Northumbria Research Link

Citation: Parker, Matthew D., Lindsey, Benjamin B., Leary, Shay, Gaudieri, Silvana, Chopra, Abha, Wyles, Matthew, Angyal, Adrienn, Green, Luke R., Parsons, Paul, Tucker, Rachel M., Brown, Rebecca, Groves, Danielle, Johnson, Katie, Carrilero, Laura, Heffer, Joe, Partridge, David G., Evans, Cariad, Raza, Mohammad, Keeley, Alexander J., Smith, Nikki, Filipe, Ana Da Silva, Shepherd, James G., Davis, Chris, Bennett, Sahan, Sreenu, Vattipally B., Kohl, Alain, Aranday-Cortes, Elihu, Tong, Lily, Nichols, Jenna, Thomson, Emma C., Wang, Dennis, Mallal, Simon, de Silva, Thushan I., The COVID-19 Genomics UK (COG-UK) Consortium, , Bashton, Matthew, Young, Greg, Allan, John, Loh, Joshua, Nelson, Andrew, Smith, Darren and Yew, Wen Chyin (2021) Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data. Genome Research, 31 (4). pp. 645-658. ISSN 1088-9051

Published by: Cold Spring Harbor Laboratory Press

URL: https://doi.org/10.1101/gr.268110.120 < https://doi.org/10.1101/gr.268110.120 >

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/45736/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

Supplemental Material

Sub-genomic RNA identification in SARS-CoV-2 Genomic Sequencing Data

Supplemental N	Material	1
COG-UK Co	nsortium Author List	3
Supplement	tal Files	11
Periscope R	README	14
Requiren	nents	14
Installatio	on	14
Execution	n	14
Output F	iles	15
Examinin	ng Base Frequencies of Called Variants in periscope	16
Supplement	tal Methods	17
Glasgow	Amplicon Sequencing	17
Oxfor	rd Nanopore Sequencing	17
Illumi	ina	17
Glasgow	Bait Capture & Subsequent Illumina Sequencing	18
Supplement	tal Tables	20
	Supplemental Table S1 - sgRNAs detected for each canonical ORF	20
	Supplemental Table S2 - Samples with predicted sgRNA for ORF10	21
	Supplemental Table S3 - Noncanonical sgRNA at position 25,744 in sample SHEF-C0118 has strong support	22
	Supplemental Table S4 - Canonical sgRNA in SHEF-C0118	23
	Supplemental Table S5 - Noncanonical sgRNA at 10,639 in SHEF-CE0 has strong support	04A 23
	Supplemental Table S6 - Noncanonical sgRNA at 5,785 in Glasgow Nanopore samples	24
	Supplemental Table S7 - Noncanonical sgRNA at 10,639 in Glasgow Nanopore samples	25
	Supplemental Table S8 - Canonical sub-genomic RNA in SHEF-CE04/	۹ 26
	Supplemental Table S9 - Changes with respect to MN908947.3 in viral isolates used in in vitro SARS-CoV-2 infection model	27
Supplement	tal Figures	28
	Supplemental Figure S1 - Length of reads in SHEF ONT ARTIC data broken down by periscope assigned class in a representative sample (SHEF-BFDBE)	28
	Supplemental Figure S2 - SARS-CoV-2 Illumina Data	29
	Supplemental Figure S3 - Manual review of periscope BAM files for ORF10	31

Supplemental Figure S4 - Mapped read counts	32
Supplemental Figure S5 - Sub-Genomic RNA Proportions	33
Supplemental Figure S6 - Number of samples with at the most frequent represented noncanonical sub-genomic RNAs	tly 34
Supplemental Figure S7 - Highly expressed noncanonical sgRNAs at 10,369 and 5,785	35
Supplemental Figure S8 - sgRNA Levels in bait capture Illumina sample (n=5)	es 36
Supplemental Figure S9 - Noncanonical sub-genomic RNA detected in a vitro infection model	an 38
Supplemental Figure S10 - Read level detail of Noncanonical sub-genomic RNA in Illumina metagenomic sequencing of an in vitro nfection model	39
Supplemental Figure S11 - Noncanonical sub-genomic RNAs (High quality) that could represent ORF3b and ORF7b	40
Supplemental Figure S12 - Example of periscope output for variant analysis	42
Supplemental Figure S13 - Normalized E Ct and consensus coverage a not correlated with the raw amount of sub-genomic RNA detected	re 43

COG-UK Consortium Author List

Funding acquisition, leadership, supervision, metadata curation, project administration, samples, logistics, Sequencing, analysis, and Software and analysis tools:

Thomas R Connor ^{33, 34}, and Nicholas J Loman ¹⁵.

Leadership, supervision, sequencing, analysis, funding acquisition, metadata curation, project administration, samples, logistics, and visualisation:

Samuel C Robson 68.

Leadership, supervision, project administration, visualisation, samples, logistics, metadata curation and software and analysis tools:

Tanya Golubchik 27.

Leadership, supervision, metadata curation, project administration, samples, logistics sequencing and analysis:

M. Estee Torok 8, 10.

Project administration, metadata curation, samples, logistics, sequencing, analysis, and software and analysis tools:

William L Hamilton 8, 10.

Leadership, supervision, samples logistics, project administration, funding acquisition sequencing and analysis:

David Bonsall 27.

Leadership and supervision, sequencing, analysis, funding acquisition, visualisation and software and analysis tools:

Ali R Awan 74.

Leadership and supervision, funding acquisition, sequencing, analysis, metadata curation, samples and logistics:

Sally Corden³³.

Leadership supervision, sequencing analysis, samples, logistics, and metadata curation: lan Goodfellow ¹¹.

Leadership, supervision, sequencing, analysis, samples, logistics, and Project administration:

Darren L Smith 60, 61.

Project administration, metadata curation, samples, logistics, sequencing and analysis:

Martin D Curran 14, and Surendra Parmar 14.

Samples, logistics, metadata curation, project administration sequencing and analysis:

James G Shepherd 21.

Sequencing, analysis, project administration, metadata curation and software and analysis tools:

Matthew D Parker ^{38,} and Dinesh Aggarwal ^{1, 2, 3}.

Leadership, supervision, funding acquisition, samples, logistics, and metadata curation:

Catherine Moore ³³.

Leadership, supervision, metadata curation, samples, logistics, sequencing and analysis:

Derek J Fairley^{6, 88}, Matthew W Loose ⁵⁴, and Joanne Watkins ³³.

Metadata curation, sequencing, analysis, leadership, supervision and software and analysis tools:

Matthew Bull ³³, and Sam Nicholls ¹⁵.

Leadership, supervision, visualisation, sequencing, analysis and software and analysis tools:

David M Aanensen 1, 30.

Sequencing, analysis, samples, logistics, metadata curation, and visualisation:

Sharon Glaysher 70.

Metadata curation, sequencing, analysis, visualisation, software and analysis tools:

Matthew Bashton 60, and Nicole Pacchiarini 33.

Sequencing, analysis, visualisation, metadata curation, and software and analysis tools:

Anthony P Underwood^{1, 30}.

Funding acquisition, leadership, supervision and project administration:

Thushan I de Silva³⁸, and Dennis Wang ³⁸.

Project administration, samples, logistics, leadership and supervision:

Monique Andersson²⁸, Anoop J Chauhan ⁷⁰, Mariateresa de Cesare ²⁶, Catherine Ludden ^{1,3}, and Tabitha W Mahungu ⁹¹.

Sequencing, analysis, project administration and metadata curation:

Rebecca Dewar ²⁰, and Martin P McHugh ²⁰.

Samples, logistics, metadata curation and project administration:

Natasha G Jesudason ²¹, Kathy K Li MBBCh ²¹, Rajiv N Shah ²¹, and Yusri Taha ⁶⁶.

Leadership, supervision, funding acquisition and metadata curation:

Kate E Templeton ²⁰.

Leadership, supervision, funding acquisition, sequencing and analysis:

Simon Cottrell ³³, Justin O'Grady ⁵¹, Andrew Rambaut ¹⁹, and Colin P Smith ⁹³.

Leadership, supervision, metadata curation, sequencing and analysis:

Matthew T.G. Holden ⁸⁷, and Emma C Thomson ²¹.

Leadership, supervision, samples, logistics and metadata curation:

Samuel Moses 81, 82.

Sequencing, analysis, leadership, supervision, samples and logistics:

Meera Chand ⁷, Chrystala Constantinidou ⁷¹, Alistair C Darby ⁴⁶, Julian A Hiscox ⁴⁶, Steve Paterson ⁴⁶, and Meera Unnikrishnan ⁷¹.

Sequencing, analysis, leadership and supervision and software and analysis tools:

Andrew J Page ⁵¹, and Erik M Volz ⁹⁶.

Samples, logistics, sequencing, analysis and metadata curation:

Charlotte J Houldcroft ⁸, Aminu S Jahun ¹¹, James P McKenna ⁸⁸, Luke W Meredith ¹¹, Andrew Nelson ⁶¹, Sarojini Pandey ⁷², and Gregory R Young ⁶⁰.

