The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons

Hutchinson, David K., Coxall, Helen K., Lunt, Daniel J., Steinthorsdottir, Margret, de Boer, Agatha M., Baatsen, Michiel, von der Heydt, Anna, Huber, Matthew, Kennedy-Asser, Alan T., Kunzmann, Lutz, Ladant, Jean-Baptiste, Lear, Caroline H., Moraweck, Karolin, Pearson, Paul N., Piga, Emanuela, Pound, Matthew, Salzmann, Ulrich, Scher, Howie D., Sijp, Willem P., Śliwińska, Kasia K., Wilson, Paul A. and Zhang, Zhongshi (2020) The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons. Climate of the Past. ISSN 1814-9324 (In Press)

cp-2020-68.pdf - Accepted Version
Available under License Creative Commons Attribution 4.0.

Download (5MB) | Preview
Official URL:


The Eocene-Oligocene transition (EOT) from a largely ice-free greenhouse world to an icehouse climate with the first major glaciation of Antarctica was a phase of major climate and environmental change occurring ~34 million years ago (Ma) and lasting ~500 kyr. The change is marked by a global shift in deep sea δ18O representing a combination of deep-ocean cooling and global ice sheet growth. At the same time, multiple independent proxies for sea surface temperature indicate a surface ocean cooling, and major changes in global fauna and flora record a shift toward more cold-climate adapted species. The major explanations of this transition that have been suggested are a decline in atmospheric CO2, and changes to ocean gateways, while orbital forcing likely influenced the precise timing of the glaciation. This work reviews and synthesises proxy evidence of paleogeography, temperature, ice sheets, ocean circulation, and CO2 change from the marine and terrestrial realms. Furthermore, we quantitatively compare proxy records of change to an ensemble of model simulations of temperature change across the EOT. The model simulations compare three forcing mechanisms across the EOT: CO2 decrease, paleogeographic changes, and ice sheet growth. We find that CO2 forcing provides by far the best explanation of the combined proxy evidence, and based on our model ensemble, we estimate that a CO2 decrease of about 1.6× across the EOT (e.g. from 910 to 560  ppmv) achieves the best fit to the temperature change recorded in the proxies. This model-derived CO2 decrease is consistent with proxy estimates of CO2 decline at the EOT.

Item Type: Article
Subjects: F600 Geology
F700 Ocean Sciences
F800 Physical and Terrestrial Geographical and Environmental Sciences
Department: Faculties > Engineering and Environment > Geography and Environmental Sciences
Depositing User: Rachel Branson
Date Deposited: 15 Dec 2020 12:18
Last Modified: 15 Dec 2020 12:18

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics