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Packet Error Probability and Effective Throughput
for Ultra-reliable and Low-latency UAV

Communications
Kezhi Wang, Cunhua Pan, Hong Ren, Wei Xu, Lei Zhang and Arumugam, Nallanathan, Fellow, IEEE

Abstract—In this paper, we study the average packet error
probability (APEP) and effective throughput (ET) of the control
link in unmanned-aerial-vehicle (UAV) communications, where
the ground central station (GCS) sends control signals to the
UAV that requires ultra-reliable and low-latency communications
(URLLC). To ensure the low latency, short packets are adopted
for the control signal. As a result, the Shannon capacity theorem
cannot be adopted here due to its assumption of infinite channel
blocklength. We consider both free space (FS) and 3-Dimensional
(3D) channel models by assuming that the locations of the UAV
are randomly distributed within a restricted space. We first
characterize the statistical characteristics of the signal-to-noise
ratio (SNR) for both FS and 3D models. Then, the closed-form
analytical expressions of APEP and ET are derived by using
Gaussian-Chebyshev quadrature. Also, the lower bounds are
derived to obtain more insights. Finally, we obtain the optimal
value of packet length with the objective of maximizing the ET
by applying one-dimensional search. Our analytical results are
verified by the Monte-Carlo simulations.

Keywords – UAV, URLLC, packet error probability, effective
throughput, short packet transmission

I. INTRODUCTION

Unmanned aerial vehicle (UAV) communication has at-
tracted increasingly attention from both industry and academia
[1]. Compared with the conventional terrestrial communica-
tions, UAV can be deployed in a swift and flexible way on
demands. For example, it can be used to offload heavy data
load in hot spot area, and provide temporary communication
services when public communication infrastructure is damaged
due to nature disasters. In addition, UAV can act as a relay
when there is no reliable direct communication links between
distant nodes. The channel quality between the UAV and
ground users can be enhanced due to the higher probability of
short-distance line-of-sight (LoS) links. For instance, the en-
hancement of cell-edge communications via the UAVs served
as the mobile relay was studied in multi-cell networks [2],
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where the ground centres first send information to the UAVs
and then the UAVs forward the received data to the user based
on the association scheme.

UAV trajectory design has been studied in [3]–[5]. In
particular, Zeng et al. studied the throughput maximization
problem by jointly optimizing transmission power and UAV
trajectory for mobile relay system. The energy consumption of
fixed-wing UAVs was derived in [4], based on which energy
efficiency was maximized subject to the constraints of UAV
speed and acceleration. Then, Wu et al. extended [3], [4] to
a multi-UAV enabled communication system, and the fairness
issue was studied by jointly optimizing user association, UAV
trajectory and power control. The other research line is UAV
location/placement optimization for static-UAV enabled wire-
less networks [6]–[8]. Specifically, Hourani et al. [6] provided
an analytical approach to optimize the altitude of UAV to
provide maximum radio coverage on ground users. The circle
packing theory was adopted in [7] to optimize the locations
of multiple UAVs. Alzenad et al. [8] proposed an optimal
placement algorithm for maximizing the number of covered
users using the minimum transmit power. Furthermore, UAV
served as mobile edge computing (MEC) have been studied in
[9], [10]. In [9], a secure UAV system has been studied where
multiple ground users offload the tasks to the UAV-enabled
MEC system in the presence of several eavesdropping UAVs.
In [10], large-scale mobile users was considered in the multi-
UAV enabled MEC, where offloading decision and resource
allocation were studied.

However, all the above works mainly focused on the con-
ventional data transmission without considering the control
communication links which require much more stringent la-
tency and higher reliability in order to avoid collision and
crash. The control communication link generally requires low
data rate for exchanging safety-critical signals. To ensure the
extremely low latency (e.g., 1 ms), short packet (e.g., 20
bytes) should be adopted [11]. Thus the Shannon capacity
formula based on the philosophy of the law of large numbers
does not guarantee an asymptotically reliable communication.
Therefore non-negligible packet error probability exists and
effective throughput may drop. In [12], the authors derived
the maximum range between UAVs and a ground control
station such that the transmission delay and the overall packet
loss probability requirement can be guaranteed. In [13], the
UAV serves as a relay to provide URLLC services between
the controller and the robot. In [14], UAV-enabled relay
communication system were studied for delivering URLLC
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messages, where the UAV is operating under amplifier-and-
forward (AF) mode.

However, there is a paucity of contributions devoted to
the performance analysis in UAV-URLLC communication sys-
tems. In [15], the approximate closed-form expression of the
packet error probability in finite blocklength regime has been
derived, which is an involved function of packet length/channel
uses, signal-to-noise ratio (SNR) and packet size. This calls
for a complete paradigm shift to the study of average packet
error probability performance (APEP) and effective throughput
(ET) in UAV communications.

Against the above background, the contributions of this
paper are summarised as follows:

1) We characterize the statistical characteristics of the
signal-to-noise ratio (SNR) for both free space (FS) and
3-dimensional (3D) models by assuming that the UAV
flies freely in a restricted area. We consider the random-
ness of the locations of UAV by using the stochastic
geometry theory. Both FS and 3D channel models are
considered, where FS is used for the environment where
the line-of-sight (LoS) dominates, whereas 3D model
is applied to the scenario where the None-LoS (NLoS)
cannot be ignored such as urban areas.

2) We then study the average packet error probability
(APEP) and effective throughput (ET) under short packet
transmission of the control link from ground control sta-
tion (GCS) to UAV. The Gaussian-Chebyshev quadrature
method is adopted to derive the closed-form expression
of APEP and ET under short packet transmission, which
can provide engineering insights on the packet size
design and more understanding of the packet error rate
incurred in transmission.

