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a b s t r a c t 

In this paper, we study chance-constraint vehicle routing with stochastic demands. We propose a set- 

partitioning formulation for the underlying problem and solve it via a branch-and-price method. Our 

method is flexible in modeling different types of demand randomness while ensuring that the resulting 

problem is tractable. An extensive computational analysis, which includes simulation tests and a sensi- 

tivity analysis, is carried out to investigate the solution quality and computational efficiency. Some large 

instances of the underlying problems from the VRP library are solved to optimality for the first time. Our 

sensitivity analysis provides some useful insights about the impact of the probability of route failure on 

the decision variables, the expected cost and the route reliability. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

The vehicle routing problem (VRP) and its variants are among

the most studied problems in combinatorial optimization, due to

practical applications and theoretical challenges. In this study, we

address an important variant of the VRP, known as capacitated VRP

with stochastic demands (CVRPSD), in which the vehicle capacity

is limited, and the customers’ demands are not exactly known in

advance and revealed only upon the arrival of a vehicle. Given

stochastic demand, a vehicle may fail to serve a customer, and

hence one possible recourse action is to return to the depot before

completing its pre-planned route in order to empty its load. The

CVRPSD arises in many applications such as bank deliveries, waste

collection and grocery distribution ( Heilporn, Cordeau, & Laporte,

2011 ). 

The first result on the VRPSD, the CVRPSD without capacity

constraint, dates back to the late 1960s with Tillman (1969) . In

the 1980s, the VRPSD received more attention with Stewart and

Golden (1983) and Laporte, Louveaux, and Mercure (1989) . Since

then there has been considerable advancement in modeling and

solving the VRPSD ( Gounaris, Wiesemann, & Floudas, 2013 ). We

briefly review the VRPSD research from three aspects: approaches

to treat stochastic demand, formulations and exact solution meth-

ods. For more details, the reader is referred to some notable sur-

veys: ( Erera, Morales, & Savelsbergh, 2010; Gendreau, Jabali, & Rei,

2016; Pillac, Gendreau, Guéret, & Medaglia, 2013 ). 
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There have been three main approaches to dealing with

tochastic demand in the VRPSD: stochastic dynamic program-

ing, stochastic programming with recourse actions and stochas-

ic programming without recourse actions. The first approach uses

arkov chains and leads to a re-optimization policy in which re-

lenishment and routing decisions are dynamic ( Zhang, Lam, &

hen, 2016 ). Despite the fact that it is known to be the most

romising approach ( Dror, 2002 ), the resulting problem suffers a

ifficulty known as the curse of dimensionality ( Iancu, Sharma, &

viridenko, 2013 ). The second approach assumes that routes and

eplenishment decisions are static and include recourse actions

nd costs for route failures. This approach minimizes the total ex-

ected cost consisting of routing and recourse costs. Similar to the

econd approach, in the last approach routing and replenishment

ecisions are static. Probabilistic constraints are imposed on prob-

bility of route failure to guarantee a certain level of routing re-

iability. A more conservative approach is to enforce the routes

alidity against all possible demand realizations, i.e., to apply ro-

ust optimization to the VRPSD. Sungur, Ordóñez, and Dessouky

2008) study the application of robust optimization to the CVRPSD.

n their study on the CVRPSD, Gounaris et al. (2013) provide an

nsight to the problem structure and its relationship with chance

onstraint models. In addition to the above popular approaches

f modeling demand randomness, fuzzy theory is used to repre-

ent stochastic demands. For more on this subject, the reader is

eferred to Allahviranloo, Chow, and Recker (2014) and Kuo, Zulvia,

nd Suryadi (2012) and references therein. 

In addition to demands, other parameters of a vehicle rout-

ng problem may also be subject to uncertainty. For instance,

dulyasak and Jaillet (2016) and Lee, Lee, and Park (2012) assume
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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hat the travel time is not exactly known in advance. In these stud-

es, a deadline for visiting a customer is imposed. 

Formulations for the VRPSD in the literature are mainly based

n the flow formulation and the Miller-Tucker-Zemlin formulation

 Miller, Tucker, & Zemlin, 1960 ). Under some specific settings, these

ormulations could lead to tractable models when demands are

andom. Laporte et al. (1989) show that chance constrained coun-

erparts of the CVRPSD are equivalent to the deterministic VRP for

 number of routing problems and stochasticity assumptions. Sim-

larly, Gounaris et al. (2013) demonstrate that robust optimization

ounterparts of the CVRPSD can be reformulated by their deter-

inistic equivalents. 

In terms of exact solution methods, the VRPSD has received lit-

le attention compared to deterministic VRP. Stochastic integer pro-

rams (SIPs), which the VRPSD belongs to, are known to be very

ifficult to solve ( Sherali & Zhu, 2009 ). Exploiting the structure of

n SIP usually has a significant impact on efficiency of modeling

nd solution methods. In the literature, branch-and-cut techniques

ombined with decomposition algorithms are main methods for

olving an SIP, particularly for the VRPSD. For instance, Laporte

nd Louveaux (1993) propose an integer L-Shaped method to solve

tochastic CVRP with recourse costs. Novoa, Berger, Linderoth, and

torer (2006) and Christiansen and Lysgaard (2007) propose a set-

artitioning formulation for specific settings of the CVRPSD with

ecourse costs. Noorizadegan (2013) , for the first time, proposes

et-partitioning formulations for the chance-constrained CVRPSD 

nd a robust optimization model of the VRPSD. Dinh, Fukasawa,

nd Luedtke (2017) later extend the set partitioning formulation

or the CVRPSD and provide more theoretical insights for the ap-

lication of the chance-constrained VRPs. 

Despite the effectiveness of branch-and-price based methods

or deterministic integer programs, there are very few works on

odeling and solving stochastic integer programs using these

ethods. This lack of research demonstrates an interesting re-

earch gap on efficiently formulating and solving stochastic integer

rograms using branch-and-price methods. 

In this paper, we address this research gap and study set-

artitioning formulations for two variants of the CVRPSD: a

hance-constrained CVRPSD and a (distributionally) robust chance-

onstrained VRPSD. Our contribution can be categorized into two

arts: modeling of the CVRPSD and computational analysis and en-

ancement. The contributions in the modeling part consist of (a)

n efficient reformulation and search algorithm for the CVRPSD, (b)

alid and effective dominance rules to ensure the optimality and

easibility conditions, and (c) the use of probability bounds in the

ricing problem to limit search space. The pricing problem pro-

ides a flexible framework, capable of incorporating various set-

ings and assumptions on random demands without increasing the

odel complexity. 

On the computational analysis and enhancement, we demon-

trate usefulness of our simulation experiment and sensitivity

nalysis. We provide some helpful practical insights for route plan-

ers regarding the quality of solutions, the impact of the user-

pecified reliability level and sensitivity analysis. The contribu-

ion of our computational analysis is threefold. (a) The proposed

ethod enables us to solve several large standard instances of

he underlying problems from the VRP library (branchandcut.org)

o optimality for the first time. The largest instance ( Dinh et al.,

017 ) solve contains 55 customers and 10 vehicles. We are able to

olve several larger instances up to 60 customers and 15 vehicles

nd some very large instances up to 101 customers and 18 vehi-

les with relatively small integrality gaps. (b) We look at the solu-

ion quality on failures, particularly we use Monte-Carlo simulation

nd compare several performance measures for the deterministic,

hance-constrained and distributionally robust chance-constrained 

odels. In the literature of chance-constrained programming, the
robability of failure is set and fixed to a small value. The chance-

onstrained formulation does not provide information on the vio-

ated routes, that is, measures such as failure costs are not investi-

ated. Our computational analysis addresses this issue by comput-

ng and comparing the total expected routing cost, which consists

f the cost of pre-planned routing decision and the cost of fulfilling

emands for failed routes. (c) Moreover, small values of the prob-

bility of failure may result in unnecessary cost. We carry out a

ensitivity analysis for route reliability level and study its impact

n the routing and replenishment decisions and the objective val-

es. The simulation experiment provides some useful and practical

nsights that help route planners to choose appropriate reliability

evels for the CVRPSD, which result in the minimum total expected

outing cost. 

The remainder of the paper is organized as follows.

ection 2 presents the set-partitioning formulation for the under-

ying CVRPSD. In Section 3 , we introduce feasibility conditions,

robability bounds and dominance rules for the pricing problem

nder some popular distribution functions. In Section 4 , some

ptimality conditions are explained and general algorithmic steps

f the proposed method are outlined. Section 5 is devoted to

he computational analysis, where we assess the efficiency of the

roposed method, the solution quality and the solution sensitivity

ith respect to variation of route reliability level. In Section 6 we

rovide some concluding remarks. 

. Model description 

Let G ( N 0 , A ) be a complete graph, where N 0 = N ∪ { 0 } is the set

f nodes and A is the set of arcs connecting the nodes. Node 0 is

he depot and the other nodes form the set N = { 1 , . . . , n } of cus-

omers. There are m homogenous vehicles, with capacity Q each,

vailable at the depot. Each customer is associated with a random

emand q i (such that P [0 ≤ q i ≤ Q] = 1 ), and each arc a = (i, j)

 i , j ∈ N 0 ) is associated with a deterministic traveling cost c a . A

oute r is denoted by the sequence of the nodes it goes through:

 = (r 0 = 0 , r 1 , ..., r n r , r n r +1 = 0) , where n r is the number of differ-

nt customers on the route and N r = { r 1 , . . . , r n r } ⊆ N. A vehicle

tarts from the depot, serves a set of customers and returns to the

epot. In the CVRPSD without recourse actions, if a vehicle fails

o serve a customer (i.e., insufficient capacity left with the vehi-

le when it arrives at the customer point) on a pre-planned route,

hat customer and the remaining customers on the route remain

nserved. Therefore, route planners intend to design routes that

re valid (i.e., without failing to serve any customers on the route)

ith a high probability. A route is feasible if the following condi-

ions are satisfied: 

(a) It starts from and ends at the depot; 

(b) It visits each node in N at most once; 

(c) The total realized demand from all customers it visits is

within its capacity with high probability ( 1 − ε). This con-

dition will be specified in detail later. 

Let z r be a binary variable which takes a value of one if

oute r is chosen and, zero otherwise. For any route r = (r 0 =
 , r 1 , ..., r n r , r n r +1 = 0) , denote by A (r) = { (r k , r k +1 ) : k = 0 , . . . , n r }
he set of all arcs it goes through. The traveling cost f r of route

 is the sum of costs of its arcs, i.e., f r = 

∑ 

a ∈ A (r) c a = 

∑ n r 
k =0 

c r k r k +1 
.

et R and R ( i ) be the sets of all feasible routes and feasible routes

ontaining node i (i.e., R (i ) = { r ∈ R : i ∈ N r } ), respectively. The set

artitioning formulation of the underlying stochastic vehicle rout-

ng problem without recourse cost is as follows: 

P) : min 

∑ 

r∈ R f r z r (1) 

s.t. 
∑ 

r∈ R z r ≤ m ; (2) 
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∑ 

r∈ R (i ) z r = 1 , ∀ i ∈ N; (3)

z r ∈ { 0 , 1 } , ∀ r ∈ R. 

First note that uncertain elements of our problem are implicitly

included in the above formulation in terms of route feasibility

condition (c), which will be explicitly dealt with separately in

Section 3 due to its distinct importance in our study. In the above

problem (P), the objective function computes the total routing cost

for serving all customers. Constraint (2) makes sure that at most m

routes are chosen, and constraints (3) guarantee each customer is

assigned to exactly one route. Since it is a minimization problem

and the cost of arcs satisfy the triangle inequality, we can replace

the equality by “ ≥ ”. 

It is impractical to include all feasible routes at the beginning

of solving (P). We use the following approach, which was suc-

cessfully used by Fukasawa et al. (2006) and Pessoa, de Aragao,

and Uchoa (2007) for the deterministic CVRP. Problem (P) is initi-

ated with a subset of feasible routes instead of the whole set of

all feasible routes, which results in a problem called the restricted

master problem . Feasible routes that improve the current solution

are iteratively constructed and added to the master problem. The

process that identifies feasible and improving routes is known as

the column generation subproblem , which is formed on the basis

of the dual problem to the LP relaxation of the master problem.

Let α ≤ 0 and β i ≥ 0 be the dual variables corresponding to con-

straints (2) and (3) , respectively. The column generation subprob-

lem is then as follows: 

(CG) : y = min 

{
f̄ r ≡ f r − α − ∑ 

i ∈ N(r) βi : r ∈ R 

}
. 

If y = f̄ r is negative for some route r , then route r will be added

to the master problem, where f̄ r is called the reduced cost of a col-

umn or route r , which is the sum of the reduced costs of its arcs:

f̄ r = 

∑ 

a ∈ A (r) c̄ a , where the reduced cost of an arc a = (i, j) ∈ A is

defined by 

c̄ a = 

⎧ ⎨ 

⎩ 

c a − ( β j + α) / 2 , if i = 0 ;
c a − ( βi + β j ) / 2 , if i, j ∈ N;
c a − ( βi + α) / 2 , if j = 0 . 

To find the routes with negative reduced cost, we solve a short-

est path problem on a graph with its arc weights as their re-

duced costs defined above. Due to the negativity of reduced costs

of some arcs, negative cycles on the graph is inevitable. Therefore,

we look for an elementary route ( Christofides, Mingozzi, & Toth,

1981 ), which starts and finishes at the depot, and visits nodes in

N at most once with a total (realized) demand at most Q up to a

certain probability. Finding an elementary route on such a graph

is known to be strongly NP-hard ( Pessoa et al., 2007 ). We adopt a

labeling search algorithm, in which feasibility and optimality con-

ditions are imposed, the former enforcing the three conditions for

a route to be feasible stated earlier in the section, while the lat-

ter ensuring that all feasible routes with negative reduced cost are

identified. 

3. Feasibility conditions 

The feasibility conditions (a) and (b) are satisfied by the route

construction procedure, which will be explained in the next sec-

tion. Feasibility condition (c), also known as the capacity constraint

condition , depends on the assumptions of the random demands

and approaches used to treat the randomness. In the literature,

chance-constrained programming (CCP) and distributionally robust

chance-constrained programming (DRCCP) are among popular ap-

proaches without recourse actions. While DRCCP takes a conser-

vative action and needs less information on the random demands,
CP is less conservative and requires information of the exact dis-

ribution function. Our proposed method is capable of formulating

CP and DRCCP as long as verifying the probabilistic constraint for

he route feasibility is doable. 

.1. Probabilistic capacity constraint 

When complete information of distribution functions of random

emands is known, we can control the probability of route failure

y imposing a probabilistic capacity constraint on the vehicle load

s follows: 

 

[ ∑ 

i ∈ N r 
q i ≤ Q 

] 

≥ 1 − ε, (4)

here ε is the pre-specified probability of route failure or the

oute reliability level. In order to demonstrate the flexibility of the

roposed method, we present the feasibility condition for three

ommonly used distribution functions in the literature on the

VRPSD: Normal distribution function, scenario-based representa-

ion of demands and Poisson distribution function. Our proposed

ethod also can be used for several other continuous and discrete

istribution functions for demands in particular for those that the

um of their random variables follows a known distribution. 

In the first case, we assume that the demands follow normal

istributions: q i ∼ N(μi , σ
2 
i 
) , then the probabilistic constraint of

4) is in the form of 

 

[ 

z = 

∑ 

i ∈ N r (q i − μi ) √ ∑ 

i ∈ N r σ
2 
i 

≤ Q − ∑ 

i ∈ N r μi √ ∑ 

i ∈ N r σ
2 
i 

] 

≥ 1 − ε. 

his condition implies that if 
Q−∑ 

i ∈ N r μi √ ∑ 

i ∈ N r σ
2 
i 

< �−1 (1 − ε) , then the

easibility condition is violated, otherwise the route is feasible.

ere �−1 (1 − ε) is the inverse of the Cumulative Distribution

unction (CDF) of the standard normal distribution. As one can see,

outes with correlated normally distributed demands can also be

erified using the above probabilistic constraint. 

