Mji-1]) do

4 New Mg,lﬂ < SelectModel(M;,;—1, K)

5: for all m; ;1,71 € M}, do

6: Build T;Liyl given mj,l,l — Mji—1

7 Build m;; given my ;1 < Mj, -1

8 7AZ — 1y .S0lve, T; < my .Solve

9: V(mi,l|m]~,l,1 — mj,l,l) — ComputeValue(ﬁ,
Mji-1, N)

10: V(ms|mji—1 < mji—1) < ComputeValue(7;,
M1, N)

11: if V(m¢,l|mj,l,1 < ’I?A’Ljylfl) = V(mi7l|m]‘1171 —
mj,171) then

12: ],z 1 {myl 1}

13: Ite = Ite+ 1

14: return Mfl,l

In this framework, we first develop a model selection func-
tion to choose a subset of j’s candidate models based on
which we can build incomplete I-DIDs for agent ¢ (line 4).
We then retrieve optimal policies of agent 7 by solving the
built [-DIDs when a mutual replacement is conducted in the
subset (lines 6-8). We can use the previous I-DID techniques
to solve the models (line 8). Subsequently, we compute the
expected values of agent ¢’s policies through a value com-
putation function that evaluates the policies over N simula-
tions (lines 9-10). The value comparison may prune the VE



models and further compress the subset (lines 11-12). We re-
peat the process until the limited model space is filled with K
models or all the candidate models have been searched.

3.2 Top-K Model Selection

Without a complete [-DID built by expanding all candidate
models, we can’t guarantee an optimal policy will be used to
compute the expected values of agent ¢. Given the limited
model space, we aim to provide reasonably good policies by
selecting a proper subset of j’s candidate models to build I-
DIDs. We proceed to develop such a selection mechanism.
Intuitively, we need to choose K models whose joint solu-
tions (representing agent j’s behavior) have the largest cov-
erage of solutions of an entire set of j’s candidate models.
In other words, the quality of ¢’s policies resulting from the
[-DID may not be significantly compromised if agent ¢ con-
siders as many as possible representative behaviors of j. The
representative behavior occurs frequently in agents’ interac-
tions. Inspired by this, we introduce a behavioral coverage
function that measures the similarity between models.

The similarity between models m; and m;», denoted by
w(mg, m/) is defined by how similar the policy generated
by m; is to that ofm

’
w(mg, m;) = >
hT eTT hT,eT?,
J J ™y ™5

It is calculated in Eq. 2.

mm%@ﬁﬂ(m

where sim(hfnj ) hﬁ, ) counts the number of identical actions
J

given same observations at each time step.

Then, Zm; eME, w(my, m;) measures how much of the
model m; is covered by the selected K models. We aim to
find a set of top-K models, /\/l 1—1- that have the largest be-
havioral coverage of the entlre model space M ;_;. For-

mally the top-K model selection is formulated as one opti-
mization problem below.

Given :M;;_1, K

Objective :

mamelilgMj,l,l,lelil\:K ) (3)
K

o(Mj1) = ijej\/lj,171 2o Lemi w(m;, m;)

We observe that the model selection is a complex combina-
torial optimization problem with a single objective. We prove
it to be NP-hard.

Proposition 1 The top-K model selection problem formu-
lated in Eq. 3 is NP-hard.

Proof. We prove it by converting Eq. 3 into a unit
cost version of the budgeted maximum coverage prob-
lem (UBMC) [Khuller ef al., 1999]. Given a unit cost ver-
sion of the UBMC problem instance ¢ : a collection of
sets S = {51,592, -+, S} with a unit cost C, a domain
of elements X = {x1,22, - ,x,} with associated weights
{z1,22, -+, 2n}, and a budget B, we can construct a top-K
model selection instance w by setting K = | B/C'| and o(5’)
corresponds to the total weight of the elements covered by S’.
Hence, S’ is the set having a maximum weight in ¢ iff S’ is

the top-K model set of w. As the UBMC problem has been
proved to be NP-hard, the top- K model selection problem is
NP-hard as well. B

It is rather hard to solve the model selection problem.
Meanwhile, we notice that the selection function o (M flq)
is a monotone submodular function [Nemhauser ez al., 1978].
Let V be a finite set. A set of function F: V — R is called
submodular if it satisfies the diminishing returns property,
F(BJs)—F(B) > F(BJs)— F(B),foral BC BCV
and s ¢ B. F(B|Js) — F(B) is the marginal increase of F’
when an element s is added into B. Submodularity charac-
terizes the notion that supplementing elements to a small set
B provides more than doing it to a larger set B.