3) Then, closed-form lower bounds are derived for APEP
and ET under both FS and 3D channel models by using
the convexity of error expression and Jensen’s inequality.
Also, upper bound is derived for APEP and ET under FS
model with insights given to the practical system design.
Moreover, the optimal value of packet length with the
objective of maximizing the ET under FS and 3D is
provided by applying one-dimensional search.

4) Finally, Monte-Carlo simulations are conducted to
demonstrate the correctness of our derived results, and
show the tightness of the analytical expressions under
different conditions.

The rest of this paper is organized as follows. In Section II,
we first introduce the system model including FS, 3D channel
model and the point-to-point short packet transmission theory.
In Section III, the exact, lower and upper bound are derived for
APEP and ET under FS channel model, whereas the exact and
lower bound are studied for APEP and ET under 3D channel
model in Section IV. Also, the optimal value of packet length
with the objective of maximizing the ET under FS and 3D are
shown in Section III and IV, respectively. Simulation results
and analysis are shown in Section V. Finally, the paper is
concluded in Section VI.

GCS

d

Dmin

Dmax
q

Ɵmin 

Ɵmax 

 UAV

Fig. 1: Illustration of the low-latency transmission of control
information from GCS to a UAV.

II. SYSTEM MODEL

We consider a UAV network where a GCS sends control
signals to a UAV, which has stringent QoS requirements in
terms of ultra-high reliability and ultra-low latency, as shown
in Fig. 1. For simplicity, both GCS and UAV are assumed
to be equipped with one antenna. The GCS is also assumed
to be located at the center of the sphere. Two hemispheres
are introduced that share the same center point at the GCS.
The UAV is assumed to be within the outer hemisphere to
ensure that the UAV is within the control range of the GCS.
In addition, we assume that the UAV will not fly into the inner
hemisphere. The assumption is reasonable since there may be
some obstacles or buildings around the GCS. The radius of the
inner and outer hemisphere are denoted as Dmin and Dmax,
respectively. The UAV is assumed to fly freely within the space
specified by the two hemispheres as shown in Fig. 1. As the
UAV may fly anywhere within the restricted space, we assume
the distance d between UAV and GCS is uniformly distributed
in the restricted area. This assumption has also been applied in
other work, e.g., [16], [17]. Then, the cumulated distribution
function (CDF) of d can be calculated as [17]:

Fd(x) =

{
x3−D3

min

D3
max−D3

min
, Dmin ≤ x ≤ Dmax,

1, x > Dmin.
(1)

and the probability distribution function (PDF) of d is

fd(x) =

{
dFd(x)
dx = 3x2

D3
max−D3

min
, Dmin ≤ x ≤ Dmax,

0, otherwise.
(2)

A. Channel model

Two channel models are considered as follows:
1) Free-space (FS) Channel Model: This channel is the

simplest channel model, which is for the scenario where the
LoS dominates the environment, i.e., in less crowded areas.
The channel gain from the GCS to the UAV mainly depends
on the GCS-UAV distance and the antenna gain. Then, the
channel power gain from GCS to UAV follows the FS path
loss model, which can be expressed as h = βd−2 [18], where
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d is the GCS-UAV distance and β is the channel power at the
reference distance of 1 m that is related to the antenna gain.
This channel model is valid when the UAV is deployed in an
obstacle-free area, such as big square, play ground, large lawn,
etc. We assume that the transmission power from the GCS to
the UAV is fixed as P and the noise power at the UAV is
denoted as σ2. Then, the SNR at UAV is given by

γFS = λd−2 (3)

where λ = Pβ/σ2.
2) 3D Channel Model: We adopt the 3D channel model

proposed in [6] which is more practical than above free space
channel model for urban areas with dense obstacles such as
buildings and trees. In this model, both LoS and NLoS links
are considered. The probability of having a LoS connection
between the GCS and the UAV is given by [6]

PLoS =
1

1 + a exp (−b (θ − a))
, (4)

where a and b are positive constants that depend on the
environment and the values are given in [6], θ is the elevation
angle given by θ = arctan h

g
1 with h denoting the altitude of

the UAV and g horizontal distance between the UAV and the
GCS. The probability of NLoS is PNLoS = 1 − PLoS. Also,
one can get the PDF of θ as

fθ(x) =
1

Θmax −Θmin
(5)

and the CDF of θ as

Fθ(x) =
x−Θmin

Θmax −Θmin
. (6)

The channel path loss models for LoS and NLoS links
shown in dB are [6]

Lk = 20log10

(
4πfcd

c

)
+ ηk, k ∈ {LoS,NLoS} (7)

where the first term corresponds to the free space path loss, and
ηLoS and ηNLoS are the additional path loss for LoS and NLoS,
respectively. Note that the effect of shadowing has already
been included in the path loss model for the non-line-of-sight
link ηNLoS [6]. In general, ηNLoS is much larger than ηLoS due
to the severe path loss of NLoS. Then, for a given location
of UAV, we consider the mean path loss by considering the
probability of both LoS and NLoS links:

L(θ, d) = LLoSPLoS + LNLoSPNLoS. (8)

By substituting (4) and (7) into (8), the mean path loss in (8)
can be rewritten as

L(θ, d) =
A

1 + a exp (−b (θ − a))
+ 20log10 (d) + C, (9)

where A and C are constants given by A = ηLoS−ηNLoS and
C = 20log10

(
4πfc
c

)
+ ηNLoS, respectively.