In the second case, we consider a situation where the proba-

ility distribution has finite support with a finite number of possi-

le realizations called scenarios. Scenario-based presentations are

ommonly used because firstly in real applications, determining

he true distribution functions of random variables may not be

asy, so samples of the random variables are collected, and sec-

ndly it is quite common in practice to approximate continuous

istributions with discrete ones ( Sherali & Fraticelli, 2002 ). There-

ore, scenarios can be considered independent from each other

 Linderoth, Shapiro, & Wright, 2006 ). Let us assume that stochastic

emands is presented by a set of discrete scenarios indexed in set

where the probability of outcome ω is equal to p ω . Thus, the

easibility condition is reformulated by ∑ 

∈ �
I ω p ω ≥ 1 − ε, 

here I ω is an indicator function such that I ω = 1 if 
∑ 

i ∈ N r q i (ω) ≤
, otherwise zero. 

There are studies (such as Laporte, Louveaux, & van Hamme,

002 ) that assume the demands follow the Poisson distribution,

hich has a discrete and non-negative domain with a probability

ensity function similar to the normal distribution. These proper-

ies make Poisson distribution more realistic than the normal dis-

ribution. 

In the third case, we assume that demands at nodes i follow the

oisson distribution with λi . The calculation of CDF for the sum of

oisson variables is computationally expensive. We use two bounds

o reduce computation. First, we use a tail bound, the Chernoff



M. Noorizadegan, B. Chen / European Journal of Operational Research 270 (2018) 544–555 547 

Fig. 1. Illustration for Rule 1–2 of Proposition 1 . 
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Algorithm 1: Search algorithm for the column generation sub- 

problem. 

begin 

Q = ∅ 
L 1 (0) = { (0 , 0 , 0) } 
insert L 1 (0) into Q 

for i ∈ N do 

L 1 (i ) = { (∞ , ∞ , (∅ )) } 
end 

while Q � = ∅ do 

ˆ l ← the first label in Q 

remove ˆ l from Q 

i ← node number of label ˆ l 

for j ∈ N (i ) do 

if extended label ˆ l to node j does not hold 

feasibility conditions (a)–(c) then 

Continue 

else 

reducedcost ← c̄ ˆ l (i ) + c̄ i j 

update demand information 

if reducedcost + c̄ j0 < 0 then 

Stop 

else if new label is not dominated then 

if any L l ( j) ∈ L ( j) is dominated then 

remove the dominated labels 

end 

l ′ ← proper index for the new label for node 

j 

insert L l ′ ( j) into Q and sort Q 

insert L l ′ ( j) into L ( j) 

end 

end 

end 

end 

end 

n  

m

 

f  

r  

t  

f  

t  

h  

l  

b

ound , as follows (see page 64 in Mitzenmacher & Upfal., 2005 ).

hen X follows the Poisson distribution with parameter λ, then

he following inequality is valid for any x > λ: 

 [ X ≥ x ] ≤ e −x (eλ) x 

x x 
. 

he above inequality implies that if e −Q (eλ) Q / Q 

Q < ε, then P [ X ≥
] < ε. This means that the route is feasible and we do not need

o compute the exact value of CDF. Second, we use bounds for the

ifference between the mean and median of Poisson variables to

mpose feasibility condition (c). From Theorem 2 of Chen and Ru-

in (1986) , the bounds for the Poisson distribution is 

− 1 ≤ med ≤ λ − 1 / 3 . 

ence, if λ − 1 > Q, then P [ X < Q] < 1 − ε for ε < 0.5. Routes that

o not satisfy this condition, are fathomed in our search algorithm.

ominance rules. As explained in the previous section and also

hown in the next proposition, the demand randomness leads to

 difficulty that we call curse of dependency , so that standard dy-

amic programming based on shortest path algorithms cannot be

sed. The reason is that, for instance, at a node if path 1 is shorter

han path 2, we cannot eliminate path 2 because path 2 may be

horter than path 1 in the next stage. Therefore, the cost of a path

r label is not a sufficient criterion for it to be eliminated. Other

riteria that take into account properties of the demand distribu-

ion function, are required to be defined. Below we introduce some

ominance rules for our proposed algorithm when demands follow

he Poisson distribution. 

roposition 1. When q i ∼ Poisson ( λi ), routes are eliminated from

he search space in Algorithm 1 according to the following two rules:

Rule 1–1. At each node, eliminate paths that violate the probabilistic

capacity constraint, P [ 
∑ 

i ∈ N r q i ≤ Q] < 1 − ε, 

Rule 1–2. L l ′ (i ) is dominated by L l ( i ) if λ̄l (i ) < λ̄l ′ (i ) and c̄ l (i ) <

c̄ l ′ (i ) , where λ̄l = 

∑ 

j∈ N l (i ) λ j and, as defined earlier, N l ( i )

is the set of nodes of path l staring from the depot ending

at node i. 

roof. Assume that at this stage Algorithm 1 saves all possible

abels for each node and no label is eliminated or dominated.

n order to prove the proposition, we need to show that elim-

nated paths could not lead to paths with smaller reduced cost.

here exist two difficulties for identifying improving routes: prob-

bilistic capacity constraints and negative cycles. First, let us as-

ume that there are no negative cost cycles. By feasibility condi-

ion (c), if a path violates feasibility condition, it cannot be part

f the optimal solution. Therefore, we do not need to keep it in

ny label set. We explain Rule 1–2 by an example illustrated in

ig. 1 . Let λ1 = 8 , λ2 = 7 , λ3 = 5 , λ4 = 6 and c̄ 01 = 5 , ̄c 02 = 6 , ̄c 03 =
5 , ̄c 13 = 7 , ̄c 23 = 2 and c̄ 34 = 5 . The associated labels from the de-

ot (node 0) to node 4 are computed and presented next to each
ode. Recall that each label consists of the reduced cost, the infor-

ation of demand and the path to reach the node. 

Rule 1–2 implies that at node 3, L 1 (3) should be eliminated

rom the label set of node 3 as it is dominated by L 3 (3): For two

andom variables X l ∼ Poisson( λl ) and X l ′ ∼ Poisson (λl ′ ) we know

hat if λl (i ) > λl ′ (i ) , then P [ X l > a ] > P [ X l ′ > a ] for all a ≥ 0. There-

ore, P [ q 1 + q 3 > Q] > P [ q 2 + q 3 > Q] and since c̄ 1 (3) > c̄ 3 (3) , ex-

ending L 1 (3) cannot lead to a better path than L 3 (3). On the other

and, we cannot eliminate L 2 (3) because L 3 (3) is more likely to

ead to an infeasible route later on while L 2 (3) could be still feasi-

le as P [ q + q > Q] > P [ q > Q] . 
2 3 3 
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Therefore, if λ̄l (i ) < λ̄l ′ (i ) then given the CDF of Poisson distri-

bution, P [ failure of l] < P [ failure of l ′ ] and when c̄ k (i ) < c̄ k ′ (i ) , we

can claim that L l ′ (i ) is dominated by L l ( i ). 

Similar to standard shortest path problems with negative cycles

where no conditions are imposed to the problem, we can use s -

cycle free policy to eliminate negative cycles. �

In the above proposition, if the rules are not satisfied for two

paths, we will have to keep both paths in the label set of the node.

In order to extend the second dominance rule for distribution func-

tions with more than one parameter, we need to include all pa-

rameters in forming the dominance rules. The following proposi-

tion generalizes the dominance rules. 

Proposition 2. Let the accumulated demands of two paths/labels,

starting from the depot and ending at node i , follow a distribu-

tion function D with multiple parameters, denoted by vectors a 1 ( i )

and a 2 ( i ), respectively, i.e., 
∑ 

j∈ N 1 (i ) q j ∼ D(a 1 (i )) and 
∑ 

j∈ N 2 (i ) q j ∼
D(a 2 (i )) . The following elimination rules ensure the optimality of the

proposed algorithm: 

Rule 2–1. At each node, eliminate paths that violate the probabilistic

capacity constraint, P [ 
∑ 

i ∈ N r q i ≤ Q] < 1 − ε. 

Rule 2–2. L l ′ (i ) is dominated by L l ( i ) if for all parameters a ι,l (i ) <

a ι, l ′ (i ) and c l (i ) < c l ′ (i ) , where a ι, l ( i ) is the ι-parameter

of the distribution function of accumulated demands at

node i. 

Proof. Rule 2–1 ensures the feasibility condition of the paths.

Thus, if a path violates this condition, it must be eliminated. Fol-

lowing the proof of the previous proposition, Rule 2–2 compares

the probability of failure for two feasible paths. If the condi-

tions of Rule 2–2 hold, then P [ 
∑ 

j∈ N 1 (i ) q j > Q] < P [ 
∑ 

j∈ N 2 (i ) q j > Q] .

This suggests that path 2 is dominated by path 1 and can be

eliminated. �

Note that in Proposition 2 , if demands follow the normal dis-

tribution, the second dominance rule will have three criteria:

the cost, the mean and variance of the total demand for paths.

Proposition 2 can be applied to the case where demand random-

ness is presented by a set of scenarios, by assuming each scenario

as a parameter of the distribution. However, as the number of pa-

rameters of a distribution increases, fulfilling the dominance rules

could become more difficult. Another factor that significantly af-

fects the performance of the proposed method is the complexity of

computation of violation probability. Discrete random variables are

typically more difficult to work with than continuous random vari-

ables. As presented, one could incorporate appropriate inequalities

in probability theory to improve the performance of the proposed

method. 

Also note that, in Proposition 2 , we assume that the distribution

functions associated with the accumulated demands of the two

paths are perfectly known (i.e., distribution functions and parame-

ter values). Such an assumption can be made in the case where the

demands of customers are independent random variables. Deal-

ing with dependent random demands is in general quite diffi-

cult. Many studies (such as Luedtke & Ahmed, 2008 and Luedtke,

2014 ) use discrete approximation (scenarios) to formulate chance-

constrained models. We make a concluding remark at the end of

Section 6 for a possible interesting extension to a more general

case. 

3.2. Distributionally robust probabilistic capacity constraint 

In many cases, distribution functions of demands are not known

precisely. One approach is to impose the probabilistic constraints

for all distributions in a family P of distribution functions. Here,

we assume that the family of distribution functions consists of all
istribution functions that have the same known properties (such

s the first and second moments) of the unknown true distribution

unction of the random parameters. Therefore, the probabilistic ca-

acity constraint (4) will have to be robustly enforced for all the

amily distribution, i.e., 

inf 
 ∈P 

P 

[ ∑ 

i ∈ N r 
q i ≤ Q 

] 

≥ 1 − ε, (5)

here P is a distribution function which belongs to family P . Given

hat the vehicle capacity is deterministic, the deterministic robust

ounterpart of the above constraint is formulated by the following

roposition. 

roposition 3. Let the demand vector of route r , denoted by q q q (r) ,

ollow an unknown distribution function with known mean vector,

( r ), and known covariance matrix, �( r ) . For any ε ∈ (0, 1), the dis-

ributionally robust probabilistic capacity constraint of route r , i.e.,

nf P ∈P P 

[∑ 

i ∈ N r q i ≤ Q 

]
≥ 1 − ε is equivalent to 

 

i ∈ N r 
μi + 

√ 

1 − ε

ε

√ ∑ 

i ∈ N r 

∑ 

j∈ N r 
�i j ≤ Q, (6)

here �ij is the covariance of q i and q j . 

roof. Let the demand vector q q q (r) be formulated by a zero-mean

actor model, i.e., 

 

 

 (r) = μ(r) + �̄(r) υ, 

here υ ∈ � 

| N r | is the vector of zero-mean factors such that E [ υ] =
 and Var [ υ] = I | N r |×| N r | , and �̄ is a full-rank factor matrix such

hat � = �̄� �̄. Note that for the sake of simplicity, index r is omit-

ed in the notation in this proof, and also “� ” indicates the trans-

ose of a matrix. According to the multivariate one-sided Cheby-

hev bound in ( Bertsimas & Popescu, 2005 ), constraint (5) can be

estated by 

sup 

 ∈P(μ, �) 

P 

[ ∑ 

i ∈ N r 
q i > Q 

] 

= sup 

P ∈ P ′ (0 ,I) 

P 

[ ∑ 

i ∈ N r 
υi 

∑ 

j∈ N r 
�̄i j > Q −

∑ 

i ∈ N r 
μi 

] 

= 

1 

1 + θ2 
, (7)

here P 

′ (0 , I) is a family of distribution functions whose mean is

ero and covariance matrix is I , and θ2 is computed as follows: 

2 = inf || υ|| 2 
s.t. 

∑ 

i ∈ N r 
υi 

∑ 

j∈ N r 
�̄i j > Q −

∑ 

i ∈ N r 
μi . 

ollowing the proof of Theorem 3.1 in Calafiore and Ghaoui (2006) ,

e have 

= 

⎧ ⎨ 

⎩ 

0 , if 
∑ 

i ∈ N r μi > Q;∑ 

i ∈ N r μi − Q ∑ 

i ∈ N r 
∑ 

j∈ N r �i j 

, if 
∑ 

i ∈ N r μi ≤ Q . 

or the details of the proof, the reader is referred to Bertsimas and

opescu (2005) and Calafiore and Ghaoui (2006) . 

Given the restatement of constraint (5) , we can have θ <
 

(1 − ε) /ε. Substituting θ in the latter inequality will lead to the

nal inequality (6) . �

In order to apply Algorithm 1 to the distributionally robust

robabilistic capacity constraint approach, we adapt the dom-

nance rules in Proposition 2 alongside with the s -cycle free

ule. Rule 2-1 is verified by Constraint (6) . As argued in the

roof of Proposition 2 , we need to investigate the following in-

quality for two paths l and l ′ : sup P ∈P(μ, �) P [ 
∑ 

j∈ N l (i ) q j > Q] <
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up P ∈P(μ, �) P [ 
∑ 

j∈ N 
l ′ (i ) q j > Q] . Given the definition of distribution-

lly robust probabilistic capacity constraint, the failure probability

f each path is computed using (7) , which results in the following

ondition: 

2 
l > θ2 

l ′ ⇒ 

∣∣∣∣
∑ 

i ∈ N l μi − Q ∑ 

i ∈ N l 
∑ 

j∈ N l �i j 

∣∣∣∣ > 

∣∣∣∣
∑ 

i ∈ N l ′ μi − Q ∑ 

i ∈ N l ′ 
∑ 

j∈ N l ′ �i j 

∣∣∣∣. 
or the case of independent demands, if the above condition holds

nd the reduced cost of path l is smaller than that of path l ′ , then

ath l dominates path l ′ . 

. Optimality conditions 

Labeling algorithms based on dynamic programming (such as

he Bellman-Ford algorithm and Dijkstra’s algorithm) have been

sed for the shortest path problems without additional conditions.

owever, Wang and Crowcroft (1996) prove that in general a short-

st path problem subject to multiple constraints is NP-complete.

he feasibility conditions described before, are interpreted as con-

traints which must be imposed to the shortest path problem. As

iscussed in the previous section, the pricing problem becomes

ven more complex due to randomness of customers’ demands, i.e.,

s a result of random demands and the vehicle capacity constraint,

he resulting pricing problem inherits a difficulty that longer paths

mong paths ending at a node cannot be eliminated. 

We propose a search algorithm, which enumerates feasible

outes. In the proposed algorithm, a set of labels are defined for

ach node. In order to manage the labels, some conditions and

ominance rules based on the assumptions of the underlying prob-

em are imposed, so that only useful labels are kept. Let L (i ) =
 L 1 (i ) , L 2 (i ) , . . . } be the label set for node i . Each label L l ( i ) is as-

ociated with a path to node i and consists of three components:

 l (i ) ← ( ̄c l (i ) , d l (i ) , p l (i )) , the total reduced cost c̄ l (i ) of the path,

he information d l ( i ) of the total demand on the path (e.g., mean

nd standard deviation) and the sequence p l ( i ) of nodes on the

ath. Depending on the assumption of the demand distribution

unction, the required information to be saved on a label may dif-

er. The key point is to be able to determine the distribution func-

ion of the accumulated demands at a node using the information.

or instance, if the demands follow the normal distributions, their

ean and variance would be enough to compute the distribution

unction of the accumulated demands. We denote by Q the list of

ll labels in ∪ i ∈ N L ( i ) arranged in a lexicographically ascending or-

er based on the three label components. 

The search algorithm starts from the depot 0 and extends the

ath to its neighborhood N (0) . The extended path is added to the

abel set of node i and set Q if certain conditions and dominance

ules are satisfied. The complexity and the exactness of the pro-

osed method highly depend on the assumptions of stochastic de-

ands. A general form of the proposed algorithm for the column

eneration subproblem is outlined in Algorithm 1 . 

. Computational analysis and enhancement 

In this section, we design computational experiments and re-

ort their results for our proposed method. Our computational

xperiments assess the efficiency and quality of the proposed

ethod. Furthermore, we carry out a sensitivity analysis using a

onte Carlo simulation experiment in order to investigate the im-

act of probability of route failure on the decision variables. 

We implement our proposed branch-and-price method in

cipoptsuite-3.2.0 (SCIP: solving constraint integer programs), which

s a non-commercial mixed integer programming (MIP) solver

vailable at http://scip.zib.de . All experiments are run on an iMac

achine with a 3.1 GHz Intel Core i5 Processor and 8 GB RAM.

ince SCIP does not provide parallel computing, we use only one
hread out of available threads. We set a time limit of 7200 sec-

nds. 

The reminder of this section is organized as follows. First,

e explain the branching strategy used for the branch-and-price

ethod. Section 5.2 describes the data set used for our experiment

nd the required modification on some instances. In Section 5.3 ,

e present the numerical results of the proposed method for the

ariants of stochastic vehicle routing problem we studied, and

ome important performance measures. In Section 5.4 , we outline

he tabu search algorithm for accelerating our solution to the CG

ubproblem. Section 5.5 presents the simulation results where the

uality of solution based on for four key performance measures

s examined. Section 5.6 is devoted to sensitivity analysis of the

hance-constrained VRP with respect to probability of route fail-

re. 

.1. Branching strategy 

Branching strategy of a branch-and-price method is more com-

licated than that of a branch-and-cut method. For more details,

he reader is referred to Achterberg (2007) and Lübbecke and

esrosiers (2005) . One branching strategy is to branch on variables

dentified and added during the solution procedure. This strat-

gy results in an unbalance branch-and-bound tree since unlike

ranch-and-cut methods, very few variables will take the value of

ne in the final solution. Moreover, when a variable is chosen for

ranching, on the zero branch, it is likely for the CG subproblem

o identify the same variable again as an improving one, result-

ng in an indefinite loop in the solution procedure. In order to ad-

ress this issue, Ryan-Foster’s branching has been commonly used,

here a cut is constructed at each node of the branch-and-bound

ree to avoid any loop. For more details, the reader is referred

o Barnhart, Johnson, Nemhauser, Savelsbergh, and Vance (1998) .

owever, it requires keeping track of all identified variables and

onstructing branching constraints that affect the CG subproblem. 

Another branching strategy is to include original variables, vari-

bles of the standard formulation, into the set-partitioning formu-

ation and to branch on these variables. In this study, we use the

atter strategy. We introduce binary variables x ij , where x i j = 1 if

he arc from nodes i to j is selected in a route, and x i j = 0 oth-

rwise. The following constraints are therefore added to Problem

P): 
∑ 

j∈ N 0 x i j = 1 and 

∑ 

j∈ N 0 x ji = 1 for any node i ∈ N , which en-

ure that exactly one arc enters node i and exactly one arc leaves

t. Constraints (3) are also modified to 
∑ 

r∈ R (i, j) z r − x i j ≤ 0 for all

airs of ( i , j ), where R ( i , j ) is the set of routes that traverse arc

 i , j ). Although the CG subproblem slightly changes, the proposed

olution algorithm remains almost the same. 

.2. Data set 

We use standard instances available at http://branchandcut.org

or our computational experiments. As the instances are originally

esigned for deterministic VRP, demands are modified according to

he approaches described in Section 3 . We focus on Poisson distri-

ution functions as they are computationally more expensive than

he other two classes of distribution functions mentioned before.

omputational results for the two other classes can be found in

oorizadegan (2013) . For the probabilistic capacity constraint, we

ssume that the demand presented in each instance is the mean

f the Poisson distribution. For example, in instance E-n13-k4, the

emand of the first customer is 1200 units. In our computational

xperiment, we assume that the demand of the first customer fol-

ows a Poisson distribution with mean equal to 1200. 

In the approach of distributionally robust probabilistic capac-

ty constraint, we study a case where the mean vector and the

ovariance matrix of demands are known but not distribution

http://scip.zib.de
http://branchandcut.org
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Table 1 

The solution quality and the efficiency of the proposed method when ε = 0 . 10 . 

Inst. Det. PCM 

Obj. # routes Obj. # routes Sol. time Int. gap # added # nodes 

(seconds) (percent) variables (BB tree) 

1 A-n32-k5 784 5 857 5 6955 0 32315 3698 

2 A-n33-k6 742 6 802 7 7200 0.81 25379 20173 

3 A-n37-k6 949 6 1021 7 260 0 3641 307 

4 A-n45-k7 1146 7 1285 8 7200 4.87 26962 3790 

5 A-n55-k9 1073 9 1157 10 382 0 2950 165 

6 A-n63-k10 1616 10 1435 11 7200 1.67 20784 4696 

7 A-n80-k10 1763 10 2032 11 7200 7.16 13612 113 

Average 1153.3 7.6 1227.0 8.4 5199.4 2.1 17949 4706 

8 E-n13-k4 247 4 277 4 0.12 0 40 3 

9 E-n22-k4 375 4 424 5 11 0 944 158 

10 E-n31-k7 379 7 416 8 186 0 1873 111 

11 E-n51-k5 521 5 521 5 5152 0 4174 19 

12 E-n76-k10 830 10 934 12 7200 8.2 4740 46 

13 E-n76-k14 1021 14 1100 16 7200 1.1 11515 8589 

14 E-n101-k14 1076 14 1248 18 7200 9.74 11017 247 

Average 635.6 8.3 702.9 9.7 3849.9 2.7 4900 1310 

15 P-n16-k8 † 450 8 460 8 0.49 0 108 79 

16 P-n19-k2 212 2 212 2 500 0 5335 201 

17 P-n20-k2 216 2 216 2 182 0 1712 16 

18 P-n22-k8 † 603 8 590 9 0.37 0 76 9 

19 P-n23-k8 529 8 630 10 2.61 0 246 191 

20 P-n40-k5 458 5 476 5 5936 0 18529 1907 

21 P-n50-k10 696 10 751 12 5717 0 10522 25692 

22 P-n55-k15 989 15 1071 19 347 0 1451 3384 

23 P-n60-k10 744 10 795 11 7200 0.99 15236 11981 

24 P-n60-k15 968 15 1078 17 694 0 2433 3213 

25 P-n70-k10 827 19 909 12 7200 4.78 8501 434 

Average 608.4 8.5 653.5 9.7 2525.3 0.5 5831.7 4282 
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functions. Similar to the first approach, we choose the mean vector

from the deterministic values given in the instances. We assume

that the demands are uncorrelated, i.e., the covariance matrix is

diagonal. The entry on the diagonal of the covariance matrix are

the demand variance, which we set to μi . 

