Solar water splitting exceeding 10% efficiency via low-cost Sb2Se3 photocathodes coupled with semitransparent perovskite photovoltaics

Yang, Wooseok, Park, Jaemin, Kwon, Hyeok-Chan, Hutter, Oliver, Phillips, Laurie J., Tan, Jeiwan, Lee, Hyungsoo, Lee, Junwoo, Tilley, S. David, Major, Jonathan D. and Moon, Jooho (2020) Solar water splitting exceeding 10% efficiency via low-cost Sb2Se3 photocathodes coupled with semitransparent perovskite photovoltaics. Energy & Environmental Science. ISSN 1754-5692 (In Press)

[img] Text
PURE_version_PV_PEC_tandem_manuscript_.pdf - Accepted Version
Restricted to Repository staff only until 14 October 2021.

Download (1MB) | Request a copy
Official URL: https://doi.org/10.1039/D0EE02959A

Abstract

Solar water splitting directly converts solar energy into H2 fuel that is suitable for storage and transport. To achieve a high solar-to-hydrogen (STH) conversion efficiency, elaborate strategies yielding a high photocurrent in a tandem configuration along with sufficient photovoltage should be developed. We demonstrated highly efficient solar water splitting devices based on emerging low-cost Sb2Se3 photocathodes coupled with semitransparent perovskite photovoltaics. A state-of-the-art Sb2Se3 photocathode exhibiting efficient long-wavelength photon harvesting enabled by judicious selection of junction layers was employed as a bottom absorber component. The top semitransparent photovoltaic cells, i.e., parallelized nanopillar perovskites using an anodized aluminum oxide scaffold, allowed the transmittance, photocurrent, and photovoltage to be precisely adjusted by changing the filling level of the perovskite layer in the scaffold. The optimum tandem device, in which similar current values were allocated to the top and bottom cells, achieved an STH conversion efficiency exceeding 10% by efficiently utilizing a broad range of photons at wavelength over 1000 nm.

Item Type: Article
Subjects: F300 Physics
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Rachel Branson
Date Deposited: 04 Nov 2020 11:43
Last Modified: 04 Nov 2020 11:45
URI: http://nrl.northumbria.ac.uk/id/eprint/44679

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics