Non-metal sensory electrode design and protocol of DNA-nucleobases in living cells exposed to oxidative stresses

Emran, M.Y., El-Safty, S.A., Selim, M.M., Minowa, T., Elmarakbi, Ahmed and Shenashen, M.A. (2021) Non-metal sensory electrode design and protocol of DNA-nucleobases in living cells exposed to oxidative stresses. Analytica Chimica Acta, 1142. pp. 143-156. ISSN 0003-2670

[img] Text
Analytica Chemica Acta_Elmarakbi.pdf - Accepted Version
Restricted to Repository staff only until 5 November 2021.
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (2MB) | Request a copy
Official URL: https://doi.org/10.1016/j.aca.2020.11.004

Abstract

Sensory protocols for evaluation of DNA distortion due to exposure to various harmful chemicals and environments in living cells are needed for research and clinical investigations. Here, a design of non-metal sensory (NMS) electrode was built by using boron-doped carbon spherules for detection of DNA nucleobases, namely, guanine (Gu), adenine (Ad), and thymine (Th) in living cells. The key-electrode based nanoscale NMS structures lead to voids with a facile diffusion, and strong binding events of the DNA nucleobases. Furthermore, the NMS geometric structures would significantly create electrode surfaces with numerous centrally active sites, curvature topographies, and anisotropic spherules. The NMS shows potential as sensitive protocol for DNA-nucleobases in living cells exposed to oxidative stresses. In one-step signaling assay, NMS shows high signaling transduction of Gu-, Ad-, and Th-DNA nucleobases targets with ultra-sensitive and low detection limits of 3.0, 0.36, and 0.34 nM, respectively, and a wide linear range of up to 1 μM. The NMS design and protocol show evidence of the role of surface construction features and B-atoms incorporated into the graphitic carbon network for creating abundant active sites with facile electron diffusion and heavily target loads along with within-/out-plane circular spheres. Indeed NMS, with spherule-rich interstitial surfaces can be used for sensitive and selective evaluation of damaged-DNA to various dysfunctional metabolism in the human body.

Item Type: Article
Uncontrolled Keywords: Boron-doped carbon spherulesDNA-nucleobases, Thymine, Adenine, Guanine, Electrochemical sensor, Living cells, Oxidative stresses
Subjects: F200 Materials Science
H800 Chemical, Process and Energy Engineering
Department: Faculties > Engineering and Environment > Mechanical and Construction Engineering
Depositing User: John Coen
Date Deposited: 10 Nov 2020 12:04
Last Modified: 12 Nov 2020 12:00
URI: http://nrl.northumbria.ac.uk/id/eprint/44720

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics