
Northumbria Research Link

Citation: Albarrak, Mohammed S., Elnahass, Marwa, Papagiannidis, Savvas and Salama,
Aly (2020) The effect of twitter dissemination on cost of equity: A big data approach.
International Journal of Information Management, 50. pp. 1-16. ISSN 0268-4012 

Published by: Elsevier

URL:  https://doi.org/10.1016/j.ijinfomgt.2019.04.014
<https://doi.org/10.1016/j.ijinfomgt.2019.04.014>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/44698/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


 

The Effect of Twitter Dissemination on Cost of Equity: A Big Data Approach 

 

Abstract 

 

Reducing information asymmetry between investors and a firm can have an impact on the cost 

of equity, especially in an environment or times of uncertainty. New technologies can 

potentially help disseminate corporate financial information, reducing such asymmetries. In 

this paper we analyse firms’ dissemination decisions using Twitter, developing a 

comprehensive measure of the amount of financial information that a company makes available 

to investors (iDisc) from a big data of firms’ tweets (1,197,208 tweets). Using a sample of 

4,131 firm-year observations for 791 non-financial firms listed on the US NASDAQ stock 

exchange over the period 2009-2015, we find evidence that iDisc significantly reduces the cost 

of equity. These results are pronounced for less visible firms which are relatively small in size, 

have a low analyst following and a small number of investors. Highly visible firms are less 

likely to benefit from iDisc in influencing their cost of equity as other communication channels 

may have widely disseminated their financial information. Our investigations encourage managers 

to consider the benefits of directly spreading a firm’s financial information to stakeholders and potential 

investors using social media in order to reduce firm equity premium (COE). 
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1. Introduction 

 

Revolutionary communication tools, such as social media applications, provide a massive 

amount of information (“big data”), which leads to a great deal of attention and action on the 

part of firms (de Camargo Fiorini, Seles, Jabbour, Mariano, & de Sousa Jabbour, 2018). These 

tools of big data bring profound changes in the way that firms manage their customers and 

business (see Raguseo, 2018), and have become important channels to diffuse information 

(Agarwal, Kumar & Goel, 2019), as part of firms’ disclosure strategy to meet the increased 

demand for information by investors. A key objective is to reduce the uncertainty about current 

and future investment opportunities. Corporate disclosure can help to reduce the information 

asymmetry that exists between management and market participants, and between informed 

and uninformed investors (Diamond & Verrecchia, 1991; O. Kim & Verrecchia, 1994; Leuz & 

Verrecchia, 2000). In turn, this can have significant implications as to which companies attract 

the necessary financial resources to grow and become successful. 

Although corporate information is assumed to be available to all market participants once 

firms disclose, “most firms have difficulty ensuring their news reaches a broad set of 

investors”, which results in information asymmetry (Blankespoor, Miller, & White, 2014, p. 

80) and this increases the need for a better dissemination strategy. This strategy is about a 

firm’s decision to spread information about the firm to the public through specific channels or 

not. A firm's decision to disseminate is different from its voluntary disclosure decision, which 

focuses more on providing information, if the benefits of disclosure outweigh the associated 

processing and proprietary costs (Kothari, Shu, & Wysocki, 2009b). Dissemination is also 

necessary for informing investors about a firm, resulting in improving investor recognition of 

the stock and therefore a lower cost of equity (hereafter, COE) (Merton, 1987). The challenge 

is that investors can only spend limited time and pay little attention to news about firms, due 

to the acquisition cost that they bear through searching, retrieving and understanding the 

required information (Hirshleifer, Lim, & Teoh, 2011; Hirshleifer & Teoh, 2003; Hong & 

Stein, 1999; Merton, 1987). As such, investors may rely on few information intermediaries, 

such as the press, to receive news about firms. Due to limitations in coverage, there is a high 

chance that investors will not receive the news about lower press coverage firms or start-ups 

that do not command the necessary recognition. Instead, managers may use social media as a 

complementary channel to address this challenge (Blankespoor et al., 2014). This makes it 

possible for investors to obtain relevant information on a timely basis and in doing so to reduce 

the acquisition cost of information, by saving the time and energy needed to search for relevant 
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news. Such dissemination activity is expected to lead to lower information asymmetry and 

improve investor recognition. Therefore, our study seeks to examine whether a firm's 

dissemination of financial information (iDisc) on Twitter has an impact on the firm’s COE.  

The effect of dissemination decisions has not been widely explored in the literature due to 

the difficulty of isolating dissemination from disclosure. Prior studies (Kimbrough & Louis, 

2011; Mayew, 2008) have been either silent about the dissemination role or assume that 

dissemination exists once the disclosure is released. Although recent studies (Bushee, Core, 

Guay, & Hamm, 2010; E. X. Li, Ramesh, & Shen, 2011) have pointed out that dissemination 

can be isolated from disclosure through press coverage, firms have no control over the content 

and dissemination decision of the press. The press is also likely to adjust the content of 

information by expressing opinions, including summaries, or providing additional information, 

which makes the effect of dissemination unclear. Conversely, firms may opt to use Twitter for 

dissemination as they can have full control over the volume, frequency and timing of the 

disseminated information and can reach investors undiluted. However, there is little empirical 

evidence on how firms' dissemination of financial information on Twitter can be valuable to 

firms. Hence, this study aims to shed light on whether iDisc affects their COE, also controlling 

for many relevant factors. 

By meeting our objectives, we show that firms can reduce the COE by improving their 

information environment through their dissemination activities on big data information 

technologies channels. This evidence suggests that the managerial choice of using iDisc and 

diffusing information through their social media accounts could be perceived as part of the 

firm’s strategic voluntary disclosure policy. This finding also shows the importance of using 

Twitter as a communication channel to connect with market participants, to reduce investors’ 

acquisition costs, reduce the gap between informed and uninformed investors and help 

investors to make better investment decisions. This paper contributes to the growing literature 

on the market consequences of firms’ dissemination of information on Twitter (Blankespoor et 

al., 2014; Prokofieva, 2015; Lee et al., 2015; Jung et al., 2017; Mazboudi & Khalil, 2017). 

These studies show how firms benefit from Twitter activity by improving market liquidity and 

attenuating negative market reaction. First, we show how iDisc affects the implied COE, based 

on an average of four measures of COE. Our study adds to Al Guindy (2016), which examined 

firms’ use of Twitter and the cost of capital. We have examined the dissemination effect, which 

is different from firms’ decisions to use Twitter. We have also used dissimilar COE estimates, 

more control variables and a different estimation model. In addition, our study contributes to 

previous studies by focusing on firms that are traded on the NASDAQ stock exchange and by 
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selecting a longer sample period. Second, while previous studies examined the effect of the 

level and quality of a variety of disclosure information and channels (Botosan, 1997; Orens, 

Aerts, & Cormier, 2010; El Ghoul, Guedhami, Kwok, & Mishra, 2011; Mangena, Li, & 

Tauringana 2016), our empirical settings focus on firms' dissemination activity. Our results 

show that dissemination has a meaningful effect on COE, which is not in line with prior studies 

(Hughes et al., 2007; Lambert et al., 2007, 2011) that argue that the real effect is from the 

information precision. Although tweets are short messages which are expected to have a 

smaller amount of information than an annual report, our results show the influence of iDisc 

on COE. Third, we contribute to previous studies (Blankespoor et al., 2014; Jung et al., 2017) 

that isolate the effect of dissemination from disclosure by examining the influence of 

dissemination on the COE. Fourth, the findings remain unchanged under varied news 

magnitudes and contents. Therefore, we extend the prior evidence of Kothari et al. (2009a) by 

examining the effect of dissemination and the tone of a new information intermediary, Twitter, 

and big data on the COE. Finally, we contribute to the literature on big data (e.g. Sivarajah, 

Kamal, Irani, & Weerakkody, 2017; Stieglitz, Mirbabaie, Ross, & Neuberger, 2018; Warren 

Jr, Moffitt, & Byrnes, 2015) by collecting over a million pieces of data for a longitudinal time 

period and constructing a measure of the amount of financial information that firms diffuse 

from the large set of firms’ tweets data. While some studies focus on outside and within firm 

data (e.g. Gandomi & Haider, 2015), our study focuses on the firm’s initiative data on Twitter. 

Overall, this study contributes to the literature by analyzing social media big data in the 

financial context. 

The next section reviews the relevant literature. The methodology section outlines the 

sample data and model tested. The paper then presents and discusses the empirical results, 

comparing and contrasting them with past literature. The paper concludes by considering the 

theoretical and managerial implications of the empirical evidence.  

2. Literature review and hypothesis development 

 

2.1 Information asymmetry, information intermediaries and cost of equity 

 

Cost of equity is the cost to a firm of using investors’ funds that the company raises and 

uses. Previous studies have documented the important role of accounting information in 

reducing a firm’s COE (Beyer, Cohen, Lys, & Walther, 2010; Easley & O'hara, 2004).   Some 

attention has been paid to the communication channel used for disseminating firm information 
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and its implications for the COE.  Francis, Nanda, and Olsson (2008) show that disclosing 

management forecasts and conference calls are associated with a higher COE, whereas this 

association is not significant for press releases. Kothari et al. (2009) highlight the role of 

information intermediaries on the COE, finding that it is affected by business press coverage 

for both good and bad news. They find that information reported by management and analysts 

does not provide significant evidence. They also suggest that "technological innovation […] 

and changes in disclosure channels and the number and type of information intermediaries 

that continue to reshape disclosure and financial reporting practices create new and exciting 

opportunities for research" (p. 1667). Such intermediaries create value by being easier to 

manage, and being more efficient and specialised than other media channels (del Águila-Obra, 

Padilla-Meléndez, & Serarols-Tarres, 2007). 

As “the cost of equity capital is increasing in the level of information asymmetry” (Beyer 

et al., 2010, p. 314), making dissemination decisions to spread information through different 

communication channels matters (Drake, Guest, & Twedt, 2014; Twedt, 2016). In essence, 

firms’ dependence on financial intermediaries, such as the press, could be subject to some 

limitation as the press may favour articles about firms that attract a wider audience (Miller, 

2006), which may affect the effectiveness of the firm’s disclosure. Therefore, improving the 

reach and spread of information through dissemination could play a role in enhancing the 

usefulness of corporate disclosure. That is, different degrees of dissemination, apart from 

voluntary disclosure, matter (Drake et al., 2014). Previous studies have found that the 

dissemination level of the business press affects stock prices (E. X. Li et al., 2011), price 

discovery (Twedt, 2016), information asymmetry (Bushee et al., 2010) and the expected rate 

of return (Fang & Peress, 2009). Overall, these findings imply that dissemination has its own 

capital market consequences apart from disclosure. 

 

2.2 Social media and financial dissemination 

 

Social media employ mobile technologies and web-based to create highly interactive 

platforms by which various stakeholders, individuals and communities can create big data by 

sharing, discussing, co-creating, and modifying user-generated content (e.g. Shiau, Dwivedi, 

& Yang, 2017; Kietzmann, Hermkens, McCarthy, & Silvestre, 2011; Ngai, Tao, & Moon, 

2015). In addition to being user-driven communities, over the past years social media channels 

have provided an enormous amount of timely data that has served many business functions and 
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purposes (Manika, Papagiannidis, & Bourlakis, 2013). When it comes to financial 

dissemination, firms attempt to improve the information environment by initiating investor 

relations (IR) programmes (Agarwal, Taffler, Bellotti, & Nash, 2016), providing information 

through various communication channels. Among these channels are channels supported by 

information technology, such as corporate websites and social media, which have become an 

essential part of IR programmes. For example, firms use their websites to provide information 

(Ettredge, Richardson, & Scholz, 2002) and broadcast conference calls (Bushee, Matsumoto, 

& Miller, 2003) and social media to disseminate corporate announcements (Jung et al., 2018).  

