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ABSTRACT Supercontinuum (SC) with broad bandwidth and high coherence is crucial in the SC-based
frequency comb source generation. In this paper, we numerically investigate the mid-infrared (MIR) SC
generations with the three optical modes (TE00, TE10, and TE20) in a multimode chalcogenide (As2Se3) strip
waveguide. The waveguide structure is carefully engineered to ensure that the pump pulses are propagated in
the normal dispersion regions of the considered three optical modes. Highly coherent and octave-spanning
MIR SCs are generated when the optimized pump pulse with 80-fs pulse duration, 3-kW peak power, and
3-µm center wavelength is used. Moreover, the nonlinear dynamics of the SC generation are numerically
analyzed. Finally, the SC-based frequency combs are numerically demonstrated when a pulse train with a
repetition rate of 50 MHz is used as the pump source and launched into the multimode As2Se3-based strip
waveguide. It is believed that the generated MIR SC and SC-based frequency comb sources have important
applications in biophotonics, metrology, and sensing.

INDEX TERMS Chalcogenide strip waveguide, different optical modes, supercontinuum, frequency comb.

I. INTRODUCTION
Generation of optical frequency comb has attracted great
research interests due to the broad applications in optical
communication, metrology, molecular detection, etc [1], [2].
For example, the wavelength-division multiplexing as one
of the key technologies in optical communication systems
requires a large number of discrete-wavelength laser sources.
They can be replaced by one frequency comb source pro-
duced through a single seed laser. Thus, the complex-
ity and cost of the system are greatly reduced [3], [4].
In general, frequency comb sources can be obtained from
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mode-locked lasers, micro-resonator based Kerr comb, or
supercontinuum (SC) generated in nonlinear fiber or waveg-
uides [5]–[10]. However, direct generation of self-referenced
frequency comb inmode locked lasers is currently impossible
since no gain medium could cover the span of an octave.
In contrast, octave spanning frequency combs are achievable
by exciting Kerr comb in micro-resonators or SC in nonlinear
optical medium. Kerr comb in micro-resonators is the most
promising technique to fabricate on-chip comb sources [11].
However, there are still problems that impede the applica-
tion of Kerr frequency comb sources. Due to the high qual-
ity factor (Q-factor), the intrinsic thermal effect will cause
instability of the source. Another problem that limits the
application is the challenging fabrication of the high Q-factor
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micro-resonators [12]. Compared with Kerr comb sources,
the generation of SC-based frequency comb is much easier to
launch a pump pulse train into a nonlinear fiber or waveguide.
Before the thermal and fabrication problems of Kerr comb
sources are solved, it is expected that SC-based frequency
comb generation will serve as the preferred technique to be
adopted in applications.

The dynamics that contribute to the SC generation includ-
ing modulation instability (MI), soliton fission, four wave
mixing (FWM), dispersive wave generation, and Raman scat-
tering have been systematically investigated [13]. The group
velocity dispersion at the pump launching wavelength and
higher-order dispersion coefficients over the whole spectral
range are critical effects that determine the quality of the SC
generated [13], [14]. The SC generation pumped at anoma-
lous dispersion region has been studied a lot owing to the
large bandwidth benefiting from the combined contribution
of all effects mentioned above. However, the perturbation
sensitivity of MI greatly degrades the coherence of SC gener-
ated with pump pulses accompanied by noise [15]. A method
of generating the coherent SC is to design nonlinear media
with all-normal dispersion (ANDi) profile within the wave-
length of interest [16], [17]. The incoherent processes of MI
will be well suppressed. Recently, Milan et al. experimen-
tally reported the coherent SC generation through a simple
post-process technique to control the waveguide dispersion
to obtain ANDi profile in a hybrid chalcogenide/silicon-
germanium system [18]. Yuan et al. experimentally demon-
strated a coherent SC by using ANDi chalcogenide all-solid
microstructured fiber [19]. Fang et al. numerically achieved
a three-octave coherent SC using ANDi Si3N4 slot waveg-
uide [20]. When the pump pulses are launched and propagate
into a normal dispersion waveguide, the spectral broadening
is mainly induced by the self-phase modulation (SPM) and
optical wave breaking (OWB) [21]. The SPM and OWB
effects are self-seeded processes, which are coherent pro-
cesses, degradation of the coherence of the generated SC
will be avoided [22], [23]. However, there are still some
limitations for coherent SC generation in ANDi region when
the pump pulse duration or the propagation length is increas-
ing [24], [25]. The reasonable pulse duration and propagation
length need to be carefully selected. Besides the dispersion
effect, the nonlinearity of waveguide is also important for SC
generation. Adoption of materials with high Kerr nonlinearity
and low nonlinear loss can enhance the nonlinear processes,
which are beneficial to the SC generation.

Chalcogenide glasses are considered as one of the
promising materials for mid-infrared (MIR) SC genera-
tions [26]–[29]. For example, the transparency window of
As2Se3 is in the wavelength range from 0.85 to 17.5 µm
[28]. However, the research works are mainly focusing on
the MIR SC generation by the fundamental mode of chalco-
genide waveguide [29]–[32]. Obviously if the pump light is
coupled into a higher-order mode of the waveguide, the non-
linear dynamics of the MIR SC generation will be different
to that with fundamental mode because of the remarkable

FIGURE 1. (a) The cross-section of the designed waveguide. (b) The
normalized mode field distributions of the three quasi-TE modes
(TE00, TE10, and TE20) calculated at wavelengths 3 and 6 µm. The sign
change in the scale bar indicates a shift in the phase of the electric field.

difference in the dispersion characteristics [33], [34]. In this
paper, we will investigate the MIR SC generations by dif-
ferent optical modes, which have potential applications in
mode-division multiplexing and multimode sensing systems.
Highly coherent and octave-spanningMIR SCs are generated
in a multimode chalcogenide (As2Se3) strip waveguide by
using three optical modes (TE00, TE10, and TE20), which
are designed with ANDi profiles within the wavelength of
interest. SC-based frequency combs are achieved when a
pulse train with 50 MHz repetition rate is used as the pump
source. The paper is organized as follows: In Section II,
we design a multimode As2Se3-based strip waveguide, and
introduce the theoretical model. In Section III, the MIR SC
generations with the three optical modes are numerically
investigated with variation of pump parameters. Generation
of octave-spanning MIR frequency combs are demonstrated
with the pulse train. Conclusions are drawn in Section IV.

II. WAVEGUIDE DESIGN AND THEORETICAL MODEL
Fig. 1(a) shows the cross-section of the designed As2Se3 strip
waveguide on aMgF2 substrate. The As2Se3 waveguide has a
widthW of 14µmand a heightH of 0.8µm. The thickness of
the MgF2 substrate used is 5.0µm in the simulation. The fab-
rication of such a waveguide has been developed [35], [36].
It can be fabricated through the film deposition with ther-
mal evaporation [37], photolithography [38], inductively cou-
pled plasma etching with the CF4/O2 gas mixture or CHF3
gas [39], [40], and photoresist removing by wet chemical
stripping [29]. The refractive indices of As2Se3 and MgF2
are calculated by the Sellmeier equation

n2(λ) = 1+
m∑
j=1

Bjλ2

λ2 − λ2j
, (1)

where λ is the wavelength. The coefficients of the Sellmeier
equation for As2Se3 and MgF2 are given in Table 1.
With the full-vector finite element method (FEM), the

mode field distributions of the three quasi-TE modes
(TE00, TE10, and TE20) calculated at wavelengths 3 and 6 µm
are shown in Fig. 1(b). From Fig. 1(b), most of the mode field
energy is well confined in the waveguide.

The effective refractive index Neff and effective mode field
area Aeff at different wavelengths for the three optical modes
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TABLE 1. Sellmeier coefficients for As2Se3 and MgF2.

