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We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2

genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs

via RNA intermediates termed “subgenomic RNAs.” sgRNAs are produced through discontinuous transcription, which

relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of

the TRS-L, which is located in the 5′ UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is there-

fore found at the 5′ end of all sgRNA.We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom,

and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect

reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical

sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number

of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and

determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/− cell lines, periscope can detect the chang-

es in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to

sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide

comprehensive analysis of SARS-CoV-2 sgRNA.

[Supplemental material is available for this article.]

Understanding variation within subgenomic RNA (sgRNA) syn-
thesis within the human host may have important implications
for the study of SARS-CoV-2 biology and evolution. Owing to ad-

vances in sequencing technology and collaborative science,
more than 100,000 SARS-CoV-2 genomes have been sequenced
worldwide to date.

The genome of SARS-CoV-2 comprises a single positive-sense
RNA molecule of ∼29 kb in length. Although the 1a and 1b poly-
proteins are translated directly from this genomic RNA (gRNA), all14These authors contributed equally to this work.
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other proteins are translated from sgRNA
intermediates (Stern and Kennedy 1980;
Sola et al. 2015). sgRNAs are produced
through discontinuous transcription
during negative-strand synthesis fol-
lowed by positive-strand synthesis to
form mRNA. The resulting sgRNAs con-
tain a leader sequence derived from the
5′ untranslated region of the genome
and a transcription regulating sequence
(TRS) 5′ of the open reading frame
(ORF). The template switchoccurs during
sgRNA synthesis owing to a conserved
core sequence within the TRS 5′ of each
ORF (TRS-B) and the TRS within the lead-
er sequence (TRS-L) (Zúñiga et al. 2004).
The conserved core sequence leads to
base-pairing between the TRS-L and the
nascent RNA molecule transcribed from
the TRS-B, resulting in a long-range tem-
plate switch and incorporation of the 5′

leader sequence (Sola et al. 2015). SARS-
CoV-2 produces at least nine canonical
sgRNAs containing ORFs for four struc-
tural proteins (S, spike; E, envelope; M,
membrane; N, nucleocapsid) and several
accessory proteins (3a, 3b, 6, 7a, 7b, 8,
and 10) (Davidson et al. 2020; Wu et al.
2020; Zhou et al. 2020). In SARS-CoV
ORFs, 3b and 7b are considered nested
ORFs and not thought to be translated
from their own sgRNA (Inberg and
Linial 2004). Understanding variation
within sgRNA synthesis within the hu-
man host may have important implica-
tions for the study of SARS-CoV-2
biology and evolution.

Beyond the regulation of transcrip-
tion, sgRNAmayalsoplaya role in theevo-
lution of coronaviruses, and the template
switching required for sgRNA synthesis
may explain the high rate of recombina-
tion seen in coronaviruses (Wu and Brian
2010; Simon-Loriere and Holmes 2011).
Whereas the majority of sgRNA relate to
knownORFs, novel, noncanonical sgRNA
are also produced (Finkel et al. 2020; Kim
et al. 2020; Nomburg et al. 2020), al-
though the biological function of this is
unclear. sgRNAs have also been shown to
modulate host cell translational processes
(Patel et al. 2013).

It has previously been shown that
sgRNA transcript abundances can be
quantified from full RNA-seq data by
calculation of reads per kilobase of
transcript, per million mapped reads
(RPKM) or by using so-called “chimeric” fragments containing
the leader and TRS (Irigoyen et al. 2016). From two independent
repeats, the R2 between these twomeasurementmethodswas 0.99.

The ARTICNetwork (2020) protocol for the sequencing of the
SARS-CoV-2 (Fig. 1A) has been used worldwide to characterize the

genetic diversity of this novel coronavirus. The COVID-19
Genomics UK (COG-UK) Consortium (2020) in the UK, alone,
has produced 16,826 ARTIC Nanopore genome sequences (correct
October 29, 2020), whereas internationally GISAID contains thou-
sands more similar data sets (8775 with “Nanopore” in the
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Figure 1. The periscope ARTIC Nanopore algorithm design details. (A) ARTIC network amplicon layout
with respect to ORF TRS positions of SARS-CoV-2. Blue and aqua at the end of each ORF signifies leader
and TRS, respectively. (B) Read pileup at ORF6 TRS showing two types of reads that support the existence
of sgRNAs. Type 1 (red) is results from3′→5′ amplification from the closest primer to the 3′ of the TRS site,
and type 2 (green) is results from 3′→5′ amplification from the adjacent amplicons 3′ primer (i.e., the
second closest 3′ primer). (C) Overview of the periscope workflow. (D) Decision tree for read classifica-
tion. Green arrow denotes a “yes” for the step-in question; namely, if the read is at a known ORF start
site, a green arrow is used; if not, a red arrow for “no” is used.
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metadata and 3660 list “artic,” June 14, 2020). This protocol in-
volves the amplification of 98 overlapping regions of the SARS-
CoV-2 genome in two pools of 49 amplicons to provide full
sequence coverage when sequenced with Oxford Nanopore se-
quencing devices. All known SARS-CoV-2 ORF TRS sites are con-
tained within one or more amplicons in this panel (Fig. 1A).
Other methods of enrichment and enrichment-free sequencing
of the SARS-CoV-2 genome like bait-based capture and subsequent
short-read Illumina sequencing ormetagenomics, respectively, are
also popular and hold promise for the detection of sgRNA.

Previous studies of SARS-CoV-2 sgRNA have used methods
that specifically detect expressed RNA, such as direct RNA sequenc-
ing of cultured cells infected with SARS-CoV-2 (Davidson et al.
2020; Kim et al. 2020; Taiaroa et al. 2020) or more traditional total
poly(A) RNA-seq (Finkel et al. 2020). We hypothesized that we
could detect and quantify the levels of sgRNA to both identify nov-
el noncanonical sgRNA and provide an estimate of ORF sgRNA ex-
pression in SARS-CoV-2 sequence data. Here we present a tool for
these purposes and its application to 1155ARTICNanopore-gener-
ated SARS-CoV-2 sequences derived from clinical samples in
Sheffield, United Kingdom, and validate our findings in data
from independent SARS-CoV-2 sequences from Glasgow, United
Kingdom, in addition to Illumina data generated with bait capture
and metagenomic approaches.

Results

Evidence for sgRNA

We designed a tool, periscope, to reanalyze raw data from SARS-
CoV-2 isolates to identify sgRNA based on the detection of the
leader sequence at the 5′ end of reads as described previously
(Leary et al. 2020).

ARTIC network Nanopore sequencing data

The recommended bioinformatics standard operating procedure
to process ARTIC network sequencing data to produce a consensus
sequence involves selecting reads between 400 and 700 bp and the
trimming of the primer and adapter sequence. In most cases, this
removes reads that might provide evidence for sgRNA. Mapping
raw data from this protocol reveals the presence of reads at ORF
TRS sites, which are sometimes shorter (Supplemental Fig. S1,
sgRNA; Supplemental File S15) than the full ARTIC Network
amplicon and contain leader sequence at their 5′ end. We believe
these reads are the result, in the case of pool 1, priming from prim-
er 1 of the pool, which is homologous to most of the leader se-
quence. We also see, in both pools, unidirectional amplification
from the 3′ primer, which results in a truncated amplicon when
the template is a sgRNA (Fig. 1B). We also observe longer reads
that are the result of priming from the 3′ end of the adjacent ampli-
con (Fig. 1B).

To separate gRNA from sgRNA reads, we use the following
workflow using Snakemake (Köster and Rahmann 2012); raw
ARTIC Network Nanopore sequencing reads that pass QC are col-
lected and aligned to the SARS-CoV-2 reference; and reads are fil-
tered out if they are unmapped or supplementary alignments
(reads with an alternate mapping location). We do not perform
any length filtering. Each read is assigned an amplicon. We
search the read for the presence of the leader sequence
(5′-AACCAACTTTCGATCTCTTGTAGATCTGTTCT-3′) using a lo-
cal alignment. If we find the leader with a strongmatch, it is likely
that that read is from amplification of sgRNA. We assign reads to

an ORF. By using all of this information, we then classify each
read into genomic, canonical sgRNA or noncanonical sgRNA
(Fig. 1D) and produce summaries for each amplicon and ORF, in-
cluding normalized pseudoexpression values. sgRNA reads are
binned into either high quality (HQ), where the leader alignment
score is 50 or more; low quality (LQ), where the leader alignment
score is 30 or more; or low, low quality (LLQ), where the read still
begins at a known ORF start site (Fig. 1D).

Illumina sequencing data

Next, we wanted to investigate whether we could use a similar
method to Illumina sequencing data. Illumina sequencing data
for SARS-CoV-2 has been generated using three main approaches:
amplicon based (ARTIC Network), bait capture based, or metage-
nomics on in vitro samples. Here we describe sgRNA detection in
both Illumina bait-based capture and Illumina metagenomic
data from in vitro experiments. The reads from these techniques
tend to have differing amounts of leader at the 5′ end of the reads
(Supplemental Fig. S2A). This is owing to library preparationmeth-
ods used in these workflows. We therefore implemented a modi-
fied method for detecting sgRNA to ensure that we could capture
as many reads originating from sgRNA as possible. In our
Illumina implementation (Supplemental Fig. S2B,C), we extract
the soft-clipped bases from the 5′ end of reads and use these in a
local alignment to the leader sequence. In addition to adjusting
the leader detection method, we also process mate pairs, ensuring
both reads in the pair are assigned the same status.

Detection of sgRNA

Wewere able to detect sgRNAs with a high leader alignment score
from all canonical ORFs in multiple samples (Fig. 2; Supplemental
Table S1; Supplemental File S1). As shown in Figure 2A, sgRNA
from the N and M ORFs were the most abundant sgRNA (depen-
dent on normalization method), with N being found in 97.3% of
Sheffield samples, consistent with published reports in vitro
(Alexandersen et al. 2020; Finkel et al. 2020; Kim et al. 2020). To
show that the levels of sgRNA detected in the Sheffield data set
were not site specific, we applied periscope to an independent
data set of 55 ARTIC Network Nanopore sequenced SARS-CoV-2
samples from Glasgow, United Kingdom (Fig. 2A; Supplemental
File S7).

Like previously published reports (Alexandersen et al. 2020;
Finkel et al. 2020; Kim et al. 2020; Taiaroa et al. 2020), we were un-
able to find strong evidence of sgRNA supporting the presence of
ORF10 (Fig. 2A; Supplemental Table S2) with only 0.95% of sam-
ples containing HQ or LQ sgRNA calls at this ORF. We aligned
the 12 reads from these samples to a reference composing of
ORF10 and leader (Supplemental Fig. S3). On manual review of
these results, 10 (four HQ) of these reads are falsely classified as
sgRNA. Two reads remain: one read from each of the samples
SHEF-C0840 and SHEF-C58A5. These reads could represent
ORF10 sgRNA as they have an almost completematch to the leader
and the remainder of the reads is a strong match to ORF10.

Normalization of subgenomic read abundance

Beyond detecting the presence of reads that are a result of amplifi-
cation of sgRNA (Fig. 2D), we hypothesized that we could quantify
the level of sgRNA present in a sample using either total mapped
reads or gRNA reads from the same amplicon as denominators
for normalization. Normalization of this kind would be analogous

