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Abstract: Microbial communities have inherently high levels of metabolic flexibility and functional
redundancy, yet the structure of microbial communities can change rapidly with environmental
perturbation. To understand whether such changes observed at the taxonomic level translate into
differences at the functional level, we analyzed the structure of taxonomic and functional gene
distribution across Arctic and Antarctic locations. Taxonomic diversity (in terms of alpha diversity
and species richness) differed significantly with location. However, we found that functional genes
distributed evenly across bacterial networks and that this functional distribution was also even across
different geographic locations. For example, on average 15% of the functional genes were related to
carbon cycling across all bacterial networks, slightly over 21% of the genes were stress-related and only
0.5% of the genes were linked to carbon degradation functions. In such a distribution, each bacterial
network includes all of the functional groups distributed following the same proportions. However,
the total number of functional genes that is included in each bacterial network differs, with some
clusters including many more genes than others. We found that the proportion of times a specific gene
must occur to be linked to a specific cluster is 8%, meaning the relationship between the total number
of genes in the cluster and the number of genes per function follows a linear pattern: smaller clusters
require a gene to appear less frequently to get fixed within the cluster, while larger clusters require
higher gene frequencies. We suggest that this mechanism of functional association between equally
rare or equally abundant genes could have implications for ecological resilience, as non-dominant
genes also associate in fully functioning ecological networks, potentially suggesting that there are
always pre-existing functional networks available to exploit new ecological niches (where they can
become dominant) as they emerge; for example, in the case of rapid or sudden environmental change.
Furthermore, this pattern did not correlate with taxonomic distribution, suggesting that bacteria
associate based on functionality and this is independent of its taxonomic position. Our analyses
based on ecological networks also showed no clear evidence of recent environmental impact on polar
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marine microbial communities at the functional level, unless all communities analyzed have changed
exactly in the same direction and intensity, which is unlikely given we are comparing areas changing
at different rates.

Keywords: resilience; functional diversity; redundancy; Antarctic bacteria; stability

1. Introduction

Functional diversity includes all biological processes performed within an ecosystem and it
has been suggested that the more functionally diverse an ecosystem is, the more resilient it is to
environmental change [1]. However, functional diversity studies based on ecological networks have
suggested that most ecosystems include a relatively small core set of functions (whose depletion could
lead to ecological collapse), and a large set of peripheral functions (that can be depleted without
an observable impact on the ecosystem)—such a pattern has been termed a scale-free network [2].
Following on from this, an increase in overall functional diversity should also lead to a proportional
increase in these peripheral functions (whose depletion would not impact the core function of the
ecosystem) hence conferring resilience. Such a mechanistic link has not been tested previously.

Microbial communities are ideal systems in which to test ecological theories, for their relative
simplicity and the direct link between genetic composition and ecological function [3]. Understanding
functional resilience and the potential impact of changes in microbial community structure and ecology
remains a major challenge, as microbes tend to show high levels of both metabolic flexibility and
functional redundancy [4]. Despite this, microbial community composition changes rapidly with
environmental perturbation and they appear to show little tendency to return to the original structure
following such a disturbance [5,6]. This could be due to changes in the competitive advantage in
co-occurring microorganisms (e.g., [7]). Conversely, recent studies have also found unexpected levels
of ecological resilience, such as within sub-Arctic phytoplankton communities [8] and the reason
behind such conflicting results could partly be because traditionally microbial resilience tends to be
measured in terms of their ability to recover back to an original state after a disturbance based on
taxonomy, i.e., community composition [6] or population dynamics [9,10] alone. To complicate matters,
functionality is also still commonly assessed using environmental conditions as proxy [11] or by overly
relying on taxonomic markers [12–14]. In any case, the potential impact that changes at the microbial
level could have on upper trophic levels would strongly depend on whether the remaining taxa are
able to maintain the same level of ecological function (ecosystem service) as the original community.

Polar ecosystems represent an ideal platform to test such hypotheses about ecological resilience, as
they are often considered fragile or close to ecological tipping points [15–18]. For example, functional
redundancy is predicted to be low in Antarctic soils [17], while polar marine ecosystems are thought
to be potentially close to ecological collapse as a consequence of rapid sea ice loss and temperature
fluctuations [18,19]. Furthermore, each microbial species is predicted to fulfil distinct ecological
functions in these comparatively species-poor environments [17,18], representing a system which,
in theory, is particularly vulnerable to environmental change and biodiversity loss.

In this study, we analyzed the structure of functional groupings (as defined in [20,21] and
summarized in Supplementary Table S1) arising from common methods to measure ecological
resilience, such as network analysis and cluster analysis, to identify whether;

(1) there is a link between network structure and the distribution of functional genes;
(2) the level of functional redundancy in this system is indicative of either resilience or a close to

‘collapse’ scenario;
(3) there are any signs of deterioration in the investigated microbial system at the functional level.
Thus, we analyzed the network structure and distribution of microbial functions based on the

co-occurrence of functional genes (as defined in [20]) across a broad geographical range. This analysis
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allowed the identification of specific characteristics of the functional network that could explain the
microbial ability to survive and potentially thrive even in the most extreme environments on Earth.

2. Materials and Methods

2.1. Sampling

A quantity of 300 L of seawater was collected 30 m below the surface (at the chlorophyll
maximum) using a CTD (Conductivity, Temperature, and Depth) sensor, from 10 high latitude locations
(the Antarctic locations are shown in Figure 3; the Arctic location was at the water confluence between
Kongsfjord and Krossfjord in the West Coast of Svalbard, Norway).

The cruise data were deposited and are available at the BODC (British Oceanographic data
Centre), including cruise reports, sampling station locations and cruise tracks for the following
relevant oceanographic cruises: JR144 (26/2/06–17/4/06) to the Scotia Sea and the South Sandwich
Islands; IPY Kinnvika RV Horyzont II to Magdalenefjord, Krossfjord and Kongsfjord, Svalbard
(9/7/08–13/7/08); JR179 (21/2/08–11/4/08) to the Amundsen Sea, Bellingshausen Sea and Pine Island Bay;
JR262 (24/9/11–20/11/11) to South Georgia and the South Orkney Islands; and JR230 (02/12/09–11/12/09)
to the Bellingshausen Sea and Adelaide Island. This represents a sampling acquisition effort of 6 cruises
and 50 days of sampling covering areas above and below the Southern Antarctic Circumpolar Current
and above the Arctic Front.

The sample water was passed through a sonication bath to disrupt suspended particles and
through a 2.7 µm prefilter using a sterile stainless-steel housing. The water was then subjected
to ultrafiltration in a Pellicon 2 ultrafiltration system (EMD Millipore, Billerica, MA, USA) with
1 × 10,000 Da molecular weight cut-off filters. The permeate was excluded and the retentate recycled
through the system until the total seawater volume reached <300 mL, and frozen at −20 ◦C for further
analysis. The 300 mL retentate was defrosted slowly and centrifuged at 38,000 revolutions per minute
(r.p.m.) to recover whole cells in a centrifugal concentrator. The DNA from cells concentrated in this
way was subjected to DNA extraction using the MoBio water DNA extraction kit (MoBio, Carlsbad,
CA, USA) according to the manufacturer’s instructions.

2.2. Microarray

To characterize the functional composition of the microbial communities in the marine samples
investigated, we used a functional gene array (GeoChip 3.0, [20]), a high throughput metagenomic tool
to detect and characterize microbial communities. We chose this microarray for its high specificity,
low false-positive rates, inherent signal quantification and to eliminate potential observer bias. The full
design pipeline for the functional chip array is previously described in [20], whereby CommOligo
2.0 [22] was used to design both gene- and group-specific probes, which were subsequently synthesized
by Invitrogen (Carlsbad, CA, USA) and arrayed onto Corning UltraGAPS (Corning, NY, USA) slides
using a Microgrid II Arrayer.

