
Northumbria Research Link

Citation: Ma, Biyang, Tang, Jing, Chen, Bilian, Pan, Yinghui and Zeng, Yifeng (2021) Tensor
optimization with group lasso for multi-agent predictive state representation. Knowledge-
Based Systems, 221. p. 106893. ISSN 0950-7051

Published by: Elsevier

URL: https://doi.org/10.1016/j.knosys.2021.106893
<https://doi.org/10.1016/j.knosys.2021.106893>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/45747/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

Tensor Optimization with Group Lasso for Multi-agent Predictive

State Representation

Biyang Maa, Jing Tanga, Bilian Chenb,c, Yinghui Pand,∗, Yifeng Zenga,∗

aDepartment of Computer and Information Sciences, Northumbria University, UK
bDepartment of Automation, Xiamen University, Xiamen 361005, China

cXiamen Key Lab. of Big Data Intelligent Analysis and Decision, Xiamen 361005, China
dCollege of Computer Science and Software Engineering, Shenzhen University, China

Abstract

Predictive state representation (PSR) is a compact model of dynamic systems that represents
state as a vector of predictions about future observable events. It is an alternative to a
partially observable Markov decision process (POMDP) model in dealing with a sequential
decision-making problem under uncertainty. Most of the existing PSR research focuses on
the model learning in a single-agent setting. In this paper, we investigate a multi-agent
PSR model upon available agents interaction data. It turns out to be rather difficult to
learn a multi-agent PSR model especially with limited samples and increasing number of
agents. We resort to a tensor technique to better represent dynamic system characteristics
and address the challenging task of learning multi-agent PSR problems based on tensor
optimization. We first focus on a two-agent scenario and use a third order tensor (system
dynamics tensor) to capture the system interaction data. Then, the PSR model discovery
can be formulated as a tensor optimization problem with group lasso, and an alternating
direction method of multipliers is called for solving the embedded subproblems. Hence,
the prediction parameters and state vectors can be directly learned from the optimization
solutions, and the transition parameters can be derived via a linear regression. Subsequently,
we generalize the tensor learning approach in a multi(N >2)-agent PSR model, and analyze
the computational complexity of the learning algorithms. Experimental results show that
the tensor optimization approaches have provided promising performances on learning a
multi-agent PSR model over multiple problem domains.

Keywords: Predictive state representations, Tensor optimization, Alternating direction
method of multipliers, Group lasso

1. Introduction

Predictive state representation (PSR) is an effective approach for modelling dynamic sys-
tems and it represents environmental states as a vector of predictions about future observable

∗Corresponding author
Email addresses: biyang.ma@northumbria.ac.uk (Biyang Ma), jing.tang@northumbria.ac.uk (Jing

Tang), blchen@xmu.edu.cn (Bilian Chen), yinghuipan.uk@gmail.com (Yinghui Pan),
yifeng.zeng@northumbria.ac.uk (Yifeng Zeng)

Preprint submitted to Knowledge-Based Systems February 25, 2021

events (tests) conditioned on observed events (histories) in the past [17]. Main interests in
the PSR research lie in two topics: one is core test discovery while the other is PSR model
learning. Most of current research works are devoted to solving these two problems in a
single-agent setting while the algorithmic efficiency or reliability still needs to be improved.
To the best of our knowledge, extending PSR to a multi-agent setting has not been explored
in the research. This is partially due to the fact that it is rather difficult to obtain sufficient
and noiseless data of a multi-agent system especially in a large or complex problem domain.

For learning a single agent PSR model, one popular approach is based on system dynamics
matrix [27], and the expected performance has been well presented in the literatures, e.g., the
search based technique [12, 29, 11], the spectral learning approach [2, 16] and the compressed
sensing approach [9, 8]. However, the capabilities of the current approaches are still largely
affected by the sizes of observation space and system dynamics matrix, since the approaches
typically consider the number of combinations of observation sequences.

In a multi-agent system, the situation is even more serious due to the increasing number
of agents and their interactions. Moreover, a system dynamics matrix may not be able to
demonstrate potential relationships among the joint tests through only two dimensions, since
they are manually stored in its columns according to the length-lexicographical ordering.
Meanwhile, the high number of interaction data demands complex manipulation of many
high dimensional matrices. Consequently, the computation is rather costly. In addition, a
multi-agent planning problem often involves insufficient training data and the data is not
noiseless in most of cases. It would be very difficult to obtain a satisfactory PSR model based
on a system dynamics matrix. Thus, a system dynamics matrix may not be an appropriate
tool for learning a multi-agent PSR model, especially when the number of agents increases.

In this paper, we investigate a dynamical system with more than one agent and construct
their interaction data as a high dimensional system dynamics tensor for learning a multi-
agent PSR model. We utilize the tensor structure to extract embedded key information from
its own elements by viewing multiple dimensions at the same time (even though the data is
noisy). Specifically, for core test discovery, we formulate the problem of discovering a core
joint test set as a tensor optimization problem with a group lasso structure and adopt an
alternating direction method of multipliers (ADMM) to solve it efficiently. It is worth to
mention that we don’t need to specify the size of the core joint test set in advance and it
will be automatically determined when the optimization problem is solved. This is the main
difference from other PSR learning techniques.

With the benefit of the sparse optimization solution, we learn state vectors and prediction
parameters in a straightforward manner. Inspired by the transformed PSR model [24], we
learn model transition parameters through a linear regression after establishing a set of
auxiliary matrices. We also utilize a sparse representation of tensor and mapping technique
in order to skip all the time-consuming and memory-expensive operations in the proposed
algorithm. Therefore, the PSR model of the underlying system can be built accordingly.
We test the learning of PSR models for multi-agent systems on several problem domains
including one extremely large domain. The experimental results demonstrate that the new
tensor approaches achieve the expected performance.