Subgenomic RNA in SARS-CoV-2 genomic data
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Figure 2. In vivo and in vitro detection and quantification of canonical sgRNA in SARS-CoV-2. (A) The abundance of sgRNA detected for each ORF nor-
malized per 1000 gRNAs from Oxford Nanopore Technologies (ONT) ARTIC data from both Sheffield (n=1155) (Supplemental File S1) and Glasgow (n=
55) (Supplemental File S7). (sgRPTg) sgRNA reads per 1000 gRNA reads. Ordered by median. See Supplemental Figure S3 for ORF10 investigation.
(B) Number of reads supporting gRNA at each ORF. If multiple amplicons cover the ORF, then this represents the sum of reads for those amplicons.
(C ) gRNA reads normalized per 100,000 mapped reads (gRPHT) at each ORF. (D) Raw counts of sgRNAs. (E) sgRNA normalized to total mapped reads.
(sgRPHT) sgRNA reads per 100,000mapped reads. (F,G) In vitro infection time coursewith three SARS-CoV-2 viral isolates (GLA1, GLA2, and PHE2) in either
VeroE6 cells, VeroE6 expressing ACE2, or VeroE6 expressing ACE2 and TMPRSS2, with total RNA collected and sequenced at 24, 48, and 72 h after infection,
sequenced using either ONT ARTIC (Supplemental File S6) or Illumina Metagenomic approaches (Supplemental File S5). (F ) The sum of all normalized (to
total mapped reads to allow direct comparison across ONT ARTIC and Illumina Metagenomic methods) sgRNA in each technology scaled to one.
(G) Normalized quantity (to total mapped reads) of each canonical sgRNA in each technology. (Top) ONT ARTIC; (bottom) Illumina Metagenomic.
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to traditional RNA-seq analysis in which reads per million (RPM)
are calculated to allow comparisons between data sets where the
number of reads affect the amount of each transcript detected.
In the case of ARTIC Network Nanopore sequencing data, which
involves polymerase chain reaction (PCR) of small (∼400-bp) over-
lapping regions of the SARS-CoV-2 genome, amplification efficien-
cy of each amplicon should also be taken into account. Becausewe
have a median of 258,210 mapped reads for samples from the
Sheffield data set (Supplemental Fig. S4), we normalized both
gRNA or sgRNA per 100,000 mapped reads (gRNA reads per
100,000 [gRPHT] or sgRNA reads per 100,000 [sgRPHT], respective-
ly) (Fig. 2C,E).

In our second approach, because of differences in amplicon
performance in the ARTIC PCR protocol that lead to coverage dif-
ferences in the final sequencing data (Fig. 2B,C), we determine the
amplicon from which the sgRNA has originated, using methods
from the ARTIC Network Field Bioinformatics package (2020).
We then normalize the sgRNA per 1000 gRNA reads from the
same amplicon. If a sgRNAhas resulted frommore than one ampli-
con (Fig. 1B), the resulting normalized counts from each amplicon
are summed, giving us sgRNA reads per 1000 gRNA reads (sgRPTg)
for every ORF (Fig. 2A). Periscope outputs the results from both
methods of normalization so that the user can decide which is
more appropriate in their case and determine whether the conclu-
sions of their analysis are consistent across both approaches.

For Illumina data, we applied one further normalization tech-
nique to allow the normalization of bait-based capture and meta-
genomic data. Efficiency of capture varies between probes and
designs. For metagenomic data, natural fluctuations in coverage
owing to sequence content can exist, therefore, to try and account
for this, we took the median coverage for the region around each
canonical ORF start site (±20 bp) as the denominator in the nor-
malization of these data.

sgRNA detection in vitro

The kinetics of sgRNA expression during the course of a SARS-CoV-
2 infection is still not well understood. We applied periscope to
data generated from an infection time course (Fig. 2F,G). We
used both Illumina metagenomic (Supplemental File S5) and
Nanopore ARTIC sequencing data (Supplemental File S6) from
an in vitro model of SARS-CoV-2 infection. Wild-type (WT)
VeroE6, VeroE6 expressing ACE2, and VeroE6 expressing both
ACE2 and TMPRSS2 were infected with three different SARS-
CoV-2 viral isolates—PHE2 (WT), GLA1 (D614G), and GLA2
(N439K and D614G) (Supplemental Table S9)—and RNA collected
for sequencing at 24, 48, and 72h.Wenormalized both data sets to
the total mapped reads (per 100,000) to allow direct comparison.
The scaled normalized total sgRNA level detected using periscope
on both sequencing technologies is similar (Fig. 2F), indicating
the pattern of expression is maintained between technologies.
ORF N remains one of the highest expressed ORFs in both data
sets (Fig. 2G). The addition of ACE2 and a combination of ACE2
and TMPRSS2 results in a clear difference in the kinetics of all
sgRNA overWT. These data suggest that the peak of sgRNA expres-
sion is expedited by the addition of ACE2 and TMPRSS2.

Technical replicates and batch effects

To assess the reproducibility of sgRNA analysis using ARTIC
Network Nanopore sequencing data and periscope, we analyzed
two samples that were subject to four technical replicates each;
cDNA was independently prepared from the same swab extracted

RNA, and subject to independent amplification using the recom-
mended ARTIC Network PCR and sequenced (Fig. 3A,B;
Supplemental File S4). The Pearson correlation coefficient (R) is
≥0.88 for all normalized sgRNA abundances between replicates
from the same sample.

Next, we treated our sgRNA abundance values like an RNA-
seq data set and asked whether other factors could be influencing
expression. To do this, we used an unsupervised principal compo-
nent analysis (PCA) (Fig. 3C–F; Supplemental File S8) and colored
samples by the different categorical variables that could affect ex-
pression (batch effects) like sequencing run, the ARTIC primer ver-
sion, the number ofmapped reads, andORF E gene cycle threshold
(e.g., Ct, diagnostic test, normalized to RPPH1 Ct value; see
Methods) as this is an indicator of the amount of virus present
in an isolate and a proxy for quality (Fig. 3F). There are no signifi-
cant clusters between any of the above variables and the expres-
sion values in the PCA analysis.

Lower limit of detection

Thenumber of reads generated from any sequencing experiment is
likely to vary between samples and between runs. The median
mapped read count in the Sheffield data set is 258,210 but varies
between 9105 and 3,260,686 (Supplemental Fig. S4). In our expe-
rience, we generally see much lower total amounts of sgRNA com-
pared with their genomic counterparts; therefore, its detection is
likely to suffer when a sample has lower amounts of reads
(Supplemental Fig. S5). To determine the effect of lower coverage
on the detection of sgRNA, we downsampled 23 samples that
had more than 1 million mapped reads to lower read counts
with seqtk (https://github.com/lh3/seqtk, accessed November
2020). We chose high (500,000 reads), medium (200,000 and
100,000), and low read counts (50,000, 10,000, and 5000) and
ran periscope on this downsampled data (Supplemental File S3).
In the absence of a ground truth, we performed pairwise correla-
tion on the abundance of sgRNA between downsampled data
sets (Fig. 3G; Supplemental File S3). If coverage did not affect the
abundance estimates, then all coverage levels would show a high
correlation coefficient (Pearson) when compared with each other
(R> 0.7, adjusted P<0.01). As expected, lower counts of the 5000
and 10,000 reads do not correlate with those generated from
100,000, 200,000, and 500,000 reads (R2 < 0.7). Samples with
50,000 reads seem to perform well compared with 100,000,
200,000, and 500,000 reads, with an R2 of 0.94, 0.89, and 0.89,
respectively.

Noncanonical sgRNA

In addition to estimating sgRNA for known ORFs, we can use peri-
scope to detect novel, noncanonical sgRNA (Fig. 4; Supplemental
File S2). We previously applied periscope to detect one such novel
sgRNA (N∗), which is a result of the creation of a new TRS site by a
triplet variation at position 28881 to 28883, which results in pro-
duction of a truncated N ORF (Leary et al. 2020). To classify sgRNA
as noncanonical, supporting reads must fulfill two criteria: First,
the start position does not fall in a known TRS-B region (±20 bp
from the leader junction); and second, in Oxford Nanopore
Technologies (ONT) data, the start position must not fall within
±5 bp from a primer sequence. We chose to implement the second
criteria becausewe noticed a pattern of novel sgRNAs being detect-
ed at amplicon edges owing to erroneous leader matches to the
primer sites.
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We found evidence of noncanonical sgRNAs supported by
two or more reads in 913 samples (Supplemental Fig. S6). A large
quantity of these recurrent noncanonical sgRNAs cluster around

known TRS-B sites (Fig. 4A), although we see enrichment of non-
canonical sgRNAs at other sites throughout the genome (Fig. 4A;
Supplemental Fig. S6).

A B

C D E F

G

Figure 3. Technical replicates, detection limit, and batch effects. (A,B) Four technical replicates of two samples additional to the Sheffield cohort
(Supplemental File S4). Pearson correlation coefficients between sgRPTg P-values adjusted with Bonferroni correction. (ORFs colored according to legend
inG.) (C–F) Unsupervised principal component analysis (Supplemental File S8) colored by ARTIC primer version V1 or V3 (C), sequencing run (D) where the
color denotes a different run, total mapped read count (scale = 100,000 reads; E), or normalized E gene cycle threshold (Ct) value (F ). (G) Downsampling of
reads from 23 high-coverage (more than 1million mapped reads) (Supplemental File S3) samples. The number of reads provided as input to periscope was
downsampled with seqtk to 5, 10, 50, 100, 200, and 500 thousand reads.
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Figure 4. Noncanonical sgRNA.We classified reads as supporting noncanonical sgRNA as described in Figure 1D (Supplemental File S2). (A) Plot showing
the number of samples with each noncanonical sgRNA detected in the ARTIC Nanopore data. Size of the point represents the number of reads, and the
color indicates the number of samples in which noncanonical sgRNA was found. Lines connecting points represent the sgRNA product of discontinuous
transcription. Those detected in Sheffield samples are above the genome schematic; in Glasgow, below. (Inset) Zoomed-in region between nucleotides
22,000 and 30,000. (B) Noncanonical sgRNA with strong support in SHEF-C0118 at position 25,744. (C) Raw sgRNA levels (HQ and LQ) in SHEF-
C0118 show high relative amounts of this noncanonical sgRNA at position 25,744. (D) Zoomed-in region between nucleotides 22,000 and 30,000 of
the SARS-Cov-2 genome, showing noncanonical sgRNA in the Sheffield ONT data set (top) compared with the noncanonical sgRNA detected in the
Illumina bait capture data from Glasgow (Supplemental File S11). (E) Noncanonical sgRNA levels (solid lines) compared with canonical (dashed lines)
in an in vitro model of SARS-CoV-2 infection measured with both Illumina metagenomic sequencing (orange) and ONT Artic (blue). Total sgRNA levels
are normalized per 100,000 mapped reads and scaled within each data set for comparison.
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In particular, SHEF-C0118 contains 177 reads (HQ and LQ)
that support a noncanonical sgRNA at position 25,744 between
ORFs 3a and E (Fig. 4B,C). The number of reads for this noncanon-
ical sgRNA at 25,744 is high compared with canonical sgRNA from
the same sample (Fig. 4C; Supplemental Tables S3, S4). Twenty-six
samples contain one read supporting this noncanonical sgRNA,
with four samples with more than one read. In another example,
there are 377 samples that have evidence of one or more reads for
a noncanonical sgRNA at position 10,639 (HQ or LQ; of these 155
have evidence for two or more reads ±5 bp from 10,639)
(Supplemental Fig. S7A,B). In this case, there is a TRS-like sequence
close to the leader in this noncanonical sgRNA; ACGAAC →
ACGGAC. Two samples have significant support with 103HQ reads
each (SHEF-CE04A, SHEF-CA0D5 (Supplemental Tables S5, S8). It is
possible that this represents an independent ORF1b sgRNA.
Furthermore, there are 226 samples that have evidence for a nonca-
nonical sgRNA at position 5785 (one or more reads; 62 with two or
more reads, ±5 from5785) (Supplemental Fig. S7C,D),where there is
no core TRS sequence present and there does not appear to be a pro-
ductive start codon.

Noncanonical sgRNAs across centers and technologies

To show the detection of noncanonical sgRNAwas not a phenom-
enon of the Sheffield data set and ARTICNanoporemethod alone,
we repeated the above analysis on both Nanopore and Illumina
data from Glasgow, United Kingdom (Fig. 4A,D; Supplemental
Fig. S8E; Supplemental Files S10, S11).

The noncanonical sgRNA at 5785 is found in 15/55 samples
from this data set, and seven of those have multiple read support
(Supplemental Table S6). This sgNA is also found with three reads
in the Illumina sample CVR201. The noncanonical sgRNA found
at 10,639 is found in 13/55 samples, and five of those have multi-
ple read support (Supplemental Table S7); 10,639 is also found in
Illumina sample CV196 with one read supporting; and 25,744 is
supported by one HQ sgRNA read in one sample (CVR2185)
from the Glasgow ONT data set.

To determine if there were any differences in noncanonical
sgRNA over time, we applied the same analysis to the in vitro sys-
tem described earlier (Fig. 4E; Supplemental Fig. S9; Supplemental
Files S12, S13). Normalized and scaled noncanonical (solid lines)
show that noncanonical sgRNA has comparable kinetics to canon-
ical sgRNA (dashed lines), which appear to be dependent on the vi-
rus, cell line, and time since infection. This data set shows that
although proportions of noncanonical sgRNA are similar
(Supplemental Fig. S5), Illumina metagenomic data appear to be
more sensitive (Supplemental Figs. S5, S9, S10) with a greater num-
ber of noncanonical sgRNAs detected.