Among the social media platforms, Twitter provides an accessible communication channel 

that enables customers, investors and firms to engage with each other in a two-way 

conversation by posting tweets and receiving comments. For example, from the investor 

perspective, X. Li, Xie, Jiang, Zhou, and Huang (2018) have proposed a framework for 

monitoring emerging technologies and by using patent analysis and Twitter data mining. Such 

monitoring can facilitate early investments and high return on these in due course. Social media 

data has also been used to make stock price predictions (Daniel, Neves, & Horta, 2017) or to 

detect corporate fraud (Xiong, Chapple, & Yin, 2018). From the firms’ perspective, unlike 

other communication channels, Twitter provides a unique mechanism that allows distinctions 

to be made about the effect of firms’ dissemination decisions. Firstly, firms that seek to 

disseminate press releases would send investor-related information to newswire services or 

other information intermediaries (Bushee & Miller, 2012). It is difficult for firms to be certain 

about when or even whether the information would be broadcast to investors. Conversely, firms 

on Twitter have the option to choose the time to distribute investor information. Secondly, 

Twitter makes it possible for firms to know the size of their audience, which may motivate 

firms’ dissemination decisions. Thirdly, the design of Twitter messages suggests that it is more 

likely to use tweets for dissemination rather than distributing comprehensive information. 

Tweets are limited to 140 characters, and often include hyperlinks to full press releases 

(Blankespoor et al., 2014) or quotes from either press releases or conference calls (Jung et al., 

2018). Even though Tweets could be stand-alone pieces of information, Blankespoor et al. 

(2014, p. 81) “find evidence that they are more commonly used as a method of dissemination”. 

Fourth, prior literature has explored various aspects of voluntary disclosure channels (Bushee 

et al., 2003; Ettredge et al., 2002). Twitter provides different mechanisms that support the 

dissemination role. For instance, conference calls are infrequent and are limited to a short 

period, whereas firms can use Twitter more frequently. Also, corporate websites require 

investors to search through the whole website for the desired information, which takes time 
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and effort. In contrast, Twitter does not wait for investors to look for information about the 

firm as it applies ‘push’ technology, which directly reaches investors and reduces the 

acquisition cost of information. Fifth, the spread of tweets can also reach more than the firm's 

followers as Twitter enables the followers to redirect and share tweets with their follower lists, 

through the ‘retweet’ feature. Finally, firms can repeatedly post tweets over days or use 

hashtags (#earnings) or cashtags ($Ticker) that are ideally used to share opinion and spread 

news, which is expected to enhance investor recognition about a firm. All these features enable 

firms to expand the reach of firm disclosure on a timely basis, isolating the effect of 

dissemination from disclosure. Once investors receive and read this information, they can 

become less concerned about information asymmetry. 

As this platform has become popular, researchers have paid more attention to studying the 

market consequences of disseminating information on Twitter. For a list of technology firms, 

Blankespoor et al. (2014) show that dissemination through links to press releases on Twitter 

reduces information asymmetry and improves market liquidity, especially for firms with a 

weaker information environment. In line with this, Prokofieva (2015) finds similar results for 

an Australian sample (100 ASK). Meanwhile, firms are most likely to use Twitter to 

strategically disseminate favourable news (Jung et al., 2018). Firms can also use Twitter to 

attenuate negative market reaction to unfavourable news such as product recall crises (Lee et 

al., 2015), acquisition announcements (Mazboudi & Khalil, 2017) and negative earnings 

surprises (Miller & Skinner, 2015). The attenuation effect suggests that firms that have better 

interaction, response and control to adjust investors’ concerns mitigate the reputation damage 

of negative corporate announcements. As a firm loses control, other users’ tweets may 

aggravate the adverse reaction (Lee et al., 2015). Overall, prior studies generally highlight how 

firms’ dissemination decisions on Twitter in spite of other information intermediaries influence 

the capital market in many aspects (Blankespoor et al., 2014; Jung et al., 2018). Also, using 

Twitter makes it possible to understand manager behaviour toward dissemination decisions. 

However, prior research (Botosan, 1997) has shown that managers strategically adjust 

disclosure decisions in a way to achieve their goals by increasing firm value and reducing the 

COE. We, therefore, attempt to fill such a gap in the research by studying the impact of the 

firm's dissemination of financial information on the COE. 

 

2.3 iDisc and cost of equity (COE) 
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According to the “market-liquidity hypothesis”, information asymmetry introduces 

adverse selection problem into transactions between market participants, and, therefore, should 

reduce market liquidity in firm shares (Glosten & Milgrom, 1985; Leuz & Verrecchia, 2000; 

Mangena et al., 2016). Firms are hence issue shares at a discount as investors pay less for shares 

that have high transaction costs (Amihud & Mendelson, 1986). Firms alleviate the adverse 

selection problem between the firm and its investors (Verrecchia, 1983) and reduce information 

asymmetries among informed and uninformed investors (O. Kim & Verrecchia, 1994) by 

voluntarily disclosing their information to decrease investors’ incentives to acquire costly 

private information (Diamond & Verrecchia, 1991) and increase market participants' demand 

for the firm’s stock, thus lowering the firm’s cost of equity (Beyer et al., 2010; Easley & O'hara, 

2004). However, information about the firm may not reach the public effectively, and greater 

dissemination could play a role in improving the effectiveness of disclosure. As such, Twitter 

allows firms to make their own dissemination decisions and be less dependent on other 

information intermediaries such as the press. That is, iDisc is likely to improve the 

effectiveness of firm information (in turn reducing the COE) by pushing information more 

directly and immediately to a broader reach of market participants, including uninformed 

investors. As investors receive firm information on a timely basis, they become less concerned 

about information asymmetry and thus improve stock liquidity and reduce the cost of equity.  

Recently, Blankespoor et al., 2014; Jung et al., 2018 have argued that firms may disseminate 

their information on Twitter to reach many potential investors. Accordingly, the ‘investor 

recognition hypothesis’ suggests that improving investor recognition of the firm will increase 

stock prices and reduce the cost of equity (Lehavy & Sloan, 2008; Merton, 1987). The key 

assumption here is that investors, among all firms, only buy the stocks of firms that they 

recognise. Therefore, stock prices increase when more investors know about the firm. If only 

a small number of investors are aware of the firm’s stock, then these investors will take a larger 

portion of the stock. For this reason, stock with lower investor recognition needs to offer a 

higher rate of return for the risk that investors gain from the large undiversified position. One 

way to enhance investor recognition is to present information to market participants through 

more dissemination channels. Therefore, firms can use iDisc to improve the breadth of their 

information. As information is widely disseminated, investor awareness of the firm’s news 

increases, which improves investors’ risk sharing and reduces the cost of equity. In addition, 

the value of dissemination rises when investors become aware of the stock, by reducing the 

acquisition costs that investors gain from their limited time and attention to firm disclosure 

(Hirshleifer, Lim, & Teoh, 2009; Hong & Stein, 1999). Such costs limit the information that 
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investors process from corporate disclosure and make them mainly depend on a limited number 

of communication channels (Hirshleifer & Teoh, 2003). For this reason, firms attempt to 

improve the dissemination of corporate disclosure in many information intermediaries such as 

Twitter (Blankespoor et al., 2014). Such an improvement of dissemination is expected to 

provide investors with information about the firm at a lower acquisition cost, which reduces 

the information asymmetry and hence reduces the cost of equity.  

Based on the above, we conjecture that a higher use of iDisc is predicted to enhance 

investors’ reach with the firm information. This is likely to reduce the gap between informed 

and uninformed investors. As firms rely more on the use of iDisc to disseminate news, investors 

can receive the news at a low acquisition cost and with better investor recognition. Thereby, a 

higher level of iDisc use is expected to reduce COE.  

H1: There is a significant negative association between iDisc and the cost of equity (COE). 

 

While we argue that disseminating financial information (iDisc) on Twitter improves a 

firm’s information environment to reduce the cost of equity by enhancing firm connection and 

information availability and accessibility to investors, the firm’s information environment is 

also affected by other factors such firm size, book-to-market ratio (BTM) and financial leverage 

(LEV). Larger sized firms have a better information environment (Gebhardt et al., 2001) and 

expect to have lower costs of equity (Botosan, 1997; Dhaliwal, Heitzman, & Zhen Li, 2006; 

Mangena et al., 2016, whereas smaller firms have a lower information environment, lower 

liquidity and hence expect to have a higher COE. Therefore, firm size (SIZE) is expect to have 

a negative association with COE.  

H2: There is a significant negative association between firm size (SIZE) and the cost of 

equity (COE). 

 

In addition, the book to market ratio (BTM) reflects the difference in firm accounting 

conservatism and investment opportunities (Hail & Leuz, 2006). This variable is considered a 

risk factor (Easton, 2004; Mangena et al., 2016). That is, firms with a higher BTM ratio are 

undervalued in price and should have a higher risk premium (Fama & French, 1992; Gode & 

Mohanram, 2003). In this sense, we expect the book-to-market ratio (BTM) to be positively 

associated with COE. 

H3: There is a significant positive association between firm book-to-market (BTM) and the 

cost of equity (COE). 
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According to Modigliani and Miller (1958), firms that use more financial leverage face 

greater financial uncertainty and expect to have higher risk premiums. Firms with a high 

leverage ratio may face more liquidity risk that arise from limiting their ability to meet their 

obligations. Furthermore, those firms may also encounter more restrictions in their ability to 

access external funds, which in turn might affect the analyst evaluation from the credit rating 

perspective. Therefore, firms with higher debt on their capital structure may have a higher cost 

of equity (Cao et al. 2015; Dhaliwal et al, 2006; Fama & French, 1992). We, therefore, expect 

a positive association between LEV and COE. 

H4: There is a significant positive association between firm financial leverage (LEV) and 

the cost of equity (COE). 

 

The uncertainty surrounding the information environment due to wider dispersion of 

analysts' forecasts is expected to increase firm risk (Gode & Mohanram, 2003; Kothari et al., 

2009a). That is, wider dispersion or disagreement in analysts' forecasts implies greater 

uncertainty about earnings forecasts (El Ghoul, Guedhami, Kim, & Park, 2018; Guedhami & 

Mishra, 2009), implying a greater risk for the firm information environment and hence a higher 

cost of equity. Therefore, we expect a positive relationship between dispersion analyst (DISP) 

and cost of equity (COE). 

H5: There is a significant positive association between firm analysts' forecast dispersion 

(DISP) and the cost of equity (COE). 

 

Under the capital asset market pricing model, investors expect a higher required rate of 

return as systematic risks become higher. Systematic risk or market beta (BETA) is an 

undiversifiable risk that increases the firm risk premium (Botosan, 1997; Botosan, Plumlee, & 

Wen, 2011; Cao et al., 2015; El Ghoul et al., 2011). As the risk increases, the certainty that 

investors expect to earn from their investment will become smaller, which, in-turn, increases 

their required return on their investment. Consequently, firms with high systematic risk (BETA) 

are expected to have a higher COE. 

H6: There is a significant positive association between firm systematic risk (BETA) and the 

cost of equity (COE). 

 

Prior literature (Cao et al., 2015; Guedhami & Mishra, 2009) indicates that firms with a high 

long-term growth rate (LTG) are considered riskier and have more uncertainty than lower LTG 

firms. Thai is, high prospect about firm growth and earnings may result in the inflation of stock 
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prices and that any misestimating of growth rate can have a significant effect on the share price 

(Chen, Chen, & Wei, 2011; Gode & Mohanram, 2003). Therefore, the market perceives a firm 

with high LTG as a high-risk investment and hence they expect a higher cost of equity. 

Therefore, we predict a positive association between LTG and COE. 

H7: There is a significant positive association between the long term growth forecast (LTG) 

and the cost of equity (COE). 

 

While media coverage may shape the firm information environment, which is expected to 

influence the expected rate of return, the press may contain additional information and favour 

a direction of news stories that could influence the firm valuation and cost of equity (Fang & 

Peress, 2009; Jung et al., 2014; Niessner & So, 2017). Kothari et al. (2009a) find that media 

coverage increases the firm's cost of equity when the news is negative, whereas positive news 

reduces the equity financing. Therefore, we do not provide any certain direction between media 

coverage (NEWS) and COE. 

H8: There is no significant association between media coverage (NEWS) and the cost of 

equity (COE). 

 

The existence of institutional investors enhances the monitoring role on firm management, 

exerting more pressure on them to provide better information quality, transparency and 

management practices (Attig, Cleary, El Ghoul, & Guedhami, 2012; Elyasiani & Jia, 2010). 

This enhancement of the monitoring and information role reduces the agency problem and 

information asymmetry between market participants and hence reduces the cost of equity (see 

Attig, Cleary, El Ghoul, & Guedhami, 2013; Elyasiani, Jia, & Mao, 2010). Therefore, we 

expect that high institutional holdings are likely to enrich the firm public information 

environment, reducing the uncertainty and thus reducing the cost of equity. 

H9: There is a significant negative association between firm institutional holdings 

(INSTOWN) and the cost of equity (COE). 

 

Firm managers may have an incentive not to miss earnings expectations. Previous studies 

(Mikhail, Walther, & Willis, 2004) have argued that earnings surprise can be costly to the firm 

as analysts would not prefer to follow firms with an earnings surprise. That is, an earnings 

surprise may cause an analyst's forecast to be inaccurate, which is not preferable for many 

analysts, resulting in lower analyst coverage and thus a lower information environment. In 

other words, an earnings surprise reflects the uncertainty surrounding the current earnings, 
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which imposes a higher risk and is expected to increase the cost of equity (El Ghoul et al., 

2011; Kim & Shi, 2011; Rogers, Skinner, & Van Buskirk, 2009). Therefore, we expect earning 

surprise (SURP) to be possibly associated with the cost of equity (COE). 

H10: There is a significant positive association between earnings surprise (SURP) and the 

cost of equity (COE). 

 

Finally, firms with better performance, stable profitability and increase in earnings are 

expected to have lower uncertainty and less exposure to default risk (e.g. El Ghoul et al., 2018; 

Francis, Khurana, & Pereira, 2005; Gode & Mohanram, 2003). Previous studies (Bowman, 

1979; Francis et al., 2005) indicate that default risk is positively associated with equity risk, 

which is a result of an increase in the cost of equity. Thus, we expect a negative association 

between return on assets (ROA) as a measure of firm profitability and COE. 

H11: There is a significant negative association between return on assets (ROA) and the cost 

of equity (COE). 

 

In figure 1, we show the effect of our explanatory variables on COE.  

 

[Insert Figure 1 about here] 

 

3. Methodology 

 

3.1 Sample and data 

 

Our initial sample includes non-financial firms listed on the US NASDAQ stock exchange 

that have official Twitter accounts. Our sample focuses on the US because foreign firms have 

different information environments, and the dissimilarities in transparency can influence the 

COE. The SEC, the regulator of the US stock markets, allows firms to use social media such 

as Twitter for disclosing financial information that complies with Regulation Fair Disclosure 

(Dorminey, Dull, & Schaupp, 2015). US firms have shown frequent adoption of Twitter and 

early use for corporate announcements (Jung et al., 2018; Zhou, Lei, Wang, Fan, & Wang, 

2014), which ensured a potential coverage during our sample period. Consistent with Bushee 

et al. (2010), we mainly focus our sample on one stock exchange to remove any effect of 

exchange listing.  
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We focus on 2009-2015, even though Twitter was founded in March 2006, because Twitter 

accounts’ popularity grew among its users around 2009 (Marwick & Boyd, 2011). We also 

exclude tweets before 2009 to avoid the macroeconomic effects of the financial crisis (2007-

2008), limited Twitter activity (approximately less than 10% of our sample had Twitter 

accounts before 2009), and limited use of cashtags in Twitter before 2009. 

Our data collection strategy is based on identifying whether each firm in the sample has a 

Twitter account, using a number of checks (e.g. whether they had the Blue Verified Twitter 

Badge). After identifying Twitter adopter firms, we check whether these firms have positive 

median earnings forecasts for one and two years ahead to measure the implied COE. These 

consensus earnings forecasts are collected as of June to ensure that analysts had incorporated 

all the information from fiscal year reports in their forecasts. Firms with missing observations 

on the COE are excluded from the sample. These restrictions reduce the sample size to 791 

firms (4,131 firm-year observations).  

Corporate adoption of Twitter does not necessarily mean using their Twitter accounts for 

disseminating financial information (iDisc). We, therefore, use two sources to download the 

full texts of tweets to identify iDisc. We retrieve Twitter data from both Twitter’s application 

programming interface (API) and Twitter’s advanced search. Twitter API provides a maximum 

number of tweets (up to 3,200 tweets). Tweets beyond 3,200 are, therefore, manually collected 

through Twitter’s advanced search function. Manual collection is performed to obtain tweets 

between the last collected tweets from Twitter API and the first tweet published by the firm’s 

account. If the number of tweets is large, we use the advanced search option to search for 

financial keywords. We used keywords that related to financial capital, balance sheet items, 

equity and debt financing, financial ratio and financial reporting and announcement (discussed 

further in Measuring iDisc). The total number of tweets collected is 1,197,208 tweets, 

approximately 2/3 of which come from Twitter API. The mean (median) value of the number 

of tweets is 4,588 (944), which suggests that the total number of collected tweets is not 

particularly large. We process these tweets through a matching classification scheme to 

quantify iDisc tweets.1 

                                                 
1 The classification process followed several steps: (1) we uploaded the data to the Python software programme; 

(2) we read all these data; (3) we applied “stop words”, which is a process used to remove words that have no 

meaning in the text (e.g. “a”, “the”, “and”); (4) we divided tweets into words by applying a technique to split the 

text into separate words; (5) we matched the word in each tweet with our financial keyword list ; (6) we gave a 

value of 1 to every tweet that matched with our list of keywords; (7) we downloaded the data into an Excel file 

for tweets that matched our classifications. 
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In addition to Twitter data, we collected all news articles that mentioned the firm’s name 

from LexisNexis. This database includes major news media channels such as Wall Street 

Journal, The New York Times, The Washington Post and USA Today. We used company 

identifiers to allocate all firm news in the database. We define news coverage as the total 

number of news articles about the firm. In addition, we obtained accounting and market data 

to measure the dependent and explanatory variables from Bloomberg and DataStream. The 

distribution of the sample shows high skewness from the medians for COE, LEV, DISP, 

BETA, LTG and ROA. These high skewnesses suggest the existence of outliers, which may 

mislead the interpretation of the estimated coefficient. To control for the outliers, we 

winsorize all these variables at the 2.5th to 97.5th percentiles. Consistently with previous 

literature (Botosan et al., 2011; Chen et al., 2009), we winsorize the COE to lie between 0 

and 0.6 as investors are not expected to require negative rates of return and high COE could 

be driven by outliers.  

 

3.2 Measuring iDisc  

 

We focus on financially related information (iDisc-related tweets), as financial information 

is important to investors and firms are mandated to disclose this information but are not 

required to disseminate it on Twitter. This makes it possible to distinguish the effect of 

dissemination from disclosure (Jung et al., 2018). To identify iDisc tweets from big data of 

firm tweets, we search for the existence of financial information by combining several sets of 

financial keywords or using single phrases. For instance, we use the following keywords and 

phrases to look for earnings-related tweets: 

 

(“earning”, “revenue*”, “profit*”, “income”, “loss*”, “sales”, “dividend”, “financial”) 

AND (“disclos*”, “report*”, “record*”, “perform*”, “statement*” “release*”, “announce”, 

“quarter”, “annual”, “result*”) 

 

We also use other financial keywords that relate to financial reporting, stock prices, balance 

sheet items and their variants such as:  

 

(“annual report*”, “annual statement*”, “press release*”, “balance sheet”, “cash flow”, “cash 

inflow”, “total assets”, “current assets”, “total liabilit*”, “current liabilit*”, “long term assets”, 

“long term debt”, “net income*”, “net profit*”, “capital gain”, “net loss*”, “capital loss”, 
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“capital expenditure*”, “market capital*”, “stock pric*”, “secur* pric*”, “share* pric*”, 

“merger”, “acquisition”, “earnings per share”, “stock* repurchase”, “share* repurchase”, 

“stock* offering”, “share* offering”) 

 

The development of financial keyword lists starts with identifying words used in previous 

studies (Campbell, Chen, Dhaliwal, Lu, & Steele, 2014; Kothari et al., 2009a; Kravet & Muslu, 

2013; Matsumoto, Pronk, & Roelofsen, 2011). The strategy of developing word lists includes 

searching and adding other synonyms for financial words through WordNet and other 

dictionary software applications. Additional terms and synonyms have been added from 

Campbell Harvey’s financial glossary lists (Harvey, 1999). Terms or words that relate to firm 

activity, reporting, announcements and disclosure were included in the lists. To reduce the 

classification error, we look for the existence of multiple words in the same tweet.  

In addition, Twitter provides features that firms can use to push information regarding any 

event or topic by using the hash key (#). These hashtags can be used for earnings 

announcements or quarter earnings events. Twitter also makes it possible for users and firms 

to discuss and disseminate a firm’s financial information through the cashtag key feature 

($ticker). Thus, we also included hashtags that are used for firm announcements and cashtags 

in our keywords list, such as:  

 

(“#earnings”, “#quarterearnings”, “#annualreport*”, “#pressrelease”, #Q12014, e.g. $AAPL 

for Apple inc). 

 

Tweets that match with our list of keywords are quantified as iDisc tweets. Our analysis 

examines the annual number of iDisc tweets for each firm in our sample period. 

 

3.3 The empirical model  

 

To examine the impact of iDisc and other explanatory variables on the implied cost of equity 

premium we employ the following Model (1): 

 

COEit =  β0 + β1iDiscit + β2 SIZEit + β3 BTMit +  β4 LEV +  β5 DISPit +

 β6 BETAit +  β7 LTGit +  β8 NEWSit  +  β9 INSTOWNit +

 β10 SURPit +  β11 ROAit +  β12 ∑ Tt
2009
t=2015 + β13 vi + εit  (1) 



- 15 - 
 

 

The dependent variable in this model (COE) is the implied COE, which is estimated as the 

average of four equity premium estimates: (i) Claus and Thomas model, RCT (2001); (ii) 

Gebhardt, Lee, and Swaminathan model, RGLS (2001); (iii) Ohlson and Juettner-Nauroth 

model, ROJ (2005); and (iv) Easton model, RMPEG (2004). The use of an average of these 

measures was aimed at reducing the estimation errors (Dhaliwal et al., 2006; Dhaliwal, Judd, 

Serfling, & Shaikh, 2016; Hail & Leuz, 2006). The implied COE is a good measure for the 

COE, because it attempts to differentiate the effect of growth and cash flow from the COE 

(Chen, Chen, & Wei, 2009). Pástor, Sinha, and Swaminathan (2008) also indicate that the 

implied COE is a useful estimate for the time-series variation of expected returns.  

iDisc reflects the number of financial tweets. This measure is computed by employing the 

words, phrases and combined word classification. We cluster tweets based on the existence of 

specified words or phrases. We only count tweets that matched the criteria for measuring iDisc 

or set this to zero otherwise. Our variables also include firm size (SIZE), book-to-market ratio 

(BTM), financial leverage (LEV), the dispersion of analysts forecast (DISP), systematic risk 

(BETA), long-term growth rate (LTG), press coverage (NEWS), institutional holdings 

(INSTOWN), earnings surprise (SURP) and return on assets (ROA). In addition to iDisc, these 

variables are related to firm characteristics, analysts' forecast attribute, systematic risk, 

information intermediaries, content of information and firm profitability. In Table 1, we list all 

our independent variables and their direction with COE. Additionally, full descriptions of the 

variables and measurements are presented in Appendix A. Appendix B provides all the model 

measurements and descriptions for measuring COE. In addition, we include both year and 

industry fixed effects in the regressions using the Fama-French 12-industry classification. 

 

[Insert Table 1 about here] 

 

Our estimation procedures utilised pooled cross-sectional regressions with robust standard 

error clustered at the firm level to control for serial correlation and heteroscedasticity (Cao et 

al., 2015; El Ghoul, Guedhami, Kim, & Park, 2018; Petersen, 2009).2 To mitigate potential 

endogeneity between iDisc and the COE (Nikolaev & Van Lent, 2005), we utilise a two-stage 

                                                 
2 The Breusch-Pagan test shows significant results (p-value = 0.000; 0.031; 0.000 respectively), indicating the 

presence of heteroscedasticity. 
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least square model (2SLS) with clustered standard error at the firm level.3 We use non-iDisc 

tweets in the previous year (LagPriortweet) as the instrumental variable in line with prior social 

media and business press literature (Drake et al., 2014; Lee et al., 2015). This instrumental 

variable is related to iDisc and is not directly related to the COE. In addition, LagPriortweet 

captured the prior tendency of firm activity and responsiveness in their Twitter account, which 

is likely to be correlated to iDisc. This measure also represents the amount that corporate firms 

added to their Twitter accounts. The results of the partial square are higher than 0.22, and the 

F statistic was greater than the critical value of 10 (Staiger & Stock, 1994). Also, the association 

between LagPriortweet and iDisc is positive and significant, which is consistent with our 

prediction and the previous literature (Lee et al., 2015). 

4. Results and discussion 

 

4.1 Descriptive statistics 

 

Table (2)-Panel (A) reports the percentage of firms that have adopted Twitter and use iDisc 

in our sample. Results show that over 66% of firms used iDisc at least once in our sample 

period and 44% of the firms have disseminated financial information over Twitter at least for 

three years. This finding is comparable with Jung et al. (2018), who found that more than 57% 

of firms that have a Twitter account disclose earnings-related tweets. Panel (B) shows that the 

percentage use of each iDisc class varies across the years and the average number of tweets per 

year. We find that the mean number of iDisc tweets of the full sample is, on average, seven 

tweets per year per firm. Results show that the number of such tweets grows substantially over 

time, which offers some primary highlights about the role of Twitter in the dissemination of 

financial information by firms. This can be justified through the SEC guidance, in April 2013, 

which motivates firms to use Twitter for dissemination purposes (Dorminey et al., 2015). In 

addition, results show that financial reporting tweets are the dominant type of iDisc, two-thirds 

of iDisc being related to financial reporting, which far exceeded other types. This finding is 

consistent with Jung et al. (2018), who found a higher number of tweets related to the earnings 

releases. Our results also show that 7%, 21%, and 15% of iDisc tweets were related to 

financing, financial terms, and financial ratio respectively. 

 

                                                 
3 To test for the endogeneity, we ran the Durbin Wu-Hausman test. The results show an F test (P-value) of 1.54 

(0.215), suggesting that endogeneity is prevalent. 
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[Insert Table 2 about here] 

 

Table 3 provides summary statistics of iDisc activity based on the Fama-French 12-industry 

classification. The distribution of iDisc tends to be heterogeneous across industries. The highest 

use during the whole sample period is prevalent in the business equipment industry. For this 

industry, at least half of the companies used iDisc once, which represents approximately 37% 

of the total number of firms that use iDisc. This result is expected given that firms in the 

business equipment industry are more likely to adopt this new communication channel 

(Blankespoor et al., 2014). Although the oil and gas industry shows a high reliance on iDisc, 

consistent with Jung et al. (2018), the percentage of iDisc tweets is rather low as compared to 

other sectors, with a low concentration for the number of firms. In contrast, firms in food, 

tobacco, textiles, apparel, leather and toys classifications tend to focus more on non-financial 

information. 

 

[Insert Table 3 about here] 

 

Table 4 provides descriptive statistics for the variables considered. The summary statistics 

of the dependent variables show that the mean estimate of COE is 5.1%, which is in line with 

the prior evidence (Attig et al., 2013; Chen et al., 2011; El Ghoul et al., 2011). COE is based 

on four estimates: ROJ, RMPEG, RCT and RGLS. In comparison, ROJ, RCT and RGLS show higher 

premiums than COE of 6.7%, 5.8% and 10.2% respectively, whereas a lower premium of 4.4% 

is associated with RMPEG.  The mean of firm size (SIZE) is 20.25, and the unreported mean 

(median) of firm size is $4106.6 million ($562.8 million). The mean (median) of book-to-

market (BTM) equals -1.374 (-1.029). Sample firms have a mean financial leverage (LEV) of 

16%. The median of dispersion (DISP), systemic risk (BETA) and the long consensus forecast 

of earnings estimates (LTG) are 9.3%, 1.15% and 15% respectively. Also, the mean and median 

of BETA are greater than one, which indicates that the sample consists of firms that have higher 

systematic risk than the market. These results are comparable to prior studies (Cao et al., 2015). 

Additionally, the average news coverage (NEWS) is 5.557, and approximately 77% of firms 

are owned by institutional owners (INSTOWN). The mean average of earnings surprise (SURP) 

is equal to 0.365, which is in line with (Chen et al., 2011). However, the mean of the 

profitability measure (ROA) is negative (7%), compared to a positive median of 2.2%. 

 

[Insert Table 4 about here] 
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The Spearman and Pearson correlation matrix is presented in Table 5 for all the variables at 

the 10% significance level. The correlation matrix shows a significant and negative correlation 

between COE and iDisc. This finding provides a preliminary conclusion that firms which use 

iDisc have a lower COE. Results indicate that smaller (larger) sized firms have a higher (lower) 

COE. High risk, measured by BTM, LEV, DISP, BETA, LTG and SURP, is associated with high 

risk-premiums. Richer information environment variables (NEWS and INSTOWN) are 

negatively correlated with COE. Overall, correlations between COE and the other independent 

variables are in line with expectations and previous studies (Orens et al. 2010; Cao et al. 2015; 

Dhaliwal et al. 2016). Moreover, in Table 5 iDisc is negatively correlated with BTM, LEV, 

BETA, LTG, INSTOWN and ROA, but is positively correlated with SIZE, DISP, NEWS and 

SURP. These correlations suggest that enhanced iDisc alleviates the uncertainty and risk 

factors. The positive correlation between firm SIZE and iDisc indicates that larger firms publish 

more iDisc tweets. Furthermore, firms with a higher rate of news (NEWS) use iDisc more. 

These correlations, together, suggest that firms with lower uncertainty are more likely to release 

financial information on Twitter. In addition, the results show that lower return on asset (ROA) 

firms use iDisc more frequently. Considering both the Spearman and Pearson correlation 

matrix and unreported VIF tests indicates that multicollinearity is not dominant across our 

explanatory variables. 

 

[Insert Table 5 about here] 

 

 

 

4.2 Empirical results 

 

Table 6 reports the results of the two estimation models (i.e., OLS in column 1 and 2SLS in 

column 2) for the association between iDisc and COE. Results show a negative and statistically 

significant association between iDisc and COE (p < 0.05) in OLS and (p < 0.1) in 2SLS.4 Our 

results show that the economic significance of iDisc is -0.14%, which means that if iDisc 

                                                 
4 The reduction in sample size is due to the additional data requirements. To check whether our results are affected 

by missing data, we also ran the regression with the lagged iDisc as the instrumental variable. The Lagged iDisc 

can be an appropriate instrument as it is less likely to affect the cost of equity once year later. The Hausman test 

is 0.79, with first stage partial square equal to 0.52. Our main results remain unchanged. 
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tweeting increases by 50%, the COE is expected to change by -0.07%. However, the finding 

suggests that firms that disseminate more financial information (iDisc) have a lower COE. This 

implies that firms’ decisions to engage in broader dissemination actions through iDisc promote 

financial benefits for both investors and managers. That is, investors can receive a firm’s 

information at a lower acquisition cost and managers are able to alleviate the information 

asymmetry as well as enhance investor recognition. Although tweets are not expected to have 

comprehensive information, the results show that iDisc can still reduce COE, which supports 

our hypothesis. This finding is in line with our expectation that the effect of tweets should be 

small as it is less likely to have rich information. However, tweets provide an accessible (open) 

use for managers at lower costs, efficient timings and better control. This finding is consistent 

with other communication mechanisms such as corporate websites and open conference calls 

that firms can use to disseminate their information to the public openly (Orens et al., 2010; 

Zhao, Davis, & Berry, 2009). Nevertheless, these channels are used as primary channels for 

disclosing corporate information whereas Twitter is used for dissemination of information. 

 

[Insert Table 6 about here] 

 

With respect to other variables, across the two columns, we find a negative coefficient on 

firm size (SIZE) and positive coefficients on the book-to-market ratio (BTM) and financial 

leverage (LEV), which is consistent with hypotheses H2, H3 and H4. Additionally, COE tends 

to significantly increase systematic risk (BETA), with positive coefficients, which is consistent 

with our prediction in H6. These findings suggest that firms with higher uncertainty are 

associated with a higher required rate of return. The coefficient on LTG is positive and 

significant, which supports hypothesis H7, indicating that the market perceives high growth 

firms as riskier. News coverage (NEWS) shows a positive association, which suggests that more 

news coverage, which is not under the firm's control, increases the COE, rejecting the null 

hypothesis H8. That is, firms with higher media coverage face more risk than lower coverage 

firms. These firms have higher stakeholder pressure as they are exposed to more stakeholder 

groups (Zyglidopoulos, Georgiadis, Carroll, & Siegel, 2012). They also have higher levels of 

scrutiny from stakeholders, which makes them more vulnerable to campaign targets (Friedman, 

1991; Rehbein, Waddock, & Graves, 2004). In addition, previous literature (Niessner & So, 

2017) found that media coverage may favour negative news. Therefore, firms with more news 

coverage could face higher risks of getting into difficulties when the media provide misshaping 

or negative news, which consequently increases the COE capital (Kothari et al., 2009a). The 
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coefficient on earnings surprise (SURP) in column (2) is significantly positive, suggesting that 

firms that have higher optimism about analysts’ earnings forecasts have a greater COE (El 

Ghoul et al., 2011), which confirms hypothesis H10. However, our results show no association 

for DISP, INSTOWN and ROA. 

 

4.3 The firm visibility effect 

 

Firms seek to attract investor attention, as well as reduce investor acquisition costs, by 

disseminating information through many information intermediaries (Hirshleifer et al., 2009; 

Hirshleifer & Teoh, 2003). If firms with low press coverage rely on a small number of 

communication channels which are reasonably affordable, there is a high chance that investors 

will not receive news about the firm on a real-time basis. Therefore, low (high) visible firms 

are less (more) likely be frequently observed by market participants, and, hence, lower (higher) 

investor recognition and higher (lower) COE are likely (Merton, 1987). Accordingly, low 

visibility firms might have a higher need to disseminate firm news and, hence, rely more on 

iDisc. Under these scenarios, iDisc will help firms improve firm visibility and be less 

dependent on other information intermediaries, by voluntarily making dissemination decisions 

and directly approaching market participants promptly (Blankespoor et al., 2014; Jung et al., 

2018). As such, we predict that the impact of iDisc on the implied COE is more pronounced 

for less visible as compared to more visible firms. 

To measure firm visibility, we have used firm size (SIZE), analyst following (ANALYSTS) 

and the number of investors (LNOWN) as proxies for a firm's visibility, where the upper quartile 

(lower three quartiles) is used to proxy for highly visible (low visible) firms. These proxies are 

in line with Merton (1987), who argues that there is a stronger effect of investor recognition 

for firms with higher idiosyncratic risk. That is to say, firms with a smaller size, low analyst 

following, and a limited number of investors are less visible to market participants (Agarwal 

et al., 2016). Although firms may issue voluntary disclosure to attract market participants, 

smaller sized firms are likely to be neglected and may not be able to benefit from such actions 

(Bushee & Miller, 2012). To overcome this concern, some firms attempt to initiate investor 

relation programmes to attract investor recognition and analyst followings (Bushee & Miller, 

2012). This is likely to provide valuable communication sources to mid-size and/or small firms, 

given that large a analyst following is associated with an increased demand for the firm's stock, 

which as a result improves the firm's value (Agarwal et al., 2016). Also, previous research 
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(Lehavy & Sloan, 2008) has argued that firm value is positively associated with the investor 

base.  

We partitioned the full sample into high and low visibility firms under each variable, and 

the results are presented in Table 7 using OLS and 2SLS estimations with clustered standard 

errors at the firm level. The findings provide strong evidence that lower-visibility firms use 

iDisc to reduce their COE, with significant and negative coefficients reported under columns 

3, 4, 6 and 8 (p < 0.05, p < 0.1, p < 0.01 and p < 0.1 respectively). These findings are also 

consistent with prior studies which show that the effect of investor recognition is more 

pronounced for small-sized firms (Agarwal et al., 2016; Blankespoor et al., 2014; Merton, 

1987). Additional evidence suggests that corporate disclosure reduces the COE for firms with 

low information certainty, low analyst following and a limited number of investors (Botosan, 

1997; Orens et al., 2010). In contrast, we find that high-visibility firms with high investor 

awareness tend not to rely on iDisc to reduce the COE and consistently show insignificant 

associations with COE. This might be attributable to large firms having more analysts 

following them and a larger number of shareholders. Accordingly, these firms seem to benefit 

from other channels of dissemination and may be reached by more traditional information 

intermediaries. Overall, these findings are consistent with the notion that broader dissemination 

to the public on Twitter improves firm visibility, which leads to better recognition and lower 

cost of equity, consistent with prior literature (Agarwal et al., 2016; Blankespoor et al., 2014; 

Cao et al. 2015; Lehavy & Sloan, 2008). 

 

[Insert Table 7 about here] 

 

4.4 The effect of news magnitude and content  

 

Firms are likely to have incentives to disclose good news rather than bad news to positively 

affect their stock value (Skinner, 1994). Therefore, firms are expected to increase their 

dissemination of good news on Twitter, rather than negative news. Nevertheless, firms could 

also use Twitter to attenuate the effect of unfavourable firm announcements such as negative 

earnings surprise (Miller & Skinner, 2015) or product recall (Lee et al., 2015). As such, we 

conjecture that firms that miss analysts’ forecasts have less incentive to use iDisc as compared 

to those with a positive earnings surplus. We expect that voluntary disclosure could be used to 

match managers’ and market expectations (Matsumoto, 2002).  
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To examine the effect of news magnitude (i.e. negative/positive earnings surprises) on the 

conditional use of iDisc to reduce the COE we utilize our base Model (1) to additionally control 

for the absolute earnings surprise (|SURP|) as an indicator variable for negative earnings 

surprise (NegSURP), which takes the value of one when SURP is negative and zero otherwise. 

We also include two interaction variables between absolute earnings surprise with iDisc 

(|SURP| * iDisc) and negative earnings surprise (|SURP| * NegSURP). Therefore, we specify 

Model (2) as follows: 

 

COEit =  β0 + β1iDiscit + β2 |SURP| it + β3 NegSURPit +  β4 |SURP| it ∗

iDiscit 
+  β5 |SURP| it ∗ NegSURPit +  β6 SIZEit +  β7 BTMit +

 β8 LEV + β9 DISPit +  β10 BETAit +  β11 LTGit +  β12 NEWSit  +

 β13 INSTOWNit +  β14 ROAit +  β15 ∑ Tt
2009
t=2015 + β16 vi +  εit  

 (2) 

Since firms have the option to use Twitter, firms may use iDisc to provide more positive 

than negative news (Jung et al. 2017). Therefore, we extend our analysis to identify the effect 

of news content on the conditional use of iDisc to reduce the COE. Previous literature (Kothari 

et al., 2009a) has studied the effect of the disclosure’s content by different information sources 

on the COE. They found different impacts on COE depending on the source (management, 

analysts and business press) and the content of the disclosure (favourable and unfavourable 

news). Johnstone (2016) also argues that the effect of financial reporting on the COE is subject 

to the direction of the report (what the report says). That is, bad information increases the 

uncertainty of future expected payoff and hence increases the COE. However, good news 

provides higher certainty of future cash flow and, thus, reduces the COE. To examine our 

predictions, using our base Model (1), we additionally include TONE as a proxy for iDisc 

contents and its interaction with iDisc (TONE_ iDisc). This measure aims to reflect whether 

iDisc tweets provide positive and negative meaning. We used Loughran and McDonald 

dictionary lists (2011) to identify the positive and negative words of iDisc tweets. We measured 

the TONE as the difference between positive and negative words divided by the sum of positive 

and negative words. Accordingly, our model (3) is specified as: 
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COEit =  β0 + β1iDiscit + β2 TONEit +  β3 TONEit ∗  iDiscit + β4 SIZEit +

 β5 BTMit +  β6 LEV +  β7 DISPit +  β8 BETAit +  β9 LTGit +

 β10 NEWSit  +  β11 INSTOWNit + β12 SURPit +  β13 ROAit +

 β14 ∑ Tt
2009
t=2015 + β15 vi +  εit  (3) 

 

We estimated Models (2) and (3) using OLS and the results are reported in Table 8. The 

result from Model (2) shows that the dissemination of financial information on Twitter (iDisc) 

is significantly associated with a lower COE even after controlling for the magnitude of the 

news. The results show that the coefficient of iDisc is equal to negative 0.13%, which indicates 

that increasing iDisc tweets by 100% (in our average the sample number of tweets across firms 

and years studied was 7) reduces the COE by 0.13%.  Although this may be a relatively small 

increase in % terms, this was a result of a very small number of posted messages. Increasing 

them can result in a high return of the time and effort put into systematically engaging investors. 

The coefficients of |SURP|, NegSURP, |SURP| * iDisc and |SURP| * NegSURP are not 

statistically significant. These results are consistent with Jung et al. (2018), who found an 

insignificant result by using the total number of the firm’s followers, and with the idea that the 

dissemination of firm initiated information may improve the information environment. The 

findings highlight the important role of iDisc, which extends beyond the type of news. 

Concerning the effect of news content, results for Model (3) provide evidence that the TONE 

of the news does not drive the negative association between COE and iDisc. Both the level and 

interaction variables for TONE show insignificant associations with COE. That is, firms’ 

managers may benefit from iDisc even with unfavourable news. The overall findings provide 

limited support for the influence of news magnitude and news content on information 

dissemination through iDisc. These findings support our main findings and are in line with 

predictions. 

 

[Insert Table 8 about here] 

 

4.5 The effect of providing additional information and the reach of iDisc 

 

 In this section, we examine the association between iDisc on COE by considering different 

measures of iDisc and COE. First, we count the iDisc tweets that include hyperlinks, as this 

allows users to acquire more information from websites by following the posted link 
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(Blankespoor et al., 2014). Finally, we employ an alternative COE measure, RPEG (Easton, 

2004), based on long-term horizon estimates. Across different measures of COE, Botosan et 

al. (2011) find that RPEG, which assumes no dividend payment, is a valid proxy for COE. They 

state that RPEG is a reliable measure “associated with firm-specific risk characteristics in a 

theoretically predictable and stable manner” (p. 1085). Empirical studies on the relationship 

between corporate disclosure and the COE also use RPEG as a proxy for COE (J. W. Kim & 

Shi, 2011; Mangena et al., 2016). The findings are presented in Table 9 and show that 

iDisc_Hyperlink is negatively and significantly associated with COE. This implies that tweets 

which permit more access to information or are diffused to extend to potential investors 

considerably reduce the COE.  The results in column (2) show a significant and negative 

association between RPEG (as an alternative measure of COE), which is consistent with our 

main findings.  

 

[Insert Table 9 about here] 

 

4.6 Controlling for information quality and other firm characteristics 

 

In Table 10, we further check the robustness of our main results by controlling for a set of 

other variables in Model (1). First, we use discretionary accruals, based on Jones's model 

(Demirkan, Radhakrishnan, & Urcan, 2012; Francis et al., 2008), as a proxy for information 

quality. Previous literature (Hughes et al., 2007; Lambert et al., 2011) has argued that 

information quality has both direct and indirect (through information asymmetry) effects on 

the COE. Francis et al. (2008) find that the impact of financial information on the COE becomes 

insignificant after controlling for information precision. Theoretical models (Lambert et al., 

2007) indicate that information asymmetry does not affect the COE after controlling for 

information quality. In column (1), we, therefore, incorporate discretionary accruals. Second, 

following previous research (Jung et al., 2018; Lee et al., 2015), we include an indication of 

the social media adoption of financial reporting, namely advertising intensity 

(ADVERTISING). This is calculated as total advertising expense divided by the total sales. 

Even though firms with high advertising expenses are more likely to have a Twitter account, 

firms that spend less on advertising tend to use Twitter for announcement purposes (Jung et 

al., 2018). We also control for whether a firm headquarters is located in Silicon Valley 

(SILICON) and whether the firm’s manager is younger than the median age (CEOAGE). Firms 
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that are located in Silicon Valley and have younger managers are more likely to adopt social 

media platforms (Lee et al., 2015). Finally, the implied COE is measured by using earnings 

estimates of analysts’ forecasts as a prediction of market expectations. Using these estimates 

might be subject to criticism as the poor market expectation by analysts may bias the implied 

COE estimates. Accordingly, previous studies suggest controlling for analysts’ sluggishness 

forecasts by including price momentum (Chen et al., 2011; El Ghoul et al., 2011). We, 

therefore, include the price momentum (MMT), measured as the compounded rate of return of 

the previous 6 and 12 months.  

 

[Insert Table 10 about here] 

 

The results in column (1) suggest that the negative effects of iDisc on COE is not affected 

by information quality, whereas discretionary accruals (ACCRUAL) are insignificant. This 

finding supports the incremental role of dissemination for corporate disclosure (Blankespoor 

et al., 2014; Fang & Peress, 2009), rather than the quality of information. When controlling for 

the effect of social media indicators, in column (2) we find a negatively significant association 

between iDisc and COE, while the three indicators of social media ADVERTISING, SILICON 

and CEOAGE report insignificant associations with COE.5 These results alleviate any concern 

regarding the willingness to adopt social media and the implications of the use of iDisc. Finally, 

the results in columns (3&4) show that the two indicators of momentum are negatively and 

significantly associated with COE, which is consistent with prior research (Chen et al., 2009). 

These findings suggest that the noise of analysts' forecasts does not drive our results. The 

negative and significant association between iDisc and COE is robust, which suggests that our 

main findings are not affected by analysts’ noise. 

 

5. Conclusion 

 

The amount of real-time data, “big data”, on social media has attracted various practices 

among many firms due to its application and involvement in people's daily life, resulting in a 

great deal of attention and business change (e.g. Raguseo, 2018). Social media such as Twitter 

has become a popular channel for many firms to disseminate financial information by directly 

                                                 
5 The decrease in the number of observations is due to missing variables. 
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reaching investors promptly. This study has examined the association between firms’ 

dissemination decisions about financial information and the COE. Overall, the findings support 

the idea that firms can use Twitter to improve the communication with investors, which reduces 

the time and energy of acquiring news about the firm, reduces information asymmetry and 

enhances investor recognition and firm visibility.  

 More specifically, the study has made a number of theoretical contributions. Firstly, using 

the implied COE as a proxy for COE, we find that iDisc is significantly and negatively 

associated with the COE. The results indicate that firms which rely more on iDisc to voluntarily 

disseminate financial information have significantly lower COE financing. This finding is 

robust for firm-specific risk, information intermediaries, analysts' forecast biases, earnings 

surprise and information intermediaries. Second, we have shown that the effect of iDisc is more 

pronounced for less-visible firms that are smaller in size, have a low analyst following and a 

limited number of investors. These findings are consistent with the investor recognition notion 

that highly visible firms are likely to have a lower impact on the COE since their information 

is already disseminated through other information intermediaries. Third, we have extended our 

analyses to examine whether the magnitude of the news, when missing earnings forecasts or 

conveying more negative or positive meanings, would affect our main findings. We find that 

iDisc is negatively associated with the COE even after considering the magnitude of the news. 

Finally, the results are robust to different iDisc and COE measures. As a sensitivity check, we 

have: (i) used iDisc with hyperlinks to reflect the diffusion and spread of information; and (ii) 

applied the modified price-earnings growth (RPEG) model, as an alternative measure of the 

COE. The findings from these sensitivity analyses support our main results, suggesting that 

extensive use of iDisc reduces the COE. These findings motivate firms’ managers to use 

Twitter to disseminate financial information in order to enhance firms’ information 

environment and transparency and also to reduce the uncertainty and agency problem between 

informed and uninformed investors, which limits the firm’s accessibility to lower external 

financing costs. These findings also shed light on firm managers' concerns about firm visibility 

by showing that disseminating financial information on Twitter can benefit these firms and 

reach a wider number of investors. Managers should also consider engaging in iDisc activity 

to reduce the COE even when news about the firm is not favourable. 

Future research could examine other markers and how decision investments are affected 

by local social media practices. Similarly, other social media and big data platforms that have 

different characteristics to that of Twitter (e.g. Facebook or LinkedIn) could be considered. It 

would also be of interest to examine not just dissemination but also user engagement and 
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whether the sectors in which firms operate and the business norms in them play a role in social 

media investor engagement. We also acknowledge some limitations regarding the variable 

measurements, such as using SILICON as a proxy for technology firms, which is subject to 

some limitation as not all technology firms' headquarters are located in Silicon Valley. 

However, our study provides comprehensive evidence that using social media as a 

dissemination channel can have a real effect on the capital market. 
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Figure 1 

Research model 
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Table 1 

Summary of association between research model variables 

 
Variables Direction Related studies 

Dissemination of financial information (iDisc) -  

Firm size (SIZE) - (See Botosan, 1997; Dhaliwal et al., 

2006; Gebhardt et al., 2001; 

Mangena et al., 2016) 

Book-to-market ratio (BTM) + (See Easton, 2004; Hail & Leuz, 

2006; Fama & French, 1992; Gode 

& Mohanram, 2003; Mangena et 

al., 2016) 

Financial leverage (LEV) + (See Cao et al. 2015; Dhaliwal et al, 

2006; Fama & French, 1992; 

Modigliani & Miller, 1958) 

Analyst forecast dispersion (DISP) + (See Dhaliwal et al. 2016; El Ghoul 

et al., 2018; Gode & Mohanram, 

2003; Guedhami & Mishra, 2009; 

Kothari et al., 2009a) 

Systematic risk (BETA) + (See Botosan, 1997; Botosan et al., 

2011; Cao et al., 2015; El Ghoul et 

al., 2011) 

Long-term growth rate (LTG) + (See Cao et al., 2015; Chen et al., 

2011; Gode & Mohanram, 2003; 

Guedhami & Mishra, 2009) 

Press coverage (NEWS) +/- (See Fang & Peress, 2009; Jung et 

al., 2014; Kothari et al., 2009a; 

Niessner & So, 2017) 

Institutional holdings (INSTOWN) - (See Attig et al., 2012, 2013; 

Elyasiani & Jia, 2010; Elyasiani et 

al., 2010) 

Earnings surprise (SURP) + (See El Ghoul et al., 2011; Kim & 

Shi, 2011; Mikhail et al., 2004; 

Rogers et al., 2009) 

Return on assets (ROA) - (See Bowman, 1979; El Ghoul et 

al., 2018; Francis et al., 2005; Gode 

& Mohanram, 2003) 
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Table 2 

Firm Twitter and iDisc Characteristics 

Panel A: Twitter and iDisc Adoption among Firms in the Sample 

Type % to Firms with Twitter Account 

Firms use iDisc once 66% 

Firms use iDisc for three years 44% 

Notes: Panel (A) provides the percentage of firms in NASDAQ, with a Twitter account, which 

uses iDisc once and for three years. 

 

 

Panel B: Average iDisc use among Firms 

Years Average iDisc 

 Tweets 

% of iDisc 

Financial 

Reporting 

(FR) 

Financing 

(Fin) 

Financial 

Term (FT) 

Financial 

Ratio (FR) 

2009 1 70% 11% 22% 18% 

2010 3 68% 10% 25% 18% 

2011 6 68% 10% 27% 27% 

2012 6 70% 8% 23% 16% 

2013 8 69% 8% 23% 14% 

2014 11 76% 6% 17% 11% 

2015 13 77% 5% 18% 11% 

Average 7 73% 7% 21% 15% 

      

Notes: Panel (B) reports the average number of iDisc tweets per year and summary statistic of the 

percentage use of iDisc components across the sample period. 

 

Table 3 

Industry Summary of iDisc 

Fama-French 12-Industry classification 
Percentage of iDisc based on 

Industry Total iDisc  

Food, Tobacco, Textiles, Apparel, Leather, Toys 15.3% 1.2% 

Cars, TV's, Furniture, Household Appliances 16.5% 1.0% 

Machinery, Trucks, Planes, Office Furniture, Paper, Com Printing 33.6% 4.1% 

Oil, Gas, and Coal Extraction and Products 43.8% 0.3% 

Chemicals and Allied Products 48.1% 1.2% 

Software, Computers, and Electronic Equipment 54.0% 37.2% 

Telephone and Television Transmission 39.4% 4.1% 

Utilities 29.8% 0.7% 

Shops Wholesale, Retail, and Laundries, Repair Shops Services 16.2% 4.1% 

Healthcare, Drugs and Medical Equipment  36.4% 17.0% 

Mines, Construction, Bldg Material, Transportation, Hotels, Business 

Service, Entertainment 
36.0% 28.9% 

Notes: Table 3 provides summary statistics of firm use of iDisc across Fama-French 12-industry classification 

excluding financial industry for NASDAQ firms with Twitter accounts from 2009 to 2015. 
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Table 4 

Descriptive Statistics for all the Variables 

Variables N Mean Median Min Max SD 

COE 1358 0.051 0.044 0.003 0.161 0.034 

iDisc 4131 0.968 0.000 0.000 5.690 1.332 

iDisc_NUMBER 4131 7.418 0.000 0.000 295 20.699 

SIZE 4030 20.247 20.148 14.594 26.992 1.744 

BTM 3806 -1.374 -1.029 -18.364 1.703 2.132 

LEV 4006 0.160 0.065 0.000 0.758 0.205 

DISP 3298 0.162 0.093 0.016 0.846 0.185 

BETA 3046 1.191 1.153 0.385 2.197 0.402 

LTG 3940 0.094 0.150 -1.000 0.667 0.297 

NEWS 4111 5.557 5.434 2.639 8.354 1.042 

INSTOWN 3649 0.769 0.829 0.000 1.707 0.315 

SURP 3082 0.365 0.088 -4.529 2.996 0.927 

ROA 3912 -0.073 0.022 -1.142 0.216 0.274 

Notes: Table 4, summary statistics are presented for COE estimates, iDisc and other explanatory variables 

for NASDAQ firms with Twitter accounts from 2009 to 2015. See Appendix (A and B) for definitions of 

the variables. The table presents the number of observations (N), mean (Mean), median (Median), minimum 

(Min) and maximum (Max) values and standard deviation (SD). To control for outliers, we use a 

winsorizing level of 2.5th to 97.5th percentiles for all variables except for iDisc, BTM and INSTOWN. 



Table 5 

 Pearson and Spearman Correlations for the Cost of Equity (COE), iDisc and Other Explanatory Variables 
Variables  COE iDisc SIZE BTM LEV DISP BETA LTG NEWS INSTOWN SURP ROA 

COE 1 -0.120*** -0.297*** 0.415*** 0.1020*** 0.010 0.183*** -0.097*** -0.058* -0.074** 0.151*** -0.094*** 

iDisc -0.085*** 1 0.079*9 0.012 0.055 -0.027 0.070** -0.034 0.082** -0.046 0.045 -0.106*** 

SIZE -0.323*** 0.125*** 1 -0.421*** 0.150*** 0.199*** -0.199*** -0.090*** 0.642*** 0.178*** -0.325*** 0.377*** 

BTM 0.145*** -0.041** -0.153*** 1 0.016 0.000 0.196*** -0.264*** -0.099*** -0.078** 0.25*** -0.416*** 

LEV 0.110** -0.006 0.143*** -0.132*** 1 0.102*** -0.015 -0.168*** 0.171*** 0.004 0.005 -0.239*** 

DISP 0.043 0.005 0.140*** -0.106*** 0.087*** 1 0.042 0.002 0.256*** 0.094*** -0.054 -0.008 

BETA 0.231*** -0.004 -0.121*** 0.068*** 0.089*** 0.035* 1 0.045 -0.049 0.024 0.198*** -0.197*** 

LTG 0.242*** -0.031* 0.228*** 0.034** -0.054*** -0.138*** -0.024 1 -0.055 0.031 0.062** -0.084** 

NEWS -0.095*** 0.098*** 0.63*** -0.143*** 0.125*** 0.178*** 0.029 0.098*** 1 0.084** -0.081** 0.087** 

INSTOWN -0.163*** -0.008 0.472*** 0.049*** 0.030* 0.002 -0.026 0.192*** 0.237*** 1 -0.174*** 0.064* 

SURP 0.184*** 0.013 -0.330*** 0.140*** -0.029 -0.036* 0.151*** -0.128*** -0.089*** -0.274*** 1 -0.268*** 

ROA -0.245*** -0.043*** 0.422*** 0.109*** 0.007 -0.182*** -0.110*** 0.358*** 0.158*** 0.383*** -0.209*** 1 

Notes: Table 5 presents the Pearson and Spearman correlation between COE, iDisc and explanatory variables for NASDAQ firms with Twitter accounts from 2009 to 2015. 

See Appendix (A and B) for the descriptions of the variables. ***, **, * present the statistically significant level at 1%, 5% and <10% respectively.  



Table 6 

The Impact of iDisc on Cost of Equity (COE) 
 (1) (2) 

 (OLS) (2SLS) 

   

iDisc -0.0014** -0.0028* 

 (0.0007) (0.0016) 

SIZE -0.0041*** -0.0043*** 

 (0.0011) (0.0013) 

BTM 0.0127*** 0.0130*** 

 (0.0017) (0.0023) 

LEV 0.0389*** 0.0339*** 

 (0.0076) (0.0081) 

DISP 0.00136 0.0003 

 (0.0065) (0.0089) 

BETA 0.0099*** 0.0106*** 

 (0.0031) (0.0039) 

LTG 0.0438*** 0.0444** 

 (0.0148) (0.0190) 

NEWS 0.0036** 0.0062*** 

 (0.0017) (0.0017) 

INSTOWN 0.0008 -0.0005 

 (0.0043) (0.0051) 

SURP 0.0026 0.0039** 

 (0.0017) (0.0018) 

ROA 0.0132 0.0254 

 (0.0208) (0.0195) 

   

Year Effect Yes Yes 

Industry Effect Yes Yes 

Firm Effect Yes Yes 

Wu-Hausman Test  0.215 

   

Constant 0.105*** 0.0980*** 

 (0.0196) (0.0248) 

   

Observations 829 551 

R2 0.476 0.472 

Notes: This table presents the regression results of the impact of iDisc on COE. The sample consists of 

nonfinancial firms in NASDAQ with Twitter accounts from 2009 to 2015. See Appendix (A and B) for definitions 

of the variables and measurements. Column (1) represents the results from pooled cross-sectional regression 

clustered at the firm level (OLS). Column (2) reports the results from the second stage of the 2SLS regression 

model. *, **, *** signify the significance level at 10%, 5% and 1% respectively. Robust standard errors are in 

parentheses. 

 

 



Table 7 

The Effect of iDisc on Cost of Equity (COE) for High- and Low-Visible Firms 
 High SIZE Low SIZE High ANALYSTS Low ANALYSTS High LNOWN Low LNOWN 
 (1) 

(OLS) 

(2) 

(2SLS) 

(3) 

(OLS) 

(4) 

(2SLS) 

(5) 

(OLS) 

(6) 

(OLS) 

(7) 

(OLS) 

(8) 

(OLS) 
         

iDisc -0.0006 0.0018 -0.0023** -0.0039* -0.0012 -0.0026*** -0.0008 -0.0017* 

 (0.0009) (0.0018) (0.001) (0.0021) (0.0011) (0.0009) (0.0011) (0.0009) 

SIZE -0.0037** -0.0051** -0.0081*** -0.0075***   -0.0033** -0.0053*** 

 (0.0015) (0.0021) (0.0024) (0.0026)   (0.0016) (0.0014) 

BTM 0.0075*** 0.0053 0.0147*** 0.0177*** 0.0121*** 0.0162*** 0.0108*** 0.0124*** 

 (0.0025) (0.0032) (0.0019) (0.0023) (0.0028) (0.0019) (0.0027) (0.0022) 

LEV 0.029*** 0.0126 0.0413*** 0.0427*** 0.0352*** 0.0444*** 0.0314** 0.0383*** 

 (0.0102) (0.0119) (0.0092) (0.0107) (0.0131) (0.0091) (0.0145) (0.0088) 

DISP -0.0046 -0.0053 0.0094 -0.0028 -0.0033 -0.0104 -0.0149 0.0099 

 (0.0066) (0.0111) (0.0123) (0.0123) (0.0081) (0.0099) (0.0096) (0.0081) 

BETA 0.0033 0.0071 0.0138*** 0.0155*** 0.0084* 0.0141*** 0.0066 0.0102*** 

 (0.0043) (0.0068) (0.0038) (0.0043) (0.0045) (0.0041) (0.0055) (0.0035) 

LTG -0.0209 0.0005 0.0589*** 0.0568*** 0.0368 0.0617*** 0.0293 0.0506*** 

 (0.0201) (0.0280) (0.0172) (0.0204) (0.0319) (0.0167) (0.0258) (0.0168) 

NEWS 0.0027 0.0048** 0.0053*** 0.0068*** 0.00155 0.0005 0.0046** 0.0037* 

 (0.0020) (0.0022) (0.002) (0.0020) (0.0018) (0.0021) (0.0023) (0.0019) 

INSTOWN -0.0005 0.00156 0.0048 -0.0006 0.0070 -0.0030 0.0089 -0.0024 

 (0.0057) (0.0068) (0.0064) (0.0069) (0.0053) (0.0060) (0.0065) (0.0054) 

SURP 0.0022 0.0032 0.00181 0.0035* 0.0014 0.0027 0.0052** 0.0013 

 (0.0041) (0.0039) (0.0018) (0.0019) (0.0034) (0.0019) (0.0022) (0.0019) 

ROA 0.0494** 0.0340 -0.0002 0.0220 0.0452** -0.0193 0.0383 0.0066 

 (0.0213) (0.0280) (0.0225) (0.0234) (0.0185) (0.0223) (0.0317) (0.0222) 

LNOWN       -0.001 0.0021** 

       (0.0013) (0.0009) 

ANALYSTS     -0.0051 -0.0055   

     (0.0044) (0.0043)   

Year Effect Yes Yes Yes Yes Yes Yes Yes Yes 

Industry Effect Yes Yes Yes Yes Yes Yes Yes Yes 

Firm Effect Yes Yes Yes Yes Yes Yes Yes Yes 

Wu-Hausman Test  0.278  0.263     

Constant 0.111*** 0.136*** 0.163*** 0.139*** 0.0293* 0.0516*** 0.0833*** 0.133*** 

 (0.0289) (0.0421) (0.0420) (0.0455) (0.0160) (0.0167) (0.0275) (0.0264) 

Observations 365 219 464 332 383 446 258 570 

R2 0.350 0.334 0.537 0.546 0.400 0.519 0.604 0.475 

Notes: This table presents the regression results from estimating our base Model (1) of the impact of iDisc on COE based on firm visibility. The sample consists of nonfinancial firms in NASDAQ with Twitter 

accounts from 2009 to 2015. See Appendix (A and B) for definitions of the variables and measurements. The full sample is divided into subsamples based on firm size, analyst following and number of investors. 

Firm observation placed on the 4th (1s, 2d, 3d) quartile level is designated as high visible (low visible) firms. Columns (1-4) represent the relation based on firm size (SIZE). Analyst following (ANALYSTS) is 

added to columns (5-6) and number of investors (LNOWN) is added to columns (7-8). The coefficient estimates are based on pooled cross-sectional regression clustered at the firm level (OLS), except for models 

(2&4), which apply 2SLS model (2SLS). *, **, *** represent the significance level at 10%, 5% and 1% respectively. Robust standard errors are in parentheses.
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Table 8 

News Magnitude of iDisc and Cost of Equity (COE) 
 Model (2) Model (3) 

 News magnitude 

(OLS) 

News contents 

(OLS) 

   

iDisc -0.0013* -0.0019** 

 (0.0007) (0.0008) 

|SURP| 0.0007  

 (0.0006)  

NegSURP 0.0012  

 (0.0019)  

|SURP| * iDisc  0.0002  

 (0.0003)  

|SURP| * NegSURP -0.0002  

 (0.0006)  

TONE  0.0002 

  (0.0002) 

TONE * iDisc  0.00003 

  (0.00004) 

SIZE -0.0037*** -0.0042*** 

 (0.0012) (0.0011) 

BTM 0.0121*** 0.0127*** 

 (0.0016) (0.0018) 

LEV 0.0331*** 0.0390*** 

 (0.0075) (0.0075) 

DISP 0.0041 0.0015 

 (0.0076) (0.0065) 

BETA 0.0105*** 0.0097*** 

 (0.0032) (0.0031) 

LTG 0.0547*** 0.0441*** 

 (0.0161) (0.0148) 

NEWS 0.0028 0.0036** 

 (0.0018) (0.0017) 

INSTOWN 0.0013 0.0009 

 (0.0044) (0.0043) 

SURP  0.0027 

  (0.0017) 

ROA -0.0081 0.0141 

 (0.0174) (0.0209) 

Year Effect Yes Yes 

Industry Effect Yes Yes 

Firm Effect Yes Yes 

Constant 0.101*** 0.107*** 

 (0.0197) (0.0196) 

Observations 891 829 

R2 0.470 0.478 

Notes: The table reports the effect of iDisc on implied cost of equity capital after controlling for news magnitude 

and information content. The sample consists of nonfinancial firms in NASDAQ with Twitter accounts from 2009 

to 2015. See Appendix (A and B) for definitions of variables and measurements. Model (2) presents the results 

after adding news magnitude based on earnings surprise variables. Model (3) includes the tone (TONE) of iDisc 

text, in which a tweet could convey the meaning of news reported and its interaction with iDisc (TONE * iDisc). 

TONE is measured based on positive and negative words from the Loughran and McDonald lists. The coefficient 

estimates are based on pooled cross-sectional regression clustered at the firm level (OLS) and *, **, *** represent 

the significance level at 10%, 5% and 1% respectively. Robust standard errors are in parentheses. 
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Table 9 

Applying Alternative Measures of iDisc and Cost of Equity (COE) 

 (1) (2) 

 COE 

(OLS) 

RPEG 

(OLS) 

   

iDisc_Hyperlink -0.0015**  

 (0.0007)  

iDisc  -0.003** 

  (0.0014) 

SIZE -0.0041*** -0.0053*** 

 (0.0011) (0.0018) 

BTM 0.0130*** 0.0017 

 (0.0017) (0.0024) 

LEV 0.0409*** -0.0211 

 (0.0076) (0.0149) 

DISP 0.00071 0.0192* 

 (0.0062) (0.0112) 

BETA 0.0099*** 0.0205** 

 (0.0031) (0.0088) 

LTG 0.0518*** 0.120*** 

 (0.0155) (0.0352) 

NEWS 0.0037** 0.0059*** 

 (0.0017) (0.0022) 

INSTOWN 0.00057 -0.0281*** 

 (0.0044) (0.0099) 

SURP 0.0028 0.0089** 

 (0.0018) (0.0037) 

ROA 0.0179 -0.145*** 

 (0.0189) (0.0334) 

   

Year Effect Yes Yes 

Industry Effect Yes Yes 

Firm Effect Yes Yes 

   

Constant 0.104*** 0.181*** 

 (0.0196) (0.0381) 

   

Observations 829 1,550 

R2 0.483 0.283 

Notes: This table represents the regression results from estimating our base Model (1) using different 

measures of iDisc and COE. The sample consists of nonfinancial firms in NASDAQ with Twitter accounts 

from 2009 to 2015. See Appendix (A and B) for definitions of variables and measurements. We use iDisc 

with hyperlink in column (1). In column (2), we use RPEG as an alternative measure of the cost of equity. The 

coefficient estimates are based on pooled cross-sectional regression clustered at the firm level (OLS) and *, 

**, *** represent the significance level at 10%, 5% and 1% respectively. Robust standard errors are in 

parentheses. 
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Table 10 

Robustness Tests for Including Other Additional Variables 
 (1) (2) (3) (4) 

 COE 

(OLS) 

COE 

 (OLS) 

COE 

 (OLS) 

COE 

 (OLS) 

     

iDisc -0.0015** -0.0019** -0.0015** -0.00141** 

 (0.0008) (0.0009) (0.0007) (0.0007) 

SIZE -0.0031** -0.0048*** -0.0044*** -0.0041*** 

 (0.0012) (0.0016) (0.0011) (0.0011) 

BTM 0.0129*** 0.0171*** 0.0117*** 0.0121*** 

 (0.0016) (0.0018) (0.0017) (0.0017) 

LEV 0.0352*** 0.0419*** 0.0373*** 0.0379*** 

 (0.0078) (0.0086) (0.0077) (0.0076) 

DISP 0.0079 -0.0049 0.0015 0.0008 

 (0.0075) (0.0077) (0.0065) (0.0065) 

BETA 0.0126*** 0.0044 0.0103*** 0.0099*** 

 (0.0034) (0.004) (0.0031) (0.0031) 

LTG 0.0560*** 0.073*** 0.0467*** 0.0457*** 

 (0.0170) (0.0195) (0.0147) (0.0146) 

NEWS 0.0031 0.0043* 0.0038** 0.0038** 

 (0.0020) (0.0023) (0.0018) (0.0017) 

INSTOWN 0.0009 -0.0003 0.0013 0.0009 

 (0.0050) (0.0066) (0.0042) (0.0042) 

SURP 0.0042** 0.0024 0.0030* 0.0026 

 (0.0018) (0.0029) (0.0017) (0.0017) 

ROA -0.0015** 0.0612*** 0.0161 0.0149 

 (0.0008) (0.0166) (0.0225) (0.0214) 

ACCRUAL 0.0032    

 (0.0098)    

ADVERTISING  -0.0028   

  (0.008)   

SILICON  0.00311   

  (0.0035)   

CEOAGE  0.0017   

  (0.0025)   

MMT6   -0.0076***   

   (0.0019)  

MMT12    -0.0071*** 

    (0.0019) 

Year Effect Yes Yes Yes Yes 

Industry Effect Yes Yes Yes Yes 

Firm Effect Yes Yes Yes Yes 

Constant 0.0686*** 0.117*** 0.113*** 0.108*** 

 (0.0208) (0.0263) (0.0199) (0.0195) 

Observations 634 443 813 827 

R2 0.443 0.552 0.493 0.486 

Notes: This table presents the regression results from estimating our base Model (1) by including additional 

robustness tests for our selected sample. The sample consists of nonfinancial firms in NASDAQ with Twitter 

accounts from 2009 to 2015. See Appendix (A and B) for definitions of the variables and measurements. 

Column (1) controls for information quality by adding discretionary accrual (ACCRUAL) as a control variable. 

Column (2) reports the regression after adding variables that relate to social media adoption (ADVERTISING, 

SILICON, and CEOAGE). We have also added price momentum in the last 12 months and 6 months in columns 

(3&4) to control for the sluggishness of analysts' forecasts. The coefficient estimates are based on pooled 

cross-sectional regression clustered at the firm level (OLS) and *, **, *** represent the significance level at 

10%, 5% and 1% respectively. Robust standard errors are in parentheses. 
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Appendix A: Variables Definition and Measurements 

 

Variable Definition Measurement Source 

 

Dependent Variables  

COE Cost of equity 

The average expected rate of return of 

ROJ, RMPEG, RCT and RGLS minus the risk-

free rate. 

Bloomberg  

RPEG Cost of equity 
The expected rate of return based on 

Easton (2004) 
Bloomberg  

 

Independent Variables  

iDisc Firm's financial Tweets 

Log of 1 plus the number of financial 

tweets including (financial reporting, 

Financial term, Financial ratio and 

Financing terms tweets) 

Twitter API 

and Manual 

collection 

iDisc_Hyperlink 
Firm's financial Tweets 

with hyperlink 

Log of 1 plus the number of financial 

tweets that contain hyperlink 

Twitter API 

and Manual 

collection 

iDisc_NUMBER Firm's financial Tweets The number of financial tweets 

Twitter API 

and Manual 

collection 

SIZE Firm size 
Natural logarithm of market value of 

equity 
Bloomberg 

BTM 
Book value to market 

ratio 

Natural logarithm of book value to 

market value ratio 
Bloomberg 

LEV Financial leverage Long term debt scaled by market value Bloomberg 

DISP 
Analysts' forecast 

dispersion 

Standard deviation of 1 year ahead 

earnings per share forecast 
Bloomberg 

BETA Firm beta 
Slope coefficient of 60 months market 

return 
Bloomberg 

LTG 
The consensus long 

term growth forecast 

The average long-term growth forecast 

in June or two-year consensus EPS 

forecast minus one-year consensus EPS 

forecast divided by the mean of one-

year consensus EPS forecast 

Bloomberg 

NEWS News coverage 
Natural logarithm of number of news 

articles about the firm 
LexisNexis 

INSTOWN 
The percentage of 

Institutional ownership 

The proportion of the shares 

outstanding owned by institutions 
Bloomberg 

SURP Earning surprise 

Natural logarithm of the consensus 

earnings forecast for forthcoming fiscal 

year - actual earning / stock price 

Bloomberg 

ROA Return on assets 

Income before extraordinary items 

divided by book value of assets (total 

common equity) 

Bloomberg 

ANALYST Analyst following Natural log of number of analysts 

making an earnings forecast 

Bloomberg 

LNOWN Number of investors Natural logarithm of number of 

shareholders  

Bloomberg 

|Surp| Absolute earning 

surprise 

Absolute value of the consensus 

earnings forecast for forthcoming fiscal 

year - actual earning / stock price 

Bloomberg 

NegSURP Negative earnings 

surprise 

Indicator variable equal to 1 if earning 

surprise is below zero and 0 otherwise 

Manually 

computed 
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ACCRUAL Discretionary accruals The difference between discretionary 

accruals based on Jones model and 

firm’s corresponding discretionary 

accruals 

Bloomberg 

ADVERTISING Advertising intensity Advertising expenses divided by total 

sales 

Bloomberg 

SILICON Silicon Valley Indicator variable equal to 1 if firm is 

located in Silicon Valley and 0 

otherwise 

DataStream 

CEOAGE CEO age Indicator variable equal to 1 if CEO age 

is below the median value and 0 

otherwise 

DataStream 

MMT(6) Price momentum Compounded rate of return of the 

previous 6 months 

Manually 

computed 

MMT(12) Price momentum Compounded rate of return of the 

previous 12 months 

Manually 

computed 
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COE estimates Formula 

 

 

𝑅𝑂𝐽 

 

Ohlson and Juettner-

Nauroth (2005) employed 

by Gode and Mohanram 

(2003) model 

 

 

𝑅𝑂𝐽𝑁 = 𝐴 + √𝐴2 + (
𝐸𝑡(𝐸𝑃𝑆𝑡+1)

𝑃𝑡
∗ ) (𝑔2 − 𝑔𝑙𝑡)

 

 

 

𝐴 = 0.5 (𝑔𝑙𝑡 +  
𝐷𝑃𝑆𝑡+1

𝑃𝑡
∗ ) 

 

EPS t+1 = The median of earning forecast per share for the next year in June 

DEPS t+1 = Dividend per share for the next Year computed as pay-out ratio for firms with 

positive earning or 6% of ROA 

𝑔2 is the short-term earnings growth rate of EPSt+1 and EPSt+2 or long-term growth rate of 

analysts’ forecasts. This model requires EPSt+1> 0 and EPSt+2> 0. 𝑔𝑙𝑡 is the difference 

between 10-year treasury bonds yield and 3% 

 

 

𝑅𝑀𝑃𝐸𝐺 

 

Modified Easton (2004) 

cost of equity module by 

Gode and Mohanram 

(2003) 

  

 

 

𝑃𝑡 =  
𝐸𝑡(𝐸𝑃𝑆𝑡+1)

𝑅𝑀𝑃𝐸𝐺

+
𝐸𝑡(𝐸𝑃𝑆𝑡+1)𝐸𝑡[𝑔𝑠𝑡 − 𝑅𝑀𝑃𝐸𝐺  ⨯ (1 + FDIV)]

𝑅𝑀𝑃𝐸𝐺
2

 

 

 

Pt = firm price in June in each year 

FEPS=the median of earning forecast per share for the next i year at time t 

FDIV=forecast dividend pay-out ratio equal to (
DPS

EPS
) 

DPS=dividend per share  

EPS= earnings per share  

The model assumes positive FEPS but if EPS is negative, FDIV is measured by replacing 

EPS by 6% of return on asset. 

 

 

 

 

𝑅𝐶𝑇 

Claus and Thomas (2001) 

 

 

 

𝑃𝑡
∗ = 𝐵𝑡 + ∑

[𝐹𝐸𝑃𝑆𝑡+𝑖 − 𝑅𝐶𝑇  ⨯  𝐵𝑡+𝑖−1] 

(1 + 𝑅𝐶𝑇)𝑖

5

𝑖=1

+
[𝐹𝐸𝑃𝑆𝑡+5 − 𝑅𝐶𝑇 ⨯  𝐵𝑡+4]  ⨯ (1 + 𝑔𝑙𝑡) 

(𝑅𝐶𝑇 − 𝑔𝑙𝑡)(1 + 𝑅𝐶𝑇)5
 

 

The model measures earnings per share for the next 5 years by using analyst forecasts. The 

forecasted earnings for the 4th and 5th years are estimated by the earning forecast of the 3rd 

year and growth rate of long term earnings. If the long-term growth rate is not found, EPSt+2 

and PSt+3 are used. The long term abnormal earning growth rate is measured as 10 years 

Treasury bonds minus 3%. Clean surplus relation is used to estimate future book value 

(𝐵𝑡+𝑖−1 = 𝐵𝑡 +  𝐸𝑃𝑆𝑡+1 −  𝐷𝑃𝑆𝑡+1). Estimating future dividend is estimated by 

multiplying earnings per share by pay-out ratio (𝐷𝑃𝑆𝑡+1 =  𝐸𝑃𝑆𝑡+1  ⨯  𝐹𝐷𝐼𝑉).  
 

𝑅𝑅𝐺𝐿𝑆 

 

Gebhardt, Lee, and 

Swaminathan (2001) 

 

 

 

𝑃𝑡
∗ = 𝐵𝑡 + ∑

[𝐹𝑅𝑂𝐸𝑡+𝑖 − 𝑅𝐺𝐿𝑆]  ⨯  𝐵𝑡+𝑖−1 

(1 + 𝑅𝐺𝐿𝑆)𝑖

𝑇−1

𝑖=1

+
[𝐹𝑅𝑂𝐸𝑡+𝑇 − 𝑅𝐺𝐿𝑆]  ⨯  𝐵𝑡+𝑇−1 

(1 + 𝑅𝐺𝐿𝑆)𝑇−1𝑅𝐺𝐿𝑆

 

 

 

The model measures forecasted return on equity by using analyst forecasts for the next 3 

years. From the 4th year to T number of years, ROE is forecasted using linter interpolation 

to industry median based on 10 years historical industry specific ROE. In case the industrial 

ROE is lower than the risk-free rate, Industrial ROE would be replaced with risk free rate 

(Liu, Nissim, and Thomas, 2002). It is also assumed that t = 12, which indicates that ROE 



48 
 

remains constant afterwards. The research also assumes that firms are classified under 48 

industries as defined by Fama and French (1997). Additionally, the model applies a clean 

surplus to estimate forecasted book values of equity.  

 

Where, 

𝐵𝑡+𝑖−1 = 𝐵𝑡 + 𝐸𝑃𝑆𝑡+1 −  𝐷𝑃𝑆𝑡+1 

𝐷𝑃𝑆𝑡+1 =  𝐸𝑃𝑆𝑡+1  ⨯  𝐹𝐷𝐼𝑉 

 

𝐶𝑂𝐸 

 

 

 

The cost of equity measured by the average of four measures (ROJ, RMPEG, RCT and RGLS,) 

minus risk-free rate. 

 

𝑅𝑃𝐸𝐺 

 

Easton (2004) Price 

Earnings Growth Model 

 

 

𝑃𝑡
∗ =  

𝐹𝐸𝑃𝑆5 − 𝐹𝐸𝑃𝑆4

𝑅𝑃𝐸𝐺
2

 
 

 

The first model is for the short-term horizon and the second is for the long-term horizon. 

Pt = = firm price in June of each year, 

FEPS t = median of earning forecast at year t. 

 

 

 

 

 

 