Sequencing, analysis, metadata curation, and software and analysis tools:

Anna Price ³⁴, Sara Rey ³³, Sunando Roy ⁴¹, Ben Temperton ⁴⁹, and Matthew Wyles ³⁸.

Sequencing, analysis, metadata curation and visualisation:

Stefan Rooke¹⁹, and Sharif Shaaban ⁸⁷.

Visualisation, sequencing, analysis and software and analysis tools:

Helen Adams ³⁵, Yann Bourgeois ⁶⁹, Katie F Loveson ⁶⁸, Áine O'Toole ¹⁹, and Richard Stark ⁷¹

Project administration, leadership and supervision:

Ewan M Harrison ^{1, 3}, David Heyburn ³³, and Sharon J Peacock ^{2, 3}

Project administration and funding acquisition:

David Buck ²⁶, and Michaela John³⁶

Sequencing, analysis and project administration:

Dorota Jamrozy ¹, and Joshua Quick ¹⁵

Samples, logistics, and project administration:

Rahul Batra ⁷⁸, Katherine L Bellis ^{1, 3}, Beth Blane ³, Sophia T Girgis ³, Angie Green ²⁶, Anita Justice ²⁸, Mark Kristiansen ⁴¹, and Rachel J Williams ⁴¹.

Project administration, software and analysis tools:

Radoslaw Poplawski¹⁵.

Project administration and visualisation:

Garry P Scarlett 69.

Leadership, supervision, and funding acquisition:

John A Todd ²⁶, Christophe Fraser ²⁷, Judith Breuer ^{40,41}, Sergi Castellano ⁴¹, Stephen L Michell ⁴⁹, Dimitris Gramatopoulos ⁷³, and Jonathan Edgeworth ⁷⁸.

Leadership, supervision and metadata curation:

Gemma L Kay 51.

Leadership, supervision, sequencing and analysis:

Ana da Silva Filipe ²¹, Aaron R Jeffries ⁴⁹, Sascha Ott ⁷¹, Oliver Pybus ²⁴, David L Robertson ²¹, David A Simpson ⁶, and Chris Williams ³³.

Samples, logistics, leadership and supervision:

Cressida Auckland ⁵⁰, John Boyes ⁸³, Samir Dervisevic ⁵², Sian Ellard ^{49, 50}, Sonia Goncalves¹, Emma J Meader ⁵¹, Peter Muir ², Husam Osman ⁹⁵, Reenesh Prakash ⁵², Venkat Sivaprakasam ¹⁸, and Ian B Vipond ².

Leadership, supervision and visualisation

Jane AH Masoli 49, 50.

Sequencing, analysis and metadata curation

Nabil-Fareed Alikhan ⁵¹, Matthew Carlile ⁵⁴, Noel Craine ³³, Sam T Haldenby ⁴⁶, Nadine Holmes ⁵⁴, Ronan A Lyons ³⁷, Christopher Moore ⁵⁴, Malorie Perry ³³, Ben Warne ⁸⁰, and Thomas Williams ¹⁹.

Samples, logistics and metadata curation:

Lisa Berry ⁷², Andrew Bosworth ⁹⁵, Julianne Rose Brown ⁴⁰, Sharon Campbell ⁶⁷, Anna Casey ¹⁷, Gemma Clark ⁵⁶, Jennifer Collins ⁶⁶, Alison Cox ^{43, 44}, Thomas Davis ⁸⁴, Gary Eltringham ⁶⁶, Cariad Evans ^{38, 39}, Clive Graham ⁶⁴, Fenella Halstead ¹⁸, Kathryn Ann Harris ⁴⁰, Christopher Holmes ⁵⁸, Stephanie Hutchings ², Miren Iturriza-Gomara ⁴⁶, Kate Johnson ^{38, 39}, Katie Jones ⁷², Alexander J Keeley ³⁸, Bridget A Knight ^{49, 50}, Cherian Koshy⁹⁰, Steven Liggett ⁶³, Hannah Lowe ⁸¹, Anita O Lucaci ⁴⁶, Jessica Lynch ^{25, 29}, Patrick C McClure ⁵⁵, Nathan Moore ³¹, Matilde Mori ^{25, 29, 32}, David G Partridge ^{38, 39}, Pinglawathee Madona ^{43, 44},

Hannah M Pymont 2 , Paul Anthony Randell $^{43,\,44}$, Mohammad Raza $^{38,\,39}$, Felicity Ryan 81 , Robert Shaw 28 , Tim J Sloan 57 , and Emma Swindells 65 .

Sequencing, analysis, Samples and logistics:

Alexander Adams ³³, Hibo Asad ³³, Alec Birchley ³³, Tony Thomas Brooks ⁴¹, Giselda Bucca ⁹³, Ethan Butcher ⁷⁰, Sarah L Caddy ¹³, Laura G Caller ^{2, 3, 12}, Yasmin Chaudhry ¹¹, Jason Coombes ³³, Michelle Cronin ³³, Patricia L Dyal ⁴¹, Johnathan M Evans ³³, Laia Fina ³³, Bree Gatica-Wilcox ³³, Iliana Georgana ¹¹, Lauren Gilbert ³³, Lee Graham ³³, Danielle C Groves ³⁸, Grant Hall ¹¹, Ember Hilvers ³³, Myra Hosmillo ¹¹, Hannah Jones ³³, Sophie Jones ³³, Fahad A Khokhar ¹³, Sara Kumziene-Summerhayes ³³, George MacIntyre-Cockett ²⁶, Rocio T Martinez Nunez ⁹⁴, Caoimhe McKerr ³³, Claire McMurray ¹⁵, Richard Myers ⁷, Yasmin Nicole Panchbhaya ⁴¹, Malte L Pinckert ¹¹, Amy Plimmer ³³, Joanne Stockton ¹⁵, Sarah Taylor ³³, Alicia Thornton ⁷, Amy Trebes ²⁶, Alexander J Trotter ⁵¹, Helena Jane Tutill ⁴¹, Charlotte A Williams ⁴¹, Anna Yakovleva ¹¹ and Wen C Yew ⁶².

Sequencing, analysis and software and analysis tools:

Mohammad T Alam ⁷¹, Laura Baxter ⁷¹, Olivia Boyd ⁹⁶, Fabricia F. Nascimento ⁹⁶, Timothy M Freeman ³⁸, Lily Geidelberg ⁹⁶, Joseph Hughes ²¹, David Jorgensen ⁹⁶, Benjamin B Lindsey ³⁸, Richard J Orton ²¹, Manon Ragonnet-Cronin ⁹⁶ Joel Southgate ^{33, 34,} and Sreenu Vattipally ²¹

Samples, logistics and software and analysis tools:

Igor Starinskij 23.

Visualisation and software and analysis tools:

Joshua B Singer ²¹, Khalil Abudahab ^{1, 30}, Leonardo de Oliveira Martins ⁵¹, Thanh Le-Viet ⁵¹, Mirko Menegazzo ³⁰, Ben EW Taylor ^{1, 30}, and Corin A Yeats ³⁰.

Project Administration:

Sophie Palmer 3 , Carol M Churcher 3 , Alisha Davies 33 , Elen De Lacy 33 , Fatima Downing 33 , Sue Edwards 33 , Nikki Smith 38 , Francesc Coll 97 , Nazreen F Hadjirin 3 and Frances Bolt 44 , 45

Leadership and supervision:

Alex Alderton¹, Matt Berriman¹, Ian G Charles ⁵¹, Nicholas Cortes ³¹, Tanya Curran ⁸⁸, John Danesh¹, Sahar Eldirdiri ⁸⁴, Ngozi Elumogo ⁵², Andrew Hattersley ^{49, 50}, Alison Holmes ^{44, 45}, Robin Howe ³³, Rachel Jones ³³, Anita Kenyon ⁸⁴, Robert A Kingsley ⁵¹, Dominic Kwiatkowski ^{1, 9}, Cordelia Langford¹, Jenifer Mason⁴⁸, Alison E Mather ⁵¹, Lizzie Meadows ⁵¹, Sian Morgan ³⁶, James Price ^{44, 45}, Trevor I Robinson ⁴⁸, Giri Shankar ³³, John Wain ⁵¹, and Mark A Webber ⁵¹.

Metadata curation:

Declan T Bradley ^{5, 6}, Michael R Chapman ^{1, 3, 4}, Derrick Crooke ²⁸, David Eyre ²⁸, Martyn Guest ³⁴, Huw Gulliver ³⁴, Sarah Hoosdally ²⁸, Christine Kitchen ³⁴, Ian Merrick ³⁴, Siddharth Mookerjee ^{44, 45}, Robert Munn ³⁴, Timothy Peto ²⁸, Will Potter ⁵², Dheeraj K Sethi ⁵², Wendy Smith ⁵⁶, Luke B Snell ^{75, 94}, Rachael Stanley ⁵², Claire Stuart ⁵² and Elizabeth Wastenge²⁰.

Sequencing and analysis:

Erwan Acheson 6 , Safiah Afifi 36 , Elias Allara 2,3 , Roberto Amato 1 , Adrienn Angyal 38 , Elihu Aranday-Cortes 21 , Cristina Ariani 1 , Jordan Ashworth 19 , Stephen Attwood 24 , Alp Aydin 51 , David J Baker ⁵¹, Carlos E Balcazar ¹⁹, Angela Beckett ⁶⁸ Robert Beer ³⁶, Gilberto Betancor ⁷⁶, Emma Betteridge ¹, David Bibby ⁷, Daniel Bradshaw⁷, Catherine Bresner ³⁴, Hannah E Bridgewater ⁷¹, Alice Broos ²¹, Rebecca Brown ³⁸, Paul E Brown ⁷¹, Kirstyn Brunker ²², Stephen N Carmichael ²¹, Jeffrey K. J. Cheng ⁷¹, Dr Rachel Colquhoun ¹⁹, Gavin Dabrera ⁷ Johnny Debebe 54, Eleanor Drury 1, Louis du Plessis 24, Richard Eccles 46, Nicholas Ellaby 7, Audrey Farbos ⁴⁹, Ben Farr ¹, Jacqueline Findlay ⁴¹, Chloe L Fisher ⁷⁴, Leysa Marie Forrest ⁴¹, Sarah Francois ²⁴, Lucy R. Frost ⁷¹, William Fuller ³⁴, Eileen Gallagher ⁷, Michael D Gallagher 19, Matthew Gemmell 46, Rachel AJ Gilroy 51, Scott Goodwin 1, Luke R Green 38, Richard Gregory 46, Natalie Groves 7, James W Harrison 49, Hassan Hartman 7, Andrew R Hesketh ⁹³, Verity Hill ¹⁹, Jonathan Hubb ⁷, Margaret Hughes ⁴⁶, David K Jackson ¹, Ben Jackson ¹⁹, Keith James ¹, Natasha Johnson ²¹, Ian Johnston ¹, Jon-Paul Keatley ¹, Moritz Kraemer ²⁴, Angie Lackenby ⁷, Mara Lawniczak ¹, David Lee ⁷, Rich Livett ¹, Stephanie Lo ¹, Daniel Mair ²¹, Joshua Maksimovic ³⁶, Nikos Manesis ⁷, Robin Manley ⁴⁹, Carmen Manso ⁷, Angela Marchbank ³⁴, Inigo Martincorena ¹, Tamyo Mbisa ⁷, Kathryn McCluggage ³⁶, JT McCrone 19, Shahjahan Miah 7, Michelle L Michelsen 49, Mari Morgan 33, Gaia Nebbia ⁷⁸, Charlotte Nelson ⁴⁶, Jenna Nichols ²¹, Paola Niola ⁴¹, Kyriaki Nomikou ²¹, Steve Palmer ¹, Naomi Park ¹, Yasmin A Parr ¹, Paul J Parsons ³⁸, Vineet Patel ⁷, Minal Patel ¹, Clare Pearson ^{2, 1}, Steven Platt ⁷, Christoph Puethe ¹, Mike Quail ¹, Jayna Raghwani ²⁴, Lucille Rainbow ⁴⁶, Shavanthi Rajatileka ¹, Mary Ramsay ⁷, Paola C Resende Silva ^{41, 42}, Steven Rudder 51, Chris Ruis ³, Christine M Sambles ⁴⁹, Fei Sang ⁵⁴, Ulf Schaefer⁷, Emily Scher ¹⁹, Carol Scott ¹, Lesley Shirley ¹, Adrian W Signell ⁷⁶, John Sillitoe ¹, Christen Smith ¹, Dr Katherine L Smollett ²¹ ,Karla Spellman ³⁶ ,Thomas D Stanton ¹⁹, David J Studholme ⁴⁹ ,Grace Taylor-Joyce ⁷¹ ,Ana P Tedim ⁵¹, Thomas Thompson ⁶, Nicholas M Thomson ⁵¹, Scott Thurston ¹, Lily Tong ²¹, Gerry Tonkin-Hill ¹, Rachel M Tucker ³⁸ , Edith E Vamos ⁴, Tetyana Vasylyeva²⁴, Joanna Warwick-Dugdale ⁴⁹, Danni Weldon ¹, Mark Whitehead ⁴⁶, David Williams ⁷, Kathleen A Williamson ¹⁹, Harry D Wilson ⁷⁶, Trudy Workman ³⁴, Muhammad Yasir⁵¹, Xiaoyu Yu ¹⁹, and Alex Zarebski ²⁴.

Samples and logistics:

Evelien M Adriaenssens ⁵¹, Shazaad S Y Ahmad ^{2, 47}, Adela Alcolea-Medina ^{59, 77}, John Allan 60, Patawee Asamaphan 21, Laura Atkinson 40, Paul Baker 63, Jonathan Ball 55, Edward Barton⁶⁴, Mathew A Beale¹, Charlotte Beaver¹, Andrew Beggs ¹⁶, Andrew Bell ⁵¹, Duncan J Berger ¹, Louise Berry. ⁵⁶, Claire M Bewshea ⁴⁹, Kelly Bicknell ⁷⁰, Paul Bird ⁵⁸, Chloe Bishop ⁷ , Tim Boswell ⁵⁶, Cassie Breen ⁴⁸, Sarah K Buddenborg¹, Shirelle Burton-Fanning ⁶⁶, Vicki Chalker ⁷, Joseph G Chappell ⁵⁵, Themoula Charalampous ^{78, 94}, Claire Cormie³, Nick Cortes^{29, 25}, Lindsay J Coupland ⁵², Angela Cowell ⁴⁸, Rose K Davidson ⁵³, Joana Dias ³, Maria Diaz 51, Thomas Dibling1, Matthew J Dorman1, Nichola Duckworth57, Scott Elliott70, Sarah Essex⁶³, Karlie Fallon ⁵⁸, Theresa Feltwell ⁸, Vicki M Fleming ⁵⁶, Sally Forrest ³, Luke Foulser¹, Maria V Garcia-Casado¹, Artemis Gavriil ⁴¹, Ryan P George ⁴⁷, Laura Gifford ³³, Harmeet K Gill ³, Jane Greenaway ⁶⁵, Luke Griffith⁵³, Ana Victoria Gutierrez⁵¹, Antony D Hale ⁸⁵, Tanzina Haque ⁹¹, Katherine L Harper ⁸⁵, Ian Harrison ⁷, Judith Heaney ⁸⁹, Thomas Helmer ⁵⁸, Ellen E Higginson³, Richard Hopes ², Hannah C Howson-Wells ⁵⁶, Adam D Hunter ¹, Robert Impey ⁷⁰, Dianne Irish-Tavares ⁹¹, David A Jackson ¹, Kathryn A Jackson ⁴⁶, Amelia Joseph 56, Leanne Kane 1, Sally Kay 1, Leanne M Kermack 3, Manjinder Khakh 56, Stephen P Kidd ^{29, 25,31}, Anastasia Kolyva ⁵¹, Jack CD Lee ⁴⁰, Laura Letchford ¹, Nick Levene ⁷⁹, Lisa J Levett ⁸⁹, Michelle M Lister ⁵⁶, Allyson Lloyd ⁷⁰, Joshua Loh ⁶⁰, Louissa R Macfarlane-Smith ⁸⁵, Nicholas W Machin ^{2,47}, Mailis Maes ³, Samantha McGuigan ¹, Liz McMinn ¹, Lamia Mestek-Boukhibar ⁴¹, Zoltan Molnar ⁶, Lynn Monaghan ⁷⁹, Catrin Moore ²⁷, Plamena Naydenova³, Alexandra S Neaverson¹, Rachel Nelson¹, Marc O Niebel²¹, Elaine O'Toole⁴⁸, Debra Padgett ⁶⁴, Gaurang Patel ¹, Brendan Al Payne ⁶⁶, Liam Prestwood ¹, Veena Raviprakash ⁶⁷, Nicola Reynolds⁸⁶, Alex Richter ¹⁶, Esther Robinson ⁹⁵, Hazel A Rogers¹, Aileen Rowan ⁹⁶, Garren Scott ⁶⁴, Divya Shah ⁴⁰, Nicola Sheriff ⁶⁷, Graciela Sluga,

Emily Souster¹, Michael Spencer-Chapman¹, Sushmita Sridhar ^{1, 3}, Tracey Swingler ⁵³, Julian Tang⁵⁸, Graham P Taylor⁹⁶, Theocharis Tsoleridis ⁵⁵, Lance Turtle⁴⁶, Sarah Walsh ⁵⁷, Michelle Wantoch ⁸⁶, Joanne Watts ⁴⁸, Sheila Waugh ⁶⁶, Sam Weeks⁴¹, Rebecca Williams³¹, Iona Willingham⁵⁶, Emma L Wise ^{25, 29, 31}, Victoria Wright ⁵⁴, Sarah Wyllie ⁷⁰, and Jamie Young ³.

Software and analysis tools:

Amy Gaskin³³, Will Rowe ¹⁵, and Igor Siveroni ⁹⁶.

Visualisation:

Robert Johnson 96.

