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Abstract

In this study, an efficient implementation of machine learning models to predict compres-
sive and tensile strengths of high-performance concrete (HPC) is presented. Four predictive
algorithms including support vector regression (SVR), multilayer perceptron (MLP), gra-
dient boosting regressor (GBR), and extreme gradient boosting (XGBoost) are employed.
The process of hyperparameter tuning is based on random search that results in trained
models with better predictive performances. In addition, the missing data is handled by
filling with the mean of the available data which allows more information to be used in the
training process. The results on two popular datasets of compressive and tensile strengths of
high performance concrete show significant improvement of the current approach in terms of
both prediction accuracy and computational effort. The comparative studies reveal that, for
this particular prediction problem, the trained models based on GBR and XGBoost perform
better than those of SVR and MLP.
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1. Introduction1

Concrete has been widely used in building and civil structures as it possesses many de-2

sired engineering properties. The high strength when combined with reinforcement and the3

ability to cast into shapes as well as harden at ambient temperature enable concrete to be a4

prominent choice in constructing structural elements of apartments and high-rise buildings.5

In addition, high temperature and excellent water resistance are also cited as the advantages6

of concrete which allow reinforced concretes to be the materials of choice for structures that7

regularly expose to extreme environmental impacts such as tunnel, bridges, dams, reservoirs,8

and the like. Another reason making concrete a popular material in construction lies in its9

economic aspects. Regular concrete is basically made of coarse aggregate, e.g. rock, fine10

aggregate, e.g. sand, binding material, e.g. cement, and water. All of which are not expen-11

sive and can be found locally in the area of construction. This shows remarkable advantages12

compared to other building materials such as steel where structural elements required to be13

processed in well-equipped factories with the involvement of different machines. Further-14

more, in order to make concrete a better material with higher engineering performance, fly15

ash, blast furnace slag and other supplementary substances are added to the mixture [1, 2].16

The addition of these industrial wastes can considerably reduce the environmental impact17

without compromises in structures’ integrity which in turn increases the sustainability of18

concrete.19

One of the issues of concrete material, in general, is the content selection and the predic-20

tion of its output engineering properties including compressive and tensile strengths. This21

is because concrete, especially high-performance concrete, is a highly nonhomogeneous mix-22

ture with different constituents. Therefore, it is vital to have robust and reliable predictive23

models based on existing input and output data at the early stage to drive down the cost24

of making further experiments. Appropriate predictive models also allow reductions of triv-25

ial attempts in searching for appropriate input combinations that can potentially lead to26

desirable concrete performances. Consequently, they enable significant time and cost sav-27

ings. Due to the highly nonlinear relation between the input constituents and the output of28

concrete strengths, creating such models is a challenging task.29

There have been significant efforts to utilise smart computing algorithms to tackle civil30

engineering problems in the last few decades as suggested in the brief review of Rafiei [3].31

Data-driven approaches have been used to analyse structural behaviours [4, 5].32

In estimating material properties, researchers have established predictive models with33

the ultimate goal is to minimise the prediction error against the actual data collected from34

experiments. Ni and Wang proposed a multilayer feedforward neural networks to predict35

the compressive strength of concrete [6]. The method was utilised to deal with the nonlin-36

ear relationship between the input features and the concrete strength. Rafiei et al. used a37

nonlinear optimisation algorithm and a computational intelligence-based classification algo-38

rithm to solve the concrete mixture design problem in which desired constraints were taken39

into account [7]. The same authors also proposed statistical and neural network models40

to estimate concrete properties based on input parameters [8]. Yeh and Lien presented41

a knowledge discovery method namely Genetic Operation Tree as a combination of the42



operation tree and genetic algorithm to estimate concrete’s compressive strength via self-43

organised formulas [9]. In this model, while the operation tree is used to build an explicit44

formula, the genetic algorithm is employed to search for optimal parameters used in the45

operation tree. There are also different approaches that can be used to predict strengths of46

HPC which include data-mining techniques [10], enhanced artificial intelligence for ensem-47

ble approach [11], metaheuristic regression system [12, 13]. Engen et al. [14] employed a48

hierarchical model to predict the variability of material properties in ready-mixed concrete.49

Erdel et al. incorporated bagging and gradient boosting techniques to construct ensemble50

models based on the discrete wavelet transform [15]. This enhanced combination was then51

used to forecast the compressive strength of HPC. There are also recent developments on52

using network-related and optimisation algorithms to predict material properties [16–18].53

Recently, Bui et al. employed artificial neural network (ANN ), in which firefly algorithm54

was used to search for optimal network parameters, to predict both compressive and tensile55

strengths of HPC [19]. Nguyen et al. proposed a high-order artificial neural network, in56

which high-order neuron was employed, to predict foamed concrete strengths including the57

compressive strength of HPC [20].58

The present study focuses on proposing a highly efficient implementation of machine59

learning model that enables the achievement of optimal hyperparameters, which are ini-60

tialised at the beginning and kept unchanged during the training process of the machine61

learning algorithms in a large search space. It should be noted that the hyperparameter ini-62

tialisation plays an important role to the success of the machine learning models [21, 22]. In63

addition, a proposed method of handling missing data using single mean imputation signifi-64

cantly improves the predictive results. These two main contributions are briefly highlighted65

as follows.66

Firstly, this study presents efficient implementation and evaluates the performance of67

support vector regression (SVR) [23–25], multilayer perceptron (MLP) [26, 27], gradient68

boosting regressor (GBR) [28], and extreme gradient boosting (XGBoost) [29] which give69

considerable improvement in terms of both prediction accuracy and computational efficiency.70

The performances of the prediction models for HPC compressive and tensile strengths are71

considerably improved in comparison with those existing in the literature. This is due to the72

efficient implementation in which open-sourced machine learning libraries of scikit-learn [30]73

and XGBoost [29] are involved. This combination allows significantly less computing effort74

enabling more spaces and resources for hyperparameter tuning. The comparison studies75

between the performance of the four machine learning techniques reveals the advantages of76

GBR and XGBoost over SVR and MLP both in terms of accuracy and efficiency.77

Secondly, a proposed method for handling missing data by using the mean of the available78

data significantly increases predictive performance. Experimental results on the HPC tensile79

strength dataset, in which missing data ranges from 0% to 39% show that the proposed80

method achieves the new state-of-the-art RMSE that is considerably lower than the current81

best reported in the literature.82

The outline of the remaining of this study is as follows. Section 2 gives a brief review83

on SVR, MLP, GBR, and XGBoost while Section 3 discusses the assessment of the datasets84

of HPC. Section 4 presents the implementation and results of the predictive models as well85
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as discussion on how hyperparameters affect their performance. The study is closed with86

concluding remarks which are given in Section 5.87

2. Review on machine learning algorithms/techniques88

This study aims to show the importance of hyperparameter initialisation and handling89

missing data. Four popular machine learning algorithms in data mining and civil engineer-90

ing, therefore, are employed to handle the HPC problems. Specifically, they include (i)91

Support vector regression (SVR) which is support vector machine (SVM) used in regression92

applications, (ii) Multilayer perceptron (MLP) which is also known as a deep feedforward93

network is essentially a typical deep artificial neural network, (iii) Gradient boosting ma-94

chines (GBMs) or gradient tree boosting including Gradient Boosting Regressor (GBR) and95

Extreme Gradient Boosting (XGBoost) which are well-known tree-based ensemble models.96

Fig. 1 shows the general architecture of the machine learning models. For example, in the97

HPC compressive strength prediction task, the features consist of Cement, Blast furnace98

slag, Fly ash, Water, Superplasticizer, Coarse aggregate, Fine aggregate, Age and Compres-99

sive strength. The output is a predicted real number of the compressive strength produced100

by the machine learning model regarding the input features.

SVR / MLP / GBR / XGB

Features

ML Model

Output Value

Figure 1: The machine learning model architecture for the presenting HPC regression problems.

101

2.1. Support vector machine102

SVM is a well-known supervised machine learning model which was developed largely by103

Vapnik and his colleagues at AT&T Bell Laboratories in the 1990s [23, 24, 31]. The key idea104

of SVM is that it maps the input vectors into a high dimensional feature space using some105

nonlinear kernel function, chosen a prior, so called a hyperparameter which is the parameter106

initialised before and fixed during the training of the machine learning model. In this feature107

space, a linear decision surface is constructed with a property of ensuring high generalisation108

of the learning machine [24]. SVM has been widely used and obtained high performances109

in both classification and regression applications [25]. When SVM is utilised in regression110

applications, it is called support vector regression (SVR) [25].111
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In this study, ε-SVR proposed by [23] is utilised to handle the HPC regression problems.112

Specifically, given training data {(x1, y1), (x2, y2), ..., (xn, yn)} ⊂ χ×R, where χ denotes the113

space of input features (e.g., χ = Rd, here d is the number of input features), the goal of114

ε-SVR is to find the function f(xi) that has at most ε deviation from the actual target value115

yi for all n samples in the training data [25]. Assuming that f is a linear function of the116

form117

f(x) = 〈w, x〉+ b, w ∈ R, b ∈ R, (1)118

where 〈., .〉 denotes the dot function. A small w is sought to make the function f flat by119

minimising the norm, i.e. ‖w‖2 = 〈w,w〉 as follows120

minimise
1

2
‖w‖2 ,

subject to |yi − 〈w, xi〉 − b| ≤ ε.
(2)121
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Figure 2: Examples of solvable (a) and non-solvable (b) problems by standard SVM in 2D space. Red circles
are support vectors, green circles denote data points that do not satisfy Eq. (2).

Fig. 2a shows an example of a solvable problem in 2D space in which all input pairs122

(xi, yi) satisfy Eq. (2). However, solving this equation that satisfies for all pairs (xi, yi) is123

not always feasible [24, 25] due to the large amount of data of a practical problem and some124

data points are just out of the supported range bounded by ε as shown in Fig. 2b. Some125

errors in the model should be allowed which leads to the idea of using “soft margin” in SVM126

proposed by Cortes and Vapnik [24]. This is done by introducing slack variables ξi, ξ
∗
i to127

handle the infeasible constraints. Hence, SVR can be formulated as follows128

minimise
1

2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i ),

subject to

{
|yi − 〈w, xi〉 − b| ≤ ε,

ξi, ξ
∗
i ≥ 0.

(3)129
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The constant C > 0 determines the trade-off between the flatness of the function f and the130

amount up to which deviations larger than ε are tolerated [25]. Fig. 2b shows an example131

of using “soft-margin” to handle a regression problem in a 2D space.132

Although using “soft margin” allows some errors when training the model with the linear133

form of f , this function is not always available [23]. To tackle this issue, one can make the134

SVR algorithm nonlinear and this could be done by utilising a kernel function to transform135

the original data from a low dimensional vector space to a higher dimensional vector space136

where a linear form of f can be found. The kernel function, a hyperparameter, can be linear,137

polynomial, radial basic - rbf or sigmoid function [25]. Interested readers are referred to the138

“Tutorial on Support Vector Regression” [25] for more information on kernel functions.139

It is noted that some extensions of SVR have been proposed and obtained high perfor-140

mances in the HPC regression applications [11, 12, 32]. in which the authors focused on141

modifying the model architecture. In this current study, tuning hyperparameters including142

epsilon - ε, the “soft margin” constant - C, the kernel function - kernel, and the kernel143

coefficient parameter gamma - γ, which are largely ignored in the previous research [21, 22],144

are investigated.145

2.2. Multilayer perceptron146

MLP or a deep feedforward network is a typically deep ANN which draws inspiration147

from the human neural system in order to process the information. The goal of MLP is to148

approximate some mapping functions between input and output vectors [26].149

The MLP contains a system of simply interconnected neurons which are arranged into at150

least three layers including an input layer, one or more hidden layers and finally an output151

layer [27, 33]. The neurons in the input layer do not perform any computation; instead, it152

serves to pass the input vector to the hidden layers. Each neuron in other layers performs a153

simple nonlinear transformation using an activation function, such as rectified linear units154

(ReLU), tanh or sigmoid function to calculate output of that layer, which enables the MLP155

to approximate extremely nonlinear functions [26].156

The neurons in two consecutive layers are connected by weights θ learned through a157

training process to approximate the mapping function from input to output vectors. MLP158

has the learn the mapping function in a supervised manner [26] using a set of training data.159

Specifically, for a regression problem, the goal of the training process is to approximate160

the function f such that the derived value of f(xi, θ) is close to the actual target value yi.161

The difference between the derived and actual target values is considered as an error signal.162

During training, the error signal is utilised to determine what degree the weights θ in the163

network should be adjusted in order to reduce the overall error of the MLP.164

Training a MLP network is normally done using iterative, gradient-based learning [27, 34,165

35], e.g. Stochastic Gradient Descent (SGD), Quasi-Newton method, e.g. Limited-memory166

Broyden–Fletcher–Goldfarb–Shanno (BFGS) so called L-BFGS in order to minimise the167

overall error. Although SGD is easy to implement, optimising/training SGD is difficult with168

sparse data and low dimensional problems like the HPC. In these cases, L-BFGS is highly169

competitive or sometimes superior to SGD [34].170
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It should be noted that training a MLP network has no global convergence guarantee171

and is sensitive to the initial values of hyperparameters [27], including the activation func-172

tion, numbers of hidden layers, hidden size - number of neurons in each layer, solver -173

iterative, gradient-based learning, max iter - maximum number of iterations and alpha -174

L2 regularisation parameter which is utilised to prevent overfitting when training the model175

with the iterative, gradient-based learning [27]. Neural network has been utilised to civil176

engineering problems since the 1980s [11, 12, 19, 20, 36]. Moreover, many more power-177

ful neural network models have been recently proposed to handle structured data [37, 38].178

However, it should be mentioned that this study aims to show the importance of tuning179

hyperparameters. Classical MLP, therefore, is utilised to make it comparable to previously180

proposed MLP variants for the HPC problems [12, 19, 20].181

2.3. Gradient boosting machines182

GBMs or gradient tree boosting originally proposed by Friedman [28] is a boosting ma-183

chine learning model which utilises a sequences of “weak” or “base” learners with the aim of184

creating an arbitrarily accurate “strong” learner [28, 29, 39, 40]. A weak learner is defined185

as one whose performance is at least better than the random guess. In the model, new weak186

learners are added with the objective of minimising the overall error which also known as187

the loss of the model.188

The GBMs are stagewise additive (ensemble) models in which at a time, a new weak189

learner is added and trained in order to reduce the overall error of the whole model, and the190

existing weak learners in the model are not changed [28]. GBMs use regression trees [41] as191

the weak learners; and iterative, gradient based-learning algorithm, such as SGD, is used to192

train GBMs in order to minimise the loss when adding weak learners [28]. Specifically, in193

the first iteration, the algorithm learns the first weak learner, i.e. the first tree, to reduce194

the overall training error. In the second iteration, the algorithm learns the second tree to195

reduce the error made by the first tree as demonstrated in Fig. 3. The algorithm repeats196

this procedure until it builds a decent quality model, such as the loss of the model, i.e.197

overall error, reaches a desired level. The detailed description of methodology and learning198

algorithms can be found in the literature, such as, “Greedy function approximation: a199

gradient boosting machine” [28] and “Gradient boosting machines, a tutorial” [42].200

To this end, gradient boosting regressor (GBR) which is GBMs for regression problems,201

as well as, the Extreme gradient boosting (XGBoost) which is a highly scalable extension of202

GBMs [29] are utilised to handle the presenting HPC regression tasks. It should be noted203

that XGBoost has been widely recognised and achieved state-of-the-art (SOTA) results in204

machine learning and data mining challenges [29]. Similar to MLP, the success of gradient205

based learning in GBMs depends on the initial values of hyperparameters [22] including206

n estimators - the number of weak learners, i.e. regression trees, max deep - the maximum207

deep of trees, loss/objective - the loss function, and the learning rate. In the next208

section, the new SOTA performances are illustrated by using GBR and XGBoost with209

careful hyperparameter initialisation.210
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Figure 3: Iteratively learning weak learners (trees) using GBMs in order to reduce the error.

3. High performance concrete data collection and evaluation211

3.1. Dataset 1 - Concrete compressive strength212

Dataset 1 of concrete compressive strength with a total of 1133 samples is collected at213

UCI Machine Learning Repository [43, 44]. The statistical details which were extracted and214

calculated purely from the collected data are presented in Table 1. As can be seen, all the215

sample data is fulfilled and this is no need to have a procedure to handle missing data.216

In order to extract more information regarding the mutual relationship between all input217

and output features in the dataset, the correlations of features are analysed. This statistical218

measure is useful as it describes one feature in terms of its association with others. In219

practice, the observation from this analysis will eventually lead to the choice of the predictive220

model to be used to maximise the predicting results. Among those available in the literature,221

Pearson’s approach will be used to calculate the correlation coefficient as follows222

ρ =

∑(
Xi − X̄

) (
Yi − Ȳ

)√∑(
Xi − X̄

)2∑(
Yi − Ȳ

)2 =
E [(X − µX) (Y − µY )]

σXσY
, (4)223

where ρ is the Pearson correlation coefficient. X and Y are two features while overhead bar224

and subscript i represent the mean value and the ith observation, respectively. Meanwhile,225

E and σ are the expectation and standard deviation, respectively. The formulation in Eq.226

(4) ensures the coefficient is bounded by -1 and 1. The value of 0 indicates absolutely no227

correlation, i.e. no relationship, between a specific pair of features while there will be a228

perfect positive correlation if the value is 1 or a perfect negative correlation if it is -1. This229

means that the increase in one quantity leads to the increase (if 1) or decrease (if -1) of230

the other. If the correlation value goes toward -1 or 1, the association between the features231

is stronger. An obvious example of a perfect positive correlation is the relationship of a232

quantity and itself where the correlation coefficient is always 1. On the contrary, the closer233

the value is to 0, the weaker the correlation gets. It should be noted that, in Pearson234
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Table 1: Statistics of the datasets

Attribute Abbreviation Unit Minimum Maximum Mean Standard deviation Missing data
Dataset 1: HPC compressive strength (1133 samples)
Cement cmt kg/m3 102.00 540.00 276.50 103.47 0%
Blast furnace slag bfs kg/m3 0.00 359.40 74.27 84.25 0%
Fly ash fash kg/m3 0.00 260.00 62.81 71.58 0%
Water wtr kg/m3 121.75 247.00 182.98 21.71 0%
Superplasticizer sp kg/m3 0.00 32.20 6.42 5.80 0%
Coarse aggregate cagg kg/m3 708.00 1145.00 964.83 82.79 0%
Fine aggregate fagg kg/m3 594.00 992.60 770.49 79.37 0%
Age age day 1.00 365.00 44.06 60.44 0%
Compressive strength† fcu MPa 2.33 82.60 35.84 16.10 0%

Dataset 2: HPC tensile strength (714 samples)
Cement’s compressive strength fce MPa 35.50 63.40 50.35 6.80 35%
Cement’s tensile strength fct MPa 6.90 10.80 8.31 0.66 39%
Curing age age day 1.00 388.00 56.73 76.28 0%
Dmax of crushed stone dmax mm 12.00 120.00 43.87 26.24 9%
Stone powder content in sand stnpwd % 0.00 40.00 10.80 5.56 6%
Fineness modulus of sand fms - 2.20 3.55 2.93 0.27 16%
W/B w/b - 0.24 1.00 0.45 0.12 1%
Water to cement ratio w/c - 0.30 1.43 0.59 0.24 1%
Water wtr kg/m3 70.00 291.00 148.25 33.35 2%
Sand ratio sndrat % 24.00 54.00 36.30 6.09 15%
Slump slm mm 9.00 260.00 80.27 66.48 11%
Compressive strength fcu MPa 4.23 100.50 42.87 22.14 0%
Tensile strength† fst MPa 0.35 6.90 3.00 1.36 0%
†Output features. Remainings are input features.
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correlation, if two features are independent, the coefficient is close to 0 but not the other235

way around. This means even though the relationship between quantities is actually strong,236

their correlation coefficient can still be small.237

Fig. 4 presents pair-wise scatter correlation plots and colour map correlation matrix of238

features of Dataset 1 with correlation coefficient. As can be observed, there is almost no239

relationship between fine aggregate and fly ash with correlation coefficient of -0.01 while the240

correlation between water and superplasticizer is fairly strong with the coefficient of -0.59.241

This is consistent with what has been known in reality.242

cmt bfs fash wtr sp cagg fagg age fcu

cm
t

bf
s

fa
sh

wt
r

sp
ca

gg
fa

gg
ag

e
fc

u

1.00 -0.27 -0.42 -0.09 0.07 -0.07 -0.19 0.09 0.49

-0.27 1.00 -0.29 0.10 0.05 -0.27 -0.28 -0.04 0.12

-0.42 -0.29 1.00 -0.15 0.35 -0.11 -0.01 -0.16 -0.06

-0.09 0.10 -0.15 1.00 -0.59 -0.27 -0.42 0.24 -0.28

0.07 0.05 0.35 -0.59 1.00 -0.27 0.20 -0.20 0.36

-0.07 -0.27 -0.11 -0.27 -0.27 1.00 -0.15 0.02 -0.15

-0.19 -0.28 -0.01 -0.42 0.20 -0.15 1.00 -0.14 -0.17

0.09 -0.04 -0.16 0.24 -0.20 0.02 -0.14 1.00 0.32

0.49 0.12 -0.06 -0.28 0.36 -0.15 -0.17 0.32 1.00
0.8

0.4

0.0

0.4

0.8

Figure 4: Correlation matrix of features in Dataset 1 with abbreviations of features presented in Table 1.

It is worth to mention that preprocessing data is needed before it is used to train the ma-243

chine learning models. As the features are not in a uniform scale, they should be normalised244

to the same range to avoid the training process to be dominated by one or few features with245

large magnitude. In this study, the process is done by applying the normalisation of features246
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to the range from 0 to 1 before the training This is done, for each of the input features,247

by dividing each data point by the highest data magnitude in the same feature. Once the248

models have been trained using normalised data, the predictive results of the output features249

will be mapped back to its original scale in the test phase.250

Another aspect of preprocessing data considered in this study is to generate additional251

polynomial and interaction features. This is done by considering all or a few polynomial252

combinations of features in which the maximum degree is predefined. For instance, a pair253

of features A and B will lead to additional features of A×B,A2, and B2 when second order254

polynomial is defined as the maximum degree. The new feature A × B is created by the255

interaction of A and B whereas A2 and B2 show no interaction between the two original256

features. This technique increases the input features by adding new polynomial features257

which, even though it is not guaranteed, potentially results in better trained models. At258

the downside, it requires more computational effort and high degrees can cause overfitting.259

During the training processes in this study, the maximum degree of each original feature260

will be controlled by the variable degree and whether or not only the interaction features,261

e.g. A×B, are considered depends on the boolean variable interaction only.262

3.2. Dataset 2 - Concrete tensile strength263

Dataset 2 with 714 samples recording the input and output for tensile strength is shared264

by Zhao et al. [45]. The statistical details of the dataset are also presented in Table 1.265

Some of the values in the dataset are given as a range rather than specific values. In those266

cases, they are replaced by the lower bound before the statistics is carried out. It should be267

mentioned that, unlike Dataset 1, a considerable amount of missing data can be noticed in268

Dataset 2. In fact, only two, curing age and compressive strength, out of 12 input features in269

Dataset 2 are fully collected while the proportions of missing data of the remaining features270

range from 1% to 39% as shown in Table 1. Previous studies handled this type of issue271

by removing all the features containing missing data [11, 12, 19]. This practice might not272

lead to the best performance of the predictive models as only a small portion of data (2273

out of 12 input features) was actually used for training the predictive models. Instead,274

handling the missing data should be performed to make use of all available input features.275

In this study, the mean imputation which is a common method of imputing missing data276

is utilised [46, 47]. With this approach, the missing data of a specific feature is replaced277

by the mean of all available values within that feature. The comparative results which278

illustrate the advantage of having the missing data filled can be found later in Section 4.2.279

