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Recent Development and Perspective of Lightweight Aggregates 

Based Self-Compacting Concrete 

T.Z.H. Ting, M.E.Rahman, H.H. Lau and M.Z.Y. Ting 

Abstract 

The utilization of natural and artificial lightweight aggregates in lightweight self-compacting 

concrete (LWSCC) is gaining popularity in research field. Extensive research has been carried 

out in the past decade all over the world to utilize lightweight aggregates (LWA) in self-

compacting concrete (SCC). LWSCC, which uses renewable aggregates, has great potential to 

become an alternative material to conventional concrete. The paper is aimed to review the more 

recent research of physical properties of lightweight aggregates used in developing mix design 

of lightweight self-compacting concrete. In design, the mix proportion of LWSCC is a crucial 

factor to achieve the desired fresh and hardened concrete properties. The methods to develop 

LWSCC mix design with anticipated fresh and hardened concrete are reviewed. Research 

shows that the mix design LWSCC is preferably proportioned by aggregates packing concept. 

In addition, discussion on the fresh and hardened concrete properties is made and summarized 

in this paper. Studies indicate that there is a promising future for the use of lightweight 

aggregates in SCC as it shows satisfactory filling ability, passing ability, segregation resistance 

and compressive strength. Research gaps recommendations are then identified through this 

review to further discover lightweight self-compacting concrete in several aspects, particularly 

in term of sustainability. 

Keywords: Lightweight self-compacting concrete (LWSCC), Lightweight aggregates (LWA), 

Workability, Compressive strength, Tensile Splitting strength 
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1.0 Introduction  

1.1 Concrete sustainability problem 

Concrete is a very common construction material which has been widely used throughout the 

world due to its versatility, availability and economy (Rodriguez de Sensale et al., 2015). 

According to Samson et al. (2016), concrete is considered as the most heavily consumed 

construction materials in the world due to its low cost. The more recent statistics shows that 

there is more than 26.8 billion tonnes of normal concrete being produced globally per year 

(Senaratne et al., 2016). This huge production has caused the construction sector to face the 

issue of gradual exhaustion of natural resources as well as the difficulty in accessing them. In 

the aspect of the environmental impact of the concrete production, study shows that it can be 

reduced through the use of alternative materials (Mehta, 2001). The more common practice is 

the partial replacement of cement and aggregates alternatives. 

Also for the reason of the high demand of concrete in construction industry, a large amount of 

normal weight aggregates (NWA) is consumed which has resulted in gradual depletion of 

natural gravel and crushed rock. The situation warrants the urgency to intensify the research 

and development of more sustainable construction materials. As such, great opportunity exists 

to incorporate construction and demolition wastes into concrete mix as aggregates in order to 

improve its resource productivity (Mehta, 2001). Research has been carried out for utilizing 

recycled aggregate from demolition waste (Duan & Poon, 2014; Etxeberria et al., 2007; Xiao 

et al., 2005). The recycle process involves stock piling, crushing, presizing, sorting, screening 

and contaminant elimination. However, processing of recycled aggregates requires large 

amount of energy and cause higher carbon dioxide emission. Alternatively, other materials such 

as lightweight aggregates (LWA), either arising naturally or being generated as by-product from 

industrial processing, can be used to replace NWA in the concrete production. This leads to the 

production of lightweight concrete (LWC). LWC is commonly produced by replacing the 
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normal weight aggregates with LWA. Extensive research has been carried out to utilize the 

waste generated as alternative construction materials in concrete due to growing of 

sustainability consciousness. (Alengaram et al., 2013; Aslam et al., 2016) 

1.2 Lightweight self-compacting concrete 

With the advancement of concrete technology, several attempts have been made in developing 

new high performance materials that possess the benefits and characteristics of SCC and LWC 

in the past decades. An innovative concrete, lightweight self-compacting concrete (LWSCC), 

which possesses the properties of both LWC and SCC has been developed. LWSCC is produced 

by the replacement of NWA with LWA in SCC. According to ACI 213 (2014), the density of 

structural lightweight concrete must falls within the range of 1120 kg/m3 to 1920 kg/m3 . 

Aggregates contribute to the most of the weight of concrete and commonly constitute about 60% 

by volume of SCC (Topçu & Uygunoğlu, 2010). As such, due to the porous structure of LWA, 

it is able to reduce the density as well as the thermal conductivity of concrete. The use of 

LWSCC brings about several benefits such as reduced self-weight, shorter construction period, 

lower construction cost and elimination of noise emitted from vibration machines as well as 

better heat and sound insulation due to the  voids in LWA (Grabois et al., 2016; Papanicolaou 

& Kaffetzakis, 2010; Vakhshouri & Nejadi, 2016). Since the present construction industry is 

experiencing the shortage of skilled workers as well as the difficulty in hiring new generation 

of skilled workers (Kim et al., 2010),  LWSCC which is less labour intensive, can be a timely 

solution to these shortcomings. In addition, LWSCC, which is very suitable for manufacturing 

precast units, can be used to promote mechanisation or even automation processes in 

construction industry. The assembly of precast building components units on site has made the 

construction methods more straightforward.  
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1.3 Application of lightweight self-compacting concrete 

LWSCC has been employed as alternative construction materials in structural construction such 

as cable stayed bridge construction since 1992 in Japan (Ohno et al., 1993). Dymond (2007) 

had designed and constructed a 20m pre-stressed beam by using LWSCC while Lahkega and 

Stenah (2011) studied the possibility of utilizing LWSCC in full scale wall. Also, Shi and Yang 

(2005) had utilized LWSCC in the application of thin precast C-shaped wall. Hubertova and 

Hela (2007) made use of LWSCC in the construction of stadium walkway structural elements. 

Lately, the use of LWSCC has become popular in construction and research field. 

1.4 Type of lightweight aggregates 

Lightweight aggregates can generally be categorized into natural and artificial types. The 

common natural LWA are pumice, diatomite, volcanic cinders, scoria and tuff (ACI-213, 2003; 

Neville, 2008). As for the artificial LWA, it can be further categorized into industrial wastes 

and processed natural materials (Aslam et al., 2016). Sintered slate, sintered pulverized fuel ash, 

expanded or foamed blast furnace slag and colliery wastes are more common industrial wastes 

used as LWAs. In addition, there are also processed natural materials such as shale, expanded 

clay, slate, vermiculite and perlite which can be used as LWA in manufacturing concrete 

(Mahmud, 2010). Numerous researches have been concentrated on utilizing artificial LWA in 

developing LWSCC.  

1.5 Problems in lightweight self-compacting concrete 

There are several common issues in developing mix design of LWSCC. As LWA is porous 

materials and generally irregular in shape, its workability is poor and compressive strength is 

relatively low when compared to gravels. As such, a large amount of cement paste is required 

for LWSCC to achieve desired workability and targeted compressive strength. Due to the 

porous structure of LWA, it has high water absorption capacity which tends to absorb the water 

during batching, resulting in poor workability. The high water absorption of LWA makes it 
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difficult to estimate the required water volume for batching. The common practice to overcome 

this issue is to allow LWA to achieve saturated surface dry (SSD) condition before batching 

(Domagała, 2015). However, care must be taken since different type of LWA has different 

water absorption rate. Excessive water can increase the risk of bleeding and segregation (Illidge, 

2010; Juradin et al., 2012).  Moreover, the densities of lightweight aggregates are generally 

lower than those of the mortar matrix and natural aggregates in concrete (Topçu & Uygunoğlu, 

2010). Therefore, the difference in density between LWA and normal weight sand can alter the 

fresh properties of LWSCC mixture. The resulting poor self-compaction and segregation of 

aggregates can severely affect the durability and structural performance of concrete in hardened 

state (Juradin et al., 2012; Kwasny et al., 2012). Thus, the use of LWA in SCC is still regarded 

as new development in concrete technology and further investigation and study are required. In 

addition, no code of practice or guideline has been published for developing mix design of 

LWSCC. 