FIGURE 2. (a) The effective refractive index Neff and effective mode area
Aeff for the three optical modes TE00, TE10, and TE20, and
(b) group-velocity dispersion D and Kerr nonlinear coefficient γ for the
TE00, TE10, and TE20 modes, respectively.

are shown in Fig. 2(a), which are also calculated by the full-
vector FEM. From Fig. 2(a), the differences of Neff and Aeff
for different modes are enlarged as the wavelength increases.
The group-velocity dispersion D is derived from Neff as [42]

D(λ) = −
λ

c
d2Neff
dλ2

, (2)

where c is the velocity of light in vacuum. Fig. 2(b) shows
the D(λ) curves for the three optical modes. From Fig. 2(b),
all three optical modes show all-normal dispersion within the
wavelength range considered. Among them, the dispersion
profile of TE20 mode is closest to the zero dispersion and
flattest, which will be benefit to the SC generation. The
dispersion profile of TE20 mode is the critical consideration
in engineering the ANDi. When only H increases, all the
dispersion curves go up in the same trend. As H increases
to ∼0.85 µm, the dispersion curve of TE20 mode begins to
enter the anomalous region while the other two modes are
still in the normal region. When only W decreases, all the
dispersion curves go up at different levels. The TE20 mode
is much sensitive to the change of W . As W decreases to
∼13.5 µm, the dispersion curve of TE20 mode also begins
enter the anomalous region while the other two modes are
still in the normal region. To keep all three optical modes
in the ANDi region, W of 14 µm and H of 0.8 µm are
selected as optimized values. And the robustness inW and H
are within 500 and 50 nm, respectively. The Kerr nonlinear
coefficients γ can be calculated from n2 and Aeff, which
is related to the integration on the whole waveguide cross-
section [42]

γ (λ) =
2πn2
λAeff

=
2π
λ

∫∫
n2(x, y) |F(x, y)|4dxdy(∫∫
|F(x, y)|2dxdy

)2 , (3)

TABLE 2. Some parameters used in the simulations.

where F(x, y) is the distribution of the mode fields and
n2 = 2.4 × 10−17 m2/W is the nonlinear refractive index of
As2Se3 [41]. The γ (λ) curves of the three optical modes are
shown in Fig. 2(b). From Fig. 2(b), the three curves aremostly
overlapped, whichmeans they have almost same nonlinearity.
This is mainly because the small deviation of Aeff between
the three optical modes. The evolution dynamics of the short
pulse propagating in the designed waveguide are modelled by
a generalized nonlinear Schrödinger equation [31], [32]

∂A
∂z
+
α

2
A−

∑
m≥2

im+1
βm

m!
∂mA
∂tm

= iγ (1+
i
ω0

∂

∂t
)
[
A
∫
∞

0
R(T ) |A(z, t − T )|2dT

]
, (4)

where A is the slowly varying envelope in a retarded frame T ,
βm(m = 2, 3, . . ., and 13) is the mth-order dispersion coeffi-
cient calculated from a Taylor expansion of the propagation
constant at the carrier frequency of the pump pulse, and α is
the linear loss coefficient.R is the nonlinear response function
as following

R(t) = (1− fR)δ(t)+ fRhR(t), (5)

where fR, δ(t), and hR(t) are the fractional contribution
of the Raman response, instantaneous electronic response,
and delayed Raman response function, respectively. hR(t) is
described by the Green’s function of a damped harmonic
oscillator, which is expressed as

hR(t) =
τ 21 + τ

2
2

τ1τ
2
2

exp
(
−
t
τ2

)
sin
(
t
τ1

)
, (6)

where τ1 is the Raman period corresponding to the phonon
oscillation frequency and τ2 is the Raman gain spectral band-
width. Some parameters used in the simulations are listed in
Table 2 [40], [41], [43].

The coherence of SC is a key indicator to evaluate the
quality of the SC generated. To quantify the coherence of SC,
three important factors are calculated as following [44], [45]

∣∣∣g(1)1,2(λ)
∣∣∣ =

∣∣∣∣∣∣
〈
A∗1(λ)A2(λ)

〉√〈
|A1(λ)|2

〉 〈
|A2(λ)|2

〉
∣∣∣∣∣∣ , (7)

R =

∫
∞

0

∣∣∣g(1)12 (λ)
∣∣∣ · P(λ)dλ∫

∞

0 P(λ)dλ
, (8)

K = lg(1− R). (9)

where g(1)1,2 is the first-order degree of coherence, which
indicates the correlation of the signals from shot-to-shot at
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wavelength λ. Ak (λ) is the spectral amplitude of the SC
generated with the k-th shot pump pulse with random noise.
The angular brackets denote the ensemble average among
the independent pairs of the generated spectra. The weighted
degree of coherenceR in (8)measures the averaged coherence
in the whole spectrum, where P(λ) = 〈|A(λ)|2〉 denotes the
ensemble average power spectrum of the generated SC. In (9),
K is used to enlarge the detail of R when it is close to 1 for
highly coherent SC.

III. SIMULATION RESULTS AND DISCUSSION
As the base of frequency comb, generation of SC with large
bandwidth and high coherence is first investigated. By using
the Runge-Kutta method with adaptive step-size to solve (4),
the evolution dynamics of the SC generation can be charac-
terized [46]. In the following simulation, the number of the
frequency bins is chosen as 215. And the up to 13th-order
dispersion coefficients are considered. A hyperbolic secant
pulse with a complex amplitude of P1/20 sech(t/T0) are used
as the pump and coupled into the three optical modes
TE00, TE10, and TE20 of the designed waveguide with a
length of 1 cm, respectively. The coupling efficiency can be
improved through designing the tapered couplers at both ends
of the waveguide [47]. And the other two higher-order modes
can be efficiently excited by the TE00 mode based on the
tapered directional coupler scheme [48], [49]. In this section,
we will vary the launching wavelength, peak power and
pulse duration respectively to investigate the impact of these
parameters and seek for appropriate parameter combination
that should be used to optimize the performance of the SC
generated.

We first investigate the impact of launching wavelength of
the pump pulse. The pulse duration T0 = 240 fs and peak
power P0 = 2 kW, which are moderate values to model
the typical trends of dynamics along the variation of λ0 =
2.5, 3, and 3.5 µm. Such laser sources centered at the three
wavelengths are available from the previous works [50]–[52].
By using the dispersion and nonlinearity parameters of TE00,
TE10, and TE20 modes, respectively, the spectral and tempo-
ral profiles of the SCs generated at the output point of the
waveguide are shown in Fig. 3. In Figs. 3(a) and 3(b), when
a pump pulse at λ0 = 2.5 µm is coupled into the TE00 mode,
the −40 dB bandwidth of the generated SC spans from 1.6
to 4.0 µm, covering 1.26 octaves. As λ0 is increased to 3 and
3.5µm, the SC is also shifted towards longer wavelength with
simultaneous increase of the bandwidth. The −40 dB band-
widths of the generated SCs with 3 and 3.5 µm pump pulses
span from 1.7 to 4.5 µm and 2.0 to 5.0 µm, respectively,
covering 1.49 and 1.59 octaves. Besides, the spectral and tem-
poral shapes of the generated SCs are asymmetric, and some
burrs appear in the temporal profile due to the asymmetric
dispersion profile. For the SC generation, because the pump
pulses are launched at wavelengths with normal dispersions,
SPM is the dominating nonlinear process at the initial stage.
Then, the OWB, which is caused by the third-order dispersion
and self-steepening, further broadens the optical spectra.

FIGURE 3. The spectral (left column) and temporal (right column) profiles
of the SC generated when pump pulses with width T0 of 240 fs and peak
power P0 of 2 kW are operated at wavelengths 2.5, 3, and 3.5 µm and
coupled into the three optical modes TE00 ((a) and (b)), TE10 ((c) and (d)),
and TE20 ((e) and (f)), respectively. The input pulses are also shown with
the grey lines.