It is worth mentioning that this study does not aim to compare different methodologies of280

handling missing data but to shed a light on the need of handling the missing data instead281

of removing it.282

Using the same approach described in the previous section, the correlation matrix for283

input feature of Dataset 2 of concrete tensile strength with all missing values filled are284

illustrated in Fig. 5. The plots reveal that, for instance, the mutual relationship between285

sand ratio and stone powder content in sand is weak while that of tensile strength and286

compressive strength is quite significant as expected.287
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Figure 5: Correlation matrix of features in Dataset 2 with abbreviations of features presented presented in
Table 1.
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In addition, similar to Dataset 1, the process of data normalisation of all input and288

output features to the range of 0 to 1 as well as the generation of additional polynomial and289

interaction features before training will also conducted for Dataset 2.290

4. Implementation and results291

The training of machine learning models which include SVR, MLP, GBR, and XGBoost292

is implemented in Python 3.6. The training processes are conducted in the macOS 10.13293

platform with the processor of Intel Core i5 CPU 2.9 GHz and memory of 8 GB. The main294

machine learning and Python libraries used in this work include scikit-learn 0.19.1 [30],295

XGBoost 0.80 [29], NumPy 1.14.2, SciPy 1.0.0 [48], pandas 0.23.1 [49]. In order to maintain296

the randomness in the training processes as well as the reproducibility of the results, the297

random state parameter is set to 0, where applicable.298

For each machine learning model, a random search on hyperparameters is performed299

to find the best performing model. Note that with the same number of combinations of300

hyperparameters, random search performs better than grid search and manual search for301

hyperparameter optimisation [21] as it can be performed in a much larger hyperparameter302

search space leading to the better performance. In particular, a wide-range preset list of303

values is defined for each hyperparameter. n combinations of the hyperparameters of each304

model are then uniformly randomly generated. After that, the model is trained and evaluated305

with every hyperparameter combination to find the best performing one. In this study, the306

number of randomly generated combinations n is set to 2000 following the preliminary exper-307

iments. The polynomial degree ∈ {1, 2, 3, 4}. It is observed that interaction only=True308

for Dataset 1 and interaction only=False for Dataset 2 produced better performances.309

The choices of this hyperparameter are arbitrarily made during the hyperparameter-tuning310

process to maintain the balance between the performance of the trained models and the311

computational costs. The preset list of values of each model is detailed as follows.312

For SVR, the hyperparameters are set as follows. kernel ∈ {linear, polynomial, radial313

basis function (rbf), sigmoid}; C ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000,314

2000, 5000}; epsilon-ε ∈ {0.01, 0.02, ..., 0.1}; gamma-γ ∈ {0.1, 0.2, ..., 1.0}.315

For MLP, following [50], the activation function is set to rectified linear units (ReLU) as316

it also produced the best results in the preliminary experiments. Meanwhile, other hyperpa-317

rameters are set as follows. number of hidden layers ∈ {1, 2}; hidden size ∈ {100, 200,318

300, 400, 500, ..., 1000, 1500, 2000}; solver ∈ {SGD, L-BFGS (lbfgs)}; max iter ∈ {100,319

200, 300, 400, 500, ..., 1000}; alpha - L2 regularisation parameter ∈ {0, 0.0001}.320

For GBR, number of trees (n estimators) ∈ {100, 200, 500, 1000, 1500, 2000, 2500,321

3000, 5000, 10000}; max depth ∈ {1, 2, ..., 7}; learning rate ∈ {0.001, 0.002, 0.005, 0.01,322

0.02, 0.05, 0.1, 0.2, 0.5}; loss function (loss) ∈ {least squares regression (ls), least323

absolute deviation (lad), a combination of the two (huber)}.324

Similar to GBR, for XGBoost, number of trees (n estimators) ∈ {100, 200, 500,325

1000, 1500, 2000, 2500, 3000, 5000, 10000}; max depth ∈ {1, 2, ..., 7}; learning rate ∈326

{0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}; objective function (objective) ∈327
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{reg:linear, reg:logistic} which are the two objective functions supported by XGBoost for328

regression problems.329

The combination of hyperparameters which produces the best performance on the ex-330

perimental datasets for each model is reported in Sections 4.1 and 4.2.331

With regards to the evaluation of the performance of the machine learning models pre-332

sented in this study, a set of four indicators are considered including linear correlation333

coefficient (R) which is related to coefficient of determination (R2), root mean square error334

(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The335

calculation of those performance indicators are given as follows336

R2 = 1−

n∑
(y − ŷ)2

n∑
(y − ȳ)2

, (5a)337

RMSE =

√√√√ 1

n

n∑
(y − ŷ)2, (5b)338

MAE =
1

n

n∑
|y − ŷ|, (5c)339

MAPE =
1

n

n∑∣∣∣∣y − ŷy
∣∣∣∣× 100, (5d)340

341

where y and ŷ are actual value and predicted value, respectively, ȳ denotes the mean of the342

actual value and n represents the number of testing data samples. It should be noted that343

the closer the linear correlation coefficient to 1, the better the prediction. Meanwhile, smaller344

values of RMSE, MAE, and MAPE indicate less error meaning better predictive models345

are achieved. Apparently, R and MAPE dimensionless while RMSE and MAE have the346

unit of the output which is MPa for both datasets. Among the four performance indicators,347

RMSE will be mainly used as the representative quantity to discuss the performance of the348

trained models in this study.349

Before the training processes are conducted, the data in each dataset is randomly split350

into 10 different folds in which the number of samples in each fold is roughly the same. The351

cross-validation training is then performed by alternately choosing 9 folds to form a training352

set leaving the remaining fold to be the test set. This process is repeated 10 times until353

each fold of data is used exactly 9 times for training and 1 time for testing. After training354

and testing with 10 folds, the means of performance indicators will be calculated to evaluate355

the trained model. For datasets of small to average size as those used in this study, cross-356

validation training should be considered to avoid overfitting and to improve the reliability357

of the training procedures. This also allows effective comparisons being made to existing358

approaches in the literature [11, 12, 19] where same datasets with similar data settings are359

used.360
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4.1. Predictive models for HPC compressive strength361

The performance result of the four presenting algorithms (SVR, MLP, GBR, and XG-362

Boost) used to predict the concrete compressive strength is given in Table 2 where the best363

trained model of each algorithm is highlighted. The outcomes are compared with those364

reported using the same dataset but different approach and/or input hyperparameters.365

As new features for Dataset 1 are added and controlled by degree and interaction only=True,366

the totals of features that are used in the training process are 8, 36, 92, 162 for degree =367

1, 2, 3, 4, respectively.368

As can be observed, with appropriate data preprocessing and hyperparameter tuning,369

the trained models yield considerably better predictions in terms of both performance and370

efficiency.371

Even though SVR does not yield the best results, it is better than those reported by [11]372

where SVM algorithm was also involved to build an ensemble model. Particularly, there is a373

19% relative improvement in RMSE from 6.17 MPa [11] to 5.00 MPa in this present study374

with degree=1, kernel=rbf, C=1000, epsilon=0.04 and gamma=0.5. While R is slightly375

better, other performance indicators including MAE and MAPE also show an improvement376

of 11% and 16%, respectively, compared to the referencing work.377

Similarly, MLP also gives better prediction than most of the existing results by all378

performance indicators, except the one reported by [20] where a random train-test data379

selection is used. Among different neural network architectures tested, the one with 2380

hidden layers consisting of 300 and 100 neurons, respectively, yields the best results where381

additional features have been generated with degree=3, solver=lbfgs, max iter=1000 and382

alpha=0. Better results can potentially be archived enlarging the network architecture but383

there will be a computation trade off.384

Meanwhile, the performances of GBR and XGBoost witness a significant improvement.385

In particular, RMSE is reduced approximately by 22% compared to the MFA-ANN [19]386

where cross validation was performed and by 7% compared to HO-DNN [20]. One can also387

observe the improvement of the presented models via other performance indicators of R,388

MAE, andMAPE. The GBR performance was achieved with degree=1, n estimators=1000,389

max depth=5, learning rate=0.1 and loss=huber. Meanwhile, the performance of XG-390

Boost was achieved with degree=1, n estimators=1000, max depth=4, learning rate=0.2391

and objective=reg:logistic.392

Regarding the effectiveness, the current code implementation utilising open-sourced li-393

braries written in Python allows the significant reduction in computational effort compared394

to the reported results. Indeed, as shown in Table 2, while hundreds of seconds are needed395

to properly train a model in the works of [12] and [19], implementation of each algorithm396

in this study only takes a few to tens of seconds to achieve well-trained models with better397

predictions.398

Fig. 6 plots RMSE against different values of degree for all four presenting models399

in comparison with the ensemble approach [11] and ANN [19] in which similar settings400

of ten-fold cross validation were used. It can be observed that, as degree increases, the401

performance of the trained models may or may not be improved even though in theory402

the increase would potentially enhance the training process. Despite the results for these403
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particular cases, it is always worth to try different degree in the random search for the best404

performing model.405

1 2 3 4
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M
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E

ANN-SVR [11]
MFA-ANN [19]
SVR
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Figure 6: Performance of different methods in prediction of HPC compressive strength with different values
of degree.

The mean relative feature importance and standard deviation of the inputs of Dataset 1406

are given in Fig. 7. This graph made use of the library for XGBoost and it can also be found407

in the library for GBR. As an interpretation, the higher the value, the more important the408

feature. This illustration can be used to inform engineers and technicians, the importance409

of a feature to which they should pay more attention when doing experiments compared to410

the others. Within limited resources, the information would help to minimise the effects of411

human errors on the output and eventually the prediction model. Specifically in this case,412

while the curing age is the feature that has the most significant effect on the outcome of the413

compressive strength of concrete, the amount of fly ash appears to be the least important414

input.415

The next four figures show the effects of hyperparameters on the performance of the SVR,416

MLP, GBR, and XGBoost models, respectively. As can be observed from Fig. 8, the RMSE417

of the prediction by SVR is significantly reduced as a result of the decrease of epsilon from418

0.25 towards 0, the effect of C on the model performance is less pronounced. Besides, the419

growth of max iter leads to the considerable improvement of the MLP model as plotted in420

Fig. 9. Meanwhile, Figs. 10 and 11 illustrate the effects of n estimators and max depth421

on the RMSE predicted by GBR and XGBoost. It is shown that the combination of422

small values of both hyperparameters may cause large error which becomes minimum when423
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Figure 7: Relative mean and standard deviation of feature importances of data for HPC compressive strength
(generated by XGBoost, degree=1).

max depth is about 3 or 4. It appears that with max depth≥2, the change of n estimators424

has less effect on the performance than that of its counterpart. Apparently, the information425

observed from these figures can be used in the hyperparameter tuning process which is a426

crucial part of constructing well-performed machine learning models.427

Fig. 12 presents the cross validation error (RMSE) against n estimators using XG-428

Boost in prediction of compressive strength. For this particular case with the specific429

setting of other hyperparameters mentioned in the caption of the figure, the increase of430

n estimators decreases the prediction error which means improvement of the model per-431

formance is achieved. At the same time, this figure implies the importance of performing432

cross validation in order to obtain a reliable predictive model. As can be seen, the prediction433

error outcome for each of 10 folds can be widely varied with high standard deviation, for in-434

stance, from as small as 3.2 MPa to as large as 4.7 MPa for the case of n estimators=1000.435

Therefore, relying on the result of a single fold may potentially lead to underestimation or436

overestimation of the prediction error. It should be mentioned that this type of graph is437

most suitable for the case of degree=1 which means no additional features are generated438

apart from the original ones.439

4.2. Predictive models for HPC tensile strength440

In this part, a similar procedure to those presented in the previous section will be em-441

ployed to build the prediction models and investigate the effects of hyperparameters on the442

performances of the predictive models for HPC tensile strength.443

The training processes are conducted for two main cases. In the first case, two features444
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Figure 8: Effects of C and epsilon on the performance (RMSE) of SVR in prediction of compressive
strength (degree=1, kernel=’rbf’, gamma=0.5).
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Figure 9: Effects of max iter on the performance (RMSE) of MLP in the prediction of compressive strength
(degree=1, hidden layer sizes=(300,200), solver=’lbfgs’, alpha=0.0001).
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Figure 10: Effects of n estimators and max depth on the performance (RMSE) of GBR in the prediction
of compressive strength (degree=1, learning rate=0.1, loss=’huber’, min samples split=6).
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Figure 11: Effects of n estimators and max depth on the performance (RMSE) of XGBoost in the pre-
diction of compressive strength (degree=1, learning rate=0.2, objective=’reg:logistic’).
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Table 2: Comparison of the performance of different methods in prediction of HPC compressive strength

Method degree Hyperparameter Performance indicator Time (s)
R RMSE MAE MAPE (%)

GEP [51] 1 - - - - - 0.91 - 5.2 - -
M-GGP [52] 1 - - - - - 0.9 7.31 5.48 - -
ANN-SVR [11] 1 - - - - - 0.94 6.17 4.24 15.2 -
SFA-LSSVR [12] 1 - - - - - 0.94 5.62 3.86 12.28 954
MFA-ANN [19] 1 - - - - - 0.95 4.85 3.41 11.7 276
HO-DNN [20] 1 - - - - - 0.97 4.05 2.85 - -

SVR kernel C epsilon gamma -
1 ’rbf’ 1000 0.04 0.5 - 0.95 5.00 3.79 12.73 28
2 ’rbf’ 100 0.04 0.4 - 0.95 5.11 3.86 12.98 5
3 ’rbf’ 100 0.04 0.3 - 0.95 5.15 3.89 13.06 6
4 ’rbf’ 100 0.04 0.3 - 0.95 5.17 3.90 13.04 6

MLP hidden layer sizes solver max iter alpha -
1 (300, 200) ’lbfgs’ 1000 0.0001 - 0.96 4.52 3.19 10.76 136
2 (100, 300) ’lbfgs’ 1000 0 - 0.96 4.39 2.94 9.7 78
3 (300, 100) ’lbfgs’ 1000 0 - 0.96 4.34 2.94 9.83 89
4 (100, 300) ’lbfgs’ 1000 0 - 0.96 4.44 3.01 10.1 96

GBR n estimators max depth learning rate loss min samples split

1 1000 5 0.1 ’huber’ 6 0.97 3.77 2.44 8.31 29
2 1000 4 0.1 ’ls’ 6 0.97 3.91 2.57 8.86 26
3 1000 3 0.1 ’huber’ 2 0.97 4.04 2.66 9.00 60
4 1000 3 0.1 ’huber’ 2 0.97 3.97 2.66 8.95 87

XGBoost n estimators max depth learning rate objective -
1 1000 4 0.2 ’reg:logistic’ - 0.97 3.78 2.47 8.64 5
2 1000 4 0.1 ’reg:linear’ - 0.97 3.88 2.57 8.89 19
3 1000 4 0.1 ’reg:logistic’ - 0.97 3.97 2.64 8.95 44
4 1000 3 0.1 ’reg:linear’ - 0.97 3.98 2.62 8.86 53
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Figure 12: Cross validation error (RMSE) on n estimators using XGBoost in prediction of the compres-
sive strength (degree=1, max depth=4, learning rate=0.2, objective=’reg:logistic’). Each black cross
indicates a single outcome, the blue line goes through the means, and bars represent standard deviation.

of curing and compressive strength which both contain no missing data are selected as the445

inputs for training for the prediction of tensile strength. Meanwhile, in the second case, all446

12 input features are considered in which those with missing value are filled by the mean of447

the available data within the feature. It is worth noting that the total number of features448

actually used in the training process with interaction only=False and degree = 1, 2, 3,449

4 are 2, 5, 9, 14 for the first case and 12, 90, 454, 1819 for the second case, respectively.450

As can be observed from Table 3, the latter significantly reduces RMSE by around451

24%-26% when SVR and MLP are employed. Meanwhile, GBR and XGBoost enable even452

higher improvement of around 30% in RMSE compared to the former case and the recent453

work of [19] in which the same two features were also used. This remarkable improvement454

is illustrated in Fig. 13 where RMSE is plotted with respect to polynomial degree, i.e.455

degree parameter. This graph also reveals the benefit of using higher order polynomials456

in Dataset 2 to generate additional input features and ultimately obtain better prediction457

models.458

The feature importance printed in Fig. 14 indicates that the input feature of concrete459

compressive strength (fcu) has the highest influence in the prediction of the output of con-460

crete tensile strength. On the contrary, the tensile strength of cement (fct) remains the least461

important input feature.462

Fig. 15 illustrates the effect of epsilon and C hyperparameters on the SVR model463

performance indicator of RMSE while the relation of max iter and RMSE of MLP model464

is shown in Fig. 16. Additionally, Figs. 17 and 18 describe the effect of n estimators465
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Figure 13: Performance of different methods in prediction of HPC tensile strength with different values of
degree.
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Figure 14: Relative mean and standard deviation of feature importances of data for HPC tensile strength
(generated by XGBoost, degree=1).
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and max depth on the performance of the GBR and XGBoost, respectively. Similar to the466

previous section using Dataset 1, the variations of the model performance RMSE with467

respect to the changes of different hyperparameters in this case of Dataset 2 are not much468

different across all four models used in this study. Meanwhile, the plot of n estimators -469

RMSE relation for XGBoost model with degree=1 in Fig. 19 indicates that the increase of470

this hyperparameter does not guarantee better performance even though it always leads to471

higher computational effort. In this particular setting of the problem, n estimators=400472

yields the lowest RMSE meaning the best prediction. This is consistent with those are473

shown in Table 3.474
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Figure 15: Effects of C and epsilon on the performance (RMSE) of SVR in the prediction of tensile
strength (degree=1, kernel=’rbf’, gamma=0.9).
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Figure 16: Effects of max iter on the performance (RMSE) of MLP in prediction of tensile strength
(degree=1, hidden layer sizes=(100,100), solver=’lbfgs’, alpha=0).
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Figure 17: Effects of n estimators and max depth on the performance (RMSE) of GBR in the prediction
of tensile strength (degree=1, learning rate=0.02, loss=’huber’, min samples split=3).
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Figure 18: Effects of n estimators and max depth on the performance (RMSE) of XGBoost in prediction
of tensile strength (degree=1, learning rate=0.01, objective=’reg:logistic’).
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Table 3: Comparison of the performance of different methods in prediction of HPC tensile strength