1.6 Objective 

As LWSCC brings about advantages in many aspects, research to understand the complicated 

nature of LWSCC is gaining popularity. Therefore, the main objective of this paper is to review 

the lightweight aggregates (LWA) that have been used in developing lightweight self-

compacting concrete. Identification of the physical properties as well as comparisons of LWA 

are conducted. In addition, the effect of using LWA in SCC mixture on fresh and hardened 

concrete properties will be discussed. The methodology to develop LWSCC mix design is 

reviewed too. In summary, the LWSCC properties and mix design can be improved 

significantly upon the review of the currently available literature. 

2.0 Lightweight aggregates 

Extensive research has been carried out by many researchers in utilizing lightweight aggregates 

(LWA) in SCC. Hwang and Hung (2005) utilized reservoir fine sediment as coarse aggregates 
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in SCC while Bogas et al. (2012) and Hubertová and Hela (2013) studied the possibility of 

expanded clay as coarse aggregates. Pumice has been used as lightweight coarse aggregates and 

studied by several researchers under different temperature and mix proportioning (Özge Andiç-

Çakır & Hızal, 2012; Kaffetzakis & Papanicolaou, 2012; Papanicolaou & Kaffetzakis, 2010; 

Tayfun Uygunoğlu & Topçu, 2009).  Also, Shi and Wu (2005) and Lo et al. (2007) have utilized 

expanded shale as LWA for SCC. Moreover, Kanadasan and Razak (2014) used agriculture 

waste, palm oil clinker, as aggregates in SCC. The physical properties of the selected 

lightweight aggregates including pumice, expanded shale and expanded clay will be discussed 

in the following part of the paper. The fresh and hardened state properties of LWSCC are highly 

depends on the physical properties of LWA used. In this connection, specific gravity, size 

distribution, shape thickness and texture, bulk density and water absorption characteristic of 

lightweight aggregates will be elaborated. 

2.1 Specific gravity 

Specific gravity is defined as the ratio of the material mass to the mass of an equal volume of 

water at the temperature of 23°C. Based on the research done by several researchers, all the 

three types of lightweight aggregate (LWA) have different values of specific gravity which are 

not more than specific gravity of normal weight aggregates of 2.4-2.9. The specific gravity 

values of all these three types of aggregate falls within the range of 0.42-2.25 as shown in Table 

1. 

The specific gravity for pumice aggregates is within the range of 0.69-2.25. Özge Andiç-Çakır 

and Hızal (2012) reported the lowest specific gravity of pumice aggregates is 0.69 while Tayfun 

Uygunoğlu and Topçu (2009) reported the highest specific gravity of 2.25. For expanded shale 

aggregates, the specific gravity values are in the range of 1.33-1.35 which are considerably 

consistent. Expanded clay aggregates have the specific gravity of 0.42-1.78.Gopi et al. (2015) 

found the lowest specific gravity of 0.42 of expended clay aggregates while Shanker (2016) 
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found the highest of 1.75. This inconsistency of specific gravity may be due to the situation 

whereby the aggregates are supplied from different sources as well as the different ways they 

are processed in the industry. By comparing the LWA and NWA (shown in Table 1), the 

specific gravity of LWA is 10% to 80% less than that of NWA. Aggregate specific gravity is 

important in the calculation of weight-to-volume relationships and to compute various volume-

related quantities such as voids presented in aggregate, and that the voids that must be filled 

by cementitious materials. It affects the resulting workability and final density of designed 

LWSCC. 

2.2 Size Distribution of LWA 

Lightweight aggregates (LWA) generally occur in different particle shape and size. Sieve 

analysis or gradation test is a common method for determining the particle size distribution. 

The particle size distribution of LWA is crucial in engineering application as it can be used to 

verify the compliance of design requirement, production control and specifications. Typical 

particle size distribution curves of pumice, expanded shale and expanded clay are shown in 

Figure 1 (Lotfy et al., 2016; Topçu & Uygunoğlu, 2010). It is noted that pumice aggregates 

possess better particle distribution curve than expanded shale and expanded clay aggregates. 

The use of well graded aggregates in SCC will minimize the voids which leads to optimum 

workability and strength. As such, selection of appropriate size distribution of aggregates is 

important in designing LWSCC mix design.  
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Figure 1: Particle size distribution of LWA (Lotfy et al., 2016; Topçu & Uygunoğlu, 

2010). 

2.3 Shape thickness and texture 

According to Tviksta (2000), the performance of SCC is very sensitive to the characteristics of 

aggregates. These characteristics include shape, texture, maximum size, grading and 

morphology. The shape and size of coarse aggregates have significant influence on the particle 

packing and aggregate interlocking within the matrix. They are factors in determining the 

amount of paste volume to cover all particles. LWAs commonly exist in angular and flaky shape. 

Khaleel et al. (2011) had studied the effect of maximum aggregate size on flowability of SCC. 

The authors found that the flowability of SCC decreased with the increase of coarse aggregate 

size. The authors also recommended the use of coarse aggregates with maximum 10mm size as 

it can produce higher strength SCC than that produced by using coarse aggregates of maximum 

20mm size. From the review of LWA of several researchers as summarized in Table 1, most of 

the coarse LWA maximum size used in LWSCC is either 12.5mm or 16mm. This is to promote 

a good interlocking effect between them to enhance the packing characteristics and flowability 

of SCC which will guarantee the strength of concrete (Kanadasan & Razak, 2014). 
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Figure 2: Lightweight aggregates: a) Expanded clay, b) Expanded shale, c) Pumice 

(Lotfy et al., 2016) 

2.4 Bulk density 

Bulk density of aggregates measures the volume of their solid aggregate particles as well as the 

voids between them that they occupy in the concrete. The bulk density is used in the volume 

method of concrete mix proportioning. Many researchers did not provide the compacted bulk 

density of the LWA aggregates used. As shown in Table 1, the loose bulk density of LWA from 

different sources generally shows variation. The bulk density of expanded clay, expanded shale 

and pumice aggregates is in the range of 300-1280 kg/m3 , 750-1500  kg/m3  and 330-

1010 kg/m3 respectively. Ahmad et al. (2007) stated that aggregates with density within the 

range 700-1400  kg/m3  are preferable for structural application. By comparison, the bulk 

densities of all these three LWA are 10-80% lesser than normal weight aggregates. The 

lightweight characteristic of LWA is generally due to its porous characteristics. 

a. b. 

c. 
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2.5 Water absorption 

LWA are generally porous materials which tend to absorb water. LWA will absorb and hold 

more moisture than normal weight aggregates. As a result, pre-wetting of LWA is required 

before batching and this practice has been used in manufacturing lightweight concrete (LWC).  

Depending on the cellular structure of LWA, it may also take longer time to achieve saturated 

surface dry (SSD) condition (Peters, 1999). The 24-hour water absorption of these three 

aggregates is in the range of 5-80%. By comparing these three LWA, pumice is found to have 

the highest water absorption capacity. LWSCC is sensitive to the water content of LWA as it 

can alter the resulting workability and compressive strength of concrete. The water/binder ratio 

of concrete can also be affected by the water absorption of LWA(Liu et al., 2011). The water 

absorption capacity of LWA must be specified in order to maintain the consistency of LWSCC. 

According to Shafigh et al. (2012), concrete with porous aggregates is less sensitive to poor 

curing as the strength may vary only 6-11%. This is due to the fact that the water present in 

aggregate pores is capable of providing internal curing. The sensitivity can be reduced when 

lower water/binder ratio is used. The water present in aggregates is able to reduce plastic 

shrinkage due to unfavourable drying condition and provide internal curing which allows for 

more complete hydration of cement (Pierce, 2007). 

Table 1: Physical properties of lightweight aggregates (LWA). 

Pumice aggregates 

Researchers 
Size of 

aggregates 

(mm) 

Specific 

gravity 

Loose bulk 

density(𝒌𝒈/

𝒎𝟑) 

Compacted 

bulk 

density(𝒌𝒈/

𝒎𝟑) 

24h water 

absorption 

(%) 

Kaffetzakis 

and 

Papanicolaou 

(2016a) 

8-16 - 570 1034 - 

Kaffetzakis 

and 
8-16 - - - 25 
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Papanicolaou 

(2012) 

Özge Andiç-

Çakır and 

Hızal (2012) 

4-16 0.69-1.74 330-1010 350-1105 8.25-45.62 

Topçu and 

Uygunoğlu 

(2010) 

4-16 1.84 - 739 28.75 

Kurt, Kotan, et 

al. (2016) 
16 0.92 - - - 

Kurt et al. 

