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Abstract
The initial increases in force production with resistance training are thought to be primarily underpinned by neural adapta-
tions. This notion is firmly supported by evidence displaying motor unit adaptations following resistance training; however, 
the precise locus of neural adaptation remains elusive. The purpose of this review is to clarify and critically discuss the 
literature concerning the site(s) of putative neural adaptations to short-term resistance training. The proliferation of studies 
employing non-invasive stimulation techniques to investigate evoked responses have yielded variable results, but generally 
support the notion that resistance training alters intracortical inhibition. Nevertheless, methodological inconsistencies and the 
limitations of techniques, e.g. limited relation to behavioural outcomes and the inability to measure volitional muscle activity, 
preclude firm conclusions. Much of the literature has focused on the corticospinal tract; however, preliminary research in 
non-human primates suggests reticulospinal tract is a potential substrate for neural adaptations to resistance training, though 
human data is lacking due to methodological constraints. Recent advances in technology have provided substantial evidence 
of adaptations within a large motor unit population following resistance training. However, their activity represents the trans-
formation of afferent and efferent inputs, making it challenging to establish the source of adaptation. Whilst much has been 
learned about the nature of neural adaptations to resistance training, the puzzle remains to be solved. Additional analyses 
of motoneuron firing during different training regimes or coupling with other methodologies (e.g., electroencephalography) 
may facilitate the estimation of the site(s) of neural adaptations to resistance training in the future.

Keywords Descending tracts · High-density surface electromyography · Motor cortex · Motor neuron · Strength · Synaptic 
input · Transcranial magnetic stimulation

Abbreviations
EEG  Electroencephalogram
EMG  Electromyogram
HDsEMG  High-density surface electromyogram
H-reflex  The Hoffman reflex
TMS  Transcranial magnetic stimulation

Introduction

Resistance exercise is one of the most common exercise 
modalities, providing numerous functional and physiologi-
cal benefits to various populations, from athletes to patients. 
Following a period of resistance training, the maximal 
volitional force generating capacity of skeletal muscles is 
typically increased. Though long-term resistance training 
is accompanied by modifications of muscle morphology, 
the initial (< 2–4 weeks) increases in force production are 
thought to be primarily underpinned by neural adaptations 
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(Moritani and DeVries 1979; for reviews see Enoka 1988; 
Sale 1988; Carroll et al. 2001; Folland and Williams 2007). 
The existence of neural adaptations is purported due to 
several behavioural observations such as task-specificity 
of strength in the absence of significant morphological 
adaptations (e.g., Ansdell et al. 2020), the disproportionate 
increase in muscle force relative to muscle size (Moritani 
and DeVries 1979; Häkkinen et al. 1998) and the increase 
in voluntary activation (Lee et al. 2009) in the initial weeks 
of training, the phenomenon of cross-education, whereby 
unilateral resistance training of one limb increases force pro-
duction of contralateral homologous muscle group (Manca 
et al. 2018), and increased muscle force generating capacity 
following weeks of imagined contractions (e.g., Zijdewind 
et al. 2003).

Whilst there is a paucity of methods allowing direct 
assessment of neural activity in awake humans, the nervous 
system can be accessed through recordings of motor unit 
action potentials. The motor unit (alpha motoneuron and all 
muscle fibres innervated by its axons), also known as the 
final common pathway of neural activation signals (Liddell 
and Sherrington 1925), is the transducer of synaptic sensory 
and descending inputs transmitted to the motoneuron pools 
into mechanical muscle actions (Heckman and Enoka 2012). 
The characteristics of motor unit action potentials, i.e., sum-
mation and time-course, determine the electromyogram 
(EMG; Farina et al. 2014; Enoka and Duchateau 2015), 
which can be recorded through the surface of the skin over 
the muscle (surface recordings) or from within the muscle 
(needle/fine-wire recordings; Adrian and Bronk 1928). With 
the existence of the high safety factor of transmission at the 
neuromuscular junction (Wood and Slater 2001), recordings 
of motor unit action potentials through EMG infer the dis-
charges of individual motoneurons (Duchateau and Enoka 
2011), making them the only nerve cells that can be recorded 
non-invasively in humans (Heckman and Enoka 2012). Ini-
tial studies investigating the compound (interference) EMG 
signal showed an increased amplitude in the early stages 
of resistance training concomitantly with increased muscle 
force generating capacity, suggesting neural contribution 
(Moritani and DeVries 1979; Häkkinen et al. 1998). How-
ever, the interference EMG amplitude is only a crude indica-
tor of the neural drive to skeletal muscle (Farina et al. 2014; 
Del Vecchio et al. 2017), which precluded robust conclusion 
about the nature of adaptations. Subsequently, experiments 
employing advanced EMG recordings [e.g., intra-muscular 
or high-density surface EMG (HDsEMG)] and decomposi-
tion, that allow precise identification of motor unit discharge 
times, demonstrated that increased force production follow-
ing resistance training is accompanied by decreased motor 
unit recruitment threshold and increased discharge rate (Van 
Cutsem et al. 1998; Kamen and Knight 2004; Vila-Chã et al. 
2010; Del Vecchio et al. 2019), providing direct evidence 

of neural adaptations to resistance training at the level of 
individual motoneurons.

Despite a clear demonstration of adaptation in the final 
pathway of the nervous system, the precise site of early neu-
ral adaptation causing changes in motor unit activity that 
accompany increased muscle force generating capacity fol-
lowing short-term resistance training remains elusive, with 
several mechanisms proposed (Fig. 1). Understanding the 

Fig. 1  Possible sites of neural adaptation to resistance training. Many 
potential sites of neural adaptations to resistance training have been 
suggested. Changes in intracortical inhibitory interneurons (IN; A) 
have been demonstrated following resistance training in both human 
(Weier et  al. 2012) and non-human primates (Glover and Baker 
2020). Adaptations within the corticospinal tract (CST), the main 
conduit of movement signals in humans, have been equivocal, but 
may occur at the level of the corticomotoneuronal synapse (B) or 
via corticospinal projections to interneurons (C) (Nuzzo et al. 2017; 
Colomer-Poveda et  al. 2019; Siddique et  al. 2020). Though human 
data is lacking, experiments in primates suggest contribution of the 
reticulospinal tract (RST), a bilateral descending tract implicated in 
gross motor tasks, to increased force production following resistance 
training (Glover and Baker 2020), which may occur via corticoreticu-
lar connections (D), reciprocal reticular connections (E), reticulospi-
nal projections to interneurons (F), or monosynaptic reticular projec-
tions to motoneurons (α-MNs; G). The potential neural substrate for 
resistance training adaptations is also the increased monoaminergic 
drive via brainstem projections, increasing the strength of persistent 
inward currents within motoneurons and thus up-regulating depo-
larisation and shortening the afterhyperpolarisation phase of moto-
neurons (H and I). Electrophysiological adaptations are also possible 
within the motor units themselves (J) and might be particularly potent 
in high-threshold motor units (Casolo et  al. 2019). Finally, adjust-
ments in the sensory feedback from muscle via Ia afferent neurons 
may occur with resistance training (Aagaard et  al. 2002; Durbaba 
et al. 2013) either through monosynaptic connections to motoneurons 
(K) or via spinal interneurons (L). Adapted from Glover and Baker 
(2020)
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aetiology of neural adaptations is a critical consideration 
for the use of resistance training as a rehabilitation strategy 
for clinical populations, e.g., following stroke (Kim et al. 
2019b), and for optimising resistance training programmes 
in athletes. Therefore, the purpose of this review is to clarify 
and critically discuss the literature concerning the site(s) of 
putative neural adaptations to short-term resistance training 
when morphological adaptations are expected to be largely 
absent. Particular attention will be given to the constraints of 
the current methodology to elucidate the site of neural adap-
tations, with suggestions for future investigations. Given 
the focus of the review is on the mechanisms underpinning 
the phenomenon of increased force production following 
resistance training, the review will be largely concentrated 
on studies employing single-joint/single-muscle isometric 
contractions during assessments, which allow the level of 
experimental control needed to isolate specific site(s) of 
neural adaptations. Regarding training interventions used 
throughout the literature, the studies included in the present 
review used similar training intensities (i.e., 75–80% 1RM) 
and volumes (i.e., 6–12 reps, 4 sets). Single-joint, isometric 
resistance training is the most commonly employed training 
modality (e.g., Nuzzo et al. 2017; Casolo et al. 2019; Del 
Vecchio et al. 2019), though multi-joint dynamic and bal-
listic interventions have also been assessed (e.g., Schubert 
et al. 2008; Weier et al. 2012; Ansdell et al. 2020). Whilst 
it is recognised that these factors may influence both the 
degree and mechanisms of neural adaptation, there is lim-
ited evidence systematically comparing the effects of these 
factors on neural adaptations to strength training, and such 
a discussion would be beyond the scope of the review. The 
fact that the majority of mechanistic studies reviewed in 
this article rely on simplified models of resistance exercise 
highlights the difficulty in obtaining neurophysiological 
data in response to more ecologically valid modes of resist-
ance training (e.g., dynamic, compound resistance training), 
where methodological constraints challenge the ability to 
capture such data in a task-specific manner (Brownstein 
et al. 2018; Ansdell et al. 2020). The aforementioned fac-
tors should thus be considered when extrapolating findings 
from mechanistic studies into applied practice.