Variants in sgRNA

An advantage of having reads from both gRNA and sgRNA is the
ability to examine how genomic variants are represented in
sgRNAs. For variants found in our isolates by the ARTIC Network
nanopolish (Simpson 2018) pipeline, we interrogated the bases
called (pysam [Gilman et al. 2019] pileup) at the variant position
in gRNA and sgRNA to determine if there were detectable dif-
ferences (this tool is integrated into periscope) (Fig. 5A;
Supplemental Fig. S12; Supplemental File S16). As we can only dis-
cern gRNA and sgRNA from a small subset of amplicons, the
chance that a variant falls within these amplicons is low, but
when the two do coincide, variants called in gRNAwere supported
in reads from sgRNA.

In a small subset of samples, wehave identified variants in the
TRS sequence of some ORFs. One sample (Fig. 5B) has a variant in
the N ORF TRS (SHEF-C0F96, 28256C>T. CTAAACGAAC to
TTAAACGAAC), which is found only in gRNA but not sgRNA
reads. This sample has low expression ofmost ORFs (ORF N shown
in Fig. 5C) and has 233,127 reads, which is around the median of
the cohort. However, this mutation falls outside the core TRS and
read counts for sgRNA are low so this result should be treated with
caution. It is possible that this represents a sequencing error in the
gRNA that is not found in the sgRNA owing to the context around
that position changing as a result of the inclusion of the leader
sequence.

In addition, we detected a variant at 27,046C>T (ACGAAC to
ACGAAT) in the TRS of ORF6 in six samples (Fig. 5D); this variant
is present in both the gRNA and sgRNA reads. Four of these sam-
ples have low expression of ORF6 compared to the rest of the co-
hort (Fig. 5E), although numbers are too low to compute
statistical significance.

Discussion

We have developed periscope, a tool that can be used on nearly all
publically available SARS-CoV-2 sequence data sets worldwide to
detect and quantify sgRNA. Here we applied periscope to 1155
SARS-CoV-2 sequences from Sheffield, United Kingdom, and three
data sets from Glasgow; 55 ARTIC network Nanopore sequences;
five bait captured Illumina sequenced samples (Supplemental
File S14); and Illumina metagenomic data from an in vitro SARS-
CoV-2 infection model. The development of periscope was initial-
ly motivated to aid in the detection of a novel, noncanonical,
sgRNA generated (N∗) from a de novo TRS site as a result of the trip-
let mutation 28,881G>A, 28,882G>A, and 28,883G>C found in
a large number of worldwide SARS-CoV-2 isolates (Leary et al.
2020).

By searching for reads containing the SARS-CoV-2 leader se-
quence, incorporated into all sgRNA at their 3′ ends by the SARS-
CoV-2 RNA-dependent RNA polymerase, we were able to detect
sgRNA representing all annotated canonical ORFs of SARS-CoV-
2. ORF10 sgRNA, however, was supported by only two reads in
all 1155 samples in the Sheffield data set (Supplemental Table
S1). By using an in vitro SARS-CoV-2 infection system Illumina
data set, we identified a further eight reads in total supporting an
ORF10 sgRNA. Seven of these reads were present at 72 h after infec-
tion, the remaining read was found at 48 h. The inability to find
significant support for ORF10 mirrors previous findings
(Alexandersen et al. 2020; Davidson et al. 2020; Finkel et al.
2020; Kim et al. 2020) and is perhaps expected if ORF10 is indeed
nonessential (Pancer et al. 2020). The abundance of other sgRNAs
is in line with previously published reports of protein levels in
SARS-CoV-2, with M and N showing the highest expression levels
after normalization (Bouhaddou et al. 2020; Finkel et al. 2020). In
the Sheffield data set, the median proportion of total sgRNA is
1.2% (Supplemental Fig. S4), which is in broad agreement with
published reports, based on ORF E, that sgRNA represented 0.4%
of total viral RNA (Wölfel et al. 2020). These findings were replicat-
ed in an equivalent data set of 55 ONT ARTIC samples from
Glasgow. We were able to show that sgRNA analysis using peri-
scope is reproducible, with strong correlations between sgRNA
abundance levels between technical replicates.

It has been suggested that sgRNA abundance estimates from
amplicon-based sequencing data are largely a function of the qual-
ity of the RNA in the initial sample, defined in one study by
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Figure 5. Variants in sgRNA. (A) Base frequencies at each of the variant positions called by ARTIC in each sample (multiple samples can be represented at
one position), split by read class. White rectangles represent variants detailed in B and C. (B) SHEF-C0F96 has a 28,256C >T variant, of high quality that sits
in the ORF N TRS sequence. This variant is not present in sgreads. (C) Normalized sgRNA expression (sgRPTg) for the NORF in samples with the variant and
without. N expression is one of the lowest in the cohort. (D) SHEF-C0C35 has 27,046C>T variant of high quality that sits in the TRS sequence. This variant is
present in both gRNA and sgRNA. (E) ORF6 expression levels in samples with 27046C>T.
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average read length (Alexandersen et al. 2020). The advantage of
the ARTIC Network protocol over the AmpliSeq IonTorrent pro-
tocol used by the aforementioned study is that the ARTIC
Network protocol has a short, consistent amplicon length
(mean is 389 and standard deviation is 11.2) (Supplemental Fig.
S1, gRNA). The assay is designed inherently to deal with samples
with degraded RNA. Because sgRNA reads are a product of these
amplicons, we do not believe degradation plays a significant
role in the determination of abundance levels in our data set.
Furthermore, by using E gene Ct value as a surrogate for viral
load, we find only a weak correlation with the total amount of
sgRNA detected (Spearman’s rank correlation, rho=0.268)
(Supplemental Fig. S13A; Supplemental File S9), and this was
mainly driven by outliers. Furthermore, sequence coverage across
the genome (which is affected by low viral load and poor-quality
RNA) is also not correlated with sgRNA amount (Spearman’s rank
correlation, rho=−0.012) (Supplemental Fig. S13B; Supplemental
File S17). Finally on comparison with amplification-free ap-
proaches like metagenomics, we see a similar pattern of sgRNA
expression.