The rest of this paper is organized as follows. We introduce mathematical notations
and operations in Section 2 and present technical background of PSR models in Section 3.
Section 4 is devoted to a theoretical analysis of learning PSR models of dynamic systems

2

in a two-agent setting. We then extend it to a setting of multiple agents (more than two)
in Section 5. We conduct experimental study in four commonly used domains and their
variants to test the new PSR models in Section 6. In Section 7, we briefly discuss related
works on learning PSR models. Finally, we conclude our work and suggest a few directions
in future work in Section 8.

2. Preparations

Throughout this paper, we uniformly use the lower case letters (e.g., x), the boldface
lower case letters (e.g., x = (xi)), the capital letters (e.g., X = (xij)), and the calligraphic
letters (e.g., X = (xi1i2...id)) to denote scalars, vectors, matrices, and higher order (order three
or more) tensors, respectively. We use subscripts to denote elements of a vector, a matrix,
or a tensor, e.g., Xijk represents the (ijk)-th entry of X . The main notations, functions, and
operations on matrices or tensors are listed in Table 1.

Table 1. Summary of mathematical notations
Notations Descriptions

sgn(·) The sign function
vec(·) The vectorization of a matrix
diag (·) The diagonal matrix
‖ · ‖F The Frobenius norm of a matrix or tensor
∗,⊗ The Hadamard product and the Kronecker product
×k The mode-k product of a tensor with a matrix
I A selected subset of subscripts of a vector, matrix, or tensor
I(S ′,S) An index set that records the indices of elements of subset S ′ in set S
AT , A−1 The transpose and (pseudo-)inverse of a matrix A
‖A‖p,0, ‖A‖p,1 The Lp,0-norm and Lp,1-norm of a matrix A (1 ≤ p ≤ ∞)
Ai:, A:j The i-th row vector and j-th column vector of a matrix A
AI The submatrix of A consisting of rows indicated by set I
AI:, A:I The submatrix of A consisting of rows or columns indicated by set I
A(k) The mode-k matricization of a tensor A
A::k The k-th frontal slice of a tensor A

A tensor is a multidimensional array. It is a well developed method for dealing with
multidimensional data, which widely appears in many applications, e.g. bioinformatics,
computer vision and so on. The order of a tensor is the number of its dimensions. A vector
is a first order tensor, a matrix is a second order tensor, and tensors of order three or higher
are called high-order tensors. The Euclidean norm of a vector a ∈ Rn is denoted by ‖a‖2,
the Frobenius norm of a matrix A ∈ Rm×n is denoted by ‖A‖F , and the Frobenius norm of
a tensor A ∈ Rn1×n2×···×nd is denoted by ‖A‖F as well, i.e.,

‖a‖2 =

(
n∑
i=1

ai
2

)1/2

, ‖A‖F =

 m∑
i=1

n∑
j=1

Aij
2

1/2

, ‖A‖F =

 n1∑
i1=1

n2∑
i2=1

· · ·
nd∑
id=1

Ai1i2...id
2

1/2

.

3

By considering each column vector A:j (j = 1, 2, . . . , n) as a group, the matrix L2,1-norm [6]
is the sum of the L2-norms of all column vectors, defined as

‖A‖2,1 := ‖(‖A:1‖2, ‖A:2‖2, . . . , ‖A:n‖2)‖1 =
n∑
j=1

‖A:j‖2 =
n∑
j=1

(
m∑
i=1

Aij
2

)1/2

.

The matrix L2,1-norm is commonly used to study group sparsity due to the fact that ‖A:j‖2 =
0 implies the vector A:j = 0. If a matrix has a natural grouping of its elements and the
elements within a group are likely to be either all zeros or all nonzeros, then L2,1-norm is
normally adopted in some convex optimization models to facilitate group sparsity replacing
the L2,0-norm of the matrix. Here, the matrix L2,0-norm is defined to be the number of
nonzero column vectors, i.e.,

‖A‖2,0 := ‖(‖A:1‖2, ‖A:2‖2, . . . , ‖A:n‖2)‖0.

One can naturally extend the L2,0 and L2,1 norms of a matrix to the Lr,0 and Lr,1 norms of
a matrix for any 1 ≤ r ≤ ∞, respectively, i.e.,

‖A‖r,0 := ‖(‖A:1‖r, ‖A:2‖r, . . . , ‖A:n‖r)‖0 ,

and
‖A‖r,1 := ‖(‖A:1‖r, ‖A:2‖r, . . . , ‖A:n‖r)‖1 .

It is easy to see that for any 1 ≤ r ≤ ∞, ‖A‖r,0 = ‖A‖2,0, i.e., all ‖A‖r,0’s are the same.
However, ‖A‖r,1 ≥ ‖A‖r′,1 if 1 ≤ r ≤ r′ ≤ ∞.

One important tensor operation is to represent its elements into a matrix called matri-
cization, also known as matrix unfolding or matrix flattening. There are d modes for tensor
A, namely, mode-1, mode-2, . . . , mode-d. Denote the mode-k matricization of A to be A(k).
Then, the (i1i2 . . . id)-th entry of the tensor A is mapped to the (ikj)-th entry of the matrix
A(k) ∈ Rnk×

∏
6̀=k n` , where

j = 1 +
∑

1≤`≤d,` 6=k

(i` − 1)
∏

1≤t≤`−1,t 6=k

nt., (1)

The other important tensor operation in this paper is the mode-k product of a tensor A by a
matrix B ∈ Rm×nk . The multiplication returns a new tensor in Rn1×n2×···×nk−1×m×nk+1×···×nd ,
denoted as A×k B, whose (i1i2 . . . ik−1`ik+1 . . . id)-th entry is computed as

(A×k B)i1i2...ik−1` ik+1...id =

nk∑
ik=1

Ai1i2...ik−1ikik+1...idB`ik .