Method # features degree Hyperparameter Performance indicator Time (s)
R RMSE MAE MAPE (%)

Fitting curve [53] 2 1 - - - - - 0.93 0.45 0.35 15.99 -
MFA-ANN [19] 2 1 - - - - - 0.96 0.38 0.28 10.59 276

SVR kernel C epsilon gamma -
2 1 ’rbf’ 5000 0.03 0.9 - 0.96 0.39 0.27 10.81 9

2 ’rbf’ 2000 0.03 0.9 - 0.96 0.38 0.27 10.64 6
3 ’rbf’ 5000 0.03 0.3 - 0.96 0.39 0.27 10.69 7
4 ’rbf’ 2000 0.02 0.2 - 0.96 0.39 0.27 10.53 3

12 1 ’rbf’ 20 0.01 0.9 - 0.98 0.29 0.20 7.90 2
2 ’rbf’ 10 0.01 0.4 - 0.98 0.29 0.20 7.96 2
3 ’rbf’ 10 0.02 0.2 - 0.98 0.29 0.20 8.54 3
4 ’rbf’ 10 0.02 0.1 - 0.98 0.29 0.21 8.67 8

MLP hidden layer sizes solver max iter alpha -
2 1 (300, 300) ’lbfgs’ 1000 0.0001 - 0.96 0.39 0.28 10.52 86

2 (200, 100) ’lbfgs’ 400 0.0001 - 0.96 0.38 0.27 10.32 14
3 (100, 200) ’lbfgs’ 1000 0.0001 - 0.96 0.38 0.27 10.15 27
4 (200, 100) ’lbfgs’ 400 0.0001 - 0.96 0.39 0.27 10.37 9

12 1 (100, 100) ’lbfgs’ 1000 0 - 0.98 0.29 0.20 8.00 26
2 (300, 300) ’lbfgs’ 200 0.0001 - 0.98 0.28 0.19 8.06 35
3 (100, 300) ’lbfgs’ 300 0.0001 - 0.98 0.28 0.20 8.01 29
4 (300, 100) ’lbfgs’ 100 0.0001 - 0.98 0.29 0.21 8.60 72

GBR n estimators max depth learning rate loss min samples split

2 1 200 3 0.02 ’huber’ 3 0.96 0.39 0.27 10.68 3
2 100 3 0.05 ’huber’ 5 0.96 0.39 0.27 10.58 2
3 100 3 0.05 ’huber’ 5 0.96 0.38 0.27 10.45 2
4 500 2 0.02 ’huber’ 3 0.96 0.39 0.27 10.51 5

12 1 100 4 0.2 ’huber’ 6 0.98 0.28 0.19 7.06 2
2 500 3 0.1 ’huber’ 4 0.98 0.26 0.18 6.89 17
3 1000 2 0.1 ’huber’ 6 0.98 0.26 0.18 6.80 94
4 500 2 0.1 ’huber’ 5 0.98 0.28 0.18 7.23 229

XGBoost n estimators max depth learning rate objective -
2 1 500 4 0.01 ’reg:logistic’ - 0.96 0.39 0.28 11.08 1

2 100 2 0.2 ’reg:logistic’ - 0.96 0.38 0.28 10.67 1
3 500 3 0.02 ’reg:logistic’ - 0.96 0.39 0.28 10.63 2
4 200 4 0.05 ’reg:logistic’ - 0.96 0.39 0.28 10.55 1

12 1 400 5 0.1 ’reg:logistic’ - 0.98 0.28 0.18 7.02 3
2 1000 4 0.1 ’reg:logistic’ - 0.98 0.27 0.17 6.59 22
3 1000 2 0.1 ’reg:linear’ - 0.98 0.27 0.18 6.97 66
4 1000 4 0.05 ’reg:linear’ - 0.98 0.27 0.18 6.83 544

27



0 500 1,000 1,500 2,000 2,500 3,000

0.25

0.3

0.35

0.4

n estimators

C
ro

ss
va

li
d
at

io
n
R
M
S
E

(M
P

a)

Figure 19: Cross validation error (RMSE) on n estimators using XGBoost in prediction of tensile strength
(degree=1, max depth=5, learning rate=0.1, objective=’reg:logistic’). Each black cross indicates single
outcome, blue line goes through the means, and bars represent standard deviation.
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5. Concluding remarks475

Four machine learning algorithms including SVR, MLP, GBR, and XGBoost are em-476

ployed to predict the compressive and tensile strengths of HPC in this study. Open-sourced477

machine learning libraries are involved in the implementation which enhances the model per-478

formance and significantly speeds up the running process. This allows the random search to479

be conducted in the hyperparameter tuning process in which a much larger search space is480

considered with the same computational effort. The comparative studies reveal the effects481

of some hyperparameters on the performance of each model. It is shown that GBR and482

XGBoost yield better prediction results with significantly less computational effort com-483

pared to that of SVR and MLP. Also, by using the single mean imputation method, the484

handling of missing data in the dataset of concrete tensile strength enables the use of all485

12 input features which gives considerably better prediction results compared to the case486

where two fully collected features are employed. The drawbacks of the current approach487

include the time-consuming process of parameter tuning and the reliance of the quality of488

the datasets. The former can be mitigated by using a optimisation algorithm, e.g. Genetic489

Algorithm, to automatise the tuning process in which the variables are the hyperparam-490

eters and the objective function is minimisation of the prediction errors. Meanwhile, the491

quality of the datasets can be controlled by careful processes of experiment design, test,492

and measurement. In general, the approach presented in this study can be applied to other493

engineering datasets where input and output features are clearly defined. In addition, the494

speed of the training process presented in this study can be improved by using a fully495

scalable implementation that can be run in parallel processors. With an aim to assist in-496

terested readers to get familiar with the implementation of machine learning models and497

reproduce the results presented in this study, the developed codes are made open-sourced498

at https://github.com/hoangnguyence/hpconcrete.499
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