Cortical or spinal adaptations: stimulation 
studies reveal inconsistent results

The early studies attempting to discern the site of neural 
adaptations to strength training employed stimulation of 
peripheral nerves and the study of reflex responses. The 
most commonly studied responses in the context of resist-
ance training are the Hoffmann (H) reflex (Fig. 2a) and the 
V-wave (Fig. 2b), both of which involve stimulation of a 
mixed nerve and principally examine the monosynaptic 

Fig. 2  The responses commonly used to assess the site of neural 
adaptation to resistance training. Early studies have shown increased 
responses to percutaneous mixed nerve stimulation during a contrac-
tion following resistance training (e.g., Sale et al. 1983; Aagaard et al. 
2002)—these responses are known as the H-reflex (a), which is a 
long-latency response to submaximal nerve stimulation often evoked 
with a small M-wave (note the short-latency response), and the 
V-wave (b), which is a long-latency response to supramaximal nerve 
stimulation (hence the presence of a short-latency maximal M-wave; 
for further details on methodology see Burke and Gandevia 1999). 
In recent decades, transcranial magnetic stimulation (for details on 
methodology see Rossini et al. 2015) has been used to infer the site 
of neural adaptation to resistance training; however, the response to 
such stimuli, known as the motor evoked potentials followed by the 
silent period (c), have yielded variable results when assessed after 
resistance training (for meta-analysis see Siddique et al. 2020). Since 
responses to transcranial magnetic stimulation alone cannot differ-
entiate between the cortical and spinal site of adaptation, additional 
methods have had to be employed, such as responses to direct acti-
vation of corticospinal axons, e.g., lumbar evoked potentials (d), but 
they have been shown not to change following resistance training 
(Nuzzo et al. 2017; Ansdell et al. 2020). It is important to note that 
changes in responses to stimulation techniques following resistance 
training are likely to be specific to the training task (Kalmar 2018)—
as a result there have been recent attempts to replicate the training 
task when assessing responses to stimulation (E; from Brownstein 
et al. 2018, with permission). Data displaying responses is from the 
personal archive of the authors—the average of 5 responses is dis-
played in colour with individual response overlaid in black
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spinal circuitry between the Ia afferent and alpha motoneu-
ron (Fig. 1K). The H-reflex and V-wave differ in that the 
former is elicited with submaximal stimulation, whereas the 
latter is evoked with a supramaximal stimulation during a 
voluntary contraction (McNeil et al. 2013). Following resist-
ance training, studies have generally shown no changes in 
the H-reflex amplitude when elicited at rest (Aagaard et al. 
2002; Scaglioni et al. 2002), but an increase during strong 
contractions (Aagaard et al. 2002; Duclay et al. 2008; Schu-
bert et al. 2008), consistent with the notion of task-specific-
ity of neural adaptations. Similarly, V-waves, that can only 
be elicited during a contraction, have typically been shown 
to increase following resistance training (Sale et al. 1983; 
Aagaard et al. 2002; Fimland et al. 2009).

The authors of the aforementioned studies have often 
inferred that neural adaptations to resistance training are 
mediated at the ‘spinal’ level. However, the term ‘spinal’ 
is rather broad, and both H-reflex and V-wave are subject 
to technical limitations that preclude identification of the 
precise site of neural adaptation (for reviews see Burke and 
Gandevia 1999; Zehr 2002; Knikou 2008). Briefly, due to 
activation of Ia afferents, the H-reflex is subject to modula-
tion of presynaptic inhibition (for review see Zehr 2002). 
Thus, increased H-reflex amplitude following resistance 
training (Aagaard et al. 2002) may be primarily associated 
to downregulated presynaptic inhibition of sensory inputs 
rather than adaptations within the motor pathway. Further-
more, H-reflex is sensitive to changes in axonal excitability 
(Bostock and Grafe 1985), meaning that increased amplitude 
of the reflex may not necessarily represent changes within 
the spinal cord. Though less likely to influence the V-wave 
(Burke and Gandevia 1999), changes in axonal excitability 
represent a potential confound regardless of whether one 
attempts to ensure a similar proportion of motoneuron pool 
activation when eliciting the H-reflex (e.g., standardised 
M-wave preceding H-reflex; Zehr 2002). Finally, both the 
H-reflex and V-wave have non-monosynaptic contributions 
(Fig. 1L; Burke et al. 1984; Marchand-Pauvert et al. 2002); 
thus, the changes in reflex response could be the result of 
alterations in synaptic efficacy in one or both of these cir-
cuits (Burke and Gandevia 1999). In essence, changes in 
H-reflex and V-wave do not necessarily measure motoneuron 
excitability as the latter typically assumes a predominantly 
monosynaptic contribution (McNeil et al. 2013).