Figs. 3(c) and 3(d) show the spectral and temporal profiles
of the SCs generated with TE01 mode and pump condition
same to that of Figs. 3(a) and 3(b). The spectral and temporal
profiles are similar to those shown in Figs. 3(a) and 3(b). For
the TE10mode, the−40 dB bandwidths of the SCs cover 1.43,
1.6, and 1.72 octaves, respectively. When the pump pulse
is coupled into the TE20 mode, the spectral and temporal
profiles of the generated SCs show notable differences as
shown in Figs. 3(e) and 3(f). The SCs cover 1.33, 1.83,
and 2.07 octaves with pump pulses at 2.5, 3, and 3.5 µm,
respectively. The oscillation structures on the spectra mainly
caused by enhanced SPM effect compared to TE00 and TE10
modes. Its dispersion is reduced since the dispersion curve
of the TE20 mode is much closer to zero than TE00 and
TE10 modes in most spectral region considered, which is
beneficial to the nonlinear spectral broadening. In addition,
it is worth noting that when λ0 is further shifted from 3 to
3.5 µm, the bandwidth increments of the SCs are not obvious
except for the TE20 mode. The longwavelength part of the SC
generation of TE20 mode is enhanced, but the pump sources
with center wavelength above 3 µm are difficult to obtain.
Therefore, λ0 is chosen as 3 µm in the following discussion.
Except for the launching wavelength λ0, the peak power P0

also plays an important role in the SC generation. In Fig. 4,
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FIGURE 4. The spectral (left column) and temporal (right column) profiles
of the SC generated when the pump pulses with λ0 = 3 µm and
T0 = 240 fs are coupled into the three optical modes TE00 ((a) and (b)),
TE10 ((c) and (d)), and TE20 ((e) and (f)) for P0 = 1, 2, and 3 kW,
respectively. The input pulses are also shown with the grey lines.

we show the comparison of the generated SCwith λ0 = 3µm
and T0 = 240 fs while the peak power is varied as P0 = 1, 2,
and 3 kW. The three rows of Fig. 4 show the results with TE00,
TE10, and TE20 modes, respectively. When the pump pulse
is launched into TE00 mode as shown in Figs. 4(a) and 4(b),
the optical spectra extend on both sides due to the SPM
effect and reach 1.10, 1.47, and 1.69 octaves for P0 = 1, 2,
and 3 kW, respectively. Figs. 4(c) and 4(d) show the results
obtained with the TE10 mode. The −40 dB bandwidths of
the generated SCs cover 1.21, 1.59, and 1.79 octaves, respec-
tively, which are slightly larger than those of the TE00 mode.
The −40 dB bandwidths of the SCs are further extended to
1.24, 1.83, and 2.13 octaves with the TE20 mode. Compared
with the results shown in Figs. 4(a) to 4(d), the spectral and
temporal profiles of the SCs with TE20 mode are asymmetric
and show some oscillating structures. According to the results
shown in Figs. 4(a) to 4(f), the optimized P0 = 3 kW is used
in the following discussions.

The influence of T0 on the SC generation is also inves-
tigated. Figs. 5(a) to 5(f) show the spectral and temporal
profiles of the SCs when pump pulses with λ0 = 3 µm and
P0 = 3 kW are operated at T0 = 80, 240, and 480 fs and
coupled into the TE00, TE10, and TE20 modes, respectively.
In Figs. 5(a) and 5(b), when the pump pulses with T0 = 80,
240, and 480 fs are coupled into the TE00 mode, the −40 dB

FIGURE 5. The spectral (left column) and temporal (right column) profiles
of the SC generated when the pump pulses with λ0 = 3 µm and P0 = 3
kW are coupled into the three optical modes TE00 ((a) and (b)), TE10 ((c)
and (d)), and TE20 ((e) and (f)) for T0 = 80, 240, and 480 fs, respectively.
The input pulses are also shown with the grey lines.

bandwidths of the SCs cover 1.82, 1.69, and 1.57 octaves,
respectively. When the TE10 mode is chosen, the −40 dB
bandwidths of the SCs are slightly increased to 1.93, 1.79, and
1.66 octaves, respectively, as shown in Figs. 5(c) and 5(d).
The performance of the SCs with the TE20 mode are some
different, the −40 dB bandwidths of the SCs cover 2.33,
2.13, and 1.48 octaves, respectively. The bandwidths of SCs
pumped with 80 and 240 fs pulses are significantly enhanced
comparing with the other two modes. However, the SC band-
width pumped with 480 fs pulse is decreased. Comparing the
results shown in Fig. 5, it is obvious that the SCs with the
80-fs pump pulse have the best performance in optimizing
the bandwidth and flatness. Themain reason can be explained
as following. The pulse energy will be increased when P0 is
fixed and T0 increases. At the same time, its initial bandwidth
gradually becomes narrower. Each wavelength part will have
more energy. The nonlinear effect will be enhanced. Many
oscillations appear when the pulse with duration of 480 fs is
used. The flatness of SC becomes poor. Besides, the narrow
initial bandwidth limits the spectral broadening because the
number of frequency components participated in the initial
SPM and OWB stages might be less than the shorter duration
pulse which has larger initial bandwidth. Therefore, com-
pared with the 240-fs and 480-fs pump pulses, the 80-fs pump
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FIGURE 6. The evolutions of the spectral (left column) and temporal
(right column) profiles of the pump pulses along z for the three optical
modes TE00 ((a) and (b)), TE10 ((c) and (d)), and TE20 ((e) and (f)),
respectively, when pump pulses with λ0 = 3 µm, P0 = 3 kW, and
T0 = 80 fs are used. The instantaneous spectral and temporal profiles at
the input and output of the waveguide are also shown at the bottom and
top of the evolution diagrams. The grey dash lines indicate z = 0.05 cm.

pulse has the best performance for generating the flat and
broadband SC.

Based on the above investigation, the optimized parameter
combination λ0 = 3 µm, P0 = 3 kW, and T0 = 80 fs
will be used to study the evolutions of the SC signal. Fig. 6
shows the evolutions of the spectral and temporal profiles
along the propagation of the pump pulse for the TE00, TE10,
and TE20 modes. In Figs. 6(a) and 6(b), the pump pulses with
λ0 = 3 µm, P0 = 3 kW, and T0 = 80 fs are coupled into the

FIGURE 7. The generated SCs with a noise level η = 0.01 for the three
optical modes (a) TE00, (b) TE10, and (c) TE20. The grey lines are the
overlapped spectra of the 50 shots. The red, blue, and olive lines
represent the averaged spectra of the 50 shots, respectively. (d) The
first-order degree of coherence g(1)

1,2 of the generated SCs with the TE00,
TE10, and TE20 modes when η = 0.01.

TE00 mode. At the initial stage, the SPM plays an important
role. The optical spectrum of the pump pulse broadens sym-
metrically and shows some oscillations. After the propagation
of∼0.05 cm, theOWBeffect becomes obvious, and sidelobes
emerge on both sides of the optical spectrum. New frequency
components are generated at the leading and trailing edges
of the pump pulses through the four-wave mixing effect. The
sidelobe on the short wavelength side emerges earlier. It is
mainly due to the self-steepening effect [23]. With further
propagation, the broadening of spectrum on blue side is ter-
minated because of the large dispersion in the spectral region
of <2 µm. The shape of the generated SC becomes asym-
metric gradually because of the continuous broadening on
red side. In the time domain, the pulse duration is broadened
monotonously with the increase of the propagation length.
The evolutions of SC in the TE10 mode are similar with those
of the TE00 mode. However, the evolutions with the TE20
mode shown in Figs. 6(e) and 6(f) are significantly different
to those with the TE00 and TE10 modes. Deep oscillations
appear on the spectrum during the spectral broadening at very
early stage, and gradually disappear after the propagation in a
long distance. The oscillations decrease a lot near z = 1 cm.
The SC in the TE20 mode extends on the longwavelength side
to much longer wavelength than those of the TE00 and TE10
modes. And the increment in bandwidth does not change
obviously near z = 1 cm. That is why we chose 1 cm as
the length of waveguide. Finally, the SCs generated with
the TE00, TE10, and TE20 modes reach 1.82, 1.93, and 2.33
octaves, respectively.

Besides the spectral bandwidth, the coherence of SCs is
an important feature that determines the quality of frequency
comb that based on the SC generation. To investigate the
coherence of the generated SCs, the first-order degree of
coherence g(1)1,2 is used. Figs. 7(a) to 7(d) show the generated
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FIGURE 8. The weighted degree of coherence (a) R and (b) K as functions
of lg(η) for the three optical modes TE00, TE10, and TE20, respectively.