The number of vehicles, which are listed for the standard CVRP

instances, are the minimum number of vehicles required to serve

all customers with deterministic demands. Given that we assume

stochastic demands, these numbers of vehicles may not be suffi-

cient to serve all customers and may result in infeasible solutions.

Thus, we drop limitations of the number of vehicles and assume

that an unlimited number of homogenous vehicles are available.

Note that, for some ε and nodes, even such a route that consists of

a single node, may be infeasible. For such cases in our experiment,

we increase the vehicle capacity. 

5.3. Numerical results 

Our numerical results present solution efficiency of the pro-

posed solution method. The following six performance measures

are used to assess the solution quality: objective function value

(Obj.) obtained from solving each instance, number of routes (#

routes), solution time in seconds (Sol. time), integrality gap in per-

cent (Int. gap), number of added variables (# added variables) and

the number of nodes of the branch-and-bound (BB) tree. 

Table 1 compares the solutions of the deterministic model

(Det.) and those of the probabilistic constraint model (PCM), where

the results for the deterministic model are taken from http://

branchandcut.org . For two instances, there are no feasible solutions

since the demand of some customers are larger than the capacity

of vehicles, i.e., ∃ i ∈ N, P [ q i > Q] > ε. These instances are marked

by “† ” in the table. In order to construct feasible routes for these

instances, we increase the capacity of vehicles by 20 percent. It is
orth mentioning that when the vehicle capacity is increased, the

outing cost may decrease as vehicles can cover more customers in

ne trip. 

We compare our results with those reported in Dinh et al.

2017) for some similar problems except that demands are as-

umed to follow the normal distributions. As mentioned in

ection 3.1 , the Poisson distributions are more realistic than the

ormal distributions to formulate demands. In addition, the Pois-

on distributions are computationally more expensive and chal-

enging to work with than the normal distributions. In their work,

hey solve various cases, including independent demands with low

nd high variance, and also dependent demands that are formu-

ated by the joint normal distributions. They solve 10 instances

rom the VRP library and the largest instance they are able to solve

o optimality includes 55 customers and 10 vehicles. 

As Table 1 reports, we apply the proposed method to 25

nstances, among which 16 instances are solved to optimality

ithin the time limit. The average integrality gap is very small,

.6 percent. We solve several large instances to optimality, with

he largest including 60 customers and 17 vehicles, for the first

ime. We are also able to find near optimal solutions for very

arge instances, with 101, 80 and 76 customers and 18, 11 and 16

ehicles. In addition to the difficulty of instances, the performance

f the proposed solution depends on both numbers of customers

nd vehicles. The number of vehicles is related to the number

f customers visited by a vehicle. As the ratio of the number

f customers to the number of routes increases, the number of

ossible combinations of customers grouped for a vehicle in-

reases. This leads to a larger search space and, as a result, longer

olution time. This can be observed from instances in rows 12

nd 13, and also rows 23 and 24. While the number of customers

s the same for each pair of instances, the solution time and

ntegrality gap decrease when the number of vehicles increases.

http://branchandcut.org
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Fig. 2. The optimal routes of Instance E-n22-k4 for the deterministic (on the left) and probabilistic constrained (on the right) models. 
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Table 2 

Solution quality and efficiency of the proposed method for the DR- 

PCM when ε = 0 . 10 

Ins. obj. # routes Sol. time Int. gap 

(seconds) (percent) 

1 A-n33-k6 898 8 5026 0 

2 A-n55-k9 1356 12 7200 2.47 

3 A-n63-k10 1666 13 7200 3.3 

4 E-n13-k4 369 5 0.09 0 

5 E-n22-k4 495 6 12.03 0 

6 P-n16-k8 ‡ 472 9 0.42 0 

7 P-n19-k2 246 3 2322 0 

8 P-n22-k8 ‡ 649 10 4.38 0 

9 P-n23-k8 ‡ 568 9 1.62 0 

10 P-n50-k10 850 14 7200 0.73 

11 P-n55-k15 1237 23 6.52 0 

12 P-n60-k10 884 13 3641 0 

13 P-n60-k15 1241 21 97.23 0 

Average 841 11 2516 0.5 
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f we ignore Instance E-n101-k14, which is very large, it seems

hat instances of class A are more difficult to solve. The main

erformance measures, including the solution time, the integrality

ap, the number of added variables and the number of nodes of

he branch-and-bound tree, for this class of instances are larger

han those of the other two classes of instances. 

As expected, the routing costs (i.e., objective function values)

f most instances for the PCM are higher than those for the de-

erministic model. Three instances have the same routing costs for

he deterministic and probabilistic models, which suggests that the

outes obtained from the deterministic model satisfy the proba-

ilistic constraint. The routing cost of Instance P-n22-k8 is smaller

ompared to the deterministic model since the vehicle capacity in-

reases. 

The numbers of routes and vehicles are a critical factor for

oute planners. A large increase in the number of vehicles usually

eads to additional issues such as extra management and overhead

osts. However, as reported in the table, in order to improve the

outing reliability to 90%, we need to increase the number of ve-

icles by adding only about 1 vehicle on average to the fleet. In-

erestingly, the number of routes does not change in 7 instances,

hich suggests that increasing the fleet size is not always the only

ay of improving route reliability. In other words, more reliable

outes may be achievable with a better assignment of customers to

outes. Fig. 2 illustrates an example of how routes change for the

eterministic model and the PCM. 

Table 2 reports the results of the distributionally robust PCM

DRPCM) for 13 instances. The number of routes and the routing

osts for this model dramatically increase. With respect to the de-

erministic model, the cost increases by more than 18% on average

or the DRPCM, while the increase for the PCM was only 4%. Note

hat the percentage of increase is computed for the same instances

or both the PCM and the DRPCM. The average number of routes

or the corresponding instances for the deterministic, the PCM and

he DRPCM are 8.4, 9.6 and 11.2, respectively. The average integral-

ty gaps and solution time are almost equal for both models. Simi-

ar to the PCM, there are instances that include demands exceeding

he vehicle capacity. We increase the vehicle capacity for these in-

tances by 40% and mark them by ‡ in the table. 
One could conclude that the RCM results in a better solution

han the deterministic model and the DRPCM, because with a

mall change in the number of routes and in the routing cost, a

ignificant route validity is achieved. As mentioned, for more de-

ailed analysis, other important practical factors such as overhead

ost for additional routes may be considered. 

.4. Solution acceleration 

Tabu search algorithms have been commonly used for solv-

ng VRP variants. We use a tabu search algorithm proposed in

esaulniers, Lessard, and Hadjar (2008) in order to potentially ac-

elerate the solution process for the CG subproblem in finding im-

roving path(s). The tabu search algorithm is not exact. We first

un the tabu search algorithm for the CG subproblem. If improving

aths are identified, they are added to the restricted master prob-

em. Otherwise, the proposed algorithm including the dominance

ules (presented in Algorithm 1 ) is run to find improving routes if

hey exist. 
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Table 3 

Efficiency of the proposed method when tabu search algorithm is incorporated in the column gen- 

eration with ε = 0 . 10 

Inst. With Tabu Search Without Tabu Search 

# added Int. gap Sol. time # added Int. gap Sol. time 

variables (percent) (seconds) variables (percent) (seconds) 

1 A-n33-k6 20813 0.66 7200 25379 0.81 7200 

2 A-n55-k9 3215 0 834 2950 0 381.5 

3 A-n63-k10 11584 2.2 7200 20784 1.67 7200 

4 E-n13-k4 116 0 0.23 40 0 0.12 

5 E-n22-k4 1102 0 27.37 944 0 11.06 

6 E-n51-k5 3890 16.09 7200 4174 0 5152 

7 P-n19-k2 4202 0 1034 5335 0 500 

8 P-n23-k8 262 0 2.97 246 0 2.61 

9 P-n55-k15 1908 0 423 1451 0 347 

10 P-n60-k10 10191 0.89 7200 15236 0.99 7200 

Average 5728 1.98 3112 7654 0.347 2799 
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We partially follow Desaulniers et al. (2008) in designing our

tabu search algorithm. In our implementation, the main operation

of constructing improving paths is to insert nodes in different po-

sitions of existing routes. A new path that is created by inserting

only one node to the current path is called a neighbor of the cur-

rent path. At each stage of the algorithm, neighbors of the current

path are constructed. To reduce the size of the search space, we

only allow feasible neighbors to form. Among all neighbors, the

one with the least reduced cost replaces the current path, although

the reduced cost of this neighbor may be higher. This allows to

expand the search for feasible paths. Once an improving path is

identified, the search stops and the path is added to the restricted

master problem. We start the search with a set of multiple paths,

which consists of all single-node paths, i.e., paths starting from the

depot, visiting only one node and returning to the depot. 

Here, we investigate the performance of the solution procedure

with and without the tabu search algorithm. Table 3 reports the

results on ten instances. The tabu search algorithm improves the

results for only two instances. Also as the row “Average” suggests,

the tabu search algorithm does not lead to a significant improve-

ment, which suggests that Algorithm 1 together with the domi-

nance rules outperforms the tabu search algorithm. 

5.5. Simulation 

In this section, we study the following performance measures

for our simulation experiment: total expected cost 1 π ( x ∗, ε) for

ε = 0 . 10 , standard deviation (std) of the total cost and 95% quar-

tile (95% Q) of the distribution of the total cost and the expected

failure cost E [ f (x ∗, 0 . 10)] . 

Table 4 summarizes the results of our simulation experiment

with ε = 0 . 10 . The first column of each model reports the to-

tal expected cost. Here, the total expected cost is computed by

π(x ∗, 0 . 10) = Obj. + E [ f (x ∗, 0 . 10)] , where “Obj.” is the optimal ob-

jective function value for ε = 0 . 10 , and f ( x ∗, 0.10) is the re-

course cost function. f ( x ∗, 0.10) is computed with Monte Carlo

simulation such that the solution of the instance (optimal solu-

tion if “Int. gap” is zero, and the final solution after 7200 sec-

onds otherwise) will be evaluated against 10,0 0 0 different scenar-

ios/realizations of random parameters. We assume that if a vehi-

cle fails to serve a customer, it will have to revisit the depot for

a replenishment and resume its pre-planned route. Therefore, the

expected recourse cost is computed according to E [ f (x ∗, 0 . 10)] =∑ 

s ∈ S p s 
∑ 

r∈ R ∗
∑ 

i ∈ Failed r (s ) 
(c i, 0 + c 0 ,i ) , where R ∗ is the set of op-
1 When the integrality gap is not zero, the total expected cost is computed for 

the solution obtained after 7200 seconds. 

e  

i  

c  

a

imal routes, Failed r ( s ) is the set of failed nodes for route r at

ealization s , and p s is the probability of realization s . Note that

 is the node that the vehicle at realization s fails to serve and

equires to revisit the depot. The second and third columns of

ach model report the standard deviation and the 95% quartile of

he distribution of the total cost, i.e., the total cost for scenario

 is πs (x ∗, 0 . 10) = Obj. + 

∑ 

r∈ R ∗
∑ 

i ∈ Failed r (s ) 
(c i, 0 + c 0 ,i ) . The key as-

umption for the random demands in the DRPCM is that the mean

f a demand is not exactly known. Therefore, we carry out two

imulation experiments for the DRPCM: with known mean demand

nd with random mean demand. In the first case, similar to the

ther models, we use the demand value of each customer as its

ean to generate scenarios and in the second case, we randomly

hoose the mean from the interval [0.8 μi , 1.2 μi ]. 

The results suggest that the PCM outperforms both the deter-

inistic model and the DRPCM in terms of the expected cost and

he 95% quartile. The reason behind it is that the deterministic

odel ignores the randomness of demand and the DRPCM is too

onservative and risk averse. Although the DRPCM results in a very

mall failure cost (in both experiments), on the one hand, its total

xpected cost is higher than that of the PCM. On the other hand,

t overprotects the route validity way behind the requirement. It

uggests that even if we choose a very small value for ε, the solu-

ion of the DRPCM may stay unchanged. In other words, it seems

he DRPCM is insensitive to ε due to the conservativeness of the

pproach. The impact of the conservativeness of the DRPCM has

lso been worsened by the integrality conditions of the decision

ariables. 

As these two tables suggest, the PCM provides a good trade-

ff between conflicting goals such as the number of vehicles, the

bjective value and the expected cost while it keeps the standard

eviation relatively low. It is worth mentioning that the DRPCM is

ot entirely outperformed by the PCM and some decision makers

ay prefer the DRPCM due to its high reliability. 

.6. Sensitivity analysis 

In the literature of chance-constrained programming, the prob-

bility ( ε) of failure is usually assumed to be given and specified

n advance. For a pre-specified ε, a probabilistic constraint may be

iolated when random parameters are realized and, therefore, an

xtra cost for recourse may have to be imposed to deal with or

edeem failures. Hence, it is common to choose a very small ε to

inimize failure costs. However, small ε may lead to unnecessary

xtra cost that does not have reasonable added value, particularly

n stochastic integer programs. Choosing the right value for ε is a

ritical step that can have a significant impact on decision variables

nd objective function. 
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Table 4 

The Monte-Carlo simulation results for three models when ε = 0 . 10 

Instance Det. CCP DRPCM DRPCM-Random Mean 

π ( x ∗ , 

0.10) 

std 95% Q E [ f (x ∗, 0 . 10)] π ( x ∗ , 

0.10) 

std 95% Q E [ f (x ∗, 0 . 10)] π ( x ∗ , 

0.10) 

std 95% Q E [ f (x ∗, 0 . 10)] π ( x ∗ , 

0.10) 

std 95% Q E [ f (x ∗, 0 . 10)] 

E-n13-k4 283 30 335 36 283 15 323 6 369 1.7 369 0.1 369 1.54 369 0.2 

E-n22-k4 412 32 473 37 430 15 470 6 495 2 495 0.1 495 1.62 495 0.3 

P-n16-k8 †‡ 513 45 592 63 468 18 504 8 472 3 472 0.2 472 3.66 472 0.8 

P-n19-k2 230 18 264 18 235 20 277 20 246 1.1 246 0 246 0.98 246 0.1 

P-n22-k8 †‡ 709 63 821 106 606 27 654 16 649 4.6 649 0.3 649 5.15 649 0.7 

P-n23-k8 ‡ 664 64 773 135 655 35 728 25 568 3.7 568 0.3 568 4.33 568 1.0 

P-n50-k10 793 47 874 97 771 26 823 20 850 2.9 850 0.2 851 4.57 850 1.5 

P-n55-k15 1192 64 1301 203 1101 36 1173 30 1238 5.9 1237 0.8 1238 7.60 1238 3.5 

P-n60-k15 1133 66 1246 165 1108 34 1172 30 1242 4.8 1242 0.6 1242 6.55 1241 2.9 

Average 659 47.67 742 96 629 25.11 680 18 681 3.30 681 0.29 681 4.00 681 1.20 

Fig. 3. Sensitivity analysis for Instance E-n13-k4. 
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One way of addressing this situation is to consider ε as a deci-

ion variable. However, due to difficulty of formulating and solving

uch problems, only few works ( Rengarajan, Dimitrov, & Morton,

013 ) and ( Shen, 2014 ) under very limiting assumptions consider

itself as a decision variable. A problem with such a setting be-

omes even more difficult when integrality conditions are imposed

n some or all decision variables. Another approach is to use a sen-

itivity analysis and Monte Carlo simulation in order to investigate

he impact of variation of ε and choose the right value for ε. In

his study, we consider seven values for ε ∈ {0.01, 0.05, 0.10, 0.15,

.20, 0.25, 0.30}. 

The procedure is as follows. First, each instance is solved for

ll the values of ε. Second, their solutions are evaluated against

0,0 0 0 demand realizations that are generated according to the as-

ociated Poisson distribution. Then, the total expected cost ( π ( x ∗,

)), the expected failure cost ( E [ f (x ∗, ε)] ) and the standard devi-

tion (std) similar to our simulation experiments in the previous

ection are computed. Fig. 3 presents the sensitivity analysis for

nstance E-n13-k4 using an interval plot. The dashed line presents

he objective function value and the solid line is associated with

he total expected cost. The vertical intervals report the 95% inter-

al of the total expected cost. As one can see, the objective func-

ion value increases when ε decreases, while the total expected

ost shows a different behaviour. π ( x ∗, ε) achieves its minimum

alue when ε is equal to 0.10, 0.15 and 0.20. The standard devi-

tions increase by ε, which means the optimal solution is more

eliable and robust when ε is smaller. 
We can observe that large ε (e.g., 0.25 and 0.30) may not be

ppropriate, as they result in large standard deviations and large

otal expected cost. On the other hand, very small ε (e.g., 0.01)

ay not be interesting, too, as there is a very sharp increase in

otal expected cost, while the route reliability does not change sig-

ificantly. Also even the standard deviation may be reasonable in

arger ε (e.g., 0.05). Note that the route reliability is implied by the

otal expected failure cost, which is the difference between the ex-

ected cost and the objective function value. 

Table 5 provides some more details for the sensitivity analysis.

s explained before, some instances do not have a feasible solu-

ion for small ε. Here, we do not change those instances and leave

hem unsolved. The last row of each instance, indicated by “Det.”,

resents the results for the deterministic model. 

We can observe that the number of routes does not always

hange. It means that in order to achieve higher reliability lev-

ls, we do not necessarily need to increase the fleet size. In other

ords, the reliability level can be increased by improving routing

ecisions and customers’ assignment. 

The standard deviation of the total cost and the expected

ailure cost decrease as ε decreases, while the number of

outes and objective function value have opposite trends. The

ehaviour of the total expected cost is more complex. The recourse

ction is not explicitly invoked in the problem formulation, there-

ore, one would expect a non-convex behavior for the total ex-

ected cost. Also, the randomness of the simulation experiment

ay slightly affect the total expected cost. 
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Table 5 

Sensitivity analysis on the impact of variation of the reliability level 

Instance ε # routes obj. π ( x ∗ , ε) std E [ f (x ∗, ε)] 

E-n13-k4 0.01 5 336 336 4 0 

0.05 4 291 294 10 3 

0.10 ∗ 4 277 283 15 6 

0.15 ∗ 4 277 283 15 6 

0.20 ∗ 4 277 283 15 6 

0.25 4 277 294 26 17 

0.30 4 277 294 26 17 

Det. 4 247 283 30 36 

E-n22-k4 0.01 6 466 467 5 1 

0.05 5 443 446 10 3 

0.10 5 424 430 15 6 

0.15 5 412 421 20 9 

0.20 5 411 423 22 12 

0.25 5 401 420 26 19 

0.30 5 394 422 31 28 

Det. ∗ 4 375 412 32 37 

P-n16-k8 0.25 9 476 517 41 41 

0.30 9 472 517 42 45 

Det. ∗ 8 450 513 45 63 

P-n22-k8 0.15 ∗ 10 666 699 41 33 

0.20 10 649 705 55 56 

0.25 9 627 703 60 76 

0.30 9 627 703 60 76 

Det. 8 603 709 63 106 

P-n23-k8 0.05 11 652 662 22 10 

0.10 10 630 655 35 25 

0.15 10 606 644 43 38 

0.20 ∗ 10 605 643 43 38 

0.25 9 586 647 50 61 

0.30 9 568 643 55 75 

Det. 8 529 664 64 135 

P-n50-k10 0.01 13 802 804 9 2 

0.05 12 773 783 19 10 

0.10 12 751 771 26 20 

0.10 12 751 771 26 20 

0.15 ∗ 11 730 763 34 33 

0.20 11 730 771 36 41 

0.25 11 733 772 34 39 

0.30 11 725 775 41 50 

Det. 10 696 793 47 97 

P-n55-k15 0.01 22 1191 1193 11 2 

0.05 20 1103 1119 25 16 

0.10 19 1071 1101 36 30 

0.15 18 1045 1094 44 49 

0.20 18 1030 1086 43 56 

0.25 ∗ 18 10 0 0 1082 53 82 

0.30 17 997 1087 53 90 

Det. 15 989 1192 64 203 

P-n60-k15 0.01 20 1193 1195 8 2 

0.05 18 1132 1144 21 12 

0.05 18 1132 1144 21 12 

0.15 ∗ 17 1062 1104 39 42 

0.20 16 1043 1109 44 66 

0.25 16 1025 1105 50 80 

0.30 16 1016 1107 51 91 

Det. 15 968 1133 66 165 
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Another important observation is that choosing very small

value for ε is not always reasonable, as it may result in unnec-

essary extra cost and the addition of vehicles. As the experiment

demonstrates, the minimum expected cost does not occur in small-

est values of ε. In Table 5 , the values of ε for which we have the

minimum total expected cost, is indicated by “∗”. Depending on

the situations and criteria in practice such as available fleet, de-

cision makers may have to make a trade-off and choose different

values of ε to achieve their goals. 
. Conclusions 

In this study, we have presented a set-partitioning formulation

or the vehicle routing problem with stochastic demands and ho-

ogenous vehicles. We have used a column generation method

ithin a branch-and-bound framework to solve the underlying

roblem. The column generation subproblem is formulated with

 constrained shortest path problem, where nodes have stochas-

ic demands. Optimality and feasibility conditions are introduced

nd imposed to the shortest path problem. Chance-constrained

rogramming and distributionally robust chance-constrained pro-

ramming have been used to deal with stochastic demands. In the

hance-constrained model, we have considered three different as-

umptions for the random demands: the Normal and Poisson dis-

ributions and the scenario-based presentation. As the computa-

ion of Poisson CDF is computationally expensive, upper and lower

ounds such as Chernoff bound are used to speed up verifying the

robabilistic constraints and construct feasible routes in the col-

mn generation subproblem. A customized shortest path algorithm

as been developed to solve the underlying problem. 

A comprehensive computational analysis has been carried out

o test the proposed method and gain some practical insights. We

ave been able to solve to optimality some large standard in-

tances that were not solved before. Monte-Carlo simulation is em-

loyed to investigate the quality of solutions. We observed that

 chance-constrained model outperforms deterministic and distri-

utionally robust chance-constraint models. Moreover, a sensitiv-

ty analysis has been performed to study the impact of the pre-

pecified probability of failure on the optimal solutions. We ob-

erve that, to achieve a high reliability level, we do not need to

lways increase the fleet size. Also, we observe that very high re-

iability levels are not interesting on all occasions from practical

oint of view, because those cases may incur unnecessary extra

osts, which do not have reasonable added value to the system. 

The focus of this study is on independent random demands. An

nteresting and challenging line of research is to adapt the dom-

nance rules for more practical settings such as correlated and/or

onditional random demands, particularly when demands are rep-

esented by discrete random variables (instead of their continuous

pproximations). These settings are important and can be found in

everal applications, such as in waste and money collection prob-

ems. A possible interesting extension is to formulate random de-

ands with a factor model in which demands are affected by a set

f random factors, such as market indices considered in See and

im (2010) , which can incorporate correlated demands. In addition,

ur proposed method can be extended by solving the column gen-

ration subproblem more efficiently. 
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