The advent of transcranial magnetic stimulation (TMS; 
Barker et al. 1985), which allows non-invasive, painless 
activation of neurons within the motor cortex (for review 
see Rossini et al. 2015), has resulted in a proliferation of 
studies investigating motor control and neural alterations 
to various motor tasks, including resistance training (Car-
roll et al. 2011; Kidgell and Pearce 2011). The size of the 
response to TMS, the motor evoked potential (Fig. 2c), can 
be recorded at the muscle via EMG and represents an index 

of excitability of the corticospinal tract (see CST in Fig. 1, 
Bestmann and Krakauer 2015). Perhaps the most consistent 
experimental observation using TMS is that the motor corti-
cal inhibition is decreased with resistance training (Fig. 1A; 
Goodwill et al. 2012; Weier et al. 2012; Leung et al. 2017), 
though contradicting evidence does exist (Beck et al. 2007; 
Ansdell et al. 2020). The majority of these studies utilised 
similar training intensities and volumes (75–80% 1RM, 6–12 
repetitions, 4 sets; Goodwill et al. 2012; Weier et al. 2012; 
Leung et al. 2017; Ansdell et al. 2020), though other char-
acteristics of the training differed (e.g., unilateral, Goodwill 
et al. 2012; Leung et al. 2017; bilateral, Weier et al. 2012; 
Ansdell et al. 2020; lower limb, Goodwill et al. 2012; Weier 
et al. 2012; Ansdell et al. 2020; upper limb, Leung et al. 
2017), possibly explaining the discrepant results.

The activity of inhibitory interneurons in the motor cortex 
is principally assessed with paired-pulse TMS, whereby two 
pulses are delivered with a short interstimulus interval, and 
the responses are thought to be underpinned by the activity 
of receptors of gamma aminobutyric acid (Ziemann et al. 
1996; Di Lazzaro et al. 2007), the main inhibitory neuro-
transmitter in the human central nervous system. This neu-
rotransmitter has been heavily implicated in motor learning 
(Bachtiar and Stagg 2014), which supports the notion pro-
posed a few decades ago that resistance training is a form of 
motor leaning (Sale 1988). Thus, one potential argument is 
that the neural adaptations and increased strength observed 
in the initial stages of resistance training may reflect the 
processes implicated in motor learning. In addition to 
paired-pulse responses to TMS, the duration of the silent 
period following the evoked response to TMS has also been 
shown to be reduced following resistance training (Christie 
and Kamen 2014; Siddique et al. 2020) and used to infer a 
reduction in the activity of intracortical interneurons; how-
ever, this interpretation of the phenomenon has been ques-
tioned, with suggestions that adjustments within the spinal 
network could be complicit (Yacyshyn et al. 2016; Škarabot 
et al. 2019b). Nevertheless, meta-analyses generally sup-
port the premise that resistance training alters excitability of 
the intracortical inhibitory interneurons, particularly when 
these are assessed during a voluntary contraction (Kidgell 
et al. 2017; Siddique et al. 2020). Similar reductions in intra-
cortical inhibition have been demonstrated following acute 
aerobic exercise (Singh and Staines 2015; El-Sayes et al. 
2019), perhaps suggestive of a mechanism linked to exercise 
in general, rather than specific to resistance training.

Evidence of changes in corticospinal excitability has 
been inconsistent, with an increase (Griffin and Cafarelli 
2007; Weier et al. 2012), decrease (Carroll et al. 2002; Beck 
et al. 2007; Giboin et al. 2018) or no change (Carroll et al. 
2009; Christie and Kamen 2014; Coombs et al. 2016) shown 
following short-term resistance training. The differences 
in experimental designs, particularly as they relate to the 
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training protocol, and the lack of agreement between the 
training and testing task (Avela and Gruber 2011; Kalmar 
2018) likely contribute to these discrepancies. For example, 
whilst the majority of studies employed training intensities 
between 70 and 100% maximum intensity, these were a mix-
ture of isometric (Griffin and Cafarelli 2007; Christie and 
Kamen 2014; Giboin et al. 2018) and dynamic contractions 
(Carroll et al. 2002; Beck et al. 2007; Weier et al. 2012; 
Coombs et al. 2016). When these factors are coupled with 
inconsistent methodological approaches to measure indices 
of corticospinal excitability and/or inhibition, the equivo-
cal nature of the literature is perhaps unsurprising. The 
mechanistic extrapolation is further complicated, because 
whilst TMS activates pyramidal neurons in the motor cortex 
through indirect activation, the response measured in the 
EMG activity (motor evoked potential) represents inputs 
from both cortical as well as spinal centres (Rossini et al. 
2015). Indeed, changes in motor evoked potentials follow-
ing resistance training could represent alterations within the 
motor cortex itself, within the spinal cord, or in the efficacy 
of the synapses leading to the motoneuron (e.g., Fig. 1B, 
C). Additional methods, such as assessing responses to 
direct activation of corticospinal axons at subcortical lev-
els (Fig. 2d; Taylor and Gandevia 2004; Martin et al. 2008; 
Škarabot et al. 2019a) is required in conjunction with TMS 
to make a distinction as to whether the site of neural adap-
tations lies within the motor cortex or subcortically. Few 
studies have examined responses to direct activation of cor-
ticospinal axons following short-term resistance training, but 
their findings agree that neural adaptations are not mediated 
by intrinsic changes to motoneurons, efficacy of corticomo-
toneuronal synapses or transmission efficacy along descend-
ing pathways (Nuzzo et al. 2017; Ansdell et al. 2020).

Taken together, the general inconsistencies in the litera-
ture on the site of neural adaptations to resistance train-
ing inferred from stimulation techniques are widespread. 
However, the equivocal nature of findings from studies 
employing TMS does not necessarily exclude the implica-
tion of the motor cortex and/or the corticospinal tract in 
neural adaptations to resistance training. A consideration 
of the limitations of techniques used to study corticospinal 
changes following resistance training, as well as the con-
text of their use, might provide explanations for equivocal 
results or offer alternative considerations. Firstly, the rela-
tionship between TMS-induced responses and behavioural 
outcomes is complex and not always directly interrelated. 
Indeed, TMS may activate elements of the motor output 
that are not necessarily directly related to volitional neural 
activity. For example, TMS responses provide informa-
tion about the population of neurons activated by stimula-
tion, which represent presynaptic interneural inputs and 
postsynaptic corticospinal excitability, which may not 
be directly relevant to motor behaviour (Bestmann and 

Krakauer 2015). Other technologies that permit inferences 
of central nervous system behaviour during volitional 
actions could overcome this limitation, as discussed in 
subsequent sections. Additionally, changes might occur 
in cortical areas outside the primary motor cortex, which 
may or may not cause changes in the population of neu-
rons activated by stimulation (Bestmann and Krakauer 
2015). Secondly, responses to stimulation techniques are 
known to be variable; this has been suggested to be due to 
inter-individual variability in synaptic efficacy of different 
neuronal populations and subtle changes in electrophysi-
ological properties of neuronal populations within an indi-
vidual (Orth et al. 2003). Because of this variability, meth-
odological nuances can influence the sensitivity to detect 
changes, especially if these are subtle. Thirdly, the training 
and the assessment tasks typically differ in the generation 
of the motor command, which can mask potential changes 
in neural responses. For example, even when attempts have 
been made to replicate biomechanical characteristics of 
the training task when measuring TMS-induced responses 
(Fig. 2e; Brownstein et al. 2018), recordings were made 
during a low-intensity isometric contraction, which dif-
fered considerably to the training task involving dynamic 
squats with 80% of 1-repetition maximum (Ansdell et al. 
2020). However, when the intent to produce force, and 
thus likely the motor command, was replicated in the 
assessment task motor evoked potentials showed a clear 
task-specific change (Giboin et al. 2018). Future studies 
could consider investigation of TMS-induced responses 
during the movement preparation phase, which represents 
an experimental lens into the motor command (Tanji and 
Evarts 1976; Cisek and Kalaska 2010). Finally, although 
the corticospinal tract represents the primary pathway 
controlling skeletal muscle, it is possible that the main 
site of neural adaptation lies outside the direct corticomo-
toneuronal connection. Other descending tracts could be 
considered sites of neural adaptation to resistance training, 
such as the reticulospinal tract. Several characteristics of 
the reticulospinal tract provide a rationale for its implica-
tion in the neural causes of strength increase: its bilateral 
nature could facilitate certain exercises (Jankowska et al. 
2003); its collateralisation could enable the activation of 
muscle synergies during gross motor tasks (Peterson et al. 
1975); as well as its direct and indirect (via an interneu-
ron) projections with motoneurons (Riddle et al. 2009). 
Furthermore, when lesions were made in the pyramidal 
(Lawrence and Kuypers 1968) and corticospinal tract 
(Zaaimi et al. 2012, 2018) of non-human primates, a ‘com-
pensatory’ increase in the efficacy of reticulospinal con-
nections with the motoneuron was observed that accom-
panied the recovery of strength. These findings provide 
the neuroanatomical, neurophysiological and behavioural 
basis that make the reticulospinal tract a potent substrate 
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for neural adaptations to resistance training. Indeed, direct 
stimulation of the reticulospinal tract in non-human pri-
mates reveals increased responses following resistance 
training suggesting adaptation in this tract, likely through 
monosynaptic (Fig. 1H) and disynaptic (via an interneu-
ron; Fig. 1I) connections to motoneurons, decreased cor-
ticoreticular connection (Fig. 1D) and/or increased recip-
rocal reticular connection (Fig. 1E; Glover and Baker 
2020). Though reticulospinal tract function is not possible 
to assess directly in humans, startle reaction time tasks 
(Baker and Perez 2017) and auditory startle cues combined 
with TMS (Tazoe and Perez 2017) and transcranial electri-
cal stimulation (Furubayashi et al. 2000) have been used 
previously to infer reticulospinal function in humans and 
might be worth considering in future studies investigating 
neural adaptations to resistance training.

The range of potential adaptation aetiologies means 
that relying on TMS or other non-invasive neurostimula-
tion paradigms alone might limit the inferences that can 
be made by a single experiment. As will be discussed in 
the next sections, technologies that allow inferences to be 
made regarding central nervous system behaviour during 

volitional actions might provide routes for further explora-
tion of neural adaptation to resistance training.

High‑density surface electromyography: 
potential for source identification

Stimulation techniques, including TMS, involve the study 
of evoked responses. Therefore, stimulation methods will 
always be, to some extent, limited in their ability to make 
inferences about behavioural outcomes as they do not allow 
capturing changes in volitional neural activity. On the other 
hand, recent technological advances allow a non-invasive 
study of the activity of large populations of motor units dur-
ing voluntary contractions in the full recruitment range of a 
muscle through careful decomposition of HDsEMG (Fig. 3a; 
Holobar and Zazula 2007; Farina et al. 2016; Del Vecchio 
et al. 2020). Furthermore, due to the spatial ‘signature’ of 
each motor unit discharge, it is possible to longitudinally 
track motor units across recording sessions (Martinez-Valdes 
et al. 2017; Del Vecchio and Farina 2020), thus allowing 
direct comparison of potential changes in motor unit proper-
ties as a result of an intervention (e.g., training/rehabilitation 

Fig. 3  Motor unit changes following strength training. a Whilst the 
more invasive fine-wire/needle electromyography is still consid-
ered the ‘gold standard’ for discerning the activity of single motor 
unit action potentials, recent advances in technology have allowed 
decomposition (line 1 in orange) of the interference electromyogram 
(the summated motor unit activity) from surface recordings (i.e., 
high-density EMG). Inferring changes in the nervous system from 
the global surface EMG is limited due to amplitude cancellation and 
the non-linear relationship between the size of action potentials and 
recruitment threshold; however, decomposition of the signal into indi-
vidual motor unit spike trains infers activity of single motoneurons 
due to one-to-one relationship between axonal (left) and motor unit 
(right) action potentials by the muscle unit. From Del Vecchio et al. 
(2020), with permission. b A raster plot of decomposed motor unit 