Affiliations:

1 Wellcome Sanger Institute, 2 Public Health England, 3 University of Cambridge, 4 Health Data Research UK, Cambridge, 5 Public Health Agency, Northern Ireland ,6 Queen's University Belfast 7 Public Health England Colindale, 8 Department of Medicine, University of Cambridge, 9 University of Oxford, 10 Departments of Infectious Diseases and Microbiology, Cambridge University Hospitals NHS Foundation Trust; Cambridge, UK, 11 Division of Virology, Department of Pathology, University of Cambridge, 12 The Francis Crick Institute, 13 Cambridge Institute for Therapeutic Immunology and Infectious Disease, Department of Medicine, 14 Public Health England, Clinical Microbiology and Public Health Laboratory, Cambridge, UK, 15 Institute of Microbiology and Infection, University of Birmingham, 16 University of Birmingham, 17 Queen Elizabeth Hospital, 18 Heartlands Hospital, 19 University of Edinburgh. 20 NHS Lothian. 21 MRC-University of Glasgow Centre for Virus Research. 22 Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, 23 West of Scotland Specialist Virology Centre, 24 Dept Zoology, University of Oxford, 25 University of Surrey, 26 Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, 27 Big Data Institute, Nuffield Department of Medicine, University of Oxford, 28 Oxford University Hospitals NHS Foundation Trust, 29 Basingstoke Hospital, 30 Centre for Genomic Pathogen Surveillance, University of Oxford, 31 Hampshire Hospitals NHS Foundation Trust, 32 University of Southampton, 33 Public Health Wales NHS Trust, 34 Cardiff University, 35 Betsi Cadwaladr University Health Board, 36 Cardiff and Vale University Health Board, 37 Swansea University, 38 University of Sheffield, 39 Sheffield Teaching Hospitals, 40 Great Ormond Street NHS Foundation Trust, 41 University College London, 42 Oswaldo Cruz Institute, Rio de Janeiro 43 North West London Pathology, 44 Imperial College Healthcare NHS Trust, 45 NIHR Health Protection Research Unit in HCAI and AMR, Imperial College London, 46 University of Liverpool, 47 Manchester University NHS Foundation Trust, 48 Liverpool Clinical Laboratories, 49 University of Exeter, 50 Royal Devon and Exeter NHS Foundation Trust, 51 Quadram Institute Bioscience, University of East Anglia, 52 Norfolk and Norwich University Hospital, 53 University of East Anglia, 54 Deep Seq, School of Life Sciences, Queens Medical Centre, University of Nottingham, 55 Virology, School of Life Sciences, Queens Medical Centre, University of Nottingham, 56 Clinical Microbiology Department, Queens Medical Centre, 57 PathLinks, Northern Lincolnshire & Goole NHS Foundation Trust, 58 Clinical Microbiology, University Hospitals of Leicester NHS Trust, 59 Viapath, 60 Hub for Biotechnology in the Built Environment, Northumbria University, 61 NU-OMICS Northumbria University, 62 Northumbria University, 63 South Tees Hospitals NHS Foundation Trust. 64 North Cumbria Integrated Care NHS Foundation Trust. 65 North Tees and Hartlepool NHS Foundation Trust, 66 Newcastle Hospitals NHS Foundation Trust, 67 County Durham and Darlington NHS Foundation Trust, 68 Centre for Enzyme Innovation, University of Portsmouth, 69 School of Biological Sciences, University of Portsmouth, 70 Portsmouth Hospitals NHS Trust, 71 University of Warwick, 72 University Hospitals Coventry and Warwickshire, 73 Warwick Medical School and Institute of Precision Diagnostics, Pathology, UHCW NHS Trust, 74 Genomics Innovation Unit, Guy's and St. Thomas' NHS Foundation Trust, 75 Centre for Clinical Infection & Diagnostics Research, St. Thomas' Hospital and Kings College London, 76 Department of Infectious Diseases, King's College London, 77 Guy's and St. Thomas' Hospitals NHS Foundation Trust, 78 Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, 79 Princess Alexandra Hospital Microbiology Dept., 80 Cambridge University Hospitals NHS Foundation Trust, 81 East Kent Hospitals University NHS Foundation Trust, 82 University of Kent, 83 Gloucestershire Hospitals NHS Foundation Trust, 84 Department of

Microbiology, Kettering General Hospital, **85** National Infection Service, PHE and Leeds Teaching Hospitals Trust, **86** Cambridge Stem Cell Institute, University of Cambridge, **87** Public Health Scotland, 88 Belfast Health & Social Care Trust, **89** Health Services Laboratories, **90** Barking, Havering and Redbridge University Hospitals NHS Trust, **91** Royal Free NHS Trust, **92** Maidstone and Tunbridge Wells NHS Trust, **93** University of Brighton, **94** Kings College London, **95** PHE Heartlands, **96** Imperial College London, **97** Department of Infection Biology, London School of Hygiene and Tropical Medicine.

Supplemental Files

Supplemental_File_S1.csv

Sheffield Nanopore Canonical ORF Sub-Genomic RNA Counts. All canonical ORF counts for all 1155 samples.

Supplemental_File_S2.csv

Sheffield Nanopore Noncanonical Sub-Genomic RNA Counts All noncanonical ORF counts for all 1155 samples.

Supplemental_File_S3.csv

Downsampling of Sheffield Nanopore Data All canonical ORF counts for all samples used in the downsampling experiment.

Supplemental_File_S4.csv

Technical Replicates of Sheffield SARS-CoV-2 isolates
All canonical ORF counts for all samples used in the replicates experiment.

Supplemental_File_S5.csv

Canonical Sub-Genomic RNA Counts From *In Vitro* Illumina Metagenomic Data Periscope counts for Illumina metagenomic data.

Supplemental_File_S6.csv

Canonical Sub-Genomic RNA Counts From *In Vitro* ARTIC Nanopore Data Periscope counts for ONT ARTIC *in vitro* data.

Supplemental_File_S7.csv

Glasgow Nanopore Canonical ORF Sub-Genomic RNA Counts Canonical periscope counts for Glasgow ONT ARTIC data.

Supplemental_File_S8.csv

Sheffield Sample Technical Information Run information for the samples in the study for PCA analysis.

Supplemental_File_S9.csv

Sheffield Sample Diagnostic Test E Gene Cycle Threshold E cycle threshold values for samples in the study.

Supplemental_File_S10.csv

Glasgow Nanopore Noncanonical Sub-Genomic RNA Counts Noncanonical sgRNA counts for Glasgow ONT ARTIC data.

Supplemental_File_S11.csv

Noncanonical Sub-Genomic RNA Counts From Illumina Bait Capture Clinical Samples Noncanonical sgRNA counts for Glasgow bait capture Illumina data.

Supplemental_File_S12.csv

Noncanonical Sub-Genomic RNA Counts From *In Vitro* Illumina Metagenomic Data Noncanonical sgRNA counts for the *in vitro* dataset sequenced using an Illumina metagenomic approach.

Supplemental_File_S13.csv

Noncanonical Sub-Genomic RNA Counts From *In Vitro* ARTIC Nanopore Data Noncanonical sgRNA counts for the *in vitro* dataset sequenced using an ONT ARTIC approach.

Supplemental_File_S14.csv

Sub-Genomic RNA Counts From Clinical SARS-CoV-2 Samples Using Illumina Bait Capture Canonical periscope counts for Glasgow ONT ARTIC data.

Supplemental_File_S15.csv

Read Lengths of a Subset of Reads Classified as Sub-Genomic or Genomic Read lengths for a representative sample classed into either sgRNA or gRNA.

Supplemental File S16.csv

Variant Allele Frequencies in Sub-Genomic or Genomic RNA Fractions Counts of bases at each variant position.

Supplemental_File_S17.csv

Consensus Genome Coverage of Sheffield SARS-CoV-2 ARTIC Nanopore Data Genomic coverage of consensus sequences.

Supplemental_File_S18.txt

All R markdown code used in generation of figures contained within this manuscript. We suggest you download our github repository to get all of the required tables and images to re-create this analysis. https://github.com/sheffield-bioinformatics-core/periscope-publication/

Supplemental_File_S19.csv

ENA Accession number conversion Translation from ENA accession (ERS.....) to SHEF or CVR identifier.

Supplemental_File_S20.tar.gz

periscope source code.

Common column names contained within these files:

Column Name	Contents
gRNA_count	Raw count of genomic reads
sgRNA_HQ_count, sgRNA_LQ_count, sgRNA_LLQ_count	Raw count of sub-genomic reads classified as high quality, low quality or low low quality
gRPHT	Genomic reads per 100,000 mapped reads
sgRPTg_HQ, sgRPTg_LQ, sgRPTg_LLQ	High, low and low low quantity sub-genomic RNA reads per 1000 genomic
sgRPTg_ALL	Sum of all sub-genomic reads normalized per 1000 genomic
sgRPHT_HQ, sgRPHT_LQ, sgRPHT_LLQ	High, low and low low quantity sub-genomic RNA reads per 100,000 mapped reads
sgRPHT_ALL	Sum of all sub-genomic reads normalized per 100,000 mapped
nsgRNA_HQ_count, nsgRNA_LQ_count, nsgRNA_LLQ_count	Raw count of noncanonical sub-genomic reads classified as high quality, low quality or low low quality
nsgRPTg_HQ, nsgRPTg_LQ, nsgRPTg_LLQ	High, low and low low quantity noncanonical sub-genomic RNA reads per 1000 genomic
nsgRPTg_ALL	Sum of all noncanonical sub-genomic reads normalized per 1000 genomic
nsgRPHT_HQ, nsgRPHT_LQ, nsgRPHT_LLQ	High, low and low low quantity noncanonical sub-genomic RNA reads per 100,000 mapped reads
nsgRPHT_ALL	Sum of all noncanonical sub-genomic reads normalized per 100,000 mapped
sgRPTL	Sub-genomic reads per 1000 reads of local coverage

Periscope README

Below we have provided instructions for the installation, execution and interpretation of periscope.

Requirements

periscope runs on MacOS, unix and unix subsystem for windows 10.

You will need:

- conda
- Your raw FASTQ files from the ARTIC protocol
- Periscope installation

In our hands periscope takes around 1-5 minutes per million reads on a single core on a Dell XPS core i9 with 32GB ram and 1TB SSD.

Installation

```
git clone https://github.com/sheffield-bioinformatics-core/periscope.git
&& cd periscope
conda env create -f environment.yml
conda activate periscope
python setup.py install
```

Execution

```
conda activate periscope

periscope
    --fastq-dir <PATH_TO_DEMUXED_FASTQ> (ont only)
    OR
    --fastq <FULL_PATH_OF_FASTQ_FILE(s)> (space separated list of fastq files,
you MUST use this for Illumina data)
    --output-prefix <PREFIX>
```

- --sample <SAMPLE_NAME>
- --artic-primers <ASSAY_VERSION; V1,V2,V3 or 2kb>
- --resources <PATH_TO_PERISCOPE_RESOURCES_FOLDER>
- --technology <SEQUENCING TECH; ont or illumina>
- --threads <THREADS_FOR_MAPPING>

Output Files

Filename	Description	
<output_prefix>.fastq</output_prefix>	A merge of all files in the FASTQ directory specified as input.	
<pre><output_prefix>_periscope_counts.csv</output_prefix></pre>	The counts of genomic, sgRNA and normalization values for <i>known</i> ORFs	
<pre><output_prefix>_periscope_amplicons.csv</output_prefix></pre>	The amplicon by amplicon counts, this file is useful to see where the counts come from. Multiple amplicons may be represented more than once where they may have contributed to more than one ORF. (ONT only)	
<pre><output_prefix>_periscope_novel_counts.csv</output_prefix></pre>	The counts of genomic RNA, sgRNA and normalization values for noncanonical ORFs	
<pre><output_prefix>.bam & <output_prefix>.bam.bai</output_prefix></output_prefix></pre>	Minmap2 or BWA-MEM mapped reads and index with no adjustments made.	
<pre><output_prefix>_periscope.bam & <output_prefix>_periscope.bam.bai & <output_prefix>_sorted_periscope.bam & <output_prefix>_sorted_periscope.bam.bai</output_prefix></output_prefix></output_prefix></output_prefix></pre>	This is the original input BAM file and index created by periscope with the reads specified in the fastq-dir. This file, however, has tags which represent the results of periscope:	
	 XS is the alignment score XA is the amplicon number XC is the assigned class (gDNA or sgDNA) 	
	These are useful for manual review in IGV or similar genome viewer. You can sort or colour reads by these tags to aid in manual review and figure creation.	

Examining Base Frequencies of Called Variants in periscope

This script will take the pass vcf from the ARTIC Network pipeline and examine the periscope BAM file for the bases present at that position. It will split the counts by read class and output a plot showing contribution at each base at each site in the VCF.

```
conda activate periscope
gunzip <ARTIC_NETWORK_VCF>.pass.vcf.gz

<PATH_TO_PERISCOPE>/periscope/periscope/scripts/variant_expression.py \
    --periscope-bam <PATH_TO_PERISCOPE_OUTPUT_BAM> \
    --vcf <ARTIC_NETWORK_VCF>.pass.vcf \
    --sample <SAMPLE_NAME> \
    --output-prefix <OUPUT_PREFIX>
```

Filename	Description
<pre><output_prefix>_base_counts.csv</output_prefix></pre>	Counts of each base at each position
<pre><output_prefix>_base_counts.png</output_prefix></pre>	Plot of each position and base composition

Supplemental Methods

Glasgow Amplicon Sequencing

Sequencing libraries were prepared according to the ARTIC nCoV-2019 sequencing protocol version 2, described in detail at https://artic.network/ncov-2019. For amplicon generation cDNA was synthesised from extracted RNA using SuperScript IV (Thermo Scientific, Part Number 18090200) and random hexamer primers (Part number N8080127). PCR amplicons (approximately 400 bp) were generated from this cDNA using Q5® Hot Start High-Fidelity 2X Master Mix (New England Biolabs, Part Number M0494L), nCoV-2019 PrimalSeq sequencing primers (Version 3) and 25-35 cycles of the ARTIC nCoV-2019 recommended thermocycling conditions. The PCR amplicons were purified using Agencourt AMPure XP for PCR Purification (Beckman Coulter, Part Number A63881), following the manufacturer's guidelines and quantified using the Qubit dsDNA HS Kit (Thermo Scientific, Part Number Q32854). Generated amplicons were then used to prepare either Oxford Nanopore or Illumina sequencing libraries.

Oxford Nanopore Sequencing

End repair of amplicons (200 fmol) was carried out using the NEBNext Ultra II End repair /dA-tailing Module (New England Biolabs, Part Number E7546L), then 20 fmol of end prepped amplicon was barcoded using the Native Barcoding Expansion 1-12 (PCR free) kit (Oxford Nanopore Technologies, Part Number EXP-NBD104) and NEBNext® Ultra™ II Ligation Module (New England Biolabs, Part Number E7595L). Barcoded amplicons were pooled together and purified using Agencourt AMPure XP for PCR Purification (Beckman Coulter, Part Number A63881), following the manufacturer's guidelines and quantified using the Qubit dsDNA HS Kit (Thermo Scientific, Part Number Q32854). Adapter mix II (Oxford Nanopore Technologies, Part Number EXP-NBD104) was ligated to the barcoded amplicons using the Ligation Sequencing kit (Oxford Nanopore Technologies, SQK-LSK109) and

NEBNext Quick Ligation Module (New England Biolabs, Part Number E6056L). The final library was purified using Agencourt AMPure XP for PCR Purification (Beckman Coulter, Part Number A63881), following the manufacturer's guidelines and quantified using the Qubit dsDNA HS Kit (Thermo Scientific, Part Number Q32854). Approximately 50 fmol of the sequencing library pool was loaded onto a flow cell (R9.4.1) (Oxford Nanopore Technologies, Part Number FLO-MIN106D) where sequencing was conducted in MinKNOW version 19.12.6 and raw FAST5 files were basecalled using Guppy version 3.2.10 in high accuracy mode using a minimum quality score of 7.

Illumina

Generated amplicons were used to prepare Illumina sequencing libraries using the Kapa LTP Library Platforms kit (Kapa Biosystems, Part Number KK8232). Briefly, the amplicon fragments were end repaired and the protocol followed through to adapter ligation. At this stage the samples were uniquely indexed using the NEBNext Multiplex Oligos for Illumina 96 Unique Dual Index Primer Pairs (New England Biolabs, Part Number E6442S), with 5-15 cycles of PCR performed. All amplified libraries were quantified by Qubit dsDNA HS Kit and run on the Agilent 4200 Tapestation System (Agilent, Part Number G2991AA) using the High Sensitivity D5000 Screentape (Agilent, Part Number 5067-5592) and High Sensitivity D5000 Reagents (Agilent, Part Number 5067-5593). Sequencing of libraries was carried out on Illumina's MiSeq system (Illumina, Part Number SY-410-1003) with more than 75% bases presenting a Q score superior to 30.

Glasgow Bait Capture & Subsequent Illumina Sequencing

A mild DNase treatment was done using DNase 1 (Thermo Fisher Scientific, Part Number AM2222) and samples were purified using RNA Clean AMPure XP Beads (Beckman Coulter,

A63987). cDNA was synthesised using SuperScript III (Thermo Scientific, Part Number 18080044) and NEBNext Ultra II Non-Directional RNA Second Strand Synthesis Module (New England Biolabs, Part Number E6111L). Reagents from the Illumina Nextera Flex for Enrichment (Cat. No. 20025523 and 20025524) were used for library preparation and targeted enrichment. Briefly, The cDNA was tagmented and followed through to PCR with the indexed primers. 12 cycles of PCR were used as per protocol recommendations using the IDT for Illumina Nextera DNA Unique Dual Indexes Set A (Illumina Part Number 20027213). The amplified libraries were quantified by Qubit dsDNA HS Kit and run on the Agilent 4200 Tapestation System (Agilent, Part Number G2991AA) using the High Sensitivity D5000 Screentape (Agilent, Part Number 5067-5592) and High Sensitivity D5000 Reagents (Agilent, Part Number 5067-5593), to guide sample pooling. Baits from Illumina (Respiratory Virus Oligos Panel V2, Part Number 20044311) were hybridized with the sample pool overnight at 62oC, as recommended by Illumina. After capture and wash, 12 cycles of PCR were used to amplify captured DNA. The amplified pools were quantified by Qubit dsDNA HS Kit and run on the Agilent 4200 Tapestation System using the High Sensitivity D5000 Assay to determine the size of the pool in base pairs (bp). The sequencing of the enriched pools was carried out on Illumina's MiSeq System (Illumina, Part Number SY-410-1003) using a MiSeq Reagent Kit v3 600 cycle kit (Illumina, Part Number MS-102-3003) with more than 70% bases presenting a Q score superior to 30.

