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ABSTRACT

The factorization machine models attract significant attention nowadays since they improve recom-
mendation performance by incorporating context information into recommendation modeling. How-
ever, traditional factorization machine models often adopt the point-wise learning method for model
parameter learning, as well as only model the linear interactions between features. They substantially
fail to capture the complex interactions among features, which degrades the performance of factoriza-
tion machine models. In this research, we propose a neural pairwise ranking factorization machine
for item recommendation, namely NPRFM, which integrates the multi-layer perceptual neural net-
works into the pairwise ranking factorization machine model. Specifically, to capture the high-order
and nonlinear interactions among features, we stack a multi-layer perceptual neural network over the
bi-interaction layer, which encodes the second-order interactions between features. Moreover, instead
of the prediction of the absolute scores, the pair-wise ranking model is adopted to learn the relative
preferences of users. Since NPRFM does not take into account the importance of feature interactions,
we propose a new variant of NPRFM, which learns the importance of feature interactions by introduc-
ing the attention mechanism. The empirical results on real-world datasets indicate that the proposed
neural pairwise ranking factorization machine outperforms the traditional factorization machine mod-
els.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of information technology, a variety of
network applications have accumulated a huge amount of data.
Although the massive data provides users with rich informa-
tion, it leads to the problem of “information overload”. With
the huge volume of data available, it is challenging for users
to efficiently find the valuable information. On the other hand,
for the content providers, it is vital to increase business revenue
by recommending suitable products to potential users. The rec-
ommendation systems (Adomavicius and Tuzhilin, 2005) can
greatly alleviate the problem of information overload. They in-
fer users latent preferences by analyzing their past activities and
provide them with personalized recommendation services.

**Corresponding author.
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In the field of recommendation systems, collaborative filter-
ing (CF) (Breese et al., 1998; He et al., 2017; Linden et al.,
2003) algorithms are the most popular methods, which utilize
users’ behavior information to make recommendations and are
independent of the specific application domains. However, the
traditional collaborative filtering methods ignore the contextu-
al information related to users and items, resulting in a sub-
optimal recommendation performance. In reality, the contex-
tual information (e.g. time, place and mood) greatly affects the
decisions of users. For example, the user is more likely to watch
different types of movies in different moods, and visit different
popular spots at different cities. In order to make context-aware
recommendations available to potential users, several context-
based recommendation models are proposed (Adomavicius and
Tuzhilin, 2011; Chen, 2005; Baltrunas et al., 2011; Zheng et al.,
2015; Rendle, 2010, 2012). Adomavicius et al. (Adomavicius
and Tuzhilin, 2011) provided an overview of the multifaceted
notion of context, and discussed several approaches for incor-



porating contextual information into the recommendation pro-
cess. In addition, they illustrated the usage of context-aware
recommendation methods in several application areas where d-
ifferent types of contexts were exploited. In particular, Rendle
et al. (Rendle, 2010, 2012) proposed the popular factorization
machine (FM) model. As a general predictor, the factorization
machine takes the interactions between different context fea-
tures into account for model building. In fact, FM has been
the defacto standard for context-aware recommendation mod-
els, and various of extensions of FM have been proposed (He
and Chua, 2017; Xiao et al., 2017; Xin et al., 2019; Hong et al.,
2019; Yuan et al., 2016; Guo et al., 2016; Juan et al., 2016).

Recently, deep learning techniques have shown great poten-
tial in many fields, such as natural language processing, speech
recognition and computer vision. In the field of context-aware
recommendation systems, some researchers also have utilized
deep learning techniques to improve the classic factorization
machine models. Typical deep learning based factorization ma-
chine models include NFM (He and Chua, 2017), AFM (Xiao
et al., 2017), CFM (Xin et al., 2019), and IFM (Hong et al.,
2019). The Neural Factorization Machine (NFM) (He and
Chua, 2017) seamlessly unifies the advantages of neural net-
works and the factorization machine. It not only captures the
linear interactions between feature representations of variables,
but also models nonlinear high-order interactions. However,
both FM and NFM adopt a point-wise method to learn their
model parameters. They fit the user’s scores rather than learn
the user’s relative preferences for item pairs. In fact, common
users usually care about the ranking of item pairs rather than
the absolute rating on each item. The pairwise ranking factor-
ization machine (PRFM) (Yuan et al., 2016; Guo et al., 2016)
makes use of the Bayesian personalized ranking (BPR) (Rendle
et al., 2009) and FM to learn the relative preferences of users
over item pairs. Similar to FM, PRFM can only model the lin-
ear interactions among features. As a result, the above studies
reveal that both the neural networks and the pair-wise learn-
ing method are beneficial for the factorization machine, which
endow the factorization machine with capacities of modeling
non-linear interactions and learning the ranking of item pairs,
respectively. However, there are no effective schemes that uni-
fy the FM model, neural networks and the BPR criterion into an
integrated framework, which is capable of tackling the intrinsic
weaknesses of each independent model.