SCs and g(1)1,2 calculated with 50 shot pump pulses with the
one-photon-per-mode quantum noise [13], [44]. The random
noise is individually generated for each shot by n = ηN
exp(i2πU ), where η is the noise factor denoting the ampli-
tude of the noise relative to the input pulse amplitude, N
is a random variable with the standard normal distribution,
and U is a random variable with the uniform distribution
between 0 to 1 [44]. A noise level of η = 0.01 is used
in the simulation. In Figs. 7(a) to 7(c), the grey plots are
the overlapped SC spectra of the 50 shots for the TE00,
TE10, and TE20 modes, respectively. The red, blue, and olive
curves in Figs. 7(a)-7(c) represent the averaged spectra of
each 50 shots. All the generated spectra show slight variations
from shot to shot. The calculated g(1)1,2 of the three modes are

shown in Fig. 7(d). From Fig. 7(d), g(1)1,2 is almost 1 in the
whole wavelength ranges considered, which indicates a high
coherence of the SCs.

To quantify the coherence and the stability of the SCs,
we simulated the SC generation with different noise levels
and calculate the weighted degree of coherence R. Fig. 8(a)
shows the relationship between R and lg(η) in the whole
spectral range for the threemodes considered. The values ofR
for the TE00, TE10, and TE20 mode are 0.52, 0.40, and 0.32 at
lg(η = 0.2). It implies that the TE00 mode may have slightly
better noise tolerance than the TE10 and TE20 modes when η
is high. For all the three modes, the value of R increases as
lg(η) decreases, and it is very close to 1 when lg(η) ≤ −2.
The variable K is also plotted in Fig. 8(b) since R is close
to 1 when lg(η) ≤ −2. It can be seen from Fig. 8(b) that the
three curves are very close, and the difference between the
values of K for the modes are not obvious when lg(η) ≤ −2.
Thus, the SCs generated by the considered three modes are
highly coherent when η ≤ 0.01.

In order to demonstrate the generation of octave-spanning
SC-based frequency comb, we launch a train of 50 pulses with
50 MHz repetition rate into the designed waveguide. The fre-
quency combs generated by the TE00, TE10, and TE20 modes
are shown in Figs. 9(a), 9(b), and 9(c), respectively. The
shaded color regions represent the highly dense frequency
combs. The zoom-in views shown as the insets clearly illus-
trate the fine frequency comb lines with an interval of 50MHz
which equals to the repetition rate of the seed pulse train.

FIGURE 9. Frequency combs generated by 50 pulses with 50 MHz
repetition rate for the three optical modes (a) TE00 (red), (b) TE10 (blue),
and (c) TE20 (olive), respectively. The shaded color areas represent highly
dense frequency combs. The insets are the zoom-in views of the highly
dense frequency combs at wavelengths 3 and 5 µm with the bandwidth
of 0.01 nm.

IV. CONCLUSION
In summary, we have designed a multimode As2Se3-based
strip waveguide and numerically investigate theMIR SC gen-
erations when pump pulses launched in the normal dispersion
regions of the TE00, TE10, and TE20 modes under different
wavelengths of pump pulse, peak powers and pulse duration.
Highly coherent multi-octave spanning SCs are generated
with each of the threemodes.When the optimized pump pulse
parameters of λ0 = 3 µm, P0 = 3 kW, and T0 = 80 fs are
used, the SCs generated with the TE00, TE10, and TE20 modes
reach 1.82, 1.93, and 2.33 octaves, respectively. All of the SCs
generated by the considered three modes are highly coherent
even at the noise amplitude η is 0.01. Finally, based on the
generated MIR SCs, the octave-spanning frequency comb
sources are achieved when a train of 50 pulses at 50 MHz
repetition rate is launched into the designed waveguide. It is
believed that the generated MIR SC and SC-based frequency
comb sources have important applications in biophotonics,
metrology, and sensing. And the exploration of higher-order
mode with unique dispersion characteristics to generate the
special SCs in one single waveguide for some MIR applica-
tions would be of great interest.
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