(2015) 
16 0.92 - - - 

T. Uygunoğlu 

and Topçu 

(2011) 

16 1.84 - 739 28.75 

Kaffetzakis 

and 

Papanicolaou 

(2016b) 

4-16 - 580 1050 25 

Anwar et al. 

(2012) 
19 1.13 - - 84.57 

ö Andiç-çakır 

et al. (2009) 

4-8 

8-16 
- 440 480 25 

Kurt, Gül, et 

al. (2016) 
16 0.92 - - - 

Tayfun 

Uygunoğlu 

and Topçu 

(2009) 

16 2.25 739 - 29 

Expanded shale aggregates 

Researchers Size of 

aggregates 

(mm) 

Specific 

gravity 

Loose bulk 

density 

Compacted 

bulk density 

24h water 

absorption 

(%) 

Lotfy et al. 

(2015b) 
4.75-12 1.33 862 - 14 

Lachemi et al. 

(2008) 
10 1.35 754.6 - 5.4 
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Lo et al. 

(2007) 
10 - 1490 - 4 (1hour) 

(Lotfy et al., 

2015a) 
10 1.33 862 - 14 

Wu et al. 

(2009) 
20 - - - 4 

Shi and Wu 

(2005) 
- - - - - 

Karahan et al. 

(2012) 
12 - - - - 

Lotfy et al. 

(2016) 
4.75-10 1.33 862 - 14 

Expanded clay aggregates (LECA) 

Researchers Size of 

aggregates 

(mm) 

Specific 

gravity 

Loose bulk 

density 

Compacted 

bulk density 

24h water 

absorption 

(%) 

Lotfy et al. 

(2016) 
4.75-10 1.21 621.5 - 16.2 

Gopi et al. 

(2015) 
- 0.42 442 - 39 

Abdelaziz 

(2010) 
15 1.08 667 - 20.07 

Kwasny et al. 

(2012) 
4-8 - 1280 - 15 

Grabois et al. 

(2016) 
12.5 - 956 - 13.95 

Floyd et al. 

(2015) 
12.5 1.25 - - 15 

Juradin et al. 

(2012) 
1-8 - - - - 

Lotfy et al. 

(2014) 
12 1.21 621.5 - 16.2 

Cui et al. 

(2010) 
5-10 - 670 1175 9.2 (1h) 

Lotfy et al. 

(2015a) 
10 1.21 621.5  16.2 



14 
 

Maghsoudi et 

al. (2011) 
4.75-9.5 - - - 18.02 

Rajamanickam 

and Vaiyapuri 

(2016) 

12 0.42 - - 38 

Bogas et al. 

(2012) 
12.5 - 613 1068 12.3 

Mohammadi 

et al. (2015) 
- 0.45 300 - 40 

Corinaldesi 

and Moriconi 

(2015) 

15 1.15 - - 15 

Shanker 

(2016) 
12 1.78 - 1112 40 

 

2.6 Remark 

The mix proportion of LWSCC and its corresponding performance in terms of both fresh and 

hardened state are greatly dependent on the physical properties of LWA incorporated. 

Concerning the characteristics of LWA such as specific gravity, size gradation, shape, texture, 

and water absorption capacity, they can significantly alter the amount of material used in mix 

design. Specific gravity of LWA used can affect the resulting concrete density. From the review 

above, it is noted that the specific gravity of LWA of less than 2.0 is used to produce lightweight 

concrete in order to produce concrete of density below 1920kg/m3. Aggregate size, gradation 

and texture can greatly influence the amount of cement paste used to lubricate aggregates in 

order to achieve self-compacting ability as well as to fill in the voids between aggregates. Since 

LWA is generally present as angular and flaky shape, most of the researchers have limited the 

maximum coarse aggregates size up to 12.5 or 16mm. This can reduce the surface-to-volume 

ratio in order to minimize the cement used to achieve better workability and hence lower cost. 

Moreover, the water absorption of LWA can greatly affect both fresh and hardened properties. 

High water absorption LWA can cause workability loss when it is used as dry condition during 
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batching. Saturated LWA can greatly alter the water to cementitious material ratio used which 

will result in poor compressive strength of concrete. In the light of considerable influence of 

water absorption of LWA, LWA must be pre-wetted and allowed to achieve saturated surface 

dry (SDD) condition in order to prevent either water loss or high water content before batching.  

 

3.0 Mix design of LWSCC 

The mix proportions of LWSCC are crucial in its application as the selected proportions can 

affect the required properties in fresh and hardened states. Similar to SCC, LWSCC must attain 

the desired fresh properties such as filling ability, passing ability and segregation resistance so 

as to fulfil the self-compacting requirement. Filling ability, which is also known as flow ability, 

is the capability of concrete to flow and fill the formwork completely under its own weight. 

Meanwhile, passing ability refers to the capability to flow past the confined spaces between 

steel reinforcement congested area without segregating and clogging within the space of 

formworks. Segregation resistance is the capability to stay homogeneous during the process of 

transporting, placing and after placing without tendency to bleed and separation of aggregates 

from mortar. Similar to any other type of concrete, strength, volume stability and durability of 

the hardened LWSCC are important in structural applications (Sethy et al., 2016). The 

performance of LWSCC is greatly influenced by the constituent of raw materials, the dosage 

of chemical and mineral admixtures, types of aggregate used, packing density, water to cement 

ratio (W/C) and design procedures.  

At the present moment, standardized method for obtaining mix design of SCC does not exist. 

Many researchers have developed and proposed several design methods for SCC based on 

scientific theories and empirical expressions. In the context of SCC, the design methods can be 

classified into five categories based on their design principles, which are empirical design 

method, compressive strength method, close aggregate packing method, statistical factorial 
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method and rheology of paste model (Shi et al., 2015). However, there is limited mix design 

method has been developed for LWSCC. The majority of the available LWSCC mix design 

methods in literatures are mainly based on close aggregate packing method. Many researchers 

prefer to develop the mix design of LWSCC by trial and error method as most of the proposed 

methods are not suitable to be used once the requirement of application is changed. This is 

commonly done by varying the binder content, binder/water ratio, admixture dosage, fine and 

coarse aggregate ratio. The review of LWSCC mix design method will be presented in the 

following section. 

3.1 Shi and Wu Method 

The combination of the least void volume for binary aggregate mixture, excess paste theory and 

ACI 211 has been adopted by Shi and Wu (2005) in proportioning the mix design of LWSCC. 

The relationship between void volume or density of combined aggregates and coarse to fine 

aggregates volume ratio is determined by using particle packing concept in accordance with 

ASTM C29/ C29M. The least void volume of combined aggregates was found to be 0.5 in their 

study. However, the authors recommended to use coarse to fine aggregates ratio of 0.6 as it 

does not increase much void but decrease the density significantly. Excess paste theory is then 

used to determine the minimum quantity of paste required to fill in the void among the 

aggregates and also to allow SCC to flow with minimum frictions between aggregates as well 

as to balance the mixture by the quantity of water retained by the aggregates as illustrated in 

Figure 3. The required volume of excess paste is highly dependent on the characteristics of 

LWA, such as gradation, shape and surface texture, which can be determined through laboratory 

tests. The cement content and water to cement ratio are then determined from ACI 211 based 

on the designed compressive strength. The cement content is fixed from the chosen value while 

excess paste is produced from powders including fly ash and glass powder. The workability is 

then adjusted by varying the SP dosage. The authors successfully design LWSCC with 
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satisfactory flowability and segregation resistance by using the proposed method. However, the 

proposed method requires intensive laboratory work to obtain the necessary information to 

proportion mix design.  

 

 

Figure 3: Excess Paste Theory(Abdizadeh et al., 2009) 

3.2 Hwang and Hung method 

For DMDA, Hwang and Hung (2005) developed this method based on ACI 318 and the fact 

that high physical density can produce optimum physical properties. In DMDA method, the 

mixture proportion algorithm is classified into aggregate and paste phase. Aggregate phase 

comprises lightweight aggregate, normal weight fine aggregate and fly ash while cement, slag, 

water and superplasticizer constitute paste phase. Finer particles fill the voids of the coarse 

aggregates to minimize the porosity in order to form the major skeleton of aggregates phase as 

shown in Figure 4. This in turn increases the density of solid materials and reduces the content 

of cement paste as illustrated in Figure 5. Paste phase is mainly used for lubricating aggregates 

in order to achieve concrete workability. This method is suitable for mix proportion design 

aimed to reduce water and cement content by using the physical packing density of aggregate 

which results in lower permeability of LWSCC. Though, this method does not take into account 

the optimum weight of concrete as long as the optimum properties are obtained. This may result 

in high density concrete. The authors recommended to use high water to binder (w/b) ratio of 

more than 0.42 to prevent autogenous shrinkage of the cement paste due to cement hydration 

and pozzolanic reaction. In fact, it is not necessary to use high w/b ratio when LWA are pre-
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soaked and achieved saturated surface dry condition (SSD) before casting. The water from 

internal pores is able to prevent the autogenous shrinkage. Moreover, in this method, the 

aggregates packing density can be enhanced by adding fly ash which fill the voids in LWA.  

Fly ash should not be considered as the part of aggregate phase as fly ash is supplementary 

cementitious materials. 

 

 

Figure 4: DMDA method(Hwang & Hung, 2005). 

 

Figure 5: Packing density and porosity of concrete mix (Hwang & Hung, 2005). 

3.3 Kaffetzekis and Papanicolaou 

Kaffetzakis and Papanicolaou (2012) proposed another LWSCC mix design method based on 

optimum packing point (OPP) concept and workability criteria. This method involves the 

investigation of paste, mortar and concrete phase of material. Cement paste and mortar are 

assessed through wet packing method, which is used to determine the packing density of cement 

paste and mortar. This concept involves the determination of total voids and air voids as well 
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as the solid concentration factor of a given water to cementitious materials volumetric ratio 

(𝑉𝑤/𝑉𝑐𝑚). High 𝑉𝑤/𝑉𝑐𝑚 ratio is used as trial initially. The ratio is then decreased until solid 

concentration factor is about to decrease. Void ratio versus 𝑉𝑤/𝑉𝑐𝑚curve will be plotted based 

on the trials as shown in Figure 6 . Optimum packing and void ratio can be determined from 

the curve. The derived mortars from OPP concept must be assessed for self-compactness 

through slump-flow and V-funnel test. This method assumes that the least void volume of 

mixture corresponds to the optimum flowability in both paste and mortar. For concrete phase, 

the aggregate packing index is first determined from aggregate apparent and particle density.  

LWSCC is then proportioned by modifying the mortar to aggregates void volumetric ratio based 

on the equation derived by Jacobsen and Arntsen (2008). The workability must be assessed 

using SCC fresh concrete test. The authors argue that maximizing packing density should be 

solely used to determine the mix proportion of LWSCC, which contradicts with the method 

proposed by Hwang and Hung (2005). 

 

Figure 6: Total voids versus 𝑽𝒘/𝑽𝒄𝒎 (Kaffetzakis & Papanicolaou, 2012) 

Kaffetzakis and Papanicolaou (2016b) proposed a semi-automated mix design methodology 

which was based on the concept of optimum packing point (OPP) from their previous research 

and incorporated with statistical analysis. The authors derived a series of procedures from 

statistical analysis and previous research works to proportion the LWSCC mix design based on 
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the target performance. Three performance parameters, which are 28-day compressive strength 

(𝑓𝑙𝑐𝑚.𝑐𝑢𝑏𝑒), oven-dry density (ρ ) and slump flow (S-F), can be pre-set in the equations from the 

statistical analysis in order to determine the required mix proportion. Design parameters 

including volumetric ratio of LWA (𝑉𝑙𝑎), water to cementitious material ratio (𝑊𝑒𝑓/𝐶𝑀) and 

cementitious material content (CM) can be calculated based on the design performances and 

equations proposed by Kaffetzakis and Papanicolaou (2016a). These procedures involve the 

specifying the desired performance, calculation of design parameters and implementation of 

OPP procedures as illustrated in Figure 7. The authors have validated the design procedure by 

carrying out two LWSCC mix designs and the resulting performance correlates well with the 

proposed target. However, this method is only limited to the use of certain materials such as 

cement, limestone fillers, silica fume and pumice aggregates. Further laboratory investigation 

as stated in previous research (Kaffetzakis & Papanicolaou, 2012) has to be carried out if other 

materials are used in producing LWSCC. 

 

Figure 7: Semi-automated LWSCC mix design procedure(Kaffetzakis & Papanicolaou, 

2016a) 
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3.4 Kanadasan and Razak method 

Kanadasan and Razak (2014) modified the particle packing method of SCC which was 

originally proposed by Choi et al. (2006) to allow for the substitution of palm oil clinker (POC) 

aggregates in SCC. The substitution can be made on either fine or coarse aggregates at the level 

of 0% to 100%. It is based on the concept of minimizing the void of concrete by using 

appropriate size and gradation of aggregate with the use of minimum volume of paste as shown 

in Figure 8. The authors introduced an additional correction lubrication factor (LCF) to particle 

packing factor (PP) to allow for the characteristics of LWA aggregates when aggregates 

substitution is made in LWSCC mix design. The authors highlighted that the voids produced 

by flaky and porous structure of POC aggregates could be filled and lubricated by the binder 

paste. The proposed method fixed the fine aggregates ratio at 0.5 and 0.6 to allow wider range 

of ratios for SCC. The authors studied the cement content varied from 380 to 420kg/m3 and 

recommended that 420kg/m3 could produce the optimum performance SCC. However, the 

authors also mentioned that trial has to be carried out to ensure the required performance. The 

authors also demonstrated experimentally that the proposed method is able to produce LWSCC 

when 100% substitution of LWA is incorporated. PP theory is able to produce LWSCC mix 

design with minimum void volumes relative to the coarse aggregate, water to binder ratio, 

maximum cementitious materials density as well as the optimum fresh concrete properties. This 

theory provides good understanding of the consumption of aggregate and paste volume for a 

given unit volume of concrete. The proposed method is also applicable for a variety 

combination of other aggregates. However, the PP factor and CLF have to be determined in 

laboratory if other types of aggregates and their combinations are used. Besides, the actual 

performances of the designed mix must be checked in laboratory. 
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Figure 8: PP Test Illustration (Kanadasan & Razak, 2014). 

3.5 Li et al. method 

Li et al. (2017) proposed another LWSCC mix design method based on the packing and mortar 

film thickness theory. This method determines the sufficient amount of paste to fill the voids 

between aggregates and form a thin layer to overcome the frictions between aggregates which 

is similar to the DMDA proposed by Hwang and Hung (2005). The methodology involved two 

stages, which are the optimization of granular skeleton of aggregates and cementitious material 

composition. Stage one involves the characterization of coarse and fine aggregates in terms of 

bulk density and void volume percentage. The authors adopted the method proposed by Shi and 

Wu (2005) to obtain the optimum balance point between bulk density or porosity of aggregates 

and coarse aggregates to total aggregates ratio (Vg/VTotal). The authors recommended to use 

coarse to total aggregates ratio of 0.6. The value higher than 0.6 could result in more 

consumption of paste to fill the void in LWA which could lead to more production cost. A value 

less than 0.6 will result in higher density which contradicts to the definition of lightweight 

concrete. These values are then used to determine the optimum coarse to fine aggregates volume 

ratio with the consideration of mortar film thickness (MFT). MFT is defined as half the average 

distance between surfaces of coarse aggregate particle. It reflects the dosage and physical 

properties of coarse aggregates including aggregate grading and stacking porosity. Stage two 

involves the optimization of minimum water content required for binder by using the method 

proposed by Laboratory Central des Ponts et Chausses (LCPC). Cement, mineral admixtures 

water and filler dosage are then determined based on the minimum water and the respective 
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material density. The amount of SP dosage needs to be determined through the rheology study 

of mortar in laboratory. Trial batch must be carried out to ensure the mix design can achieve 

the required performance. The authors highlighted that the mixing time should not more than 3 

minutes to avoid segregation. The authors suggested an equation to estimate the dry density of 

LWSCC mixture from the proposed design as below: 

ρdry= ms+ mg+ 1.2mcm 

where ms is the mass of sand; mg is the mass of coarse aggregates; and mcm is the mass of 

cementitious materials. From the results of validation tests, the authors stated that interfacial 

transition zone (ITZ) between aggregates and paste can be improved and more compacted due 

to the increase of MFT.  The authors have successfully developed the LWSCC mix design with 

adequate fresh properties and compressive strength up to 54MPa by using the proposed 

methodology. In short, the proposed method is based on simple design principles and is 

applicable to other type of LWA. However, the proposed method is not able to proportion the 

LWSCC mix design based on specified workability and compressive strength criteria.  

 

3.6 Nepomuceno et al. method  

Nepomuceno et al. (2018) modified a normal weight SCC mix design method which was 

originally proposed by their previous research (Nepomuceno et al., 2012; Nepomuceno et al., 

2016; Nepomuceno et al., 2014) to develop LWSCC mix design. The proposed methodology is 

based on the rheological study of mortar phase and combination of it with coarse aggregates in 

concrete phase. This methodology involves the characterization of constituent materials, 

determination of volumetric ratio of both fine aggregates and coarse aggregates from reference 

grading curve which was originally proposed by Nepomuceno et al. (2014), and powder 

material to total volume of respective content. Volume ratio of water to power content and mass 
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ratio of superplasticizer to powder content are then determined in mortar phase through iterative 

process experimentally until flow capacity and fluidity complied to the required rheology. The 

volume of LWA is then determined by quantifying the ratio between the volume of mortar and 

coarse aggregates and finally the volume of void is defined based on the porosity of LWA. In 

this method, the effect of low density of LWA was considered by adding extra criteria in mortar 

rheological study stage. The flow properties in mortar phase must be able to prevent the 

dynamic and static segregation of LWA. The authors stated that the dynamic segregation 

resistance can be evaluated during workability test while static segregation is evaluated by 

visual observation of axially cut cylinders after 24h of batching. The authors noticed that the 

reference grading curve of NWA is applicable to LWA since the LWA used in their research 

has more round and spherical shape compared to NWA. However, the reference grading curve 

must be determined in laboratory by using the method proposed by if LWA of different shape 

index is used. LWSCC can be proportioned based on the required fresh and hardened properties 

such passing ability, density and compressive strength. The passing ability of designed LWSCC 

can also be quantified by Vm/Vg ratio by using the statistical equation proposed by Nepomuceno 

et al. (2014) and Nepomuceno et al. (2016). The density of designed mix is highly dependent 

on Vm/Vg ratio and can be considered in the equation of this proposed method. The designed 

compressive strength of LWSCC can be quantified by varying W/C ratio and Vm/Vg ratio 

through the statistical equation or design chart provided. The authors have successfully 

developed the LWSCC mix design with adequate fresh properties and compressive strength in 

the range of 35 to 59MPa by using the proposed methodology. In short, compared to the 

methodology proposed by other researchers, this method is able to proportion the LWSCC mix 

design based on selected passing ability, density and compressive strength requirements. 
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3.7 Remark 

Although Mazaheripour et al. (2011) recommended to apply high performance concrete mix 

design method for LWSCC to avoid segregation and maintain the strength, the method cannot 

produce optimum LWSCC mix proportion in terms of fresh and hardened properties. The 

resulting density is not within the upper limit of lightweight concrete in accordance to ASTM. 

It is clear from the research reviewed above that most of the proposed methodologies for 

proportioning LWSCC mix design are based on close aggregate packing principle. Aggregates 

packing principle is used to determine the least void among the aggregates in order to minimize 

the void produced by LWA as well as to determine the optimum coarse to fine aggregates ratio 

in order to produce the lowest density LWSCC. From the literatures above, it is noticed that the 

coarse to fine aggregates ratio used is generally in the range of 0.5 to 0.6 and the ratio of 0.6 is 

recommended by most of the researchers as it is the most cost efficient. The paste is then applied 

to fill the voids to become LWSCC which can be determined through either excess paste theory 

or rheological study of cement paste or mortar. However, intensive laboratory work is required 

in obtaining the necessary information. Most of the proposed methodologies is not able to 

proportion the LWSCC mix design based on required performance such as specified 

workability and compressive strength criteria. Furthermore, durability requirements such as 

shrinkage, creep, physical durability and chemical durability are not considered in proposed 

mix design methodology by researchers. As such, further statistical data analysis is required in 

order to simplify and produce performance based LWSCC mix design methodology.  

4.0 Fresh Properties of LWSCC 

4.1 LWSCC workability criteria 

As previously stated, LWSCC must be assessed for filling ability, passing ability and 

segregation resistance and they are used to measure the workability of LWSCC. There are 

several methods for assessing each of these properties. Several publications  such as EFNARC 
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(2002) and ACI-237 (2007) provide the guidelines to carry out workability test for SCC. The 

methods to assess the filling ability are slump flow, T500, Kajama box, v-funnel, o-funnel and 

orimet. Assessing the filling ability is the most fundamental test for any type of SCC as it can 

be used to assess the consistency of SCC to meet the guideline requirements. The test for 

assessing passing ability are L-box, U-box, J-ring and Kajama box. These tests adopt the 

concepts of allowing SCC to pass through a pre-set spacing. This spacing is the smallest gap 

whereby SCC can flow continuously to fill the formwork. Also, segregation resistance can be 

assessed through penetration, sieve segregation, settlement column and visual segregation. SCC 

is mostly prone to segregation during and after placing. Segregation is a crucial problem in the 

casting of vertically tall structural element as it can lead to the uneven distribution of aggregates 

and mortar in LWSCC. The workability performance requirements of  EFNARC (2002) for 

SCC are shown in Table 2. According to EFNARC (2002), these criteria are developed based 

on the current knowledge and research. SCC with fresh properties outside these criteria may be 

acceptable if it is able to perform properly under the required conditions. Future developments 

will likely produce different requirements for these criteria. For example, these criteria may be 

relaxed if the formwork design is very simple or the spacing between the reinforcement is large.  

Table 2: SCC workability criteria of EFNARC (2002) guidelines 

Workability Test Class Criteria 

Filling ability 

Slump Flow (mm) 

SF1 550-650 

SF2 660-750 

SF3 760-850 

T500 (s) 
VS1/VF1 ≤ 2 V − Funnel ≤ 8 

VS2/VF2 ≥ 2 time(s) 9 − 25 

Passing ability 

Step height in J-ring 

(mm) 

PA1 Sj ≤ 15 (59 mm bar spacing) 

PA2 Sj ≤ 15 (40 mm bar spacing) 

L-Box  0.8 - 0.1 



27 
 

U-Box  0 - 30 

Segregation 

Resistance 

Sieve segregation 

(%) 

SR1 ≤ 20 

SR2 ≤ 15 

 

4.2 Review of previous research 

In the past decade, substantial study has been done on the fresh and hardened properties of 

LWSCC.. Lotfy et al. (2015a) had studied LWSCC with different type of LWA including 

furnace slag, expanded clay and expanded shale. The authors found that LWSCC with expanded 

shale as LWA achieved the best workability with respect to filling ability, passing ability and 

segregation resistance among the three aggregates. Lotfy et al. (2015a) explained that the fine 

portion of expanded shale aggregates is finer than the other two LWA which results in better 

packing density and less void between the aggregates particle, allowing the excess paste in 

LWSCC to achieve better flowability and segregation resistance. The excess paste required for 

improving workability highly depends on the gradation, shape and surface texture of aggregates. 

They agreed the research outcome of Shi and Wu (2005). In short, the workability of LWSCC 

is highly dependent on the aggregates packing density and void volume. 

Lotfy et al. (2015b) performed a series of experimental investigation on the parameters that 

affect the workability of LWSCC. They studied the effect of water to binder ratio (w/b), 

superplasticizer dosage and total binder content on the workability of LWSCC. Expanded shale 

was used as aggregates in LWSCC. From their research outcome, the filling ability and passing 

ability of LWSCC were found to be improved significantly with the increasing of w/b ratio and 

superplasticizer dosage respectively as well as the combination of these two parameters. The 

improved parameters are indicated by the increasing spread of slump flow, reduction of v-

funnel flow time and increasing of L-box ratio. However, with the fixed amount of 

superplasticizer, there is a limit to the improvement of the filling ability of LWSCC by 

increasing the content of binder. The increase in binder content resulted in higher demand of 
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superplasticizer so as to maintain similar filling ability. Similarly, the increase in water and 

superplasticizer dosage was found to be able to improve the passing ability. However, the 

increase in binder content would affect the passing ability negatively. In contrast, segregation 

resistance was found to be improved with the increase of binder content as it can enhance the 

packing density of LWSCC mixture. Nonetheless, poor segregation resistance was resulted as 

water and superplasticizer dosage increased. They agreed with the research findings of Sonebi 

et al. (2007) that the fresh properties of SCC are significantly affected by water and 

superplasticizer dosage. LWSCC exhibit similar behaviour as the normal SCC when influenced 

by water and superplasticizer dosage. In general, the performance of LWSCC workability with 

respect to filling ability, passing ability and segregation resistance is greatly influenced by water 

to binder ratio, superplasticizer dosage and total binder content. 

Grabois et al. (2016) investigated the effect of steel fibers on the fresh and hardened properties 

of LWSCC. Expanded clay was used as aggregates in their research. The addition of steel fibers 

in LWSCC was able to slightly increase the slump flow spread. It is because steel fibers, which 

have higher density, provide more self-weight for SCC to flow under gravity. However, the V-

funnel flow time decreased with the addition of steel fibers due to the blockage of steel fibers 

inside the V-funnel restricted area. They demonstrated that the LWSCC with poor flow time 

were able to be used for casting the “U”-shape thin wall panel. The aggregates and fibers were 

found to be homogenously distributed along the panel length. The findings in their study 

provided a new understanding that LWSCC is able to fill the narrow formwork even with the 

flow time outside the SCC workability requirement as stated in Table 2. 

On the other hand, Mohammadi et al. (2015) examined the effect of silica fume with 0% to 15% 

of binder replacement on the properties of LWSCC workability with expanded clay and perlite 

as aggregates. The flowability and segregation resistance of LWSCC were found to be 

improved with the replacement as well as the increased dosage of silica fume. They also 
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concluded that LWSCC with expanded clay as aggregates achieved better workability 

compared to LWSCC with perlite as aggregates. 

Corinaldesi and Moriconi (2015) studied the effect of the addition of synthetic fibers in LWSCC 

with expanded clay as aggregates and recycled concrete aggregate as partial replacement. It was 

noticed that the incorporation of fibers is able to improve the filling ability while it had negative 

effect on the passing ability. Silica fume was also studied. They observed that addition of small 

amount of silica fume can result in higher viscosity. Poor flow ability and passing ability were 

observed but the segregation resistance was improved. Similar observation was obtained with 

addition of silica fume in LWSCC with synthetic fibers. However, the findings of Corinaldesi 

and Moriconi (2015) had contradicted with the findings obtained by Mohammadi et al. (2015). 

A comprehensive study of LWSCC was done by Floyd et al. (2015) on the effect of 

cementitious material and aggregate type on the workability of LWSCC. Two types of 

aggregates, which are expanded clay and expanded shale, were studied by them. They found 

that better visual stability of LWSCC was achieved by increasing the cement content. For 

common finding similar with other researchers, the increase in superplasticizer dosage could 

result in improved filling and flowing ability. With the constant amount of SP dosage and w/b 

ratio, the increase of volumetric sand to total aggregate ratio was found to be able to produce 

better fresh properties with optimum ratio of 0.51. Also, no significant improvement in fresh 

properties was noted by incorporation of silica fume with 5% and 10% in LWSCC with lower 

cement content. For LWSCC with high cement content, the fresh properties tend to be improved 

with only 5% or 10% incorporation. Poorer fresh properties were achieved by LWSCC with 

Type I cement compared to Type III cement. The fresh properties of LWSCC with Type III 

cement can be improved by partially replacing binder with fly ash as shown in their study. Floyd 

et al. (2015) stated that LWSCC with expanded shale exhibited better fresh properties compared 

to expanded clay with the same amount of other mixture content which agreed with the findings 



30 
 

of Lotfy et al. (2015a). Also, the authors changed the coarse aggregates distribution in their 

study by limiting the maximum aggregate size to 12.5mm. This resulted in better fresh 

properties. In short, the fresh properties of LWSCC are highly dependent on binder content, SP 

dosage, type of aggregates used and volumetric sand to total aggregate ratio.  

Kurt et al. (2015) investigated the effect of fly ash, different water to binder ratio and 

replacement of pumice aggregates with natural aggregates on LWSCC. The filling ability was 

found to be improved with the increasing of water to binder ratio as well as fly ash replacement. 

Due to the low pozzolanic activities of fly ash, its increase could retard the bonding of water to 

mixture and hence the loss of workability. However, segregation was observed in their research 

when water to binder ratio exceeded the optimum value. Also, the spreading capability of slump 

flow was found to be increased with the density increase of LWSCC as the spread and 

placement properties of LWSCC were highly dependent on its own weight. With the increase 

of pumice aggregates in LWSCC, the time required to spread 50cm diameter also increased as 

well as the V-funnel flow time. This can be explained by the loss of weight with the replacement 

of LWA in LWSCC resulted in self-weight to be less than threshold stress. Since the self-weight 

was below the threshold stress, the authors implied that it could increase the tendency of static 

segregation. 

Bozkurta and Taşkin (2017) studied the effect of the use of barite, fly ash and pumice as powder 

on the LWSCC fresh properties. The authors observed that LWSCC with barite powders are 

the best among three types of powder in improving the fresh properties in terms of flowability 

and filling ability. However, the authors reported that the use of barite as power content in 

LWSCC could cause bleeding due to its poor adhesiveness and viscosity resistance. As such, 

the ratio of low adhesive powder content is crucial in developing LWSCC to prevent bleeding. 
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Ardalan et al. (2017) investigated the effect of fly ash, pumice and slag as binder partial 

replacement in LWSCC on retention workability after 50minutes. The authors stated that 

pumice blend require more superplasticizer dosage to achieve target slump flow among the 

three types of supplementary cementitious materials. Conversely, fly ash blend requires lesser 

dosage of SP in order to achieve target slump flow. It was explained that the spherical geometry 

of fly ash particles is able to reduce the fraction resistance of cement particles and enhancement 

of the mixture fluidity. Among the three types of blend mixture, fly ash blended LWSCC 

showed significant slump flow loss after 50minutes while pumice blended LWSCC showed the 

best retention capacity. 

Law et al. (2018) studied the LWSCC incorporated with perlite, scoria and polystyrene (BTS) 

as lightweight aggregates. LWSCC with BTS are highly prone to segregation due to their ultra-

lightweight characteristic. This can be overcome by using higher binder content which could 

provide sufficient plastic viscosity to suspend the aggregates in concrete. The passing ability of 

LWSCC with scoria aggregates decreased with increasing scoria aggregates replacement. The 

authors recommended to improve the passing ability by increasing the binder content. The 

author concluded that the use of lightweight aggregates at high level replacement to produce 

LWSCC could result in adverse effect on workability. Meanwhile, Aslani et al. (2018) studied 

the effect of partial replacement of scoria and recycled aggregates in LWSCC. Their mix 

designs are similar to that of Law et al. (2018). The authors reported that although recycled 

aggregates contribute negative influence on workability of LWSCC, the combination of 

recycled aggregates and scoria aggregates are still able to produce LWSCC that fulfill the 

criteria of EFNARC (2002). 

4.3 Remark 

The studies presented thus far provide evidence that the workability of LWSCC is highly 

dependent on the aggregates packing density and void volume. In general, similar to normal 
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SCC, the performance of LWSCC workability with respect to filling ability, passing ability and 

segregation resistance is greatly influenced by water to binder ratio, superplasticizer dosage and 

total binder content. The inclusion of different types of supplementary materials has different 

effects on LWSCC workability. When silica fume is used, and with increasing replacement 

level, the segregation resistance of LWSCC is found to be improved while it has negative effect 

on filling and passing ability. The inclusion of fly ash as binary or ternary blend can not only 

improve all the three fresh properties but also reduce the amount of SP required. In addition, 

the incorporation of fibers such as steel and synthetic fibers is able to improve the filling ability 

but it causes negative effect on passing ability.  
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5.0 Hardened properties of LWSCC 

5.1 Compressive strength 

The most important required property of any innovative material is its compressive strength. 

The compressive strength of concrete has great influence on its structural performance. As 

mentioned previously, the compressive strength of LWSCC is significantly affected by the 

composition of raw materials, the dosage of chemical and mineral admixtures, types of 

aggregate used, packing density and water to binder ratio (W/B). 

Substantial research has been done on the compressive strength of LWSCC with different 

parameters. Corinaldesi and Moriconi (2015) studied the effect of addition of synthetic fibers 

in LWSCC with expanded clay as aggregates and recycled concrete aggregate as partial 

replacement. In their research, low density LWSCC (1250kg/m3) with concrete strength of 

grade 40 at 28 days could be achieved by the addition of silica fume which could enhance the 

concrete strength development. According to the authors, the addition of macrofibers did not 

compromise the degree of concrete compaction of which even could result in more viscous 

concrete. However, the compression strength was found to be 10% higher than LWSCC without 

fibers. Similar trends of LWSCC compression strength were obtained by using steel fibers or 

synthetic fibers at high dosage. The addition of fibres such as steel, synthetic and macro fibers 

will increase the compressive strength of LWSCC. 

Lotfy et al. (2015a) conducted a series of study on the hardened properties of LWSCC by using 

different type of LWA such as furnace slag, expanded clay and expanded shale. The volume 

ratio of coarse to fine aggregate of all the mixtures were determined by particle packing 

procedures in accordance with ASTM C29/C29M. They had found that LWSCC with expanded 

shale as LWA achieved the highest strength and expanded clay attained the lowest among the 

three types of LWA. The authors explained that these were attributed to the lower volume of 

coarse LWA for LWSCC with expanded shale. Expanded shale aggregates achieved superior 
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packing density which reduce the coarse portion required and enable more fine particles to fill 

up the voids in the concrete matrix. Lotfy et al. (2015a) suggested that higher strength LWSCC 

can be proportioned with relatively low dry density, high aggregate packing density and low 

coarse to total aggregates volume ratio. The authors also noticed that aggregates are the weak 

point of the concrete matrix in LWSCC as all the failed samples exhibited aggregate fracture. 

It is also proven by the studies of Nepomuceno et al. (2018). The authors reported that LWSCC 

attained lower compressive strength when compared to normal SCC with the same mix 

proportion. LWSCC achieved compressive strength between 35-57MPa while SCC achieved 

53-87MPa. As pointed out by these researchers, under compressive force, LWSCC fail with the 

rapture of LWA as they form the weak link in the concrete matrix. 

Lotfy et al. (2015b) performed a series of experimental investigation on the parameters that 

affect the hardened properties of LWSCC. The w/b ratio and total binder content were found to 

be the main parameters affecting the LWSCC compressive strength. The LWSCC strength 

increased with the decreasing of w/b ratio. The 28-day compressive strength also increased with 

the increase of total binder content.  The amount of superplasticizer dosage was found to have 

no effect on the LWSCC strength. These findings conformed to the basic knowledge of concrete 

property.  

Grabois et al. (2016) observed that their LWSCC mix design were able to achieve 70% of the 

28-day strength in a day. Their mix design is suitable for high early strength applications. Also, 

the incorporation of steel fibers in LWSCC could result in lower compressive strength. For 

failure mode, they noticed that the rupture was occurred through the LWA and yet the interfacial 

transition zone was still intact.  The authors explained that the mortar was stronger than LWA 

in lightweight concrete which was in conformity with the findings of Lotfy et al. (2015a). The 

use of expanded clay aggregates could result in better paste-porous LWA bonding.  
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Mohammadi et al. (2015) studied the effect of silica fume on LWSCC containing perlite and 

expanded clay as LWA. They observed that the LWSCC containing expanded clay as LWA 

achieved higher compressive strength compared to perlite as LWA. However, the compressive 

strength differences decreased when the increase of silica fume replacement. The replacement 

of silica fume in LWSCC would increase LWSCC compressive strength. Nevertheless, 

Mohammadi et al. (2015) only studied the silica fume replacement up to 20% of total binder. 

The result is yet to be known if the silica fume replacement is more than 20%. The optimum 

replacement percentage is also not known.  

Kurt et al. (2015) conducted a series of experimental test to investigate the effect of fly ash, 

different water to binder ratio and replacement of pumice aggregates with natural aggregates 

on LWSCC. With the increasing percentage of pumice aggregates replacement, the 

compressive strength of LWSCC decreased significantly. This concurred with the findings of 

Floyd et al. (2015) and Grabois et al. (2016) that the LWA are generally weaker than mortar 

even though the LWA used by both authors are different. Also,  Kurt et al. (2015) found the 

compressive strength decreased with higher water content which is generally true. LWSCC 

with fly ash replacement gain strength at the slower rate than that those without fly ash 

replacement at the early stage (e.g. 7 days). Nevertheless, they achieved almost similar strength 

at later age (e.g. 90 days). The authors attributed the findings to low pozzolanic activity of fly 

ash at the early stage when its content increased. The replacement of fly ash in LWSCC could 

significantly improve the fresh concrete properties but require longer time to gain strength.  

A comprehensive study was done by Floyd et al. (2015) to investigate the effect of cementitious 

material and aggregates type on the properties of LWSCC. The LWSCC with expanded clay 

were found to fail around the aggregate particle while LWSCC with expanded shale failed with 

the fracture of individual particles. The authors explained that the smooth surface of expanded 

shale aggregates had caused poor bonding between the aggregates and cement mortar. From 



36 
 

the failure mode of LWSCC with expanded clay,  Floyd et al. (2015) concluded that the 

compressive strength of LWSCC is greatly influenced by the strength of LWA. The authors 

also found that water to binder ratio has less significant effect on compressive strength of 

LWSCC designed with high cement content in their particular research. The authors also 

observed that it was difficult to estimate the moisture content of wet LWA before concrete 

casting. The moisture content can cause significant variation in compressive strength of 

LWSCC with the given amount of cement content and w/b ratio.  

Ardalan et al. (2017) studied the compressive strength of LWSCC with different types of 

supplementary cementitious material including fly ash, slag, pumice and silica fume in binary 

and ternary blend. The authors stated that the use of fly ash and pumice at high level 

replacement could result in significant strength reduction. However, slag with high level 

replacement showed comparable strength to control mix. Ternary blend of cement, pumice and 

silica fume resulted in increased compressive strength when compared to control mix. The 

author also noticed that increasing of silica fume content could significantly improve the 

compressive strength at 28 days. 

Law et al. (2018) studied the compressive strength of LWSCC incorporated with perlite, scoria 

and polystyrene (BTS) as lightweight aggregates. Increase in LWA content in LWSCC could 

result in decrease in compressive strength. Among the three types of LWA, scoria based 

LWSCC showed less significantly strength reduction when the LWA content was increased. 

The authors reported that the use of BTS in LWSCC could result in weak bond between the 

binder paste and the aggregates, thereby creating a weak interfacial transition zone and hence 

reduction in compressive strength. Perlite based LWSCC showed most significant strength loss 

when the LWA content was increased.  The authors explained the excess pore water in the 

perlite was released due to crushing during mixing. 
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5.2 Flexural strength 

Flexural strength is one of the parameters measuring the tensile strength of concrete. No 

significant improvement on the flexural strength of LWSCC with the addition of synthetic 

fibers was noticed in the works of Corinaldesi and Moriconi (2015). In the research done by 

Lotfy et al. (2015a), the flexural strength of LWSCC with three different types of LWA were 

found to be 9.8%-10.5% of the compressive strength. LWSCC with furnance slag as aggregates 

was able to achieve the highest flexural strength among the three types of aggregates while 

LWSCC with expanded clay as aggregates achieved the lowest. The authors mentioned that 

quality, size, and volume of coarse aggregate would affect the flexural strength of LWSCC. 

The authors developed the mathematical correlation expression of LWSCC flexural strength to 

compressive strength which is quite similar to normal SCC. This is shown as Equation 1. 

                                                𝑓𝑓 = 0.1702𝑓𝑐
,0.8482                                                                 Equation 1 

 

Grabois et al. (2016) stated the incorporation of steel fibers in LWSCC did not significantly 

improve the flexural strength. In short, there is limited research for flexural strength of LWSCC 

since it is not the main interest of the research and its application is not well established. 

5.3 Tensile strength 

Concrete is generally weak under tension action. The tensile strength of concrete is commonly 

used to estimate the load that will cause the development of cracking in the member under 

flexural loading. Once the concrete cracks, the concrete behaviour will be affected (Malárics & 

Müller, 2010). In the research done by Corinaldesi and Moriconi (2015), the LWSCC tensile 

strength did not improve with the addition of synthetic fibers. By referring to the works done 

by Lotfy et al. (2015a), similar trends were found in tensile splitting strength with compressive 

strength. LWSCC with expanded shale as LWA achieved the highest strength and expanded 

clay attained the lowest. The authors developed the mathematical correlation expression of 
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LWSCC tensile splitting strength to compressive strength. This is shown as Equation 2. They 

compared the accuracy of their equation for estimating tensile splitting strength from 

compressive strength with equations from fib model code and ACI 318. They noticed that the 

fib code equation extremely underestimated the tensile splitting strength of lightweight concrete. 

                                                𝑓𝑡 = 0.0177𝑓𝑐
,1.33                                                                    Equation 2 

 

The study conducted by Grabois et al. (2016), the tensile strength of LWSCC was determined 

under direct tensile loading. Tensile strength of LWSCC was found to be improved for about 

30% with the addition of steel fibers. They stated that addition of small amount of steel fibers 

in LWSCC could improve the tensile strength up to the first crack under direct tensile loading. 

Nevertheless, more study concerning the tensile strength of LWSCC is essential for it to fully 

replace conventional concrete in any structure. 

5.4 Modulus of elasticity 

The modulus of elasticity (E -value) is defined as the ratio between normal stress to strain below 

the proportional limit of a material. It is used to measure instantaneous elastic deformation 

which represents the stiffness of materials. According to Neville (2008), the E-value of concrete 

decreased with the use of LWA. The stiffness of LWA is generally very weak which is proven 

by a few researchers (Floyd et al., 2015; Grabois et al., 2016; Lotfy et al., 2015a). Limited 

research has been done on the elastic modulus of LWSCC. In the studies of Grabois et al. (2016), 

the Young’s modulus of their LWSCC showed linear elastic behaviour of up to 60% of total 

stress. The authors explained that the use of expanded clay LWA could improve the bonding 

between mortar and aggregates which resulted in delay of microcracking process. Also, the 

authors observed that the addition of steel fibers would decrease the Young’s modulus of 

LWSCC, which was similar to the compressive strength. Floyd et al. (2015) compared the 

experimental Young’s modulus to the calculated values by using ACI equations. The difference 
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between experimental and calculated values was within 10% and Young’s modulus was over-

predicted by ACI equation for high strength LWSCC. The Young’s modulus showed similar 

values for LWSCC made of expanded clay and expanded shale which indicated that these two 

types of aggregates having similar stiffness. In brief, the use of LWA in SCC leads to lower 

value of elastic modulus. This may be due to the weakness of the porous nature of common 

LWA. 

5.5 Remark 

In contrary to normal SCC, the compressive strength of LWSCC is mainly governed by the 

homogeneity of the batched concrete. The uniformity and homogeneity of LWSCC are 

governed by the mixing time and procedure. As highlighted by Li et al. (2017), mixing time 

should not be longer than 3 minutes in order to avoid segregation. Longer mixing time can 

cause LWA to segregate and float at the top part of specimen. Consequently, the hardened 

specimen has unbalanced aggregates distribution with more aggregates at top part and more 

cement mortar at the bottom part which can result in poor compressive strength. Well 

distribution of aggregates throughout the matrix of concrete can maximize its compressive 

strength. It can be said that the strength variability of LWSCC can be related to its aggregates 

distribution and hence is the function of segregation resistance. 

Since the mortar of LWSCC is normally stronger than LWA, the compressive strength of 

LWSCC is also dependent on the strength and proportion of LWA. The compressive strength 

of LWSCC is sensitive to changes in mix component properties and their proportions such as 

water to binder ratio, binder content and the incorporation of supplementary cementitious 

materials. These factors must be considered properly in mix design in order to achieve 

anticipated workability in fresh state and compressive strength in hardened state. The optimum 

implementation of supplementary materials such as fly ash, slag and silica fume can improve 
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compressive strength. In addition, the incorporation of fibres such as steel, synthetic and macro 

fibers will increase compressive strength of LWSCC. 

6.0 Prospective and Future  challenges  

The recent and present research works provide framework for further investigation and study 

for utilization of lightweight aggregates in self-compacting concrete. Future research should 

concentrate on the investigations of the followings. 

1. The current methods for developing mix design of lightweight self-compacting concrete 

are complicated and require the validation through trial laboratory work. Further research 

is required to develop easy and simple guidelines for developing mix design of lightweight 

self-compacting concrete. One recommendation is to carry out statistical analysis of the 

relationship between mix design and performance in terms of fresh and hardened properties. 

2. Most of the current research done on LWSCC is restricted to a few types of lightweight 

aggregates only. Furthermore, there is limited research on the use of other types of 

lightweight aggregates such as sintered slate, sintered pulverized fuel ash, oil palm shell, 

colliery waste, etc in LWSCC as they have been used as LWA in lightweight concrete 

(LWC). Effort must be made to identify more variety of suitable aggregates. 

3. There is limited research on the long term durability behaviour of LWSCC such as 

shrinkage, creep, corrosion and bond strength. Moreover, these properties are not 

considered in the mix design methodology. Further research is required in this area. 

4. More study is recommended to understand the tensile strength, flexural strength, elastic 

modulus, shear characteristic, and pre-stressing application of LWSCC. 

5. The use of LWSCC technology at the present moment is restricted to research only. It will 

be a big challenge to further develop and refine this technology to be adopted and widely 

used in construction industry. 
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7.0 Conclusions 

The application of lightweight aggregates in lightweight self-compacting concrete is reviewed 

based on recent literatures and the outcome is reported in this paper. The physical properties of 

LWA, mix design methodology, fresh and hardened properties of LWSCC were discussed. 

From the literature review, the following conclusion can be made. 

1. Different LWA exhibit different specific gravity, size gradation, shape characteristic, bulk 

density and water absorbability which lead to different performance of LWSCC. LWA of 

specific gravity less than 2.0 is commonly utilized to manufacture LWSCC. The maximum 

LWA sizes are limited to the range of 12.5 to 16mm. The shape of LWA commonly varies 

from spherical to flaky.  Different LWA exhibit different water absorption which varies 

from 5%-80%. In this regards, saturated surface dry condition has to be achieved to reduce 

water sensitivity.  

2. The workability of LWSCC depends on the aggregates packing density and void volume. 

Water to binder ratio, superplasticizer dosage and total binder content have great bearing 

on the performance of LWSCC workability. The inclusion of different types of 

supplementary materials has different effects on LWSCC workability. The use of silica 

fume as well as with its increasing replacement level, improve the segregation resistance 

of LWSCC but have negative effect on filling and passing ability. The inclusion of fly ash 

as binary or ternary blend will not only improve all the three fresh properties but also reduce 

the amount of SP required.  

3. The compressive strength of LWSCC is highly dependent on the strength of LWA as they 

are weaker than the mortar. Factors such as water to binder ratio, binder content and the 

incorporation of supplementary cementitious materials will affect the compressive strength 

of LWSCC significantly and they must be considered properly in mix design. Optimum 

inclusion of supplementary materials such as fly ash, slag and silica fume will improve the 
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compressive strength. Also, fibres such as steel, synthetic and macro fibers will increase 

the compressive strength of LWSCC 

4. This review enhances the understanding of LWSCC mix design methodology with close 

aggregate packing method being most commonly practiced. Close aggregate packing 

method establishes the relationship between paste and aggregates. Some researchers have 

introduced statistical analysis to simplify and improve the design procedures. Close 

aggregate packing principle provides clear insight into the understanding of consumption 

of aggregate and paste volume for a given unit volume of concrete. 
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