In this research, we propose the Neural Pairwise Ranking
Factorization Machine (NPRFM) model, which integrates the
multi-layer perceptual neural networks into the PRFM model to
boost the recommendation performance. There are three funda-
mental components, i.e., multi-layer perceptual neural network-
s, factorization machine model and the BPR criterion. Specif-
ically, to capture the high-order and nonlinear interactions a-
mong features, we stack a multi-layer perceptual neural net-
work over the bi-interaction layer, which is a pooling layer
that encodes the seconde-order interactions between features.
Moreover, the BPR criterion is adopted to learn the relative
preferences of users, which makes non-observed feedback con-
tribute to the inference of model parameters. Hence, the pro-

posed neural pairwise ranking factorization machine model u-
nifies the strength of three fundamental components and ef-
fectively deals with their respective drawbacks. Owing to the
fact that NPRFM does not consider the importance of feature
interactions, we propose an attention boosted NPRFM to fur-
ther improve the recommendation performance. Concretely,
to learn the importance of feature interactions, we employ a
neural attention network on the pooling operation in the Bi-
Interaction layer. The empirical results on real world datasets
indicate that our proposed neural pairwise ranking factorization
machine model outperforms the traditional recommendation al-
gorithms.

2. Related work

In this section, we review the key related studies, including
traditional collaborative filtering methods, context-aware rec-
ommendation models and the attention mechanism, especially
the factorization machine model and its extensions.

2.1. Traditional collaborative filtering

The traditional recommendation algorithms can be rough-
ly divided into three categories: content-based, collaborative
filtering and hybrid recommendation algorithms (Adomavicius
and Tuzhilin, 2005). Collaborative filtering is one of the most
popular recommendation techniques in the research of recom-
mender systems. It mainly includes memory-based and model-
based methods. Typical memory-based approaches include
user-based CF (Breese et al., 1998) and item-based CF (Sar-
war et al., 2001; Linden et al., 2003), while model-based filter-
ing approaches include Bayesian networks (Breese et al., 1998),
clustering model (Xue et al., 2005; Yu et al., 2013), latent se-
mantic analysis (Hofmann, 2004, 2003), restricted Boltzmann
machines (Salakhutdinov et al., 2007), and matrix factorization
(Koren et al., 2009), etc. In fact, matrix factorization (Koren
et al., 2009) has become the defacto standard in the research of
recommendation systems, and various extensions of MF have
been proposed (Mnih and Salakhutdinov, 2008; Koren, 2008;
Lee and Seung, 1999; Yu et al., 2009). Matrix factorization
maps both users and items into a low-dimensional latent fac-
tor space, using the inner product of the user’s and item’s low-
dimensional feature vectors to predict the user’s score on the
item. Typical matrix factorization models include PMF (Mnih
and Salakhutdinov, 2008), SVD++ (Koren, 2008), NMF (Lee
and Seung, 1999), NPCA (Yu et al., 2009), etc.

2.2. Context-boosted collaborative filtering

The traditional recommendation methods overlook the con-
textual information involved in the recommendation system-
s, which greatly affects the decision-making of users. Ado-
mavicius et al. (Adomavicius and Tuzhilin, 2011) provided an
overview of the multifaceted notion of context, and discussed
several approaches for incorporating contextual information in-
to the recommendation process. In order to tackle the problem
of context-aware recommendation, several context-boosted rec-
ommendation methods have been proposed. In (Chen, 2005),



Chen et al. proposed a context-aware collaborative filtering
method that predicts a user’s preferences in different context
situations based on past experiences. In (Baltrunas et al., 2011),
Baltrunas et al. presented a context-aware matrix factorization
method, which models the interactions between the contextu-
al factors and item ratings. Based on the assumption that rec-
ommendation lists should be similar if their contextual situa-
tions are similar, Zheng et al. (Zheng et al., 2015) proposed
a similarity-learning model. Their proposed model integrates
context similarity with the sparse linear recommendation mod-
el. In (Rendle, 2010, 2012), Rendel et al. proposed the factor-
ization machine (FM), which is a general predictor that can be
adopted for the prediction tasks working with any real valued
feature vector. The FM method is able to model the interac-
tions among different features. Especially, it is able to break
the independence between interaction features by decomposing
them, which means that the information related to one interac-
tion is beneficial for learning the parameters of related interac-
tions. Owing to its effectiveness and flexibility, various exten-
sions of FM have been proposed. As an example, Qiang et al.
(Qiang et al., 2013) proposed a ranking factorization machine
(RankingFM) model, which applies FM model to microblog
ranking on the basis of pairwise classification. The RankingFM
model unifies the generality of learning to rank framework and
the advantages of factorization model in estimating interaction
parameters between features, leading to better retrieval perfor-
mance. In (Guo et al., 2016), Guo et al. proposed the pair-
wise ranking factorization machine (PRFM), which alleviates
the cold start problem and enhances the performance of per-
sonalized ranking by incorporating BPR (Rendle et al., 2009)
with factorization machine. Juan et al. (Juan et al., 2016) p-
resented the field-aware factorization machine (FFM), which is
used to classify large sparse data. Inspired by LambdaRank
(Yan et al., 2010), Yuan et al. (Yuan et al., 2016) proposed the
Lambda factorization machine (LambdaFM), which is particu-
larly intended for optimizing ranking performance for the prob-
lem of implicit feedback based context-aware recommendation.
Recently, In (Chen et al., 2020), Chen et al. proposed an effi-
cient non-sampling factorization machine framework, namely
ENSFM, for context-aware top-k recommendation. ENSFM
not only seamlessly connects the relationship between factor-
ization machines and matrix factorization, but also resolves the
challenging efficiency issue of non-sampling learning. Xu et
al. (Xu and Wu, 2020) proposed a lightweight model named
LorentzFM for recommendation and click through rate predic-
tion tasks. Moreover, they proposed a new score function by
characterizing if the triangle inequality for Lorentz distance is
violated or not in the hyperboloid model.

With the development of deep learning techniques, some re-
searchers have adopted deep learning algorithms to improve the
performance of FM. Since FM can only model the linear in-
teractions between feature representations of variables, He et
al. (He and Chua, 2017) proposed a novel model for sparse
data prediction, named Neural Factorization Machine (NFM),
which seamlessly integrates neural networks into factorization
machine mode. It not only captures the linear interactions a-
mong representations of features, but also models nonlinear
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high-order interactions among them. In (Xiao et al., 2017), Xi-
ao et al. proposed the attentional factorization machine (AFM)
model, which learns the importance of each feature interac-
tion from data via a neural attention network. The AFM mod-
el is able to enhance the expressiveness as well as boost the
interpretability of FM model. In (Guo et al., 2017), Guo et
al. proposed a new neural network model DeepFM that inte-
grates the architectures of FM and deep neural network (DNN).
Specifically, the DeepFM models low-order feature interactions
like FM and models high-order feature interactions like DNN.
Moreover, based on the DeepFM model, Zhang et al. (Zhang
et al., 2019) proposed a novel neural click through rate mod-
el named FAT-DeepFM that enhances the DeepFM model by
introducing the compose-excitation network field attention to
dynamically capture each feature’s importance before explic-
it feature interaction procedure. In addition, Xin et al. (Xin
et al., 2019) proposed a novel context-aware recommendation
algorithm, called Convolutional Factorization Machine (CFM).
CFM firstly models the second-order interactions with outer
product, resulting in “images” which capture correlations be-
tween embedding dimensions. Then, all the generated “im-
ages” are stacked, and form an interaction cube. Finally, a 3D
Convolutional Neural Networks (CNN) is subsequently applied
to learn high-order interaction signals in an explicit manner.

2.3. Attention mechanism

Recently, attention mechanism has been adopted in many
fields owing to its efficiency and robustness, such as natural
language processing, speech recognition and computer vision.
Some recent studies have also utilized the attention mechanism
to improve the recommendation performance. As an example,
Chen et al. (Chen et al., 2017b) proposed a novel convolution-
al neural network, called SCA-CNN, that incorporates spatial
and channel-wise attentions into a CNN model. To effectively
select “good” interactive features in context-aware recommen-
dations, Cheng et al. (Cheng et al., 2014) proposed a novel
gradient boosting factorization machine (GBFM) model, which
incorporates feature selection algorithm with FM into a unified
framework. In (Chen et al., 2017a), Chen et al. proposed an at-
tention collaborative filtering (ACF) model to address the chal-
lenging item- and component-level implicit feedback in multi-
media recommendation. ACF model consists of two attention
modules: the component-level attention module, starting from
any content feature extraction network, which learns to selec-
t informative components of multimedia items, and the item-
level attention module, which learns to score item preferences.

Compared with the above methods, the main differences be-
tween our proposed methods and existing studies include the
following aspects: (1) Unlike PRFM that only models the lin-
ear interactions among features, we stack a multi-layer percep-
tual neural network over the bi-interaction layer to capture the
high-order and nonlinear interactions between features. (2) D-
iffer from FM and NFM that adopt the point-wise method to
learn their model parameters, our proposed models utilize the
BPR, i.e. a pair-wise learning method, to learn model param-
eters. (3) Furthermore, we integrate the attention mechanism
into the neural pairwise ranking factorization machine to learn



the weight of each feature interaction. In general, our proposed
models unify the strength of multi-layer perceptual neural net-
works, factorization machine, BPR criterion and the attention
mechanism.

3. Preliminaries

3.1. Factorization machine

Factorization Machine is able to model the interactions a-
mong different features by using a factorization model. Espe-
cially, FM model breaks the independence between interaction
features by decomposing them to estimate interactions. In oth-
er words, the information related to one interaction is benefi-
cial for learning the parameters of related interactions. More-
over, the FM model is endowed with strong expressiveness a-
bility. For example, matrix factorization, Support Vector Ma-
chine (SVM) (Suykens and Vandewalle, 1999) and factorized
personalized markov chains (FPMC) (Rendle et al., 2010) can
be induced from FM by constructing an appropriate input data
format.

Usually, the model equation of FM is defined as follows:

$(X) = wo + z”: WiX; + i Zn: (Vi, Vj)Xix; 9]
i=1

i=1 j=i+l

where y(x) is the predicted value, and x € R" denotes the input
vector of the model equation. x; represents the i-th element of x.
wo € R is the global bias, w € R" indicates the weight vector of
the input vector x. V € R™k is the latent feature matrix, whose
v; represents the feature vector of x;. (v;,v;) is the dot product
of two feature vectors, which is used to model the interaction
between x; and x;.

By mathematical derivation, y(x) can be further rewritten as:

n

n k n
509 = w0+ 3w+ 3 QO v = YR @)
i=1 =1 =

i=1

According to Eq. (2), the time complexity of the model equa-
tion of FM is O(k.n), which indicates that the computation cost
is linear with respect to the dimension of latent feature and the
number of features.

4. Neural pairwise ranking factorization machine

The factorization machine model is a strong competitor in the
area of context-aware recommendation and has shown promis-
ing results. In fact, the factorization machine has been the
defacto standard for context-aware recommendation task, and
several variants of FM have been proposed, for instance, NFM
(He and Chua, 2017), AFM (Xiao et al., 2017), PRFM (Guo
et al., 2016; Qiang et al., 2013), CFM (Xin et al., 2019) and so
on. However, FM only captures the second-order interaction-
s among features, which is insufficient to model the complex
interaction patterns between features. In order to tackle this
issue, NFM integrates multi-layer perceptual neural networks
into FM to learn the nonlinear high-order interactions. Howev-
er, both FM and NFM focus on predicting the absolute ratings

0 (§(x) -9(x)) Prediction Layer
Layer L ]
A Hidden Layers
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Layer 1
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|

“

w Embedding Layer

o v

of1lo (1} o0 01 """ of ] oo ‘La.s_ 0 Input Layer

Positive instance x Negative instance x”

Fig. 1. The framework of the neural pairwise ranking factorization ma-
chine

for target items, which is different from the concern of common
users that is to learn the relative ranking between item pairs.
In addition, PRFM is designed for the ranking task, and learn-
s the relative preferences of users for item pairs. Specifical-
ly, instead of using the point-wise learning method, the PRFM
mechanism adopts the pair-wise learning method to learn the
model parameters. To some extent, the scheme of pair-wise
learning method is able to alleviate the issue of data sparsity be-
cause both observed and unobserved feedback contributes to the
learning of model parameters. But, similar to FM, the PRFM
can not model the complex interaction patterns between differ-
ent features. To model the high-order interaction behaviors a-
mong features as well as learn the relatively preferences of user
over item pairs, we propose the neural pairwise ranking factor-
ization machine (NPRFM) model, whose underlying compo-
nents are NFM and PRFM. In NPRFM, we stack a multi-layer
perceptual neural network (MLP) over the bi-interaction layer
to capture the high-order and nonlinear interactions among fea-
tures. Fig. 1 presents the framework of the proposed neural
pairwise ranking factorization machine, which consists of four
layers, i.e. embedding layer, Bi-interaction layer, hidden layer
and prediction layer. The input of NPRFM includes positive
and negative instances. Both positive and negative instances
contain user, item and context information. By using one-hot
encoding, the positive and negative instances are converted in-
to sparse feature vectors x € R" or X’ € R", respectively. A
toy example of one-hot encoded positive or negative instance is
illustrated as follows,

[0,0,0,1...,0]

userID=3

[0,0,1,0...,0]

itemI D=2

[0,1,1,0,0,1,0,0]

city=china,mood=hap py,weather=sunny (3 )

A one—hot encoded instance

where the first component represents the user information and
the second element indicates the item information. And context
information, such as country, mood, weather etc., are located in
the third factor. In the one-hot encoded sparse feature vector,
the feature value x; = 0 means the i-th feature does not exist in
the instance.



4.1. Embedding layer

The goal of embedding layer is to map each feature into a
low-dimensional space, where each feature is represented as a
compact and dense real-value vector, instead of a sparse and
high-dimensional vector. After one-hot encoding, we use the
embedding table lookup operation to obtain the embedded rep-
resentations of features included in the input instance. Formal-
ly, the embedded representation of X is,

V, = V.onehot(x) “4)

where V, is a set of embedding vectors, ie., V, =
{X1V1, .... X,V,}, and v; € RF is the embedded representation of
the i-th feature. Owing to the sparsity of x, only the embedded
representations of non-zero features (i.e.,x; # 0) are included in
V..

4.2. Bi-Interaction layer

The Bi-Interaction layer is a pooling operation, which con-
verts the set of embedding vectors V, into one vector fg;(V,):

Sfei(Vy) = i i XiVi © X;V; )

i=1 j=it+l

where O represents the element-wise product of two vectors. As
shown in Eq.(5), the Bi-Interaction layer captures the pair-wise
interactions among the low dimensional representations of fea-
tures. In other words, the Bi-Interaction pooling only encodes
the second-order interactions among features.

4.3. Hidden layers and prediction layer

Since the Bi-interaction layer only captures the second-order
interactions among features, and can not model the complex-
ity interactive patterns among features, we utilize the multi-
layer perceptron (MLP) to learn the interaction relationships
among features, which endows the proposed model with the
ability of capturing the high-order interactions. In fact, as re-
ported in (Hornik et al., 1989), the multi-layer perceptron is
able to approximate any measurable function. Moreover, some
researchers also utilized the MLP to improve the performance
of recommendation models (He et al., 2017; Yu et al., 2019).
Specifically, in the hidden layers, we stack multiple fully con-
nected hidden layers over the Bi-Interaction layer, where the
output of a hidden layer is used as the input of the subsequent
hidden layer that makes use of the weighted matrix and non-
linear activation function, such as sigmoid, tanh and ReL.U, to
nonlinearly transform this output. Formally, the MLP model is
defined as,

21 =01 (Wifer (Vi) +by),
z) = 02 (Wz; +by),
(6)

2z =0 (Wrzp +byp)

where L denotes the number of hidden layers. W; € R>-1 and
b, € R* represent the weight matrix and bias vector for the I-th
layer, respectively. And k; denotes the transform size of the /-th
hidden layer.

5

The prediction layer is connected to the last hidden layer, and
is used to predict the score y(x) for the instance x, where x can
be positive or negative instances. Formally,

9x)=h'z, (7

where h is the weight vector of the prediction layer.
Combining the Eq.(6) and (7), the model equation of NPFFM
is reformulated as:

wixi +h oL (WL (..ot (Wi £ (V) +b1)...)+bp) (8)
1

y(x) =

n
i=

4.4. Model learning

Our proposed NPRFM approach focuses on collaborative fil-
tering with implicit feedback, which learns the relative prefer-
ences for item pairs rather than predicts the absolute ratings.
Hence, we adopt a ranking criterion, i.e, the BPR criterion, to
optimize the model parameters. Formally, the objective func-
tion of NPRFM is defined as:

A
[NPREM _ Z ~Inoc(H(x) — H(x')) + E(IIG)II%) 9
(x.x")ex

where o(.) is the logistic sigmoid function. And ®@ =
{w;, W;,b;,vi,h} , i e (1..n) [l € (1...L) denotes the model pa-
rameters. Y is the set of positive and negative instances.

In the process of model training, we adopt the uniform sam-
pling scheme to sample one negative instance for each positive
instance. After shuffling the sampled instances, we feed a batch
of instances into our proposed neural personalized ranking fac-
torization machine model. In addition, we adopt the Adagrad
(Luetal., 2017) optimizer to update model parameters since the
Adagrad optimizer utilizes the information of the sparse gradi-
ent and gains an adaptive learning rate, which is suitable for the
scenarios of data sparsity.

4.5. Attention Boosted NPRFM

FM enhances linear regression models by combining second-
order feature interactions. Despite effectiveness, FM can be
disturbed by modeling all feature interactions with the same
weights, since not all feature interactions are equally useful and
predictive. For example, the interactions with useless features
may even generate noise and greatly degrade the performance.
In this section, we introduce the attention mechanism into N-
PRFM to further improve the recommended performance. Fig.
2 presents the framework of the proposed attention boosted N-
PRFM. The experimental results are shown in Section 5.3. The
attention mechanism is employed to the pooling operation in
the Bi-Interaction layer:

Jap(Vo) = ar© fpr(V) (f=1,---,k) (10)

where ay is the attention score for fz;(Vy) € R¥, which can be
interpreted as the importance of f5;(V,) in predicting the target.
We parameterize the attention score with a multi-layer percep-
tron (MLP), which is called the attention network. The input



g (?(X%—?(X)) Prediction Layer
Layer L
..... A
A
Layer2 Hidden Layers
Layerl
as Attention-based Pooling Layer

Bi-Interaction Layer

R AR

Negative instance x”

Embedding Layer

Input Layer

Positive instance x

Fig. 2. The framework of attention boosted NPRFM

of the attention network is a k-dimensional vector obtained af-
ter the pooling operation. Formally, the attention network is
defined as:

= P ReLU (W’ fg;(V,) +b’) (1D)

exp(d))

a (12)

Sy expld))
where W € R™¥ b’ € R' and P € R' represent the weight
matrix, bias vector and prediction weight for the attention net-
work, respectively. And ¢ denotes the hidden layer size of the
attention network, which we call the attention factor. The at-
tention scores are normalized by the softmax function, while
the rectifier(ReLU) is used as the activation function.

Formally, the model equation of NPRFM with the attention
mechanism is reformulated as:

San(x) = i} wix; + hT o (Wi (..o1(Wilay © fzr (Vo) +bp)..) +by) (13)

5. Experiments

In order to evaluate the performance of the proposed neural
pairwise ranking factorization machine, we compare our pro-
posed models with other baselines on real-world datasets.

5.1. DataSets and evaluation metrics

In our experiments, we choose two real-world implicit feed-
back datasets: Frappe' and Last.fm?, to evaluate the effective-
ness of the proposed model.

Frappe: Frappe is a context-aware application discovery
tool. This dataset was collected by Baltrunas et al. (Baltrunas
et al., 2015). It contains 96,203 application usage logs with d-
ifferent contexts. Besides the user ID and application ID, each
log contains eight contexts, such as weather, city and country

Thttp://baltrunas.info/research-menu/frappe
2http://www.dtic.upf.edu/ocelrna/l\/lusicRecoInmendationDataset
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and so on. We use one-hot encoding to convert each log into
one feature vector, resulting in 5382 features.

Last.fm: The last.fm dataset is used for music recommenda-
tion. This dataset was collected by Xin et al. (Xin et al., 2019).
The contexts of user consist of the user ID and the last music
ID listened by the specific user within 90 minutes. The contexts
of item include the music and artist IDs. This dataset contains
214,574 music listening logs. After transforming each log by
using one-hot encoding, we retrieve 37,358 features.

We adopt the leave-one-out validation to evaluate the perfor-
mance of all compared methods, which has been widely used
in the literature (He et al., 2017; Xiao et al., 2017; Hong et al.,
2019). For each user, we take his/her latest interaction log as the
test set and the remaining interactions as the training set. Since
both original datasets contain only positive instances, we ex-
tract two negative instances pertaining to each positive instance.
For example, for each log of Frappe, we randomly extract two
applications that the user did not adopt in the context, which is
given in this log.

Table 1 summarizes the statistics of the datasets.

Table 1. Dataset statistics

Dataset |# User|# Item|# Transactions|# Features|# Context
Frappe| 957 | 4082 96203 5382 10
Lastfm| 1000 |20301 214574 37358 4

We utilize two widely used ranking based metrics, i.e.,
the Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG), to evaluate the performance of all comparison-
s. HR@n measures whether the generated recommendation list
contains the test item. NDCG @n is the normalization of DCG
(Discounted Cumulative Gain), which assigns higher scores to
the test item with top ranks.

5.2. Experimental settings

In order to evaluate the effectiveness of the proposed algo-
rithms, we employ FM, NFM, PRFM as the baseline methods.

o FM : FM (Rendle, 2010, 2012) is a strong competitor in
the field of context-aware recommendation, and captures
the interactions between different features by using a fac-
torization model. In addition, FM focuses on the task of
predicting the absolute ratings of items.

o NFM : NFM (He et al., 2017) seamlessly integrates neu-
ral networks into factorization machine model. Based on
the neural networks, NFM can model nonlinear and high-
order interactions between latent representations of fea-
tures. Similar to FM, NFM also focuses on predicting the
absolute ratings of items.

o PRFM: PRFM (Guo et al., 2016) applies the BPR stan-
dard to optimize its model parameters. Different from FM
and NFM, PRFM focuses on the ranking task that learns
the relative preferences of users for item pairs rather than
predicts the absolute ratings.



In order to make a fair comparison, we set the parameters
of each method according to respective references or based on
our experiments. Under these parameter settings, each method
achieves its best performance. For all compared methods, we
set the dimension of the hidden feature vector k = 64. In ad-
dition, for FM, we set the regularization term 4 = 0.01 and
the learning rate n = 0.001. For NFM, we set the number of
hidden layers 1, the regularization term A = 0.01 and the learn-
ing rate n = 0.001. For PRFM, we set the regularization term
A = 0.001 and the learning rate n = 0.1. For both the NPRFM
and the attention boosted NPRFM, we set the regularization ter-
m A = 0.001, the learning rate = 0.1, and the number of
hidden layers L = 1. In addition, we initialize the latent feature
matrix V of NPRFM with the embedded representations learned
by PRFM.

5.3. Performance comparison

We set the length of recommendation list n = 3,5,7 to e-
valuate the performance of all compared methods. When the
dimension of feature representation k is equal to 64, the experi-
mental results on the two datasets are illustrated in Tables 2 and
3. In addition, the experimental results with k = 32 are listed in
Tables 4 and 5.

Table 2. Performance comparison on the Frappe dataset (k=64)

Recommendation n=3 n=5 n="7
Algorithm HR NDCG| HR NDCG| HR NDCG
FM 0.24450.1795|0.3050 0.2107(0.3422 0.2216
NFM 0.25100.1797/|0.3702 0.2199(0.4686 0.2504
PRFM 0.4650 0.3868(0.5654 0.4280(0.6383 0.4533
NPRFM 0.4786 0.3962|0.5751 0.4358]0.6469 0.4607
NPRFM+attention|0.4824 0.4036(0.5813 0.4442(0.6578 0.4706

Table 3. Performance comparison on the Last.fm dataset (k=64)

Recommendation n=3 n=5 n=7
Algorithm HR NDCG| HR NDCG| HR NDCG
FM 0.0770 0.0584(0.1064 0.0706|0.1344 0.0803
NFM 0.0972 0.0723(0.1372 0.0886(0.1702 0.1000
PRFM 0.1828 0.1374]0.2545 0.1667{0.3094 0.1857
NPRFM 0.18550.1402(0.2624 0.1715]0.3219 0.1921
NPRFM-+attention|0.1984 0.1504/0.2761 0.1822(0.3341 0.2023

Table 4. Performance comparison on the Frappe dataset (k=32)

Recommendation n=3 n=5 n=7
Algorithm HR NDCG| HR NDCG| HR NDCG
FM 0.24350.1843|0.3017 0.2075]0.3413 0.2096
NFM 0.2478 0.1846|0.3076 0.2092(0.3540 0.2252
PRFM 0.4305 0.3521]0.5309 0.3933(0.6011 0.4177
NPRFM 0.45350.3697(0.5515 0.4090(0.6144 0.4310
NPRFM +attention|0.4659 0.3845]0.5583 0.4226|0.6242 0.4453
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usually suffers from data sparsity. (2) NFM is superior to FM
with regards to all evaluation metrics. This observation demon-
strates that integrating neural networks is beneficial for FM to
improve its recommendation performance. One reason is that
the non-linear and high-order interactions among representa-
tions of features are captured by utilizing the neural networks,
resulting in the improvement of recommendation performance.
(3) On both datasets, PRFM achieves better performance than
those of FM and NFM. This is because PRFM learns its model
parameters by applying the BPR criterion, in which the pair-
wise learning method is used to infer the latent representation-
s of users and items. To some extent, the pair-wise learning
scheme is able to alleviate the problem of data sparsity by mak-
ing non-observed feedback contribute to the learning of mod-
el parameters. (4) Our proposed NPRFM model consistent-
ly outperforms other compared methods, which demonstrates
the effectiveness of the proposed strategies. Specifically, when
n = 3, NPRFM improves the HR of PRFM by 2.9% and 1.5%
on Frappe and Last.fm, respectively. In terms of NDCG, the
improvements of NPRFM over PRFM are 2.4% and 2.0% on
Frappe and Last.fm, respectively. This observation confirm-
s our assumption that it is beneficial to unify the strengths of
NFM model in capturing non-linear and high-order interaction
relationships and the PRFM model in learning users prefer-
ences ranking between items. (5) On both datasets, the atten-
tion boosted NPRFM obtains better performance than NPRFM.
This is because attention boosted NPRFM enhances NPRFM by
learning the importance of feature interactions with an attention
network, which not only improves the representation ability but
also the interpretability of the NPRFM model. (6) All the com-
pared methods with k = 64 are more competent than those with
k = 32. The sensitivity analysis of the dimension of the latent
representation of feature is presented in the following section.

5.4. Sensitivity analysis
5.4.1. Impact of the depth of neural networks

In the proposed model, we use the neural networks, i.e, MLP,
to learn the nonlinear interactions between embedded represen-
tations of different features. The depth of neural networks is an
important factor that affects the expressiveness of neural net-
works. In this section, we conduct a group of experiments to
investigate the impact of the depth of neural networks on the
recommendation quality. We set n = 5 and k = 64, and vary the
depth of neural networks from 1 to 3.

In Table 6, NPRFM-i denotes the NPRFM model with i hid-
den layers. Particularly, NPRFM-0 is equal to PRFM. NPRFM-
attention-i denotes the attention enhanced NPRFM with i hid-
den layers. Principally, NPRFM-attention-0 is equal to atten-

Table 5. Performance comparison on the Last.fm dataset (k=32)

As illustrated in Tables 2-5, we have the following observa-
tions: (1) On both datasets, FM performs the worst among all
the compared methods. The reason is that FM learns its mod-
el parameters by adopting a point-wise learning scheme, which

Recommendation n=3 n=>5 n="7
Algorithm HR NDCG| HR NDCG| HR NDCG
FM 0.0661 0.0501(0.0916 0.0604]|0.1163 0.0690
NFM 0.0898 0.0662(0.1314 0.0835]0.1666 0.0959
PRFM 0.13450.1024(0.1927 0.1259]0.2369 0.1412
NPRFM 0.14530.1107(0.2027 0.1342]0.2498 0.1505
NPRFM-+attention|0.1532 0.1175]0.2192 0.1445|0.2665 0.1609




tion boosted PRFM, which introduces the attention mechanism
into PRFM. We only present the experimental results on HR@5
in Table 6 and the experimental results on NDCG @5 illustrate
a similar trend.

Table 6. Impact of L

Methods Frappe Lastfm
NPRFM-0 0.5654 0.2545
NPRFM-1 0.5751 0.2624
NPRFM-2 0.5592 0.2572
NPRFM-3 0.5654 0.2077

NPRFM-attention-0 0.5751 0.2669
NPRFM-attention-1 0.5813 0.2761
NPRFM-attention-2 0.5692 0.2649
NPRFM-attention-3 0.5719 0.2294

Table 7. Impact of k

k Frappe Lastfm
NPRFM-16 0.4650 0.1641
NPRFM-32 0.5515 0.2027
NPRFM-64 0.5751 0.2624
NPRFM-128 0.5692 0.2514
NPRFM-attention-16 0.4694 0.1686
NPRFM-attention-32 0.5583 0.2192
NPRFM-attention-64 0.5813 0.2761
NPRFM-attention-128 0.5784 0.2647

As indicated in Table 6, we observe that NPRFM depicts the
best performance when the number of the hidden layer is e-
qual to one, and the performance of NPRFM degrades when
the number of the hidden layer increases. This is owing to the
fact that the training data available are not sufficient enough
for NPRFM to accurately learn its model parameters when the
number of hidden layers is relatively large. In fact, although the
multi-layer perceptron theoretically is able to approximate any
measure functions, its premise condition is that there is a suffi-
cient amount of data for the learning of neural network param-
eters. By contrast, if the number of layers is small, NPRFM has
limited ability of modeling the complex interactions among em-
bedded representations of features, resulting in the sub-optimal
recommendation performance. We also observe that NPRFM-
attention-1 gains the best performance among variants of the
attention boosted NPRFM model, and the performance of at-
tention boosted NPRFM degrades as the number of the hidden
layer increases or decreases, which is similar to NPRFM. More-
over, the performance of NPRFM-attention-i is better than that
of NPRFM-i. The reason is that attention boosted NPRFM can
learn the importance of feature interactions to lighten the inter-
ference of useless features on interaction.

5.4.2. Impact of k

In this section, we conduct another set of experimental s-
tudies to investigate the impact of the dimension of embedded
representations of features k£ on the recommendation quality.
We fix the number of the hidden layer to one, and other pa-
rameters remain unchanged. We change the value of k within
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[16,32,64,128]. The experimental results of HR@5 on the two
datasets are provided in Table 7.

As indicated in Table 7, the proposed NPRFM model is sen-
sitive to the dimensions of the embedded representations of fea-
tures. We find that the performance of NPFFM is optimal when
the dimension of embedded representation of feature is equal to
64. A possible explanation is that the proposed model already
has enough expressiveness to describe the latent preferences of
user and characteristics of items when k& = 64. In addition, a
large dimension of the embedded representation may introduce
noises into NPRFM, degrading the performance of NPRFM.
Similar to NPRFM, the performance of attention boosted N-
PRFM is the best when the dimension of the embedded repre-
sentation of feature is equal to 64. Meanwhile, we further ob-
serve that NPRFM-attention-k performs better than NPRFM-k,
owing to the fact that the attention boosted NPRFM is able to
learn the importance of useful and predictive feature interac-
tions, thereby further improving the performance.

5.4.3. Impact of parameter A

The regularization parameter 4 may also affect the perfor-
mance of NPRFM. Hence, we perform another group of exper-
iments to evaluate the sensitivities of 4. We fix the number of
the hidden layer to one, k = 32, and other parameters remain
unchanged. We vary the value of A to observe the effect of 1
on NPRFM. The experimental results of HR@5 are presented
in Tables 8.

As shown in Table 8, NPRFM achieves its best performance
when A is around 0.001. While, NPRFM performs the worst
when A is around 0.1.

Table 8. Impact of parameter 1

The value of 4 Frappe Lastfm
A1=0.1 0.4742 0.1924
A=0.01 0.5249 0.2006

A =0.001 0.5598 0.2026
A =10.0001 0.5465 0.1972

5.5. Pre-training

In this section, we investigate the effect of the pre-training
on the performance of the NPRFM. We fix the dimension of the
embedded representation of feature to 32, and other parameters
remain unchanged. Meanwhile, we use the result of PRFM to
initialize the corresponding latent feature matrix V defined in
NPRFM. The experimental results are presented in Fig. 3 and
Fig. 4.

From Fig.3, we observe that the loss function score of N-
PRFM without pre-training converges from 14000 to 2000
when the number of iterations reaches 20. By contrast, dur-
ing the first 20 iterations, the loss function of NPRFM with
pre-training converges from 4500 to 1500. It indicates that the
pre-training is able to accelerate the convergence of NPRFM.
Moreover, as shown in Fig. 4, the HR of NPRFM without pre-
training is around 0.5 when it iterates over 100 times. Under
some conditions, with the pre-training, the HR of NPRFM on
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Fig. 4. The effect of pre-training on HR

Frappe is around 0.54. This observation indicates that the pre-
training with PRFM is also helpful to boost the recommenda-
tion performance of NPRFM.

6. Conclusion

In this research, we propose the neural pairwsie ranking fac-
torization machine model, which integrates the multi-layer per-
ceptual neural networks into the PRFM model to boost the
recommendation performance of factorization model. Specif-
ically, we stack a multi-layer perceptual neural networks over
the bi-interaction layer to capture the non-linear and high-order
interactions among the embedded representations of features.
Meanwhile, the BPR framework is adopted to learn the rel-
ative preferences of users, and make non-observed feedback
contribute to the inference of model parameters. Hence, our
proposed neural pairwise ranking factorization machine model
unifies the strength of its three fundamental components, i.e.,
neural networks, factorization machine and BPR, and effective-
ly tackles their respective drawbacks. In addition, we introduce
an attention mechanism into NPRFM to learn the importance of
feature interactions. Experimental results on real world datasets
indicate that the proposed neural pairwise ranking factorization
machine model outperforms the traditional recommendation al-
gorithms. Recently, the generative adversarial network (GAN)
(Goodfellow et al., 2014) has shown promising potential in the
fields of natural language processing and computer vision, and
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integrating the GAN into factorization machine would be an in-
teresting future direction.
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