spike trains from high-density EMG during a trapezoidal contraction 
at 35% of maximal force before and after short-term resistance train-
ing (intervention) or no change in physical activity (control). Short-
term resistance training decreased motor unit recruitment thresh-
olds (note the dark blue boxes), whereas derecruitment thresholds 
remained unchanged. Adapted from Del Vecchio et  al. (2019), with 
permission. c Concomitantly with decreased recruitment thresholds, 
motor unit firing rate have also been shown to be augmented with 
short-term resistance training when the same motor units are tracked 
across time (Del Vecchio et al. 2019), whereas no such phenomenon 
is observed in the control group; consistent with the data previously 
obtained from fine-wire electromyography (Van Cutsem et al. 1998). 
The scatter plot and data from Del Vecchio et al. (2019), with permis-
sion
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protocol). Using this methodology, it has recently been 
shown that increased force production following short-term 
resistance training was accompanied by decreased recruit-
ment threshold (Fig. 3b) and increased firing rate (Fig. 3c) 
of a large population of longitudinally-tracked motor units 
(Del Vecchio et al. 2019). These findings clearly support that 
early adaptations to resistance training are of neural origin. 
However, since motor unit activity represents transformation 
of synaptic sensory and descending inputs, establishing the 
origin of decreased recruitment and augmented firing rate 
is challenging.

It is important to note that motoneurons receive two types 
of inputs; ionotropic, which depolarise and hyperpolarise 
motoneurons, sub-serving specific motor commands and 
reflexes (Heckman and Enoka 2012), and neuromodula-
tory, which involve binding of second-messenger systems 
(e.g., serotonin, noradrenaline) released by the axons of the 
brainstem raphe nuclei that bind on G-proteins and activate 
voltage-dependent channels on the motoneuron dendrites 
(Fig. 1H, I; Heckman and Enoka 2012). The latter allows 
the generation of strong persistent inward currents, which 
can increase responsiveness of motoneurons to ionotropic 
inputs (Heckmann et al. 2005). It is possible to estimate the 
strength of persistent inward currents in humans with the 
so-called paired motor unit technique during voluntary con-
tractions with a prescribed trajectory of force increase and 
decrease (Gorassini et al. 2002; Afsharipour et al. 2020). 
Specifically, during the ascending phase of the contraction 
a relatively low-threshold (control) motor unit increases its 
firing frequency whilst a second, higher-threshold (test) 
motor unit is recruited, which then continues firing during 
the descending phase of the contraction at lower levels of 
synaptic input required to recruit it in the first instance. The 
strength of the persistent inward currents is then estimated 
as motor unit recruitment hysteresis, which is quantified as 
the difference between the instantaneous firing frequency of 
the control unit at test unit recruitment and derecruitment. 
Alternatively, motor unit saturation has also been suggested 
as a potential estimate of persistent inward current strength 
(Johnson et al. 2017) as it appears to be inherently linked 
to neuromodulatory input (Hyngstrom et al. 2008; Revill 
and Fuglevand 2017). Motoneuron afterhyperpolarisation 
duration has been shown to decrease following short-term 
resistance training (Christie and Kamen 2010), which might 
indicate increased flow of positive charged ions onto the 
motoneurons and thus increased probability of action poten-
tial generation, possibly as a result of increased monoamin-
ergic drive. Furthermore, in the study by Del Vecchio et al. 
(2019) recruitment threshold of motor units were found to 
be decreased, but no changes were noted in derecruitment 
threshold relative to force produced, suggesting the hyster-
esis of motor unit recruitment had changed as a result of 
resistance training (Kim et al. 2019a). However, the lack of 

changes in the motoneuron input–output relationship (the 
relationship between motor unit discharge rate and force 
production) cast doubt that increased neuromodulatory 
input contributed to increased force production following 
short-term resistance training (Del Vecchio et al. 2019). 
Nevertheless, a more direct investigation into the role of 
neuromodulatory inputs to motoneurons following resist-
ance training is warranted, particularly since data on rodents 
suggest that alterations in ionic conductance of motoneurons 
and augmented electrophysiological properties of both slow 
and fast-type motoneurons are evident after resistance train-
ing (Gardiner et al. 2006; Krutki et al. 2017).