Supplemental Tables

ORF	Samples with >=1 (HQ+LQ Reads)	Percent of Total
E	1046	90.6
М	1109	96.0
N	1124	97.3
ORF10	11	1.0
ORF3a	673	58.3
ORF6	1053	91.2
ORF7a	906	78.4
ORF8	274	23.7
S	1071	92.7

Supplemental Table S1 - sgRNAs detected for each canonical ORF

Raw counts of the number of sgRNAs found across all 1,155 samples of the cohort with 1 or more HQ or LQ read.

Sample	Genomic RNA	HQ Sub-Genomic	LQ Sub-Genomic
SHEF-C00C0	3793	0	2
SHEF-C045B	911	0	1
SHEF-C046A	1340	0	1
SHEF-C0840	1829	1	0
SHEF-C09F2	2462	0	1
SHEF-C58A5	4611	1	0
SHEF-C722D	1536	0	1
SHEF-C8408	4237	0	1
SHEF-CF595	5173	1	0
SHEF-D179A	2768	1	0
SHEF-D227A	3802	0	1

Supplemental Table S2 - Samples with predicted sgRNA for ORF10

Samples with any HQ or LQ evidence of ORF10 sgRNA (amplicons 97 and 98). Twelve reads in total across the whole cohort putatively support a sgRNA for ORF10.

Read Start Position	Contributing Amplicon	Total Genomic Read Count	Total HQ sgRNA Read Count	Total LQ sgRNA Read Count	Total sgRNA Read Count
25744	84,85	6019	120	33	153
25745	85	1389	4	5	9
25746	85	1389	1	2	3
25748	85	1389	2	1	3
25749	85	1389	1	0	1
25754	85	1389	2	0	2
25755	85	1389	1	0	1
25732	85	1389	0	1	1
25735	85	1389	0	1	1
25742	85	1389	0	1	1
25753	85	1389	0	1	1
25766	85	1389	0	1	1

Supplemental Table S3 - Noncanonical sgRNA at position 25,744 in sample SHEF-C0118 has strong support

ORF	Contributing Amplicon	Total Genomic Read Count	Total HQ sgRNA Read Count	Total LQ sgRNA Read Count	Total sgRNA Read Count
S	71,72	4939	44	31	75
ORF3a	83,84	8147	3	2	5
E	86,87,88	11183	12	7	19
М	87,88	6590	192	90	282
ORF6	89	564	60	24	84
ORF7a	90,91	5580	0	16	16
N	93,94	8928	500	251	751
Noncanonical sgRNA	84,85	6019	131	46	177

Supplemental Table S4 - Canonical sgRNA in SHEF-C0118

Showing only those ORF sgRNAs with supporting Reads.

Read Start Position	Contributing Amplicon	Total Genomic Read Count	Total HQ sgRNA Read Count	Total LQ sgRNA Read Count	Total sgRNA Read Count
10639	35,36	4698	103	15	118
10640	35	3583	0	1	1
10641	35	3583	2	3	5
10642	35,36	4698	1	4	5
10643	36	1115	1	0	1
10644	35	3583	1	0	1
10645	35	3583	2	2	4
10647	35	3583	0	1	1

Supplemental Table S5 - Noncanonical sgRNA at 10,639 in SHEF-CE04A has strong support

Counts of reads supporting the sgRNA at 10,639 in SHEF-CE04A.

Sample	Read Start Position	Total Genomic Read Count	Total HQ sgRNA Read Count	Total LQ sgRNA Read Count
CVR2185	5785	12689	3	0
CVR2187	5785	20464	1	2
CVR2191	5785	5479	1	0
CVR2231	5785	7561	2	0
CVR2234	5785	8369	1	0
CVR2239	5785	12261	2	0
CVR2243	5785	21022	1	0
CVR2251	5785	5907	1	1
CVR2265	5785	13147	0	1
CVR2306	5785	8442	4	1
CVR2319	5785	4785	2	0
CVR2322	5785	5926	1	0
CVR2484	5785	3096	7	0
CVR3941	5785	10157	2	0
CVR3943	5785	5521	0	1

Supplemental Table S6 - Noncanonical sgRNA at 5,785 in Glasgow Nanopore samples

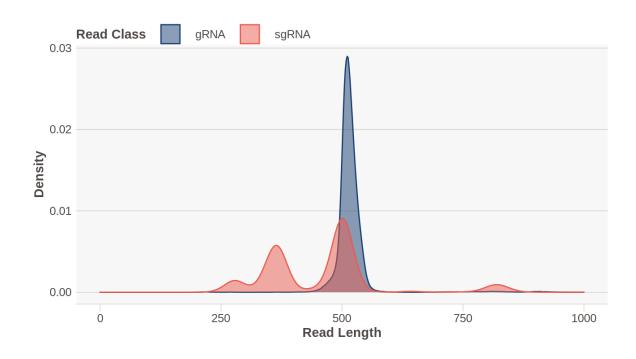
Fifteen samples in the Glasgow ONT ARTIC dataset have evidence for a noncanonical sgRNA at 5,785

Sample	Read Start Position	Total Genomic Read Count	Total HQ sgRNA Read Count	Total LQ sgRNA Read Count
CVR2131	10639	9802	3	1
CVR2133	10639	312	1	0
CVR2166	10639	11494	1	1
CVR2185	10639	4653	1	2
CVR2187	10639	9927	3	0
CVR2190	10639	1607	1	0
CVR2191	10639	2107	1	0
CVR2247	10639	11675	1	4
CVR2265	10639	6284	7	1
CVR2306	10639	3537	4	1
CVR2319	10639	1772	5	2
CVR2322	10639	2114	1	2
CVR3940	10639	5916	1	0

Supplemental Table S7 - Noncanonical sgRNA at 10,639 in Glasgow Nanopore samples

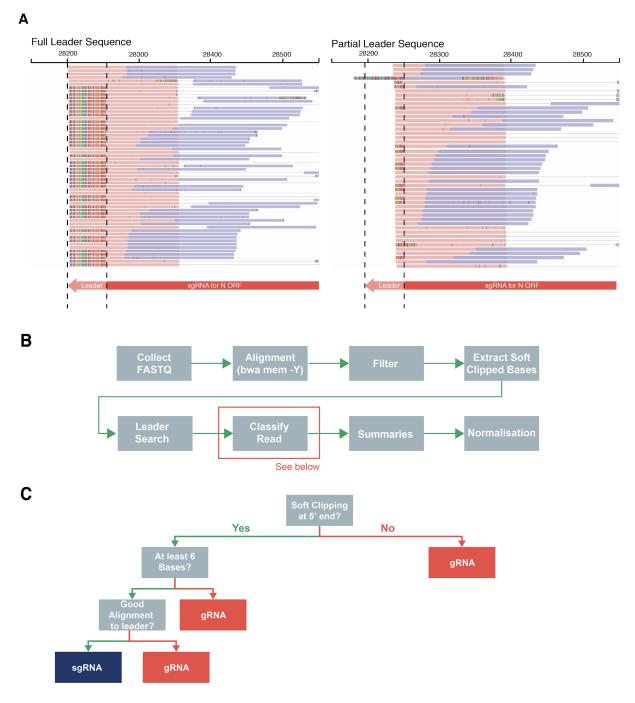
Thirteen samples from the ONT ARTIC Glasgow dataset have evidence for a noncanonical sgRNA at 10,639.

ORF	Contributing Amplicon	Total Genomic Read Count	Total HQ sgRNA Read Count	Total LQ sgRNA Read Count	Total sgRNA Read Count
S	71,72	4945	64	16	80
ORF3a	84,85	6990	8	1	9
M	87	4456	176	43	219
ORF6	89	1527	0	0	0
N	93	8083	116	38	154
Noncanonical sgRNA	35,36	4698	110	26	136


Supplemental Table S8 - Canonical sub-genomic RNA in SHEF-CE04A

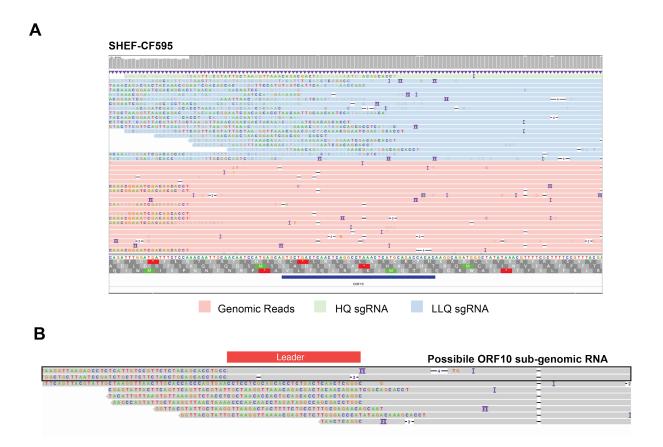
Showing only those ORF sgRNAs with supporting Reads

Virus	SNP	Amino Acid Change		
· Viius	SNF	Gene	Mutation	
	A2618G	nsp2	I605V	
•	C8782T	nsp14	I150T	
	T18488C	S	T95I	
	C21846T	E	L37H	
PHE2	T23605G	ORF 8	L84S	
	T26354A	N	P365S	
	T28144C	ORF 10	I13M	
	C29366T			
	A29596G			
	C3037T	nsp12	P323L	
•	C14408T	S	D614G	
GLA1	A23403G	Е	V5A	
	A24388T			
	T26258C			
	C3037T	nsp12	P323L	
•	C14408T	nsp15	V35A	
GLA2	T19724C	S	N439K	
GLAZ	C22879A	S	D614G	
	A23403G	ORF 10	V6F	
	G29573T			

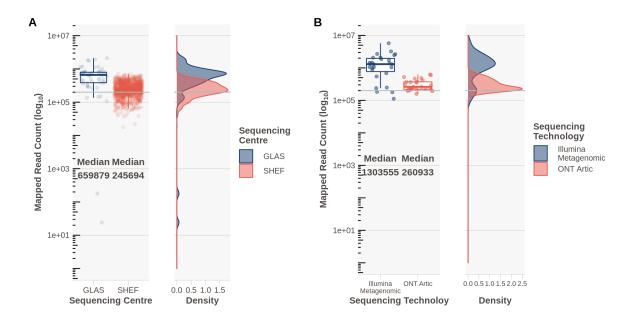

Supplemental Table S9 - Changes with respect to MN908947.3 in viral isolates used in *in vitro* SARS-CoV-2 infection model

Supplemental Figures

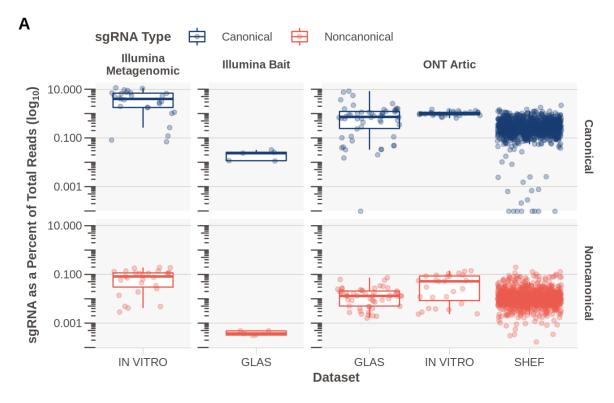
Supplemental Figure S1 - Length of reads in SHEF ONT ARTIC data broken down by periscope assigned class in a representative sample (SHEF-BFDBE)

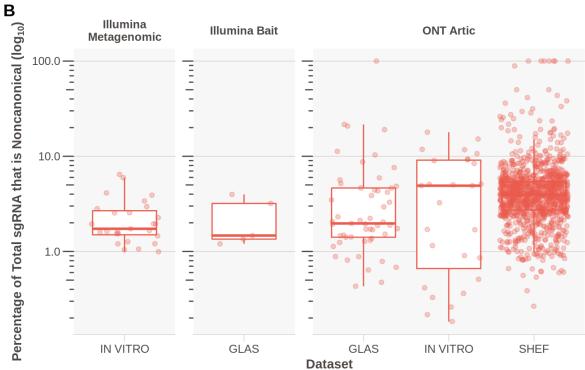

At each of the amplicons responsible for the production of sgRNA supporting reads we examined the size of the two classes of reads. Genomic RNA is between 400 and 600bp, and in most cases sgRNA is shorter at around 200-300bp.

Supplemental Figure S2 - SARS-CoV-2 Illumina Data

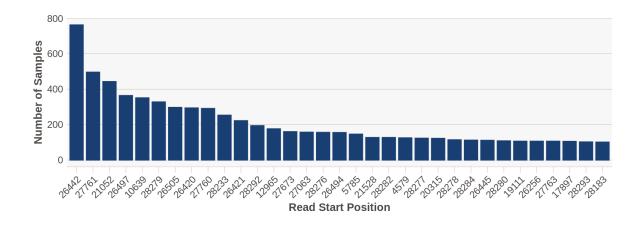

A. Bait based capture and metagenomic sequencing of SARS-CoV-2 genomes by illumina methods results in variable lengths of leader sequence included in the read. **B**. Overall workflow for analysis of Illumina data is very similar to that of ARTIC Nanopore data, but adjusted in light the phenomenon described in (**A**). **C**. Classification of reads from illumina data involves extracting soft clipped bases from the 5' end of reads and performing a local

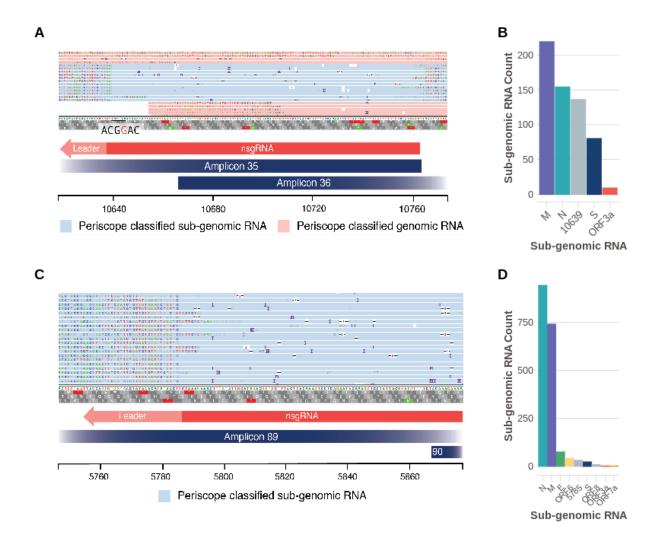
alignment of these to the leader sequence. Only those reads that have >= 6 bases soft-clipped are considered for leader matching to reduce false positives.


Supplemental Figure S3 - Manual review of periscope BAM files for ORF10

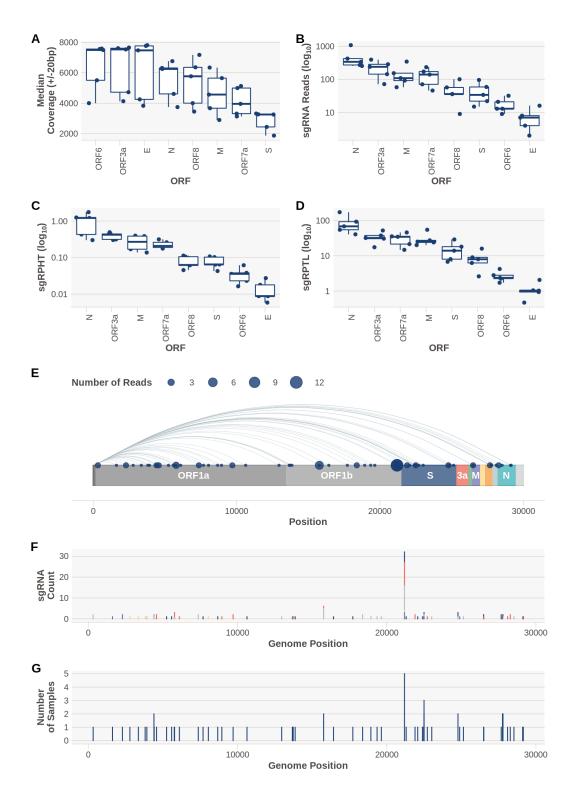

A. SHEF-CF595 has 1 read classified as HQ sgRNA at the predicted ORF10 leader junction (light green). It is clear from this IGV screenshot that this read does not contain a valid leader sequence. **B.** All HQ and LQ sgRNA reads, 12 in total, aligned with Minimap2 to a reference consisting of ORF10 and leader sequence, 3 reads failed to map. Two reads could be bona fide ORF10 sgRNAs (Highlighted in the black box with a good match to the leader) from samples SHEF-C0840 and SHEF-C58A5.

Supplemental Figure S4 - Mapped read counts


Reads were mapped with Minimap2 (ONT) or BWA-MEM (Illumina) to MN908947.3, sorted with SAMtools and mapped reads counted with pysam. Grey horizontal line represents 200,000 mapped reads. Right plot in each panel is a density distribution of the points in the left panel. **A.** Data from SARS-CoV-2 clinical samples, sequenced with ONT Artic at Sheffield and Glasgow. **B.** Mapped read counts from SARS-CoV-2 *in vitro* infection models for Illumina metagenomic and ONT Artic data.

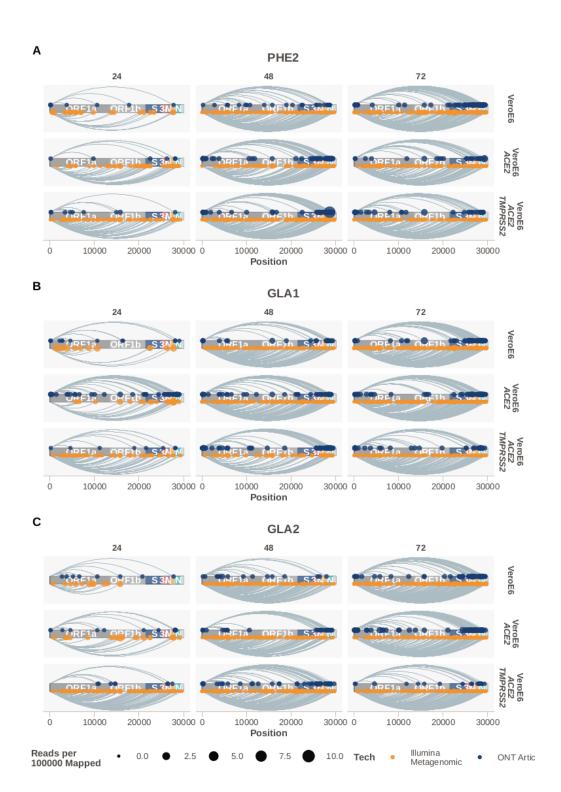

Supplemental Figure S5 - Sub-Genomic RNA Proportions

A. Total sgRNA reads split by canonical and noncanonical as a proportion of the total mapped reads in all featured datasets. **B.** Proportion of total sgRNA that is noncanonical.


Supplemental Figure S6 - Number of samples with at the most frequently represented noncanonical sub-genomic RNAs

The number of samples each noncanonical sgRNA was found in. This is an exact position match, and includes sgRNAs that could be just outside the +/-20 of the TRS-B site. Sites with support in > 100 samples shown.

Supplemental Figure S7 - Highly expressed noncanonical sgRNAs at 10,369 and 5,785

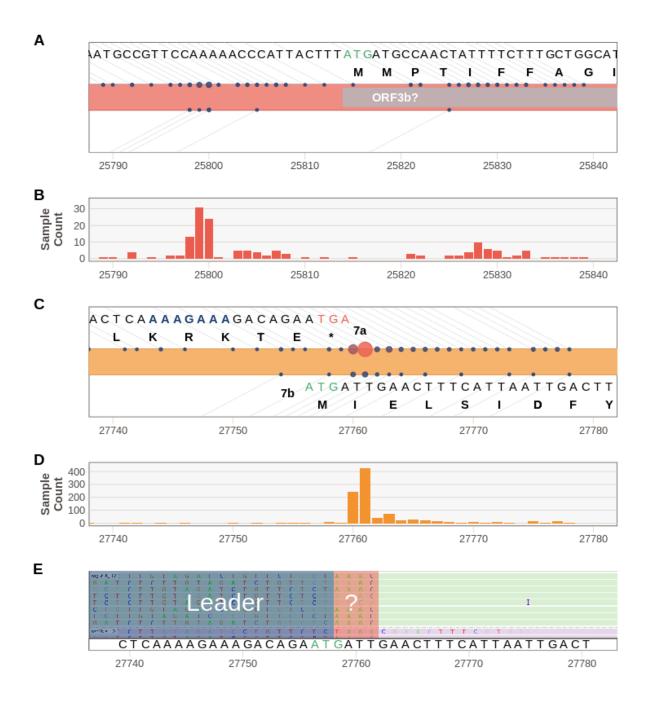

A. Noncanonical sgRNA with strong support in SHEF-CE04A at 10,369 is also supported in additional 377 samples. In close proximity to the leader is a sequence which could be considered a "weak" TRS; ACGAAC -> ACGGAC . **B.** Raw sgRNA levels (HQ&LQ) in SHEF-CE04A show high relative amounts of this noncanonical sgRNA at 10639. (ORFs with sgRNA evidence shown) **C.** Noncanonical sgRNA at 5,785 (SHEF-BFD90 shown for illustration) found in 226 samples. **D.** Count of HQ&LQ raw sgRNAs in SHEF-D02E5.

Supplemental Figure S8 - sgRNA Levels in bait capture Illumina samples (n=5)

A. Total coverage around canonical ORF TRS-B sites (Supplemental File S14). **B.** Number of raw canonical sgRNA reads, no reads were found supporting ORF10. **C.** sgRNA reads normalized per 100,000 mapped reads showing that N is the most highly expressed sgRNA in this dataset. **D.** Normalizing sgcounts to the local coverage (per 1000 reads +/- 20bp

around TRS-B). **E.** Noncanonical sgRNA detected in this dataset (Supplemental File S11). Size of point represents the total number of reads across all samples (n=5). **F.** Histogram showing the data in E, coloured by sample. **G.** Histogram of the number of samples each noncanonical sgRNA was detected in.

Supplemental Figure S9 - Noncanonical sub-genomic RNA detected in an vitro infection model

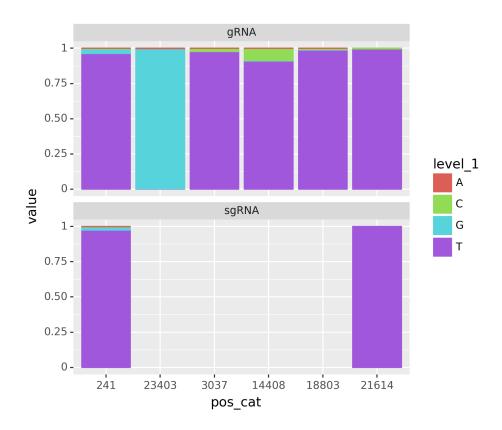

Results for WT VeroE6 and *ACE2* & TMPRSS2 VeroE6 cells shown for viral isolates PHE2 (**A**), GLA1 (**B**), and GLA2 (**C**). Size of the point represents the number of reads per 100,000 mapped reads.

Illumina Metagenomic 5600 Leader Sequence AACCAACTTTCGATCTCTTGTAGATCTGTTCT

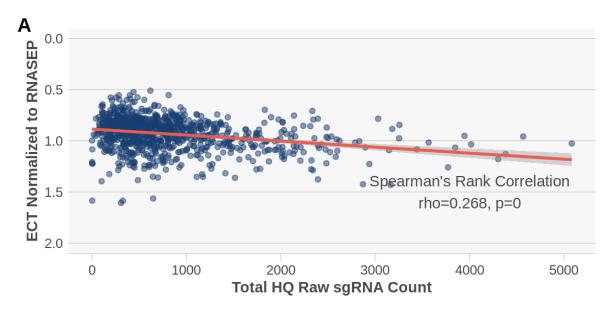
VeroE6 WT GLA2 48 Hours Noncanonical Sub-Genomic RNA

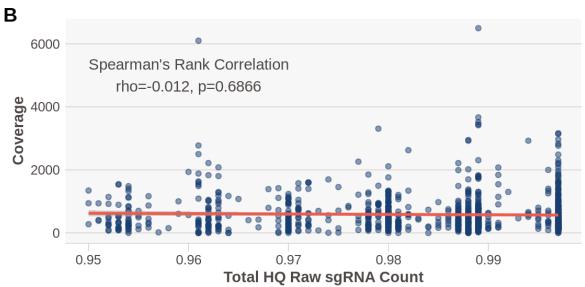
Supplemental Figure S10 - Read level detail of Noncanonical sub-genomic RNA in Illumina metagenomic sequencing of an *in vitro* infection model

IGV plots showing reads classified as noncanonical sgRNA by periscope in VeroE6 cells, after 48 hours of infection with SARS-CoV-2 (GLA2). Non-canoncial sgRNA can be seen throughout this region. These reads all contain leader sequence at their 5' end, as illustrated by the zoomed in panels.



Supplemental Figure S11 - Noncanonical sub-genomic RNAs (High quality) that could represent ORF3b and ORF7b


A. All HQ noncanonical sgRNA between 25,790 and 25,840, Sheffield top, Glasgow bottom. It has been suggested a short 22 amino acid ORF 3b protein is a potent modulator of the interferon response (Konno et al. 2020) represented here in grey. **B.** Histogram of the number of samples from Sheffield with evidence of a noncanonical sgRNA at that position (HQ). **C.** Noncanonical sgRNA between 27,740 and 27,780, Sheffield top, Glasgow bottom. Protein sequence shown for the C terminus of 7a and N terminus of 7b shown at the top and


bottom respectively. Blue text indicates predicted TRS-B site for this ORF(Yang et al. 2020). **D.** Histogram of the number of samples from Sheffield with evidence of sgRNA at that position (HQ). **E.** Raw reads supporting the sgRNA at 27,761 showing the leader sequence, a mismatch of AAAC, followed by the genomic sequence for ORF7b. This shows that these

sgRNAs do not include the predicted ${\tt ATG}$ for ORF7b.

Supplemental Figure S12 - Example of periscope output for variant analysis

Supplemental Figure S13 - Normalized E Ct and consensus coverage are not correlated with the raw amount of sub-genomic RNA detected

A. Total raw HQ sgRNA counts are not correlated with normalized E Ct (E Ct/RNAseP).
Y-axis reversed for ease of understanding as higher normalized E Ct = lower viral load.
B. Total raw HQ sgRNA counts are not correlated with consensus genome coverage.