The mode-k product can be rewritten in terms of matricizations, i.e.,

Y = A×k B ⇐⇒ Y(k) = BA(k)., (2)

4

3. Technical Background of PSR Models

Linear PSR models are a well-studied version of PSR models for modelling dynamic
systems [17]. The dynamic system considered in this paper is a discrete-time and controllable
dynamic system with some agents who perform a sequence of actions and receive a sequence
of observations from the environment with one action and one observation per time step.
In order to learn a multi-agent PSR model, we should extend all necessary definitions of a
single-agent PSR model. Basically, we use non-bold letters to denote single-agent related
notations, and bold letters for the multi-agent case, e.g., a represents an action in the single-
agent system and a represents a joint action in the multi-agent case. The main PSR-related
notations are summarized in Table 2.

Table 2. Summary of PSR-related notations

Descriptions
Notations

Single-agent PSR Multi-agent PSR

(Joint) Action a← ai a← ai1ai2 . . . aiN

(Joint) Observation o← oi
′

o← oi
′
1oi
′
2 . . . oi

′
N

(Joint) Action-observation ao← aioi
′

ao← ai1oi
′
1 . . . aiN oi

′
N

(Joint) Test t← a1o1 . . . alol t← t
(1)
i1
. . . t

(N)
iN
← a1o1 . . . alol

(Joint) History h← a1o1 . . . a|h|o|h| h← a1o1 . . . a|h|o|h|
Null (joint) history φ φ

Core (joint) test q← a1o1 . . . anon q← q
(1)
i1
. . . q

(N)
iN
← a1o1 . . . anon

Set of (joint) actions A = {a1, a2, . . . , a|A|} A = {a1, a2, . . . , a|A|}
Set of (joint) observations O = {o1, o2, . . . , o|O|} O = {o1,o2, . . . ,o|O|}
Set of (joint) tests T = {t1, t2, . . . , t|T |} T = {t1, t2, . . . , t|T |}
Set of (joint) histories H = {h1(φ), h2, . . . , h|H|} H = {h1(φ),h2, . . . ,h|H|}
Set of core (joint) tests Q = {q1, q2, . . . , q|Q|} Q = {q1,q2, . . . ,q|Q|}
Set of core (joint) histories H = {h1, h2, . . . , h|H|} H = {h1,h2, . . . ,h|H|}
Set of (joint) histories

Hs = {h|h ∈ H, |h| = s} Hs = {h|h ∈ H, |h| = s}
with length s
Time step s s
State vector p(Q|hs) p(Q|hs)
Projection vector mt mt

One-step projection vector mao mao

Transition matrix Mao Mao

State matrix Q← p(Q|H) Q← p(Q|H)
Core test tensor - Q ← DQ,H
System dynamics tensor - D

3.1. A Single-agent PSR Model

In a single-agent PSR setting, an agent interacts with a system by performing an action a
and receiving an observation o step by step. Every possible action is selected from its action
set A = {a1, a2, . . . , a|A|} and every possible observation must be chosen from its observation

5

set O = {o1, o2, . . . , o|O|}. At a given time step s, the agent has already experienced a history
h of action-observation sequence with length s, i.e., hs = a1o1 . . . asos. After the agent applies
ao at this time, we update its current history hs to a new history hs+1 = hsao. An l steps
of action-observation pairs performed by the agent after time step s is called as the test
t, i.e., t = a1o1 . . . alol. All possible histories that have been memorized form a history set
H = {h1, h2, . . . , h|H|} and all possible tests in the future form a test set T = {t1, t2, . . . , t|T |}.
The conditional probability of a test t given the history hs = {h|h ∈ H, |h| = s}, say p(t|hs),
can be computed by a prediction equation, as follows:

p(t|hs) = f(p(Q|hs)) = p(Q|hs)mt,

where f is the project function, p(Q|hs) is the state vector given history hs, and mt is the
projection vector of test t. Given a new history hs+1 = hsao, the new state vector can be
calculated by an updating equation, i.e.,

p(Q|hs+1) =
p(Q|hs)Mao

p(Q|hs)mao

,

where mao is the specific projection vector for test t = ao and Mao is the transition matrix
consisting of one-step extension projection vectors maoqi (∀ qi ∈ Q).

To summarize, a linear PSR model for a controlled partially observable system with a
single-agent setting has the parameters {A,O,Q, {mao}, {Mao}, p(Q|φ)}: the set of actions
A, the set of observations O, the set of core tests Q, the model parameters mao and Mao (∀ a ∈
A, o ∈ O), and an initial prediction vector p(Q|φ) with φ being the null history at initial
time step s = 0.

3.2. A multi-agent PSR Model

In this paper, we extend a single-agent PSR model to a multi-agent setting. We consider a
centralised multiagent system, which is similar to the setting of multi-agent Markov decision
process [25], where a number of agents share common knowledge of a physical environment
and their actions have joint impact on the environment. In this work, we do not consider their
interactions as a specialization of stochastic games and will not involve recursive modelling
of other agents in the multi-agent setting such as interactive partially observable Markov
decision process [7] or interactive dynamic influence diagrams [31].