Due to lack of changes in the motoneuron input–output 
relationship following resistance training, decreased motor 
unit recruitment and augmented discharge rate are likely of 
supraspinal origin (Del Vecchio et al. 2019). However, as 
already discussed, data from stimulation studies is inconclu-
sive concerning the role of the motor cortex in the adapta-
tions to resistance training and is limited insofar as it does 
not provide information about volitional muscle activity. 
Cortical activity underpinning volitional muscle activity 
can be assessed using electroencephalography (EEG), which 
measures postsynaptic brain activity with high temporal 
resolution. The negative excitatory post-synaptic potentials 
in EEG around the time of voluntary movement, known as 
movement-related cortical potentials, have been shown to 
display attenuated amplitude at several scalp sites during 
the same relative force levels following resistance training 
(Falvo et al. 2010). Furthermore, recent data in non-human 
primates has indicated a supraspinal contribution to resist-
ance training adaptations (Glover and Baker 2020). These 
findings imply that the motor cortical demand is reduced 
with increased force production as a result of resistance 
training. However, it is unclear whether motor cortical 
demand is solely reduced, or whether it reflects changes in 
reticulospinal and/or intraneuronal networks projecting to 
spinal motoneurons. Pairing EEG with HDsEMG record-
ings and analysing the coherence between cortical and 
motoneuronal signals in specific frequency domains (Gal-
lego et al. 2015; Holobar et al. 2018) may facilitate such 
understanding.

Finally, it is important to highlight that presently avail-
able data suggest motor unit adaptations following resistance 
training are not threshold-specific (Van Cutsem et al. 1998; 
Del Vecchio et al. 2019). Following short-term resistance 
training, motor unit conduction velocity has been shown to 
increase selectively for high-threshold motor units (Casolo 
et al. 2019); however, this likely reflects changes in electro-
physiological properties of muscle fibres (e.g., alterations 
in the capacity and transport activity of  NA+-K+ pump), 
rather than alterations in neural synaptic input. The uni-
form increase in discharge rate across the motor pool is also 
inconsistent with the idea of augmented reticulospinal input 
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following resistance training (Glover and Baker 2020), since 
this tract seem to preferentially recruit higher-threshold, 
larger motoneurons (Ziemann et al. 1999). However, differ-
ent inputs could be augmented concurrently with resistance 
training; for example, reticulospinal input that may have a 
bias towards higher-threshold motoneurons, neuromodula-
tory input that is longer-lasting in low-threshold motoneu-
rons (Lee and Heckman 1998), with possible additional 
inputs from interneural networks in the motor cortex. Future 
research should thus consider concomitant contribution from 
different sources of input that are likely responsible for uni-
form changes in motoneuron discharge rate across the entire 
motor pool.

Further considerations and conclusions

The present review has principally discussed neural adapta-
tions to resistance training based on recordings of the agonist 
muscle(s). Indeed, the literature has predominantly focused 
on neurophysiological changes in the agonist muscles, with 
relatively little regard for antagonist and synergists. How-
ever, increased force production of the agonist muscle fol-
lowing resistance training may occur due to upregulation of 
activity within the agonist itself, as well as suppression of 
the antagonist and/or facilitation of synergist muscles. Early 
studies investigating interference EMG amplitude suggest 
reduced antagonist activation following resistance training 
(Carolan and Cafarelli 1992), though conflicting evidence 
also exists (Holtermann et al. 2005). Notably, muscles are 
not controlled by distinct territories within the motor cortex, 
but are overlapped and intertwined, and more likely inter-
connected by intrinsic collaterals involved in the integrated 
control of muscle synergies (Devanne et al. 2006; Capaday 
et al. 2013). Thus, it is conceivable that focusing on record-
ings of a single, typically the agonist muscle neglects the 
possibility of changes in intermuscular coordination as a 
result of resistance training. Whilst coordination is concep-
tually difficult to measure with stimulation techniques such 
as TMS, the distribution of different inputs to the motoneu-
ron pool between synergists has been investigated previously 
(Laine et al. 2015), but not in the context of resistance train-
ing. Future studies should consider concomitant recordings 
of synergists and antagonists to provide a broader under-
standing of neural adaptations to resistance training within 
the whole motor pool.

In conclusion, there is considerable evidence consistent 
with the notion that the early increases in force production 
following resistance training are underpinned by neural 
adaptations. However, despite the proliferation of stud-
ies in the field in the last two decades, the precise site of 
putative neural adaptations remains unclear. Based on the 
available evidence, it is likely that neural adaptations are 

underpinned by alterations in the cortical and/or subcorti-
cal structures, with changes in inhibitory cortical interneu-
rons and reticular formation being the most potent candi-
dates. The advances in decomposition of neural signals 
(i.e., HDsEMG), coupled with the use of existing methods 
(e.g., EEG), as well as indirect probing of reticular forma-
tion in humans (e.g., via auditory startle stimuli), have 
considerable potential to contribute to completing the puz-
zle regarding the site of neural adaptations to resistance 
training in the coming decade.
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