Naturally, U(Mflq) is monotone as the model coverage
increases with a larger set of candidate models. It is also sub-
modular. Intuitively, the increment when adding a new model
into a small set of top-/; models will be larger than the incre-
ment when adding it to a large set of top-K- models, where
K < Ko, since the behavior exhibited by the new model
might have already covered by those models that are in the
larger set but not in the small set. This is the diminishing
returns property. We present the property of U(Mfl_l) in
Proposition 2.

Proposition 2 The model selection function U(MjKlq) is
monotone and submodular.

The monotone submodular property suggests a greedy al-
gorithm with theoretical guarantees for optimizing the model
selection function [Nemhauser er al., 1978]. In Alg. 2, the
greedy algorithm starts with an empty set and computes be-
havioral coverage of every model (lines 2-4). Then repeat-
edly adds the model incurring the largest marginal coverage
increasing the model set until | M fl—l‘ = K (lines 5-7). The
algorithm achieves near-optimal solutions of top-K models
with a (1—%) approximation on optimal behavioral coverage.

Since the greedy algorithm needs to check all of the can-
didate models in every round (line 6), the time complexity is
O[K|M;,-1B(c(-)), where B(co(-)) the run time for com-
puting the model coverage.

Algorithm 2 Model Selection

1: function SELECTMODEL(M;;_1, K)

2: MfL,1 - @

3 for all m; € ./\/lj7171 do

4 Compute o({m;})

5 for Ite=1 to K do

6: m;  argmazm; [o(Mi5_ Um;) —
7

8

(Mjl 1)}
Mgl 1 FMfzfl Um;

return M],l,l

Remarks. We note that many previous BE
techniques[Zeng and Doshi, 2012] have the same pur-
pose of selecting a subset of candidate models to develop
I-DIDs of high quality. However, the techniques prune the
models through a pair check of behavioral equivalence and
don’t consider impact of individual models on the global
behavioral coverage. As demonstrated in empirical study (in



Algorithm 3 Value Computation

1: function COMPUTEVALUE(T;, M;;—1, N)
2: Rewards=0
3 for Ite=1to N do
4: Sample m; € M;—1 according to ¢’s beliefs
5 T; < mj.Solve
6 Agents ¢ and j perform actions following 7; and 7; re-
spectively over 7' time steps
Agent ¢ accumulates Rewards for each round of 7" steps

Rewards
return ==

[c BN

Section 4.1), top-K model selection technique provides
better I-DID solutions.

Selection of K value often depends on model space al-
lowed in I-DIDs so that the I-DIDs can be solved for a specific
planning horizon. A trade-off between quality and scalability.

3.3 Value Computation

Given top-K models, we build an I-DID based on which we
proceed to identify VE of models in the selected set. As the
incomplete I-DID is built from a subset of 7’s candidate mod-
els, the resulting policy for agent ¢ may not be the same as that
computed from a complete I-DID expanded by all j’s mod-
els. The expected value of the incomplete I-DID is not a good
measurement of agent ¢’s policy since unexpected behavior of
agent j that may occur in their interactions may not be con-
sidered by agent ¢. Thus, we compute the expected value for
agent ¢ by simulating how ¢ interacts with agent j. The value
is counted as the average rewards that agent ¢ receives when
it interacts with agent j over a number of times. This is well
matched with how I-DID solutions are evaluated in the pre-
vious I-DID research. To have the self-contained paper, we
present a value computation in Alg. 3

Given agent 7’s beliefs over j’s models, we sample a model
of j and solve the model to obtain its policies (lines 4-5).
Then, agents follow their policies in the interactions (lines
6-7). We conduct /N simulations and compute the expected
value of ¢’s policies as the average reward of the simulations.