Assume that the transmission power from GCS to UAV is
fixed as P and the noise power at UAV is denoted as σ2, then

1θ here means the degrees of the angle and its value ranges from 0 to 90.

the signal-to-noise ratio (SNR) at the UAV is as [6], [17]

γ3D =
P

σ2
10−

L(θ,d)
10

= C̃d−2e
Ã

1+a exp(−b(θ−a))

= d̂θ̂

(10)

where d̂ = C̃d−2, θ̂ = e
Ã

1+a exp(−b(θ−a)) , Ã = −A ln 10
10 > 0

and C̃ = P
σ2 e
−C ln 10

10 .

B. Point-to-point Short Packet Transmission Theory

Let us define the coding rate, R, as the ratio of the number
of information bits to the total number of bits per channel
use. According to [19], the Shannon capacity is defined as
the maximum coding rate for which an arbitrarily low packet
error probability is achievable for a sufficiently large number
of codewords. However, for the control signal transmission, the
packet length, or the number of codewords, should be small to
ensure the stringent latency requirement. Thus, the Shannon
capacity theorem cannot be adopted here due to its assumption
of infinite channel blocklength.

We assume that the packet size of the control signal is L
bits, which should be transmitted within Tmax seconds. Then,
the number of bits per channel use is given by M = B ·Tmax

[20], where B denotes the system bandwidth. Thus, the cod-
ing/data rate is given by R = L/M . According to [20], a very
tight approximation of the packet error probability for a point-
to-point transmission under finite blocklength transmission
region is given by

ε = Q (f (γ)) , (11)

where the notation ε can be either εFS or ε3D for FS or 3D
scenarios, respectively; γ can be either γFS or γ3D for FS or
3D scenarios, respectively; f (γ) =

√
M
V (γ) (ln(1 + γ)−Rs),

Rs = L ln 2
M (nats per channel use, or npcu), V (γ) is the

channel dispersion that is given by V (γ) = 1 − (1 + γ)−2

[15], and Q (x) is the Gaussian Q-function given by Q (x) =
1√
2π

∫∞
x
e−

t2

2 dt. The expression of (11) can be interpreted as
follows: ε is minimum packet error probability for which there
exists an encoder/decoder pair to transmit L information bits
within M bits per channel use.

Also, the ET can be given by

η = Rs (1− ε) (12)

where η can be either ηFS or η3D for FS or 3D scenarios,
respectively.

In the following, we will derive the APEP and ET by
considering the randomness of the UAV location in the re-
stricted area, under both FS and 3D scenarios. The complicated
expression of ε in (11), especially the expression of V (γ),
makes the analysis of APEP and ET a challenging task. Next,
the APEP and ET are derived for FS and 3D channel models
in Section III and IV, respectively.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3025578, IEEE
Transactions on Communications

4

III. APEP AND ET UNDER FREE-SPACE CHANNEL MODEL

A. PDF of γFS

In this section, we aim to derive the APEP under free-space
channel model by transmitting a packet with fixed size of L.
Specifically, the APEP in this case is defined as

ε̄FS = E{εFS} =

∫ Dmax

Dmin

εFSfd(x)dx, (13)

where fd(x) is the PDF of d that can be obtained from (1),
and γFS in εFS is provided in (3) and (11) respectively.

To reduce the analysis complexity, we consider the PDF of
γFS in the following Lemma.

Lemma 1: The PDF of SNR γFS denoted as fγFS (x) is
given by [17]

fγFS (x) =

{
3x− 5

2 λ3/2

2(D3
max−D3

min)
, γFSmin ≤ x ≤ γFSmax

0, otherwise,
(14)

where γFSmin = λ
D2
max

and γFSmax = λ
D2
min

.

Proof : Please refer to Appendix A.
Moreover, when Dmin = 0, one has fγFS (x) =

3x− 5
2 (λFS)

3/2

2D3
max

, x ≥ γFSmin. This can be seen as the case where
there is no obstacle between the control centre and UAV and
also UAV may fly back to the control centre.

B. Chebyshev Approximation

By using (11) and (14), APEP can be re-expressed as

ε̄FS =

∫ γFSmax

γFSmin

Q

(√
M

V (x)
(ln(1 + x)−Rs)

)
fγFS (x)dx

=
3λ3/2

4(D3
max −D3

min)
·∫ γFSmax

γFSmin

erfc

(
1√
2

√
M

V (x)
(ln(1 + x)−Rs)

)
x−

5
2 dx,

(15)
where γFSmin and γFSmax are given in Lemma 1, and the
last equality follows by using the relationship of erfc(x) =
2Q(
√

2x). To the best of our knowledge, it is very difficult to
find the closed-form expression of (15), if not impossible.

Next, we apply Gaussian-Chebyshev quadrature to address
this issue by using [21, Eq. (25.4.30)]. Let us first define

qFS(x) = erfc

(
1√
2

√
M

V (x)
(ln(1 + x)−Rs)

)
x−

5
2 . (16)

Then, one can have∫ γFSmax

γFSmin

qFS(x)dx ≈

γFSmax − γFSmin
2

N∑
i=1

ai · qFS
(
γFSmax − γFSmin

2
ti +

γFSmax + γFSmin
2

)
,

(17)

where ti is the i-th zero of Legendre polynomials, N is the
number of terms, ai is the Gaussian weight given by Table
(25.4) of [21]. By substituting (17) into (15), one can have

ε̄FS ≈ 3λ3/2(γFSmax − γFSmin)

8(D3
max −D3

min)
N∑
i=1

ai · qFS
(
γFSmax − γFSmin

2
ti +

γFSmax + γFSmin
2

)
∆
= ε̄FSC .

(18)
With the increase of N , the accuracy of the above expression
will be increased, but at the cost of more computations. To
obtain more insights, we derive the approximate expression of
ε̄ in the following section.

Then, by using (18), one can get the ET as

η̄FS = E(Rs
(
1− γFS

)
) = Rs

(
1− ε̄FS

)
. (19)

C. Lower Bound

In the following, we aim to derive the lower bound of the
APEP in FS channel model in closed form. To this end, we
first introduce the following Lemma.

Lemma 2: ε of (12) is a convex function of γ.
Proof : Please refer to Appendix B.
According to Lemma 2, by employing the Jensen’s inequal-

ity, we can obtain the lower bound of APEP as follows:

ε̄FS = E{ε(γFS)} ≥ ε(E{γFS}) ∆
= ε̄FSLB . (20)

To obtain ε̄FSLB , we only need to calculate E{γFS}, which is
much easier than directly calculating ε̄FS .

By using (14), one can get E{γFS} as

E{γFS} =

∫ γFSmax

γFSmin

fγFS (x)xdx

=

∫ γFSmax

γFSmin

3λ3/2x−
5
2 · x

2(D3
max −D3

min)
dx

=
3λ3/2√

γFSmax (D3
max −D3

min)
− 3λ3/2√

γFSmin (D3
max −D3

min)
.

(21)
Then, by using (11) and (20), ε̄FSLB can be written as

ε̄FSLB = ε

(
3λ

D2
max +D2

min +DmaxDmin

)
. (22)

Similarly, ET can be expressed as

η̄FSLB = Rs
(
1− ε̄FSLB

)
= Rs

(
1− ε

(
3λ

D2
max +D2

min +DmaxDmin

))
.

(23)

Remark 1: When λ� 1 (i.e., P/σ2 � 1), ε̄FSLB in (22) can
be further simplified as

ε̄FSLB = Q
(√

M
(
ln
(
KFλ

)
−Rs

))
, (24)

where KF = 3
D2
max+D2

min+DmaxDmin
.

Proof : Please refer to Appendix C.
Remark 2: When λ � 1 (i.e., Pβ/σ2 � 1), one can have

η̄FSLB → Rs.
Proof : Please refer to Appendix D.
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D. Upper Bound

In this section, we provide the upper bound of APEP, which
is especially tight in high SNR region when λ� 1.

By using (49) and (50), (15) can be approximated as

ε̄FSUB =
3λ3/2

4(D3
max −D3

min)
·∫ γFSmax

γFSmin

erfc

(
ln 2 ·

√
M√

2

(
log2(x)− L

M

))
x−

5
2 dx

=
3λ3/2

4(D3
max −D3

min)

(
u(γFSmax)− u(γFSmin)

)
,

(25)
where the last equality is obtained by variable substitution and
using [22], [23], and function u(x) is given by

u(x) =−
2erfc

(
M ln x−L ln 2√

2
√
M

)
3x3/2

− 2

3
e

(L ln 4−3)2−4L2 ln2(2)
8M ·

erf
(
−L ln 4 + 2M lnx+ 3

2
√

2
√
M

)
.

(26)

Remark 3: One can further approximate (25) as

ε̄FSUB ≈
D3
max

2 (D3
max −D3

min)

erfc

M ln
(

λ
D2
max

)
− L ln(2)

√
2M


−erfc

M ln
(

λ
D2
min

)
− L ln(2)

√
2M

 .

(27)
Then, one can get the insights that APEP increases with the
increase of L, with other parameters fixed.

Proof : Please refer to Appendix E.

E. Throughput Maximization

In this subsection, we formulate the throughput maximiza-
tion problem under the latency constraint as

P1 : max
M

η̄FS

subject to : Mmin ≤M ≤Mmax.
(28)

By using (19), one can apply the one-dimensional search
method to get the optimal solution of P1.

IV. APEP AND ET UNDER 3D CHANNEL MODEL

In this section, we aim to derive the APEP under 3D channel
model. Since we consider the 3D channel model, we introduce
the minimum and maximum elevation angle Θmin and Θmax,
respectively, so that the UAV will not collide into nearby
obstacles such as tall buildings and trees.

A. PDF and CDF of γ3D

In that case, the APEP is given by

ε̄3D = E{ε3D} =

∫ Dmax

Dmin

∫ Θmax

Θmin

ε3Dfd,θ(x, y)dydx, (29)

where fd,θ(x, y) is the joint PDF of d and θ, and γ in ε(γ)
is given in (10). Since the UAV is randomly deployed in the

restricted space in Fig. 1, the PDF of θ is given by (5). In
addition, since d and θ are independent, the joint PDF of d
and θ are given by

fd,θ(x, y) = fd(x)fθ(y) =
1

Θmax −Θmin

3x2

D3
max −D3

min

.

(30)
The method developed for the free-space channel model

cannot be adopted here since double integral needs to be
calculated in (13).

Similar to Lemma 1, we derive the PDF of d̂ in (10) as

fd̂(x) =
3x−

5
2 C̃3/2

2(D3
max −D3

min)
, d̂min ≤ x ≤ d̂max, (31)

where d̂min = C̃
D2
max

and d̂min = C̃
D2
min

.

Lemma 3: The CDF of θ̂ can be given by

Fθ̂(x) =
−

ln

(
Ã

ln(x)
−1

a

)
b + a−Θmin

Θmax −Θmin
, θ̂min ≤ θ̂ ≤ θ̂max

(32)
where θ̂min = exp

(
Ã

a exp(−b(Θmin−a))+1

)
and θ̂max =

exp
(

Ã
a exp(−b(Θmax−a))+1

)
.

Proof : Please refer to Appendix F.
By taking the first-order derivative of (32) with respect to

θ̂, the PDF of θ̂ can be derived as

fθ̂(x) =
Ã

bx(Θmax −Θmin) ln2(x)
(

Ã
ln(x) − 1

) ,
θ̂min ≤ θ̂ ≤ θ̂max.

(33)

Lemma 4: The PDF of γ3D can be given by

fγ3D (z) =


W1(z), θ̂min · d̂min ≤ z ≤ θ̂min · d̂max
W2(z), θ̂min · d̂max ≤ z ≤ θ̂max · d̂min
W3(z), θ̂max · d̂min ≤ z ≤ θ̂max · d̂max

(34)
where W1(z), W2(z) and W3(z) are given by (54), (55) and
(56), respectively.

Proof : Please refer to Appendix G.

B. Chebyshev Approximation

In this section, we provide the Chebyshev Approximation
to ε̄3D. By using (34), one can get

ε̄3D = E{ε(γ3D)} =

∫ θ̂min·d̂max

θ̂min·d̂min
ε(z)W1(z)dz

+

∫ θ̂max·d̂min

θ̂min·d̂max
ε(z)W2(z)dz +

∫ θ̂max·d̂max

θ̂max·d̂min
ε(z)W3(z)dz.

(35)



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3025578, IEEE
Transactions on Communications

6

Let q3D
1 (z) = ε(z)W1(z), q3D

2 (z) = ε(z)W2(z) and
q3D
3 (z) = ε(z)W3(z), one can have

ε̄3D ≈
N∑
i=1

ai · q3D
1

(
θ̂min · d̂max − θ̂min · d̂min

2
ti+

θ̂min · d̂max + θ̂min · d̂min
2

)
+

N∑
i=1

ai · q3D
2 ·(

θ̂max · d̂min − θ̂min · d̂max
2

ti +
θ̂max · d̂min + θ̂min · d̂max

2

)

+
N∑
i=1

ai · q3D
3

(
θ̂max · d̂min − θ̂max · d̂min

2
ti+

θ̂max · d̂min + θ̂max · d̂min
2

)
.

(36)
One can see that with the increase of N , the accuracy of the
above expression will be increased, but at the cost of more
computations. Then, by using (12) and (36), one can obtain
the ET as

η̄3D = Rs
(
1− ε̄3D

)
. (37)

C. Lower Bound

Similarly, the lower bound of APEP can be given by

ε̄3D = E{ε(γ3D)} ≥ ε(E{γ3D}) ∆
= ε̄3D

LB. (38)

Remark 4: ε̄3D
LB can be given by

ε̄3D
LB = ε(U1 + U2 + U3), (39)

where U1, U2 and U3 are given by (58), (59) and (60),
respectively.

Proof : Please refer to Appendix H.
Similarly, ET can be expressed as

η̄3D
LB = Rs

(
1− ε̄3D

LB

)
= Rs (1− ε (U1 + U2 + U3)) .

(40)
Remark 5: When C̃ � 1, i.e., P/σ2 � 1, one can have

η̄3D
LB → Rs.

Proof : Please refer to Appendix I.

D. Throughput Maximization

In this subsection, we consider the throughput maximization
under the latency constraint as follows

P2 : max
M

η̄3D

subject to : Mmin ≤M ≤Mmax.
(41)

It is very difficult to obtain the closed-form solution of M∗,
if not impossible. Thus, similar with before, by using (37),
one may apply the one-dimensional search method to get the
optimal solution of P2.

V. NUMERICAL RESULTS

In this section, simulation results are presented to verify
the correctness of our derived results in this paper. Unless
otherwise stated, the simulation parameters are set as follows:

Dmin = 900 m, Dmax = 950 m, B = 1 MHz, L = 500
and σ2 = −173 dBm/Hz. In FS scenario, we set β = −40
dB. In 3D case, we set fc = 2.5 GHz, c = 3 · 108 m/s and
Θmax = 90. Two scenarios are considered: dense urban and
suburban. The values of the corresponding parameters can be
found in [24]. Θmin is set to be 70 and 30 for dense urban
and suburban, respectively. The other parameters are specified
in each simulation figure. The curve labelled ‘Simulation’
is obtained by randomly and uniformly deploying the UAV
in the specified region for 10000 times. The curve labelled
‘Chebyshev’ is obtained by using (18) in FS and (36) in 3D
scenario. The curve labelled ‘Upper’ is obtained by using (27)
in FS. Also, the curve labelled ‘Lower’ is obtained by using
(22) in FS and (39) in 3D scenario.

A. FS Channel Model
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Fig. 2: APEP in FS channel model

In Fig. 2, we plot the APEP versus P in Fig. 2 (a) with
the packet length given by M = 100, and APEP versus M in
Fig. 2 (b) with the power given by P = −5 dBm. It is observed
from Fig. 2 (a) that the APEP with finite blocklength regime
decreases with the increase of P as expected. Also, one can
see from Fig. 2 (b) that the APEP decreases with the increase
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of M as well, which confirms the conclusion from Remark 1.
From Fig. 2, one can see that our derived Chebyshev curve
approximates the exact result very well. The performance gap
between the simulation and the derived lower bound as well
as upper bounds are small, which is 0.954e-16 and 4.624e-16,
respectively in the case of P = 5dBm. Hence, these results can
be used to analyse the trend of the APEP. When the SNR value
P is set to 5 dBm, the APEP can be as low as 10−16. Also,
it is noted that when the packet length M reaches 200, APEP
can be as low as 10−7, which satisfies the extremely reliability
requirement for control signal transmission.
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Fig. 3: ET in FS channel model

In Fig. 3, we plot the ET versus P in Fig. 3 (a) with the
packet length given by M = 100, and ET versus M in Fig. 3
(b) with the power given by P = −5 dBm. One can see from
Fig. 3 (a) that the ET increase with the increase of P , as
expected. Also, one can see that the value of ET reaches the
roof, i.e., Rs = 3.466 with the further increase of P , which
can also be derived from Remark 2.

In Fig. 3 (b), one sees that ET first increases and then
decreases with the increase of M . The optimal value can be
reached when M is 176, by applying one-dimensional search.

B. 3D

In Fig. 4, we plot the APEP versus P in 3D scenario with the
packet length M = 100, where Fig. 4 (a) describes suburban
area while Fig. 4 (b) shows dense urban area. One can see that
the APEP increases with the increase of P for both suburban
and dense urban cases, as expected. Also, one can see in dense
urban areas, we have worse APEP performance compared with
suburban case. Again, one can see that the Chebyshev curve
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Fig. 4: APEP versus P with M = 100

approximates the exact result very well. The performance gap
between the simulation and the derived lower bound is small,
which can be seen as 0.954e-16 and 2.825e-4 in the case of
P = 5dBm in Suburban and Dense Urban areas, respectively.

In Fig. 5, we plot the APEP versus M in 3D scenario with
the power of P = −5 dBm, where Fig. 5 (a) shows suburban
area while Fig. 5 (b) shows dense urban area. One sees that
APEP increases with the increase of M for both suburban and
dense urban cases, as expected. Also, one sees in dense urban
areas, we have worse APEP compared with suburban case.

In Fig. 6, we plot the ET versus P in 3D scenario with
the packet length M = 100, where Fig. 6 (a) shows suburban
area while Fig. 6 (b) shows dense urban area. One can see that
the ET increase with the increase of P for both suburban and
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Fig. 5: APEP versus M with P = −5 dBm

dense urban cases, as expected. Also, one can see in dense
urban areas, we have worse ET compared with suburban area
in the same parameter settings.

Additionally, one can see that with the increase of P , ET
reaches its upper floor 3.47 for both cases, which verifies
Remark 5.

In Fig. 7, we plot the ET versus M in 3D scenario with
the power of P = −5 dBm, where Fig. 7 (a) shows suburban
area while Fig. 7 (b) shows dense urban area. One can see
that ET first increases and then decreases with the increase of
M for both cases. One can obtain that the optimal values of
M are 186 for suburban and 224 for dense urban scenarios,
by applying the one-dimensional search.

VI. CONCLUSIONS

In this paper, we have studied the APEP and ET for
the GCS-to-UAV control link communication under the short
packet transmission regime to enable the stringent latency and
reliable requirements. For the general scenarios in FS and 3D,
we have derived an accurate approximate expression of the
APEP and ET by using the Gaussian-Chebyshev quadrature
method. To obtain more insights, lower bound of APEP and
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Fig. 6: ET versus P with M = 100

ET for both FS and 3D scenarios have been derived. Moreover,
the optimal value of packet length with the objective of
maximizing the ET has been obtained by applying the one-
dimensional search.

The future work will focus on multi-UAVs scenario and
more general results are expected to obtain in both FS and 3D
channel models.

APPENDIX A
PROOF OF LEMMA 1

The CDF of γ can be given by [17]

FγFS (x) = Pr{γFS ≤ x} = 1− Pr

{
d ≤

(
λ

x

)1/2
}
. (42)

By applying (1) and (42), the CDF of γFS can be obtained
as follows

FγFS (x) =

{
1− (λx )3/2−D3

min

D3
max−D3

min
, γFSmin ≤ x ≤ γFSmax

0, otherwise
. (43)

By taking the first-order derivative of (43), the PDF of γFS

can be derived as (14).
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Fig. 7: ET versus M with P = −5 dBm

APPENDIX B
PROOF OF LEMMA 2

ε defined in (11) can be regarded as a composition function
of Q-function and f -function. For the Q-function Q (x) =

1√
2π

∫∞
x
e−

t2

2 dt, the first-order derivative of Q (x) w.r.t. x can

be calculated as Q′ (x) = − 1√
2π
e−

x2

2 < 0, and the second-

order derivative is Q′′ (x) = x√
2π
e−

x2

2 > 0 when x > 0.
For URLLC applications, the decoding error probability is
generally much smaller than 0.5, which is equal to Q(0). Since
Q(x) is a decreasing function, x > 0 always holds. Hence,
Q(x) is a decreasing and convex function w.r.t. x. According
to the composition rules in [25], ε(γ) is a convex function of
γ if f (γ) is a concave function of γ, which will be proved in
the following.

The first-order derivative of f (γ) w.r.t. γ is given by

f ′ (γ) =
√
M

(1 + γ)
2 − 1−

(
ln (1 + γ)− L

M ln 2
)(

(1 + γ)
2 − 1

) 3
2

(44)

The second-order derivative of f (γ) w.r.t. γ can be calculated

as

f ′′ (γ) =

√
M(

(1 + γ)
2 − 1

) 5
2

g (γ) . (45)

where function g (γ) is given by

g (γ) =
(
−(1 + γ)− 1

1+γ

)(
(1 + γ)

2 − 1
)

+

3 (1 + γ)
(
ln (1 + γ)− L

M ln 2
)
.

(46)

Hence, we need to check the sign of function g (γ). The first-
order derivative of g (γ) w.r.t. γ is given by

g′ (γ)=−3(1 + γ)2− 1

(1+γ)
2 + 3

(
ln (1+γ)− L

M
ln 2

)
+ 3.

(47)
The second-order derivative of g (γ) w.r.t. γ is

g′′ (γ) =
h(γ)

(1 + γ)
3 , (48)

where h(γ) = −6(1 + γ)4 + 2 + 3(1 + γ)2. The first-order
derivative of h(γ) w.r.t. γ is given by h′(γ) = 6(1 +

γ)
(

1− 4(1 + γ)
2
)

, which is smaller than zero. Hence, h(γ)

is a monotonically decreasing function. We then have h(γ) <
h(0) = −1. Then, according to (48), we have g′′ (γ) < 0,
which means g′ (γ) is also a monotonically decreasing func-
tion. Hence, we have g′ (γ) < g′ (0) = − L

M 3 ln 2 − 1 < 0.
Again, this means g(γ) is also a monotonically decreasing
function. Then, we have g(γ) < g(0) = − L

M 3 ln 2 < 0. By
substituting the relation g(γ) < 0 into (45), we can prove that
f ′′ (γ) < 0, which means f (γ) is a concave function, which
completes the proof.

APPENDIX C
PROOF OF REMARK 1

When x� 1, one has the following approximation

log(1 + x) ≈ log(x), (49)

and √
V (x) =

√
1− 1

(x+ 1)2
≈ 1. (50)

By using above two approximations, (22) can be written as
(24).

APPENDIX D
PROOF OF REMARK 2

When λ � 1, similar with before, η̄FSLB in (23) can be
written as

η̄FSLB = Rs

(
1− 1

2
erfc

(√
M/2

(
ln
(
KFλ

)
−Rs

)))
.

(51)
By using erf(x)→ 1 when x→∞ and erfc(x) = 1− erf(x),
one can get η̄FSLB → Rs, which completes the proof.
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APPENDIX E
PROOF OF REMARK 3

In the case of x → ∞ in (26), one has erf(x) → 1.
Therefore, u(x) can be approximated as

u(x) ≈−
2erfc

(
M ln(x)−L ln(2)√

2
√
M

)
3x3/2

− 2

3
e

(L ln(4)−3)2−4L2 ln2(2)
8M .

Then, after some simple manipulations, one can get (27).

APPENDIX F
PROOF OF LEMMA 3

The CDF of θ̂ can be given by

Fθ̂(x) = Pr{e
Ã

1+a exp(−b(θ−a)) ≤ x}. (52)

Similar to Appendix A and by applying Fθ(x) in (6), the CDF
of θ̂ can be obtained as (32).

APPENDIX G
PROOF OF LEMMA 4

Without loss of generality, we assume that θ̂min · d̂max ≤
z ≤ θ̂max · d̂min in the following derivations. For other
situations, similar derivations can be applied which are omitted
here due to space limitation.

By using fd̂(x) in (31) and fθ̂(x) in (33) and [26], one can
get the PDF of γ3D as

fγ3D (z) =



W1(z) =
∫ z/d̂min
θ̂min

fθ̂(x)fd̂(
z
x ) 1

xdx,

θ̂min · d̂min ≤ z ≤ θ̂min · d̂max;

W2(z) =
∫ z/d̂min
z/d̂max

fθ̂(x)fd̂(
z
x ) 1

xdx,

θ̂min · d̂max ≤ z ≤ θ̂max · d̂min;

W3(z) =
∫ θ̂max
z/d̂max

fθ̂(x)fd̂(
z
x ) 1

xdx,

θ̂max · d̂min ≤ z ≤ θ̂max · d̂max.

(53)

For W1(z), by using the variable substitution and [23], [27],
one can have

W1(z) =

∫ z/d̂min

θ̂min

fθ̂(x)fd̂(
z

x
)
1

x
dx =

3ÃC̃3/2z−5/2

2b (D3
max −D3

min) (Θmax −Θmin)

∫ z/d̂min

θ̂min

√
xdx

Ã ln(x)− ln2(x)

=
3C̃3/2z−5/2

2b (D3
max −D3

min) (Θmax −Θmin)

(
g(

z

d̂min
)− g(θ̂min)

)
(54)

where g(x) = Ei
(

3 ln(x)
2

)
− e

3Ã
2 Ei

(
3
2 (ln(x)− Ã)

)
and Ei

gives the exponential integral function, defined by Ei(z) =

−
∫∞
−z

e−t

t dt [23].
Similarly, one can get W2(z) as

W2(z) =
3C̃3/2z−5/2

2b (D3
max −D3

min) (Θmax −Θmin)
·(

g(z/d̂min)− g(z/d̂max)
)
.

(55)

Also, one can get W3(z) as

W3(z) =
3C̃3/2z−5/2

2b (D3
max −D3

min) (Θmax −Θmin)
·(

g(θ̂max)− g(z/d̂max)
)
.

(56)

Then, one can obtain the PDF of γ3D as (34).

APPENDIX H
PROOF OF REMARK 4

E{γ3D} can be written as

E{γ3D} =

∫ θ̂min·d̂max

θ̂min·d̂min
zW1(z)dz︸ ︷︷ ︸

U1

+

∫ θ̂max·d̂min

θ̂min·d̂max
zW2(z)dz︸ ︷︷ ︸

U2

+

∫ θ̂max·d̂max

θ̂max·d̂min
zW3(z)dz︸ ︷︷ ︸

U3

.

(57)
By using W1(z) in (54), one can have U1 as [23], [28]

U1 =
3C̃3/2

2b
(
D3
max −D3

min

)
(Θmax −Θmin)

·
∫ θ̂min·d̂max

θ̂min·d̂min
z−3/2Ei

(
3

2
ln

(
zD2

max

C̃

))
dz︸ ︷︷ ︸

U11

−

∫ θ̂min·d̂max

θ̂min·d̂min
e

3Ã
2 z−3/2Ei

(
−3

2

(
Ã− ln

(
zDmax2

C̃

)))
dz︸ ︷︷ ︸

U12

−

∫ θ̂min·d̂max

θ̂min·d̂min
z

−3
2 Ei

(
3

2
ln

(
e

Ã
a exp(−b(Θmin−a))+1

))
dz︸ ︷︷ ︸

U13

+

∫ θ̂min·d̂max

θ̂min·d̂min
e

3Ã
2 z

−3
2 Ei

(
−3

2

(
Ã− ln

(
e

Ã
a exp(−b(Θmin−a))+1

)))
dz︸ ︷︷ ︸

U14


(58)

Then, by using [23], [28], for U11 above, one can have
U11 = L11(θ̂min · d̂max) − L11(θ̂min · d̂min)L11(z) =

− 2√
z
(Ei( 3

2 ln(
D2
maxz

C̃
)) −

√
D2
maxz

C̃
li(D

2
maxz

C̃
)) and li(z) =∫ z

0
dt

log t denotes the logarithmic integral function [23]; , where
for U12, one can have U12 = L12(θ̂min · d̂max)− L12(θ̂min ·
d̂min), where L12(z) = 2√

z
e

3Ã
2 (e−

Ã
2

√
D2
maxz

C̃
Ei(ln(

D2
maxz

C̃
)−

Ã)− Ei(−3
2 (Ã− ln(

D2
maxz

C̃
)))); for U13, one can have U13 =

L13(θ̂min · d̂max) − L13(θ̂min · d̂min), where L13(z) =

− 2√
z

Ei( 3
2 ln(e

Ã

eb(a−Θmin)a+1 )) and for U14, one can have
U14 = L14(θ̂min · d̂max)−L14(θ̂min · d̂min), where L14(z) =

− 2√
z
e

3Ã
2 Ei(−3

2 (Ã− ln(e
Ã

eb(a−Θmin)a+1 ))).
Similarly, for U2, one can have

U2 =
3C̃3/2

2b (D3
max −D3

min) (Θmax −Θmin)
·

(U21 + U22 + U23 + U24)

(59)
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where U21 = L21(θ̂max · d̂min) − L21(θ̂min · d̂max),
U22 = L22(θ̂max · d̂min) − L22(θ̂min · d̂max),
U23 = L23(θ̂max · d̂min) − L23(θ̂min · d̂max),
U24 = L24(θ̂max · d̂min) − L24(θ̂min · d̂max),

L21(z) = − 2√
z
(Ei( 3

2 ln(
D2
maxz

C̃
)) −

√
D2
maxz

C̃
li(D

2
maxz

C̃
)),

L22(z) = 2√
z
e

3Ã
2 [e−

Ã
2

√
D2
maxz

C̃
Ei(ln(Dmax

2z
C̃

) −
Ã) − Ei(−3

2 (Ã − ln(Dmax
2z

C̃
)))], L23(z) =

− 2√
z
(Ei( 3

2 ln(
D2
minz

C̃
)) −

√
D2
minz

C̃
li(D

2
minz

C̃
)) and

L24(z) = 2√
z
e

3Ã
2 [e−

Ã
2

√
D2
minz

C̃
Ei(ln(Dmin

2z
C̃

) − Ã) −
Ei(−3

2 (Ã− ln(
D2
minz

C̃
)))].

Similarly, for U3, one can have

U3 =
3C̃3/2

2b (D3
max −D3

min) (Θmax −Θmin)
·

(U31 + U32 + U33 + U34)

(60)

where U31 = L31(θ̂max · d̂max) − L31(θ̂max · d̂min), U32 =
L32(θ̂max · d̂max) − L32(θ̂max · d̂min), U33 = L33(θ̂max ·
d̂max) − L33(θ̂max · d̂min), U34 = L34(θ̂max · d̂max) −
L34(θ̂max · d̂min), L31(z) = − 2√

z
Ei( 3

2 ln(e
Ã

eb(a−Θmax)a+1 )),

L32(z) = − 2√
z
e

3Ã
2 Ei(−3

2 (Ã− ln(e
Ã

eb(a−Θmax)a+1 ))),

L33(z) = − 2√
z
(Ei( 3

2 ln(
D2
minz

C̃
)) −

√
D2
minz

C̃
li(D

2
minz

C̃
))

and L34(z) = 2√
z
e

3Ã
2 [e−

Ã
2

√
D2
minz

C̃
Ei(ln(

D2
minz

C̃
) − Ã) −

Ei(−3
2 (Ã− ln(

D2
minz

C̃
)))].

APPENDIX I
PROOF OF REMARK 5

When C̃ � 1, i.e., P/σ2 � 1, similar with before, by using
erf(x) → 1 when x → ∞ and erfc(x) = 1 − erf(x), one can
get η̄3D

LB → Rs, which completes the proof.
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