For a dynamic system with N(≥ 2) agents, say agent (1), (2), . . . , (N), they operate a
joint action a = ai1ai2 . . . aiN from a set of executable joint actions A = {a1, a2, . . . , a|A|}
and sense a joint observation o = oi1oi2 . . . oiN from a set of observable joint observations
O = {o1,o2, . . . ,o|O|}. In this progress, each agent (i) can only executes one action a
from a set of executable actions A(i) by using a stochastic policy π(i) : O(i) × A(i) → [0, 1],
which cause the system transfers to the next state according to the state transition function
T : S ×A(1) · · · × A(N) → S, where S is the state space of the system. Each agent (i) has a
independent belief about the current state of the dynamic system. Each of them privately
senses one observation o from a set of observable observation O(i), which is correlated with
current state of the system and generated by an observation function O : S → O(i), and
obtains rewards as a function of the state and agents action. And this paper doesn’t specify
the communication mechanism or the interaction rule between the agents. When this is

6

processed for s steps, a joint history h is used to describe the entire sequence of past action-
observation pairs with length s, i.e., hs = a1o1a2o2 . . . asos. The joint history is updated to
hs+1 = hsao after agents taking a new joint action a and sensing a new joint observation o.
All previous action-observations pairs form a joint history set H = {h1,h2, . . . ,h|H|}. At this
time step s, agents may expect to further experience a sequence of joint action-observation
pairs with length l, which is called a joint test t, i.e., t = a1o1a2o2 . . . alol. All the joint tests
in the future together constitute a joint test set T = {t1, t2, . . . , t|T |}.

Analogous to the linear single-agent PSR model, we use prediction equation to predict
the conditional probability of a joint test t given an arbitrary history hs ∈ Hs = {h|h ∈
H, |h| = s} at time step s, i.e.,

p(t|hs) = f(p(Q|hs)) = p(Q|hs)mt, (3)

where the set of joint test Q = {qi|qi ∈ T , i ∈ {1, 2, . . . , n}} is called the core joint test set,
the vector p(Q|hs) forms a sufficient statistic for the state of dynamic system at any time
step s and mt is called the projection vector of test t. We will denote p(Q|hs ← hk) as
p(Q| hs) for any given joint history hk ∈ H (k ∈ [1, |H|]) at a given time step s = |hk| for

simplicity. For ti = ti1...iN = t
(1)
i1
. . . t

(N)
iN

, Eq. (3) becomes

p(t
(1)
i1
. . . t

(N)
iN
|hs) = p(Q|hs)mti1 ,...,tiN

. (4)

Moreover, we use mao to denote the projection vector mt for the one-step joint test t = ao.
The updating equation predicts a new state p(Q|hs+1) from the old state p(Q|hs) after

agents took a joint action a ∈ A and sensed an observation o ∈ O at any time step s. Given
a new history hs+1 = hsao ∈ Hs+1 where Hs+1 = {h |h ∈ H, |h| = s + 1}, the update is
computed as follows:

p(qi|hs+1) =
p(aoqi|hs)
p(ao|hs)

=
p(Q|hs)maoqi

p(Q|hs)mao

, (5)

where the vector maoqi
is mt for each one-step extension (aoqi) for all a ∈ A,o ∈ O,qi ∈ Q.

By arranging each projection vector maoqi
according to the index of qi in core joint test set

Q into a transition matrix Mao, we have

Mao = [maoq1
maoq2

· · · maoq|Q|]. (6)

Then, Eq. (5) can be rewritten as:

p(Q|hs+1) =
p(Q|hs)Mao

p(Q|hs)mao

, (7)

where the vectors {mao} and matrices {Mao} (∀ a ∈ A,o ∈ O) are called prediction param-
eters and transition parameters of a linear multi-agent PSR model, respectively. In general,
given an initial prediction vector p(Q|φ) for a null joint history φ ∈ H, the prediction vector
p(Q|hs) can be computed step by step for any time s. On the other hand, based on the

7

discussion above, given the core joint tests Q and core joint history set H, we can compute
the following parameters: {

mao = p(Q|H)−1p(ao|H)

maoqi
= p(Q|H)−1p(aoqi|H),

(8)

where p(Q|H), p(ao|H) and p(aoqi|H) can be estimated through available training data.
To conclude, a linear multi-agent PSR model in a controllable partially observable dy-

namic system has the parameters {A,O,Q, {mao}, {Mao}, p(Q|φ)}: the joint action set
A, the joint observation set O, the core joint test set Q, the model parameters mao and
Mao (∀ a ∈ A,o ∈ O), and an initial prediction vector p(Q|φ). The process of finding Q
is called the discovery problem and computing the projection vectors is called the learning
problem.

For learning a multi-agent PSR model based on a tensor approach, a system dynamics
tensor D ∈ Rn1×n2×n3×···×nN+1 is used to store interaction data of N agents, whose element is
Di1i2...iNk = p(t|hk) = p(t

(1)
i1
. . . t

(N)
iN
|hk) (∀ t ∈ T ,hk ∈ H). It can be estimated by the reset

algorithm [12]. The discovery problem is then transferred into finding a minimal linearly
independent set (i.e., core joint test set Q) among mode-(N + 1) fibers of system dynamics
tensor D, so that the whole fibers listed in the set Q form a basis of the space spanned by
the mode-(N+1) fibers of tensor D, and these fibers together form a subtensor of D, namely
core test tensor Q. Meantime, the system dynamics matrix [17] can be employed as an
alternative way for learning a multi-agent PSR model through the traditional matrix-based
single-agent PSR learning algorithms (see Section 6). Each element of the matrix is also
estimated by the reset algorithm [12], and its two dimensions represent joint histories and
joint tests, respectively. The main difference between system dynamics matrix and system
dynamics tensor is that we put all the joint tests of the multiple agents in only one dimension
when constructing the former one. One is referred to [5] for more detailed discussions on
system dynamics tensors.