4 Experimental Results

We implemented the framework (in Alg. 1) to prune VE mod-
els of agent 5. The implementation replaces the previous BE
pruning methods in solving agent ¢’s I-DID [Zeng and Doshi,
2012]. We first verify the performance of the top-K model
selection in Alg. 2, which itself can be used to solve I-DID,
in comparison to the state-of-art BE methods. We then evalu-
ate the entire VE identification framework in two large prob-
lem domains. One is the UAV benchmark (|S|=81, |A|=5 and
|2|=5) [Zeng and Doshi, 2012] - currently the largest problem
domain studied in I-POMDP/I-DID based multiagent plan-
ning research while the other is a real-world game domain of
StarCraft ' (|S|=16, |A|=3 and |Q|=4). We build level 1 I-
DIDs for agent ¢. To compare different I-DID techniques, we
compute the average rewards of agent 7 when it plays against
agent j by executing their policies solved from the I-DIDs.

'http://eu.blizzard.com/en-gb/games/sc/
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Figure 5: Performance of top- K model selection in Tiger.

4.1 Top-K Models as I-DID Solutions

We build level 1 I-DID for the multiagent tiger problem since
the problem is small and allows an intensive study of the
model selection algorithm. In solving I-DIDs, we replace
the entire set of j’s models with top-/K models selected by
the greedy algorithm (GS) in Alg. 2. We compare the top-K
model selection technique with both the exact BE approach
- discriminative model update (DMU)- and the approximate
one (ABE) [Zeng and Doshi, 2012]. Note that no VE models
are pruned in these experiments since the model selection is
conducted for a single round.

In Fig. 5, we show agent i’s average rewards over 500 sim-
ulations for 7'=6 and 10 respectively. For a fair comparison,
we let top- K and ABE maintain the same number of j’s mod-
els at each time step in the I-DIDs. We observe that top-
K consistently outperforms ABE when K varies in different
cases. As expected, the top-K model selection technique ap-
proaches DMU when more models are selected. This is be-
cause ABE doesn’t consider joint effect of agent j’s behavior
and may keep redundant models in the limited model space.
The top- K models maintain a global coverage particularly on
the representative behaviors. Hence the top-K models se-
lected by GS develop a good quality of I-DID subject with
the limited model space.

4.2 Value Equivalence Performance

In this set of experiments, we prune VE models using the
implementation in Alg. 1, denoted by VE+GS. To confirm
the performance of GS, we also implemented a random
search (RS) algorithm to find top-K models. RS randomly
chooses a set of K models for a number of times and keeps
the one with the largest behavioral coverage. It may replace
GS in the model selection function and the resulting I-DID
solution is labeled by VE+RS.

UAV Problem Domain

In Fig. 6, we show the performance of VE approaches for
solving I-DIDs in UAV. The rewards of agent ¢ are averaged
over 100 simulations. VE+GS exhibits very competitive per-
formance compared to DMU and performs significantly bet-
ter than VE+RS. The random selection doesn’t generate a
good set of top-K models, which impacts the VE determi-
nation resulting in poor I-DID solutions. Since VE prunes
more models than DMU, it has a better scalability to solve
more complex I-DIDs like T=7 in Fig. 6b.

StarCraft Application
The real-world domain we choose to model for testing
VE+GS is StarCraft. We choose StarCraft because the do-
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main has partial observability by hiding the true state of the
game to the player, requiring the player to make observations
influenced by the true state. Human vs Human games are in-
credibly complex with players required to maintain focus in
many problem areas such as resource management and battle
tactics. In this paper, we focus on a typical 3 vs 3 unit battle.

As a small number of j’s candidate models are tested, we
implemented an optimal search algorithm (OS) to select top-
K models. OS compares behavioral coverage values for ev-
ery combination of K models. Fig. 7a shows that VE+GS
performs closely with VE+OS for solving I-DIDs. It has
slightly better performance than VE+OS in some cases. This
is because the approximation of VE+GS may introduce mod-
els that concentrate on a very small number of representa-
tive behaviors. However, OS distributes the focus (¢’s beliefs)
over multiple types of behaviors to optimize the coverage.
Particularly in game-play, players often focus on a specific
gaming pattern, which is confirmed in the available game re-
play data. Agent ¢ will be highly rewarded by successfully
predicting this single type of behavioral pattern.

Fig. 7b compares model selection time. RS is much faster
than others, but results in the lowest rewards. OS starts with
similar durations; however, as K increases it increases much
faster than GS. We don’t show the time of computing values
in Alg. 3 since it is similar among all the three methods due to
similarly sized I-DIDs generated. Although DMU model se-
lection is compared in model selection, the resulting I-DID’s
model space is too large to be solved. Thus showing the im-
proved scalability of our model reduction method.

5 Related Works

I-DIDs are a graphical representation of finitely-nested in-
teractive partially observable Markov decision processes(I-
POMDPs) [Gmytrasiewicz and Doshi, 2005]. Exponential
growth in candidate models of other agents adds significant
complexity to solving I-DIDs.

Currently the accepted methods exploit BE to reduce the

model space within I-DID solutions [Zeng and Doshi, 2012].
Multiple works examine policy trees to develop methods to
reduce the model space. Doshi er al. [Doshi et al., 2010]
introduces an e-subjective equivalence method. e-subjective
equivalence seeks to prune the model space of I-DIDs by
pruning equivalent models comparing agents future action
observation paths. Zeng et al. [Zeng et al., 2011] cluster mod-
els by comparing only a partial set of paths within the policy
trees of other agents j. Online [-DID solutions of expand the
true behavior of other agents from interactions pioneered by
Chen et al. [Chen et al., 2015]. Learning behavior of agents
from available data [Conroy et al., 2015] provides knowledge
towards refining the model space in I-DIDs. BE techniques
have aided in the usefulness of I-DIDs and shown potential
data-driven learning towards real-world applications [Luo et
al., 2011; Conroy et al., 2015]. In line with the recent work of
Albrecht et al. [Albrecht et al., 2015] with type based meth-
ods our method of model reduction can be generalised as an
example of such a method.

Most relevant work of utility equivalence techniques in
a social simulation setting of class bullying [Pynadath and
Marsella, 2007], shows a minimal number of mental models
that could be maintained through grouping utility equivalent
models. In the same vein, Conroy el al. 2016 show benefit
of VE-based I-DID solutions where VE models can be found
from available interaction data without building I-DIDs.

Graphical models of cooperative decision making
scenarios utilizing frameworks such as decentralized
POMDPs [Seuken and Zilberstein, 2008] remain relatively
unexplored while factored representations of the state space
are becoming prevalent [Olichoek er al., 2008]. Such
factored representations allow for solutions to decentralized
POMDPs amongst multiple agents by exploiting the structure
of interactions amongst such agents [Oliehoek et al., 2013].
Factored representations in dynamic Bayesian networks
to project agents’ beliefs foreward, then expectation-
maximization learning of stochastic finite state machines was
utilized by Pajarinen and Peltonen [2011].

6 Conclusion and Future Work

Value equivalence exhibits scalability improvement over the
BE techniques for solving I-DIDs. More importantly, VE
methods are developed in consideration of expected values of
a subject agent so that they can directly measure the solution
quality. Given the limited model space, the VE techniques
can’t avoid approximation in the VE identification. However,
as demonstrated in the empirical study, the top-K model se-
lection provides sufficiently good I-DID solutions.

Immediate VE-based I-DID research may consider im-
proving either effectiveness of the top-K model selection or
efficiency of value computation. The behavioral coverage
function can be extended to include other factors. For ex-
ample, as suggested in the above tests in Starcraft, it is worth
focusing on highly rewarded behavioral patterns. However,
holding a monotone submodular function is important since it
introduces efficient approximation with theoretical guarantee
on solution quality. Another interesting direction is the im-
provement of computing expected values of agents’ policies
in multiagent settings by reducing the number of samples.
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