To show the utility of periscope for the investigation of im-
portant biological questions, we applied it to sequencing data
from an in vitro infection time course using VeroE6 cells that
were either WT, overexpressing ACE2, or overexpressing ACE2
and TMPRSS2 (Hoffmann et al. 2020). ACE2 and TMPRSS2 coex-
pressing cells have the most obviously altered sgRNA kinetics,
with the peak level of sgRNA occurring at 48 h followed by a reduc-
tion at 72 h, which is in contrast with WT cells in which sgRNA is
still accumulating after 48 h. This may indicate an expedited
course of active replication allowed by greater cellular permissibil-
ity with ACE2 and TMPRSS2, followed by attenuated replication in
a closed in vitro model. Of note, a greater quantity of reads from
the Illumina metagenomic data are classified as sgRNA compared
with ONT ARTIC data (Supplemental Fig. S4), and there are some
differences between the quantities of each ORF when considered
individually.

Noncanonical sgRNAs are readily detected by periscope, and
we present examples in which periscope was able to detect high
abundances of specific noncanonical sgRNAs in a number of iso-
lates, which could indicate some functional significance. It has
previously been observed that noncanonical sgRNAs are not
formed owing to a TRS-like homology (Nomburg et al. 2020).
The noncanonical sgRNA at position 25,744 in SHEF-C0118 has
a high relative abundance compared with the canonical sgRNAs
in the same sample. There does not appear to be a canonical TRS
sequence in close proximity to the leader junction, but there exists
a motif that has two mismatches to the canonical TRS, AAGAAT.
An ATG downstream from the leader in these reads would result in
an N-terminal truncated 3a protein. Two forms of 3a protein in
SARS-CoV have been noted in the literature (Huang et al. 2006).
Alternatively, SARS-CoV contains a nested ORF within the 3a
sgRNA, 3b (Supplemental Fig. S11), but the homolog of this pro-
tein is truncated early in SARS-CoV-2; however, others note that
a protein from this truncated 3b, of only 22 amino acids in length,
could have an immune regulatory function (Konno et al. 2020).
This noncanonical sgRNA could indicate production of this novel
3b protein in SARS-CoV-2 independent from the 3a sgRNA, a phe-
nomenon that has been shown to occur in SARS-CoV (Hussain
et al. 2005). We cannot explain why, in this sample, this nonca-
nonical sgRNA is present in such high abundance. There are no ge-
nomic variants that contribute to a TRS sequence, for example.We
also find evidence of highly recurrent noncanonical sgRNAs that

have weaker evidence like those at 10,639, which could represent
an independent sgRNA for ORF 1b. Others, like those at 5785 have
no apparent related ORF.

Some studies have detected the presence of an sgRNA for
ORF7b (Finkel et al. 2020; Kim et al. 2020); we also explored this
possibility (Supplemental Fig. S11C–E). We are able to detect non-
canonical sgRNAs just 3′ of the predicted start codon of ORF7b
(27,760 and 27,761) and at least 10 bases downstream from a pre-
dicted TRS-B site (Yang et al. 2020). These sgRNAs have strong sup-
port in both the Sheffield (Supplemental Fig. S11D), 668/1155
samples (one or more HQ sgRNA, median of two reads per sample,
and a maximum of 133), and Glasgow data sets, 44/55 samples
(one or more HQ sgRNA, median of 1.5 reads per sample, and a
maximumof 12). Raw reads fromSHEF-BFF12 show that the leader
body junction in these sgRNAs does indeed exclude the start co-
don and in fact includes four additional bases not present in the
genome (Supplemental Fig. S11E). It is possible that this sgRNA en-
codes a protein from another ATG site downstream from the lead-
er–body junction.

We were able to detect a number of these recurrent nonca-
nonical sgRNAs in the data from Glasgow, showing that these
noncanonical sgRNAs are unlikely to be sequencing artifacts and
may represent favored sites for noncanonical sgRNA generation
during SARS-CoV-2 replication for as yet unexplained reasons.
We speculate that the diversity of noncanonical sgRNA seen in
our data set, which is most comparable to total RNA-seq (Wyler
et al. 2021) than direct RNA-seq, is a function of (1) the number
of samples analyzed and (2) the varied and unknown length of
the infection at the time of sampling. These findings illustrate
that although much is not known about the expression of nonca-
nonical sgRNA, periscope could help define and quantify these
noncanonical transcripts in order to explore their relevance in
SARS-CoV-2 pathogenesis.

The COVID-19 Genomics UK (COG-UK) Consortium (2020)
in the UK, alone, has 16,826 ARTIC Nanopore and 69,969
Illumina sequences (correct October 29, 2020), whereas interna-
tionally GISAID contains thousands more similar data sets (8775
with “Nanopore” in the metadata and 3660 list “ARTIC” as of
June 14, 2020). The application of periscope could therefore pro-
vide significant insights into the sgRNA architecture of SARS-
CoV-2 at an unprecedented scale. Furthermore, periscope can be
provided new primer/amplicon locations for PCR-based genomic
analysis protocols, and we have shown that it can be applied to
metagenomic sequencing methods without prior species-specific
genome amplification. Periscope could also be applied to sequenc-
ing data from other viruses where discontinuous transcription is
the method of gene expression.

Periscope offers an opportunity to further understand the reg-
ulation of the SARS-CoV-2 genome by identifying and quantifying
sgRNA. Applying it to the vast amount of SARS-CoV-2 sequencing
data sets that have been generated worldwide during this unprec-
edented public health crisis could uncover critical insights into the
role of sgRNA in SARS-CoV-2 pathogenesis.

Methods

Sheffield SARS-CoV-2 sample collection and processing

One thousand one hundred fifty-five samples from 1155 SARS-
CoV-2-positive individuals were obtained from either throat or
combined nose/throat swabs. Nucleic acids were extracted from
200 µL of each sample using MagNA Pure extraction platform
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(Roche Diagnostics). SARS-CoV-2 RNA was detected using prim-
ers and probes targeting the E gene and the RdRp genes of
SARS-CoV-2 and the human gene RPPH1 to allow normalization,
for routine clinical diagnostic purposes, with thermocycling and
fluorescence detection on ABI Thermal Cycler (Applied
Biosystems) using previously described primer and probe sets
(Corman et al. 2020).