GeoChip 3.0 targets a variety of functions involved in carbon, nitrogen, phosphorus and
sulphur cycles, energy metabolism, antibiotic resistance, metal resistance and organic contaminant
degradation [20], which are considered relevant to those selected ecosystems, especially for
biogeochemical cycling genes. Therefore, this selection of functions also covers major environmental
processes. Even if we could expect the polar oceans to hold a proportion of genes, microorganisms and
pathways not present elsewhere, and consequently not detectible by the GeoChip, we can still conclude
that this pattern of modular resilience holds for all the main biogeochemical processes identified for
microbial communities worldwide. This also opens the question about whether the pattern would
hold for community-specific genes and pathways. More interestingly, if future studies show that
this pattern does not hold for community-specific functions, this could further show why this set of
functions and not others have evolutionarily become biogeochemically important worldwide. As we
used DNA samples instead of mRNA for GeoChip analyses, these data are interpreted as being the
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functional potential instead of functional activity, drawing in the pool of functional pre-adaptations
available within the community studied for these essential functions. In addition, the level of accuracy
of the GeoChip 3.0 is to be considered, as it can detect down to 1 or 2 cells [21].The genes in the
microarray were selected to cover a large proportion of common functional genes involved in major
known ecological and environmental processes across the world.

2.3. Taxonomic and Species Richness Analysis

As a taxonomic marker, we used the gene gyrB encoding DNA gyrase b-subunit as the phylogenetic
marker on GeoChip 3.0. Sequences of 16S rRNA genes are widely used as phylogenetic markers for
bacterial/archaeal systematics and ecology [23]; however, it is difficult to use them to obtain fine-scale
resolution at species and/or strain level as is required here. A phylogenetic tree based on gyrB results
in a magnitude higher resolution than a tree based on 16S rRNA genes [24,25]. GyrB is used here as an
indicator of taxonomic diversity. This way the phylogenetic markers could be used to conduct a similar
analysis to the functional genes and test whether the pattern for functional genes can be explained by
taxonomical distribution alone.

The pattern of presence/absence of taxa based on this marker was used to assess whether the sites
differed in relation to species distribution and richness. Thus, species richness index was estimated for
each site. A pairwise t-test with Holm adjustment (significance level p < 0.05) was performed to assess
the distribution of taxonomic species and individual functional genes across sites.

2.4. Network Construction and Cluster Analysis

We used weighted gene co-expression network analysis (WGCNA) and KMeans++ clustering
to identify whether, at the functional level, microbial communities are arranged in distinguishable
interactive units (modules or clusters). WGCNA is a widely used data mining method, especially for
studying biological networks based on pairwise correlations between variables. Network analyses
are particularly useful to represent the level of interconnectivity within interactive units. We used
WGCNA as it was tailored specifically for microarray data [26].

The groups formed using WGCNA are known as modules, while the groups identified by
KMeans++ are defined as clusters. In both cases, they will correspond to a set of bacteria, or a bacterial
network, whose genes are highly likely to interact within the environment as they tend to co-occur.

We used the specifically designed WGCNA R package for network detection, gene selection and
network construction [26–28]. A total of 4915 functional genes were included in the network analysis.
These were the genes present in at least six of the sites, and hence useful to establish meaningful
multiple correlations. After assuming an initial scale-free topology, we identified a soft threshold
power of 10 as the highest power showing a significant increase in mean connectivity among module
items. We used the module eigengenes to plot the network heatmap.

WGCNA allocates to a module all genes that tend to co-occur. If a specific gene is found more
than a threshold number of times (80%) in the same sample than another gene, these two genes are
linked together and grouped in the same module. Each gene included in the analysis also fulfils a
specific function (i.e., antibiotic resistance, carbon sequestration, etc.) for being an essential part of a
metabolic path related to the allocated function. Note that the GeoChip was specifically designed to
include genes unambiguously assigned to a unique function.

To ensure that the pattern found was not an artefact of the clustering method used, we re-analyzed
the data using a completely different clustering method, known as the K++ mean. K++, as distinct
from WGCNA, can allocate a gene to more than one cluster instead of allocating the gene to the first
group where the threshold is met. Therefore, the order in which the genes are included in the analysis
has a lower influence in the result than for WGCNA.

Thus, for the second clustering analysis (results in Figure 3), the KMeans++ clustering method with
seeding [29] was implemented in the data mining software WEKA [30]. WEKA compiles a collection
of machine learning algorithms tailored for data mining, whilst the KMeans++ method applied
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implemented these algorithms to find the centroid for each cluster with iterations (repeated until
the process provides stable results). The centroids are originally chosen at random from the data
points, but the algorithm weighs the data points according to their squared distance from the closest
center already chosen, which has been proven to provide accurate meaningful clusters. Once the
centroids are identified, the clusters are built around them based on a distance formula estimated
using the number of matches/no matches among vectors, indicating the presence/absence of each
functional gene per location. Points with equal distances to more than one centroid were allocated
to more than one cluster, assuming each cluster is an open interactive unit, whereby each function
can interact with more than one functional cluster. We used the Apriori algorithm [31] to find specific
associations (association algorithms find association of the type, e.g., whenever a specific function
occurs in A and B, a specific associated function will also occur in A and B; or, if a function occurs
in A and B, it will always occur/be absent in C). We also used WEKA to implement the association
algorithms. In particular, Apriori seeks simultaneous occurrences of subgroups of attributes, allowing
the identification of co-occurrences among subgroups of characteristics (in this case, functions) within
specific geographic locations. The levels of significance of the associations thus found are given as
confidence levels.

For comparative purposes, the number of genes in a cluster for each functional group was
divided by the number of genes in the microarray for that function and presented as the proportional
representation of each function within each site, WGCNA module or K++ means cluster. Thus, per each
gene functional grouping, the results are shown as the proportion of genes from the category included
in the analyses that appear in the cluster/module/site. The full list of functional groupings included in
the microarray is shown in Supplementary Table S1.

2.5. Comparative Analysis between Function and Taxonomic Distributions

To assess whether the pattern observed in functional distribution was a direct result of phylogenetic
distribution, we repeated the WGCNA analysis as above based only on the phylogenetic markers.
Subsequently, we used Pearson’s correlation to check whether the geographical distribution of
the WGCNA phylogenetic modules followed the distribution of the WGCNA functional modules.
A Student’s t-test was used to assess whether the correlation was significant at a 5% level of significance.

3. Results

3.1. Microarray

We analyzed the co-occurrence patterns of over 20,000 genes in a GeoChip microarray, developed
from samples from 10 locations from high latitude oceans. The full list of functional groups and
functional genes included in the microarray are shown in Supplementary Table S1 (also including
rarer functions).

All of the functional genes hybridized with at least one sample in the microarray. The total cover
(number of wells in the microarray showing hybridization/total number of spots on a microarray) was
35%, suggesting no noise-hybridization. The expression results we found here are similar to those
found from other world locations, giving no reason to doubt that the distribution of these genes across
Arctic or Antarctic locations is the result of ecological interactions, rather than a methodological bias.

3.2. Diversity Data

We found significant differences in the distribution of taxonomic species and individual functional
genes across sites (pairwise t-test with Holm adjustment, p < 0.05; Figure 1). In addition, species
richness also varied across sites. From all of the genes included in the microarray, the proportion
present in each site per function also differed across sites. The number of species detected here was low
compared to taxonomy-based studies (as expected given the diversity study was based on a fixed set
of markers used for comparative purposes only). This suggests that most of the species in the system
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are yet to be identified, and consequently, the functional genes here detected come from unidentified
or uncultured bacteria species (which is consistent with previous studies).Microorganisms 2020, 8, x FOR PEER REVIEW 6 of 14 
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Georgia North; AS: Amundsen Sea; LI: Livingston Island. Arctic: SVB: Svalbard. The data are 
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Figure 1. Distribution of functional groups as defined in He et al. 2010 [20] (upper panel) and species
richness (lower panel) across sites. Antarctic: SS: South Sandwich; PIB: Pine Island Bay; SGN: South
Georgia North; AS: Amundsen Sea; LI: Livingston Island. Arctic: SVB: Svalbard. The data are presented
as standardized for the number of functional genes per functional group included in the microarray
(as the proportion from all the genes included that is present at each site).

3.3. Functional Networks and Cluster Analysis

To understand how functions associate and how microbial networks organize at the functional
level, we used weighted gene co-occurrence network analyses (WGCNA), K-means++ cluster
analysis and association algorithms. WGCNA was specifically designed to analyze co-occurrence
or co-expression patterns based on microarray data [26], and network analyses are particularly
useful to represent the level of interconnectivity within interactive units. The WGCNA network
analysis based on co-occurrence patterns in situ identified 21 different modules arranged as an
Erdős–Rényi (ER) random network (Figure 2). The level of heterogeneity within the modules was
low, with most modules presenting an equally high level of connectivity. We tested how the different
functional groups distributed across these modules, and we found that the different functional groups
distributed homogeneously across geographical locations (Figure 3; Wilcox test; p > 0.05). In addition,
the distribution of the different WGCNA network modules did not differ significantly (95% CI) between
Antarctic and Arctic locations.
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The functions included are listed in Supplementary Table S1.  

Figure 2. Structural organization of microarray genes by weighted gene co-occurrence network analyses
(WGCNA) modules. First panel: Turquoise functional module; Second panel: Royal Blue functional
module. Each colour represents a WGCNA module built from functional genes that tend to co-occur
(see Methods section for full description); Third panel: Phylo1 module from the WGCNA network
built based on only phylogenetic markers. The figure is shown to highlight the underlying structure of
a random network.
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Figure 3. Geographical distribution. (a) Geographical location of the study sites in the Antarctic.
Antarctic: SGN: South Georgia North; SS: South Sandwich; LI: Livingston Island; AS: Amundsen Sea;
PIB: Pine Island Bay. Arctic: SVB: Svalbard. (Note SVB1 and SVB2 are two samples from an Arctic
location in Svalbard, not shown in the map). (b) distribution of the WGCNA modules. The colour names
in the legend of panel a refer to each of the WGCNA modules as defined by the method. (c) distribution
of the K++ means clusters across Arctic and Antarctic locations. The columns are coloured in a gradient
of genetic density per module or cluster (i.e., darker columns represent modules/clusters with more
genes, whilst those including less genes are shown in lighter colours). WGCNA module and K++ means
cluster distribution did not differ significantly across geographic locations. The data are presented as
standardized for the number of genes per functional type included in the microarray. The functions
included are listed in Supplementary Table S1.

The K means++ analysis, including all functional genes, identified 10 clusters whose distribution
followed a pattern similar to that found in the WGCNA network analysis (Figure 1) and, in addition,
did not differ significantly across sites (Wilcox test, p < 0.05).
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Our results show that the different functional groups were distributed evenly across geographical
locations (Figure 3). In addition, the distribution of the different WGCNA network modules did not
differ significantly (95% CI) among all of the Antarctic and Arctic locations, suggesting a homogeneous
functional distribution. Furthermore, this WGCNA functional distribution did not follow either
species richness, species distribution or the distribution of functional genes alone. This can be seen by
comparing the distribution of these parameters between sites shown in Figure 1, and the distribution of
WGCNA modules between sites shown in Figure 3. Similarly, analyzing the data using the K++ means
clustering algorithm nesting the genes by function, under the assumption that similar functions are
subject to similar selective pressures, the distribution of K++ means functional clusters also followed
a pattern similar to that found in the WGCNA network analysis (Figure 1), and also did not differ
significantly across sites (Wilcox test, p < 0.05). Furthermore, association algorithms used to test
whether functions associate in any specific manner within the sites did not show any significant
association. Only organic remediation and stress appeared to weakly associate, but only at confidence
levels below 50%.

3.4. Correlation between WGCNA Phylogenetic Modules and WGCNA Functional Modules

At the phylogenetic level, network analysis using weighted gene co-occurrence analysis (WGCNA)
showed only three distinct modules within the genes included in the microarray, suggesting that the
functional groupings found also did not correspond to species or taxonomic units. The three
phylogenetic modules (PHYLO1, PHYLO2 and PHYLO3) include representatives of all main
groups expected from marine samples, including Proteobacteria, Actinobacteria and Bacteriodetes,
together with Firmicutes, at different proportions (Figure 4).
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Only five (blue, yellow, salmon, midnight blue and light cyan WGCNA modules) of the
21 functional modules identified by WGCNA presented a strong significant correlation with the
distribution of two of the phylogenetic modules identified using the same method (Figure 5). None of the
functional WGCNA modules correlated in their geographical distribution with the PHYLO1 WGCNA
phylogenetic module. The geographical distribution of the other 16 functional groups did not seem to
follow the biogeographical distribution of the samples from the phylogenetic perspective. In other
words, the phylogenetic biogeography does not directly correspond to the functional biogeography.
Furthermore, functional biogeography cannot be explained by phylogenetic distribution.
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3.5. Role of Rarer Functions

To understand the role of rarer functions in the overall functional composition, we analyzed how
those functions not included in WGCNA modules (not co-occurring with other functions frequently
enough to belong to a module, hence rarer functions) were distributed among K++ means clusters
and geographic locations. A K++ cluster analysis on these genes showed a tendency to associate in
smaller-sized clusters (Supplementary Figure S1), while dominant functions associated together in a
larger module and larger clusters.

The total number of functional genes that were included in each WGCNA module differed (this structure
was also found for KMeans++ clusters), with some modules including many more genes than others
(Figure 6a). The proportion of times a gene must appear to be linked to a specific module or cluster was 8%,
meaning the relationship between the number of genes in the cluster and the number of genes per function
follows a linear pattern (Figure 6b); thus, smaller clusters require a gene to appear less frequently to get
fixed within the cluster than larger clusters, which will require higher gene frequencies.
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Figure 6. Functional gene distribution within clusters. (a) proportion of genes within a WGCNA
module. (b): linear trend between the number of genes associated to any of the functions and the total
number of genes in each KMeans++ cluster; the individual R2 values for the linear relations between
genes per function and genes in the cluster per cluster vary between 0.71 for virulence genes to 0.99 for
stress and carbon cycling genes. The data are presented as standardized for the number of genes per
functional type in the microarray.
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4. Discussion

Initially, we set out to test whether an increase in functional diversity should lead to a proportional
increase in the peripheral functions of the expected scale-free network conferring resilience. What we
found, however, was a very different picture. The network did not organize as a scale-free network
but as a set of random networks (each network represented as a WGCNA module, represented by
colours in Figure 3, panel b). In such a structure, each co-occurring module is in itself weak, as every
node (gene in this case) has the equivalent effect on the overall module stability (and is proportional to
the number of nodes in the network). In other words, every node (gene) removed from the module,
e.g., through extinction, influences the overall functioning of the module (which in turns represents an
interacting community).

In contrast, the modules and clusters found using two different methods organize in an even
manner, based on how frequently or infrequently functional genes linked to each functional group
appear in the system. Thus, all functional groups are equally represented within each WCGMA
module or K++ means cluster. We find that, in such systems, frequent functions associate together in
big clusters, while infrequent ones associate together in smaller clusters. The size of the cluster thus
represents the number of genes present per functional group in the cluster. In this case, each functional
group includes an equal share of 8% of the genes in the cluster. This way, each module always includes
a proportional representation of all the functional groups and there are no functional groups missing
on any module or cluster.

Thus, the overall ecosystem is organized in such a way that a different co-occurring module is
prepared to take the place of any collapsing module. We do not have an ecological mechanism for
this organization, but we hypothesize that an ecosystem organized in such a way would be ready to
take over any novel niche it opens in the environment (even if the new niche comes from extinction of
the existing community) without the immediate need of genetic adaptation, through reproduction
rate alone before evolutionary adaptation for optimal growth kicks in. The mechanism we describe
here will not ensure colonization of any environment on its own unless the pre-adapted genetic pool is
present but would allow colonizing a new environment as a fully functioning community, potentially
speeding up colonization.

Indeed, our results also show a very striking pattern—that functions do not associate following a
biological pattern (e.g., we do not find a stress function module or a virulence function, nor do we
find functions linked to specific metabolic pathways, e.g., functions linked to carbon degradation do
not associate in a particular module). The pattern also does not follow a phylogenetic pattern, as
the phylogenetic module grouping (three distinct modules only) does not relate to the 21 functional
modules found. A correlation analysis also show that the majority of the patterns found for functional
distribution cannot be explained by phylogenetic distribution.

Association algorithms [31] used to test whether there is any specific relationship between
functional groups and the K++ means clusters did not provide any significant results either (not even
random noise, as would be expected if the functional groups were distributed randomly among the
clusters). This further supports the hypothesis that the functional associations (i.e., patterns seen for
both WCNGA and K++ means algorithms) we find here are indeed evolutionarily homogeneous
among clusters and that this is not the result of a random distribution.

We also found that this homogeneous distribution of functional groups within the WGCNA
modules or the K++ means clusters is apparent regardless of the clustering method used. Or, in other
words, the results obtained here are not an artifact of the method. Our analysis includes two independent
methodologies using different algorithms (WGCNA network analysis and K++ clustering [26,29])
and both return the same proportional association. Furthermore, this association is significant after
correcting for the number of functional genes per functional group included in the microarray. The main
difference between the results from these two methods (WGCNA module detection and K++ clustering)
is that, even if the overall pattern is similar (i.e., even module distribution across sites and more
abundant modules dominating the functional landscape), the main module identified by WGCNA
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includes many more functions than the main cluster in the K++ cluster analysis, and it is also more
predominant (i.e., in relation to the predominance of all other modules/clusters) in each site than the
main cluster in the cluster analysis. This difference potentially relates to the fact that WGCNA only
included those functions occurring in six sites or more (dominant functions), while the K++ means
cluster analyses included all genes nested by functional category under the ecological assumption
that similar functions are subjected to similar selective pressures (i.e., antibiotic resistance, carbon
sequestration, metal resistance, etc.).

This pattern of functional group distribution would result in a resilient system based on a structural
redundancy, composed of a series of independent functionally-sound clusters, and therefore for the
system to ‘collapse’ or become non-functional all the clusters would need to collapse simultaneously.
Furthermore, the pattern found at the functional level does not follow the pattern found for taxonomic
diversity. Therefore, the pattern found for functional groups does not represent taxonomic units.
This pattern is consistent with the scale-free network patterns found for taxonomic associations, as it
would allow for a large number of taxonomic units to be depleted without altering the proportional
distribution of functional genes with a minimum level of functional gene redundancy in the system (as
each taxonomic unit would need to impair the functionality of all functional clusters before the system
became dysfunctional).

If this pattern holds for other polar environments, our analyses would explain why we have
not found strong evidence of recent environmental impact on polar marine microbial communities
at the functional level (unless all communities analyzed have changed exactly in the same direction
and intensity simultaneously, which is unlikely given we are comparing areas changing at different
rates [32]). Whilst arguably the temperature threshold might have not been reached for bacterial
communities [33], strong changes have been reported for phytoplankton communities from the
maritime Antarctic and widespread evidence ecological changes at the taxonomic level is available
from both the Arctic and the Antarctic [34,35]. Therefore, even if microbial community composition
is changing rapidly in these regions due to climate warming, the change is not yet obvious at the
functional level. The pattern we see here is not what we would expect from a genetic erosion scenario
either, as all sites include tightly packed complex networks of essential genes and a series of smaller,
but well-structured and homogeneously present, clusters of less frequent genes. Genetic erosion will
not only be expected to homogenize the landscape, but to reduce functional diversity throughout.
The scenario we see here is that of diverse functionally redundant clusters homogeneously distributed,
which is a pattern more likely to reflect the very nature of functional gene distribution in microbial
communities than a consequence of genetic erosion. Moreover, this pattern holds and is significant
despite the large geographical range of the sampling covered, including areas above and below the
Antarctic Convergence and an Arctic site. This pattern is also significant and holds despite the temporal
variability in the sampling, suggesting again that it is characteristic of the system under study, and not
an artefact of seasonal or geographical variation.

Overall, our results show a fairly even functional structure within microbial communities in
high latitude oceans based on the presence/absence of specific functional genes and their relative
co-occurrence. The sampling sites have repeatedly been acknowledged as some of the fastest warming
environments on Earth [17,32]. Such changes, however, do not seem to influence the functional
structure of the microbial communities present. Our results also show that 8% of the genes within
a cluster are devoted to any particular functional group (Figure 4), suggesting that, in order for a
new function to become established within a functional cluster, the proportion of genes involved in
the function in relation to the cluster gene pool must surpass a minimum threshold; less frequent
functions might not succeed in integrating themselves within functional clusters. This mechanism
seems to ensure that microbial networks do not rely on less frequent functions (the extreme of this
situation would be ensuring that the ecosystem function does not rely on rare functions). In addition,
no function becomes dominant over the others, also reducing the risk of communities relying on a
small set of keystone functions. This also raises the question of the importance of rarity for overall
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ecosystem function. At higher taxonomic levels, rarity seems to be essential to maintain ecosystem
resilience in highly diverse ecosystems [36]; however, our results show that a high level of rarity does
not necessarily translate into higher levels of redundancy, as there is no link between the distribution
of less frequent functions and the distribution of taxonomic diversity. Consequently, less frequent
genes do not contribute to the overall ecosystem function in the polar oceans at the ecological time
scales considered here, at least for microbial communities.

Here, we have used two different clustering approaches, based on co-occurrence and
presence-absence data, to support our conclusions. Whilst the network analysis is based on the
strength of the signal in the microarray, the K++ clustering method is based on presence/absence
data. These two methods were specifically chosen to reduce the probability of a mathematical bias
or a methodological bias based on the strength of the molecular signal. The algorithms used in the
network analysis and in the K++ cluster analysis indeed differ considerably, yet the conclusions are
significantly similar (a homogeneous distribution of functions among clusters, and clusters among
locations). Therefore, even if the level of clustering differs between these two methods (expected as the
algorithms differ), the conclusions from these two methods do not.

5. Conclusions

Our current understanding of biological networks to date assumes that these networks are
arranged in such a way that only a series of key nodes are important and they are in a minority;
thus, just by pure probability, for every certain number of genes taken away from the gene pool
(e.g., becoming extinct) only one will have an ecological impact. However, we do not find this type of
structure in a series of Antarctic and Arctic locations. Instead, we find a structure where the bacterial
networks are in themselves weak based on the node structure, because every gene taken out will have
an impact. However, the strength of the ecosystem relies on its overall organization, in such a way
that a different co-occurring network will take its place once the previous network collapses. Whilst
our data does not allow formulating an ecological mechanism for this organization, an ecosystem
organized in such a way would be potentially ready to take over any novel niche it opens in the
environment (even if the new niche comes from extinction within the existing community) without the
need for genetic adaptation, through reproduction rate alone.

In summary, a tight organization of functional groups in self-contained bacterial networks
(analyzed here as WGCNA modules/K++ means clusters) might explain functional resilience at the
microbial level. Microbes are certainly not immune to ecological change, as their diversity and
community dynamics do change following environmental perturbation [37,38]. Indeed, these types of
change could speculatively be behind the differences we find in species richness or in the distribution of
individual functions. However, our results show a solid functional distribution at the ecosystem level.
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