Sheffield SARS-CoV-2 isolate amplification and sequencing

Nucleic acids from positive cases underwent long-read whole-
genome sequencing (ONT) using the ARTIC Network proto-
col (accessed April 19, 2020, https://artic.network/ncov-2019,
https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-
locost-bh42j8ye). In most cases, 23 isolates and one negative con-
trol were barcoded per 9.4.1D Nanopore flow cell. Following
base-calling, data were demultiplexed using ONT Guppy (‐‐re-
quire-both-ends). Reads were filtered based on quality and length
(400–700 bp) and then mapped to the Wuhan reference genome
(MN908947.3) and primer sites trimmed. Reads were then down-
sampled to 200× coverage in each direction. Variants were called
using nanopolish (Simpson 2018).

In vitro SARS-CoV-2 infection model

Two derivatives and an unaltered lineage of the VeroE6 African
green monkey kidney cell line were used in this study. One
VeroE6 cell line was manipulated to overexpress the angiotensin-
converting enzyme 2 (ACE2) receptor. In addition to ACE2 overex-
pression, a third line was also induced to overexpress the trans-
membrane serine protease 2 (TMPRSS2). These cell lines are
referred to as VeroE6, VeroE6 ACE2, and VeroE6 ACE2 TMPRSS2,
respectively. Methods for the production and the validation of
these cell lines are fully described by Rihn et al. (2021). SARS-
CoV-2 infection of these three cell lines were set upwith three viral
isolates (PHE2, GLA1, and GLA2) (Supplemental Table S9) and su-
pernatant harvested at 24, 48, and 72 h for viral RNA extraction
and sequencing.

Illumina metagenomic sequencing

This protocol was applied to virus isolates propagated in vitro.
Extracted nucleic acid was incubated with DNase I (Thermo
Fisher Scientific AM2222) for 5 min at 37°C. After DNase treat-
ment, the samples were purified using Agencourt RNA clean
AMPure XP beads (Beckman Coulter A63987), following the man-
ufacturer’s guidelines, and quantified using the Qubit dsDNA HS
Kit (Thermo Fisher Scientific Q32854). cDNA was synthesized us-
ing SuperScript III (Thermo Fisher Scientific 18080044) and a
NEBNext Ultra II non-directional RNA second strand synthesis
module (New England Biolabs E6111L), as per the manufacturer’s
guidelines.

Samples were further processed using the Kapa LTP library
preparation kit for Illumina Platforms (Kapa Biosystems
KK8232). Briefly, the cDNAwas end-repaired and the protocol fol-
lowed through to adapter ligation. At this stage, the samples were
uniquely indexed using theNEBNextmultiplex oligos for Illumina
96 unique dual index primer pairs (New England Biolabs E6442S),
with 15 cycles of PCR performed.

All amplified libraries were quantified by a Qubit dsDNA HS
Kit and run on the Agilent 4200 Tapestation system (Agilent
G2991AA) using the high-sensitivity D5000 Screentape (Agilent
5067-5592) and high-sensitivity D5000 reagents (Agilent 5067-
5593). Libraries were sequenced on an Illumina NextSeq 550
(Illumina SY-415-1002).

sgRNA detection

Periscope consists of a Python-based Snakemake (Köster and
Rahmann 2012) workflow, which runs a Python package that pro-
cesses and classifies reads based on their configuration (Fig. 1C).

Preprocessing

Nanopore

Pass reads for single isolates are concatenated and aligned to
MN908947.3 with minimap2 (v2.17) (-ax map-ont -k 15) (Li
2018). It should be noted that adapters or primers are not trimmed.
BAM files are sorted and indexed with SAMtools (Li et al. 2009).

Illumina

Paired-end reads, ideally before trimming, are aligned to
MN908974.3 with BWA-MEM (v0.7.17) (Li and Durbin 2009)
with the “Y” flag set to use soft clipping for supplementary align-
ments. BAM files are sorted and indexed with SAMtools.

Periscope: leader identification and read classification

Nanopore

Reads from the minimap2 aligned BAM file are then processed
with pysam (Gilman et al. 2019). If a read is unmapped or repre-
sents a supplementary alignment, then it is discarded. Each read
is then assigned an amplicon using the “find_primer” method of
the ARTIC field bioinformatics package. We search for the leader
sequence (5′-AACCAACTTTCGATCTCTTGTAGATCTGTTCT-3′)
with Biopython (Cock et al. 2009) local pairwise alignment
(localms) with the following settings: match +2, mismatch −2,
gap -10, and extension -0.1, with score_only set to true to speed
up computation. The read is then assigned an ORF using a pybed-
tools (Dale et al. 2011) and a BED file consisting of all knownORFs
±10 of the predicted leader/genome transition.

We classify reads as a HQ sgRNA (Fig. 1D) if the alignment
score is greater than 50 and the read is at a known ORF. If the
read starts at a primer site, then it is classified as gRNA; if not,
then it is classified as a HQ noncanonical sgRNA supporting
read. If the alignment score is greater than 30 but 50 or less and
if the read is at a known ORF, then it is classified as a LQ sgRNA.
If the read is within a primer site, it is labeled as a gRNA; if not,
then it is a LQ sgRNA. Finally, any reads with a score of 30 or
less that are at a known ORF are then classified as a LLQ sgRNA;
otherwise, they are labeled as gRNA. The following tags are added
to the reads formanual reviewof the periscope calls: XS, alignment
score; XA, amplicon; AC, read class; and XO, the read ORF. Reads
are binned into qualitative categories (HQ, LQ, LLQ, etc.) because
we noticed that some sgRNAswere not classified as such owing to a
lower match to the leader. After manual review, they are deemed
bona fide sgRNA. This quality rating negates the need to alter
alignment score cutoffs continually to find the best balance be-
tween sensitivity and specificity. Restricting to HQ data means
that sensitivity is reduced but specificity is increased, including
LQ calls will decrease specificity but increase sensitivity.

Illumina

Reads from the BWA-MEM-aligned BAM file are processed with
pysam. If a read is unmapped or represents a supplementary align-
ment, then it is discarded.

The presence of soft clipping at the 5′ end of the reads is an
indicator that the read could contain the leader sequence sowe ex-
tract all of the soft clipped bases from the 5′ end, additionally in-
cluding three further bases to account for homology between
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leader and genome at the N ORF (these bases would therefore not
be soft clipped at this ORF). If there are fewer than six extracted
bases in total, we do not process that read further as this is not
enough to determine a robust match to the leader sequence.
With a match score of two and a mismatch score of −2 (gap open-
ing penalty,−20l extension,−0.1), soft clipped bases are aligned to
the leader sequence with localms. Soft clipped bases that include
the full ≥33 bp of the leader would give an alignment score of
66. Allowing for two mismatches, this gives a “perfect” score of
60. If the number of soft clipped bases is less, then we adjust the
“perfect” score in the following way:

Perfect Score = (Number of bases soft clipped × 2)− 2.

This allows for onemismatch. The position of the alignment is
then checked; for these bases to be classed as the leader, the align-
ment of the soft clipped bases must be at the 3′ end. If this is true
and (Perfect Score −Alignment Score) ≤0, then the read is classi-
fied as sgRNA.

Periscope: sgRNA normalization

Amplicon data

Once reads have been classified, the counts are summarized and
normalized. Two normalization schemes are used.

1. Normalization to total mapped reads
Total mapped reads per sample are calculated using pysam

idxstats and used to normalize genomic, sgRNA, and nonca-
nonical sgRNA reads. Reads per hundred thousand total
mapped reads are calculated per quality group:

sgRPHT = sgRNA Read Count × 100000
(Total Mapped Reads 100000

.

2. Normalization to genomic reads from the corresponding ampli-
con

Counts of sgRNA, noncanonical sgRNA, and gRNA are re-
corded on a per amplicon basis, and normalization occurs with-
in the same amplicon per 1000 gRNA reads. If multiple
amplicons contribute to the count of sgRNA or noncanonical
sgRNA, then the normalized values are summed:

sgRPTG = sgRNA Read Count × 1000
Total Genomic RNA

.

Periscope outputs several useful files that are described in
more detail in the Supplemental Material; briefly, these are peri-
scope’s processed BAM file with associated tags, a per amplicons
counts file, and a summarized counts file for both canonical and
noncanonical ORFs.

Bait-based capture and metagenomic data

Again, two schemes are used, as above, to the total amount of
mapped reads and, additionally, the following is used.

3. Normalization to local coverage

For both canonical and noncanonical sgRNA normalization, we
calculate the median coverage around either (1) for canonical
ORFs, the TRS site ±20 bp or (2) the leader/genome junction ±20
bp and normalize the total sgRNA per 1000 reads of coverage.

sgRPTL = sgRNA Read Count × 1000
Local Coverage

.

Subgenomic variant analysis

A Python script is provided “variant_expression.py” that takes the
periscope BAM file and a VCF file of variants (usually from the
ARTIC analysis pipeline). For each position in the VCF (pyvcf)
(https://github.com/jamescasbon/PyVCF, accessed November
2020) file, it extracts the counts of each base in each class of read
(i.e., genomic, sgRNA and noncanonical sgRNA) and outputs these
counts as a table. This tool also provides a useful plot (Supplemen-
tal Fig. S5) of the base counts at each position for each class.

Analysis and figure generation

Further analysis was completed in R 3.5.2 (R Core Team 2020) us-
ing Rstudio 1.1.442 (Racine 2012). In general, data were processed
using dplyr (v0.8.3) and figures were generated using ggplot2
(v3.3.1), both part of the tidyverse (Wickham et al. 2019) family
of packages (v1.2.1). Plots were themed with the ftplottools pack-
age (v0.1.5). GGally (v2.0.0) ggpairs was used for the matrix plots
for downsampling and repeats. When multiple hypothesis tests
were performed, multiple testing correction was performed using
Bonferroni. Reads were visualized in Integrative Genomics
Viewer (IGV) (Robinson et al. 2011) and annotated with Adobe
Illustrator. Code to reproduce the analyses and for figure genera-
tion is available as Supplemental File S18 and at GitHub (https://
github.com/sheffield-bioinformatics-core/periscope-publication).

Principal component analysis

PCA was performed to determine if any of the experimental vari-
ables were responsible for the differences in expression values be-
tween samples. Reads from ORF1a and ORF10 amplicons were
removed from the analysis, and expression values were normalized
within each ORF,

x−min(x)
max(x)−min(x)

,

and then rowmeans subtracted. The “PCA” function of the R pack-
age FactoMineR (v1.41) (Lê et al. 2008) was then used to perform
the PCA without further scaling and all other settings as default.
The resulting PCA was plotted using the “fviz_pca_ind” function.
Plots were colored according to the variable in question.

Data cleaning and upload to ENA

Data was uploaded to European Nucleotide Archive (ENA; https://
www.ebi.ac.uk/ena/browser/home) after removing human reads
with dehumanizer (https://github.com/SamStudio8/dehumani
zer) and then mapping the resulting reads to hg38 with BWA-
MEM for Illumina data or minimap2 for ONT data. Only those
reads that did not map were retained. Reads were converted from
BAM to FASTQ with SAMtools bam2fq. A convenient table which
converts ENA accession numbers to sample ID can be found in
Supplemental File S19.

Periscope requirements

Periscope is a wrapper for a Snakemake (Köster and Rahmann
2012) workflow with a package written in Python to implement
read filtering and classification and is provided with a conda envi-
ronment definition. It has been tested on aDell XPS, core i9, 32GB
ram, 1 TB SSD running ubuntu 18.04, and was able to process ap-
proximately 100,000 reads per minute. Periscope installation re-
quires conda (e.g., Miniconda, https://docs.conda.io/en/latest/
miniconda.html, version 3.7 or 3.8). To run periscope, you will
need the path to your raw FASTQ files from your ARTIC Network
Nanopore sequencing run or Illumina paired-end reads
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(unfiltered), as well as other variables defined in the Supplemental
Material and on the GitHub README.

Ethics approval and consent

Individuals presenting with active COVID-19 disease were sam-
pled for SARS-CoV-2 sequencing at Sheffield Teaching Hospitals
NHS Foundation Trust, United Kingdom, using samples collected
for routine clinical diagnostic use. This work was performed under
approval by the Public Health England Research Ethics and
Governance Group for the COVID-19 Genomics UK consortium
(R&D NR0195).

Data access

All raw sequencing data generated in this study have been submit-
ted to the European Nucleotide Archive (ENA; https://www.ebi.ac
.uk/ena/browser/search) under accession number PRJEB40972.
The periscope source code is available as Supplemental File S20
and at GitHub (https://github.com/sheffieldbioinformatics-core/
periscope).
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