4. Learning Two-Agent PSR Based on Tensor Optimization

In this section, we propose a new framework for learning two-agent PSR based on tensor
optimization. In particular, we establish an optimization model to find the key ingredient of
the PSR model, i.e., the core joint test set Q that solves the discovery problem. From the
solutions of the optimization problem, we will further learn the model parameters (including
prediction parameters and transition parameters) of the PSR model.

4.1. Discover a Core Joint Test Set

After constructing the interaction data of a two-agent dynamic system as a high dimen-
sional system dynamic tensor, we solve the discovery problem for learning a multi-agent PSR
model through tensor optimization. More specifically, we formulate the progress of finding
a minimal linearly independent set (i.e., core joint test set) among mode-(N + 1) fibers of
system dynamic tensor as an optimization model. Subsequently, we transform the optimiza-
tion model into a group LASSO problem and solve it efficiently with the benefit of ADMM
method and mapping technique. Then, we extract a core joint test set and construct the
core test tensor of the PSR model with the fibers listed in the core joint test set.

8

4.1.1. Formulation of Optimization Model and Its Relaxation

For a two-agent dynamic system, we obtain its interaction data samples Φd and construct
the system dynamics tensor D ∈ Rn1×n2×n3 . Suppose that t

(1)
i is the i-th test sequence of

the first agent’s test set T (1), t
(2)
j is the j-th test sequence of the second agent’s test set T (2),

and hk ∈ H is the agents’ joint history at time step s = |hk|. The element of the tensor can

be represented as Dijk = p(t
(1)
i t

(2)
j |hk). As discussed in Section 3, if the core test tensor Q

has been extracted from the system dynamics tensor D, then all the mode-3 fibers of D can
be linearly represented by itself. That is, there exist two coefficient matrices X1 ∈ Rn1×n1

and X2 ∈ Rn2×n2 , such that
D = D ×1 X1 ×2 X2. (9)

In general, the number of solutions to the problem (9) may be infinite. We are interested in
finding a sparse solution (X1, X2) that has the minimum number of nonzero columns. Let
α1 and α2 be positive constant parameters, for any 1 ≤ r ≤ ∞, we propose the following
tensor optimization model:

min
X1,X2

α1 ‖X1‖r,0 + α2 ‖X2‖r,0
s.t. D = D ×1 X1 ×2 X2.

(10)

We remark that for any r with 1 ≤ r ≤ ∞ in the above model, its solutions must be the same
since ‖A‖r,0 = ‖A‖2,0 holds for any matrix A as discussed in Section 2. The way that we
kept r in (10) without a specific value is for the flexibility in designing its solution methods.

In the following discussion, we consider the case r = 2. The difficulty to solve (10) lies
in the L0-norm part of the objective function. Hence, recall that many sparse optimiza-
tion problems can be efficiently obtained via the L1-norm relaxation, we now convert the
model (10) to a variant model with the L1-norm relaxation, i.e.,

min
X1,X2

α1 ‖X1‖2,1 + α2 ‖X2‖2,1

s.t. D = D ×1 X1 ×2 X2.
(11)

The model (11) is actually a convex optimization problem and can be solved efficiently.

4.1.2. Group LASSO and ADMM Method

As discussed above, for a given tensor D, there are sparse coefficient matrices X1 and
X2 such that D = D ×1 X1 ×2 X2. In fact, the interaction data samples of agents in a
dynamic environment may have various noises, and so it is necessary to approximately relax
Eq. (9) so that the gap ‖D − D ×1 X1 ×2 X2‖F is as small as possible. This becomes a
well-known least absolute shrinkage and selection operator (LASSO) problem [23]. A basic
LASSO method selects only one variable from a group of highly correlated variables. In this
article, we use group LASSO [30] as a novel version of the Lasso method for addressing the
issue of approximating the gap.

For our problem, we use a generalized form of the L1-regularization LASSO, i.e., applying
L2,1-regularization (group LASSO) on groups of variables having some sparse characteris-
tics.Hence, the relaxation model (11) can be transformed into a group LASSO problem as
follows:

min
X1,X2

1

2
‖D − D ×1 X1 ×2 X2‖2

F + α1 ‖X1‖2,1 + α2 ‖X2‖2,1 , (12)

9

which is an unconstrained optimization problem.
We observe that X1 and X2 are not related in the model. It is a common approach to

consider alternating optimization over the variable matrices X1 and X2, i.e., starting any
two matrices X1 and X2, and then

(i) Fixing X2, optimizing X1:

min
X1

1

2
‖D − D ×1 X1 ×2 X2‖2

F + α1 ‖X1‖2,1 . (13)

(ii) Fixing X1, optimizing X2:

min
X2

1

2
‖D − D ×1 X1 ×2 X2‖2

F + α2 ‖X2‖2,1 . (14)

For the two subproblems (13) and (14), we construct two auxiliary tensors A = D×2X2 and
B = D ×1 X1, respectively. Then the optimization model (13) is equivalent to

min
X1

1

2
‖X1A(1) −D(1)‖2

F + α1 ‖X1‖2,1 .

Similarly, the model (14) is equivalent to

min
X2

1

2
‖X2B(2) −D(2)‖2

F + α2 ‖X2‖2,1 .

Therefore, it can be seen that both models are in the following form:

min
X

1

2
‖XA−D‖2

F + λ ‖X‖2,1 . (15)

where λ, A and D are given parameters.
To solve the subproblem (15), we adopt an alternating direction method of multipli-

ers (ADMM) which is a commonly accepted efficient method; see [4] for more details. The
ADMM method is a variable optimization performed by the variable segmentation technique
and the augmented Lagrangian framework. Specifically, by introducing a new auxiliary vari-
able Y for the optimization problem (15), we obtain

min
X,Y

1
2
‖XA−D‖2

F + λ ‖Y ‖2,1

s.t. X = Y.

The corresponding augmented Lagrangian function is

Lµ (X, Y, Z) =
1

2
‖XA−D‖2

F + λ ‖Y ‖2,1 + tr
(
ZT (X − Y)

)
+
µ

2
‖X − Y ‖2

F ,

where tr (·) is the trace operator, Z is the Lagrange multiplier, and µ > 0 is a penalty
parameter.

10

For k = 0, 1, 2, . . . , the ADMM method consists of the following iterations:

fix Y k and Zk and update Xk+1 : Xk+1 = arg min
X

Lµ(X), (16)

fix Xk+1 and Zk and update Y k+1 : Y k+1 = arg min
Y
Lµ(Y), (17)

fix Xk+1 and Y k+1 and update Zk+1 : Zk+1 = Zk + µ (Xk+1 − Y k+1). (18)

The objective function Lµ(X) in problem (16) is equal to

Lµ(X) =
1

2
‖XA−D‖2

F + tr
(
ZTX

)
+
µ

2
‖X − Y ‖2

F + c0,

where c0 is a constant. The optimal solution of (16) admits an analytical formula, i.e.,

X∗ = (DAT − Z + µY)
(
AAT + µE

)−1
,

where E is an identity matrix. Moreover, the objective function Lµ(Y) in problem (17) is
equal to

Lµ (Y) = λ ‖Y ‖2,1 − tr
(
ZTY

)
+
µ

2
‖Y −X‖2

F

= λ ‖Y ‖2,1 +
µ

2

∥∥∥∥Y − (X +
1

µ
Z

)∥∥∥∥2

F

.

Therefore, (17) can be separated into some subproblems, whose total number is the number
of columns of X. By letting G = X + 1

µ
Z, each optimal column vector of the variable Y can

be calculated from the column vector of G, i.e.,

Y ∗:i = max

{
‖G:i‖2 −

λ

µ
, 0

}
G:i

‖G:i‖2

.

In implementing the ADMM, the stopping criterion of the above algorithm can be set as

‖Xk+1 − Y k+1‖F ≤ ε or max
{
‖Xk+1 −Xk‖F , ‖Y k+1 − Y k‖F

}
≤ ε.

The former one is called the primal residual and the latter is the difference between successive
iterations.

We present the ADMM method to solve the optimization problem (15) in Algorithm 1.
We first initialize the auxiliary variable Y 0 and the Lagrange multiplier Z0 with identity
matrix (line 1). Then, we proceed with a sub-progress, which begins with fixing Y k and Zk

and updating Xk+1 (line 3), follows by fixing Xk+1 and Zk and updating Y k+1 (lines 4-7).
We subsequently fix Xk+1 and Y k+1 and update Zk+1 (line 8). The procedure is iterated
until the stopping criterion is satisfied (lines 2-9). Finally, the coefficient matrix Xk+1 is
returned (line 10).

The global convergence of Algorithm 1 can be easily established, similar to that of [4,
Section 3]. It is worth mentioning that the convergent property satisfies for any parameter
µ > 0. The iteration complexity of ADMM has been studied in the literature (see [4] and
the references therein). It is shown that the ADMM algorithm has O(1/ε) convergence rate,
under some mild conditions on the problem.

11

Data: matrices A and D, positive scalars λ and µ, and a termination tolerance ε.
Result: an optimal X.

1 Initialize Y 0 and Z0 ;

2 while ‖Xk+1 − Y k+1‖F > ε or max
{
‖Xk+1 −Xk‖F , ‖Y k+1 − Y k‖F

}
> ε do

3 Xk+1 = (DAT − Zk + µY k)
(
AAT + µE

)−1
;

4 Gk+1 = Xk+1 +
1

µ
Zk;

5 for each column of Y k+1 do

6 Y k+1
:i = max

{
‖Gk+1

:i ‖2 −
λ

µ
, 0

}
Gk+1

:i

‖Gk+1
:i ‖

;

7 end

8 Zk+1 = Zk + µ (Xk+1 − Y k+1);

9 end

10 X ← Xk+1.

Algorithm 1: ADMM(A,D, λ, µ, ε) for the optimization problem (15)

Theorem 4.1. The sequence {(Xk, Y k, Zk)} generated by Algorithm 1 converges to an op-
timal solution of (15) for any starting point.

Therefore, by applying the ADMM procedure (Algorithm 1) on the two sub-problems (13)
and (14), we can further solve problem (12) by alternating optimization. The procedure is
presented in Algorithm 2, which terminates when it meets the stopping criterion, i.e., the
objective function of problem (12) is small enough or could not be minimized any more. We
will use the grid search method to choose suitable parameters; see Section 6.2.

In Algorithm 2, we first initialize the coefficient matrix X0
2 with an identity matrix,

generate the sparse tables I, I1 and I2 and compute matrices D(1) and D(2) (lines 1-3). We
compute the auxiliary matrix Ak(1) via a mapping technique (lines 5-6) and update Xk+1

1 via

applying Algorithm 1 (line 7). We then calculate the auxiliary matrix Bk
(2) via a mapping

technique (lines 8-9) and update Xk+1
2 by applying Algorithm 1 (line 10). Finally, we obtain

the desired coefficient matrices X1 and X2, and their corresponding non-zero column index
sets I and J (lines 12-13).

When implementing Algorithm 2, we use a sparse representation of tensor and mapping
technique for skipping all the time-consuming and memory-expensive operations. The details
are shown in Fig. 1, where we describe the technique in five steps. Specifically, we compute
a number of index tables for saving computer memory resources, define an operator {} for
quickly indexing the value given the index tables, and further define a mapping operator 7→
for mapping the elements between different matrices or tensors. Indeed, we only map the
non-zero elements of the system dynamics tensor to some matrices, which means that we
care more about the occurred sequences in the agents’ past experiences. We explain each
step of Fig. 1 as follows:

Step 1: Store all the non-zero elements of system dynamics tensor D together to form a
sparse table with two columns: one for the value and the other for the indexes;

12

Data: A tensor D, positive scalars α1, α2 and µ.
Result: An optimal solution (X1, X2) and corresponding nonzero column index sets I and

J .
1 Initialize X0

2 ;
2 Generate sparse tables I, I1 and I2;
3 Compute matrices D(1) and D(2): D{I} 7→ D(n){In};
4 while the stopping criterion is not satisfied do
5 Compute matrix Ak(2) ← Xk

2D(2);

6 Compute matrix Ak(1): A
k
(2){I2} 7→ Ak(1){I1} ;

7 Xk+1
1 ← ADMM(Ak(1),D(1),α1, µ, ε);

8 Compute matrix Bk+1
(1) ← Xk+1

1 Ak(1);

9 Compute matrix Bk+1
(2) : Bk+1

(1) {I1} 7→ Bk+1
(2) {I2} ;

10 Xk+1
2 ← ADMM(Bk+1

(2) ,D(2), α2, µ, ε);

11 end

12 X1 ← Xk+1
1 and X2 ← Xk+1

2 ;
13 I ← {i | sgn(‖(X1):i‖2) 6= 0} and J ← {j | sgn(‖(X2):j‖2) 6= 0}.

Algorithm 2: Alternating optimization for solving problem (12)

Step 2: Generate four index tables for matricization, i.e., index tables İ1, İ2, I1 and I2.

The former two tables are computed from the index table I using Eq. (1). The latter
two tables recode column indices of index tables İ1 and İ2 by dropping all the zero
columns in the corresponding matrices, thus the resulting column dimensions satisfying
n2n3 � n2n3 and n1n3 � n1n3;

Step 3: Create the reduced mode-i unfolding matrix D(i) using index table Ii (i = 1, 2)
by mapping the non-zero elements (indexed by index table I) in tensor D to their
positions (indexed by index table Ii) in matrix D(i), i.e. D{I} 7→ D(i){Ii};

Step 4: Compute the auxiliary matrices in Algorithm 2 using these two index tables I1 and
I2, and Eq. (2);

Step 5: Rearrange the elements of auxiliary matrices into the desired arrangement via the
mapping operator without the help of auxiliary tensors, i.e. A(2){I2} 7→ A(1){I1} and
B(1){I1} 7→ B(2){I2} .

Actually we compute the mode-1 unfolding of tensor D×2 X2 and the mode-2 unfolding
of tensor D ×1 X1, i.e., matrices A(1) and B(2) respectively, in steps 4 and 5. We optimize
the computations of these two matrices to save memory and time, since they are updated
frequently in Algorithm 2 (lines 5-6 and lines 8-9, respectively). When Algorithm 2 stops,
we shall obtain the sparse coefficient matrices X1 and X2 for problem (12) and their corre-
sponding non-zero column index sets, namely{

I = {i | sgn(‖(X1):i‖2) 6= 0, 1 ≤ i ≤ n1},
J = {j | sgn(‖(X2):j‖2) 6= 0, 1 ≤ j ≤ n2}.

13

k

j

i

1 2 3

Joint Histories

Test
(Agent 1)

𝟏

𝟐 Test (Agent 2)

𝑖,𝑗 ,𝑘 𝑖, 𝑗, 𝑘

0.5 1,1,1

0.3 1,2,1

Sparse TableSystem dynamics Tensor Matricization Index Table

0.5 1,1,1

0.3 1,2,1

𝑖, 𝑗, 𝑘

1,1

1,2

𝑗, 𝑗′

1,1 1,1

1,2 2,1

1,1

2,1

𝑗, 𝑗′′ 𝑖, 𝑖′′𝑖, 𝑖′𝑖,𝑗 ,𝑘

 1 2

1 1

1 1 1

𝑛 𝑛

1 1 2 2

2 2

2 2 2
2 2 1 1

2 1

Step 1

Step 4Step 5

Step 2

Step 3

Auxiliary Matrices MatricizationDesired Matrices

2 3 1 3

2 3

1 3

2 31 3

Fig. 1. A sparse representation of tensor and mapping operations when implementing Algo-
rithm 2

Here, we assume that the size of the index sets are |I| = m1 and |J | = m2 where m1 < n1

and m2 < n2.
To analyze the computational complexity of Algorithm 2, we first investigate the ADMM

steps. In Algorithm 1, the computational complexity mainly lies in updating the matrix
X, which needs roughly O(n3) operations (n is the row dimension of X). Hence, Algo-
rithm 1 requires O(n3/ε) operations in order to achieve an ε-accuracy solution. Therefore,
by introducing mapping technique, Algorithm 2 totally has the computational complexity
O(n1m1n2n3 +n2m2n1n3 +n3

1/ε+n3
2/ε), where ni is each dimension of system dynamics ten-

sor D, n2n3 is the column dimension of mode-1 unfolding D(1), n1n3 is the column dimension
of mode-2 unfolding D(2), m1 = |I| and m2 = |J |.

4.1.3. Extract a Core Joint Test Set

From the solution discussed in Section 4.1.2, we can extract all nonzero columns from
matrix X1 according to the index set I and construct a new matrix, denoted by X̄1 ∈ Rn1×m1 ,
whose column indices are renumbered as 1, 2, . . . ,m1. Similarly, we obtain the other new
matrix X̄2 ∈ Rn2×m2 by selecting all nonzero columns of matrix X2 according to the index
set J , and the column indices of X̄2 are renumbered as 1, 2, . . . ,m2. The two new matrices
are called reduced coefficient matrices. The entry Dijk of the tensor D can now be expressed

14

by

Dijk =

n1∑
u=1

n2∑
v=1

Duvk(X1)iu(X2)jv

=
∑
u∈I

∑
v∈J

Duvk(X1)iu(X2)jv

=

m1∑
l=1

m2∑
w=1

Qlwk(X̄1)il(X̄2)jw, (19)

where Q ∈ Rm1×m2×n3 . The tensor Q is actually the core test tensor, whose elements can be
completely extracted from the system dynamics tensor D according to the indices I and J ,
i.e., Q = DIJ :. We don’t need to specify the dimensions of the core test tensor in advance
as it will be automatically determined after we solve the optimization problem (12). This
differs from the previous PSR learning approaches.

We rewrite Eq. (19) in the tensor mode product form, i.e.,

D = Q×1 X̄1 ×2 X̄2.

Fig. 2 shows the framework of the tensor optimization for obtaining the core test tensor.
Accordingly, we construct the core joint test set Q from the joint test set T by using the

Fig. 2. A diagram of tensor optimization framework to obtain the core test tensor

nonzero column index sets I and J , i.e.,

Q = {ti1i2 | ti1i2 ∈ T , i1 ∈ I, i2 ∈ J},

which solves the discovery problem of a two-agent PSR model.

4.2. Learning Prediction Parameters and State Vectors

Let us denote Q = Q(3) ∈ Rn3×(m1m2) as the mode-3 unfolding of the core test tensor Q
and Qk: to be its k-th row vector for k = 1, 2, . . . , n3. By the physical meaning of the core
test tensor, we know that Q is the state matrix of the dynamic system and Qk: is the state
vector at time step s = |hk| with joint history hk ∈ H, i.e., Qk: = p(Q|hk). Moreover, we
have from Eq. (19) that

Dijk =

m1∑
l=1

m2∑
w=1

Qlwk(X̄1)il(X̄2)jw

= (vec(Q::k))
T (

(X̄2)j: ⊗ (X̄1)i:
)T

= Qk:

(
(X̄2)j: ⊗ (X̄1)i:

)T
.

15

From Eq. (4), we have Dijk = p(t
(1)
i t

(2)
j |hk) = p(Q|hk)mtitj , and so

mt = mtitj =
(
(X̄2)j: ⊗ (X̄1)i:

)T
, (20)

which is the prediction parameter that we need to learn.
Fig. 3 shows the concrete process of learning the prediction parameter mtitj and the state

vector Qk: by the tensor optimization method. To be specific,

• Step 1-3 describe how to find the state vector Qk: from the core test tensor Q. We
extract the k-th frontal slice matrix from the tensorQ in Step 1, and (column) vectorize
and transpose it, i.e., Qk: = (vec(Q::k))

T in Steps 2-3.

• Step 4-6 show the detailed process of obtaining the prediction parameter mtitj . We
obtain the two row vectors (X̄1)i: and (X̄2)j: of the corresponding reduced coefficient
matrix in Steps 4 and 5, respectively, and calculate the prediction parameter mtitj by
the Kronecker product of the two vectors in Step 6.

k

j

i

1 2 3

1 1 2 2 1 2 3

𝑖,𝑗 ,𝑘 𝑙,𝑜,𝑘 2 𝑗𝑤 1 𝑖𝑙

𝑚2

𝑤 1

𝑚1

𝑙 1

Q𝑘: 2 𝑗 : 1 𝑖:
𝑇

𝑖,𝑗 ,𝑘 Q𝑘: 2 𝑗 : 1 𝑖:
𝑇

𝑘 𝑡𝑖 ,𝑡𝑗

Q𝑘: ∷𝑘
𝑇

𝑡𝑖 ,𝑡𝑗 2 𝑗 : 1 𝑖:
𝑇

Step 4 Step 5 Step 2

Step 3Step 6

Step 1

Joint Histories

Test
(Agent 1)

𝟏

𝟐 Test (Agent 2)

1 𝑖: 2 𝑗 :

1 𝑖:

2 𝑗 :

Fig. 3. Flowchart of learning the prediction parameter and the state vector

4.3. Learning Transition Parameters

From the analysis in Section 3 and 4.2, we can find one-step projection vectors {mao}
from the prediction parameter set {mtitj} for each ao ∈ A × O. The projection vectors
serve as a key ingredient for learning the model transition parameters {Mao}. There are two
methods to compute them.

One method is to directly compute the updated state vector maoqi
for each one-step

extension (aoqi) for all a ∈ A,o ∈ O,qi ∈ Q. We first extract a subtensor Qao from the
original tensor D according to the following index sets

Ī = {i | i = I(aoq
(1)
i′ q

(2)
j , T (1)), i′ ∈ I, j ∈ J},

J̄ = {j | j = I(aoq
(1)
i q

(2)
j′ , T (2)), i ∈ I, j′ ∈ J},

16

i.e., Qao = DĪJ̄ :, and then construct a matrix Qao from the mode-3 unfolding of the tensor
Qao. According to Eq. (8) and H ⊆ H, we compute

maoqi
= p(Q|H)−1p(aoqi|H) (21)

where p(Q|H) is the system state matrix Q and p(aoqi|H) is the i-th column vector of
matrix Qao. Hence, from Eq. (6), we obtain the transition matrix

Mao = [maoq1
maoq2

. . . maoqm1m2
].

As this method needs to construct a subtensor Qao in order to obtain p(aoqi|H), it consumes
a large amount of memory and computational resources. Thus, it is not applicable to a large
size.

To find an alternative way to obtaining the transition matrix Mao, we observe that
p(aoqi|hk) is the element of the vector p(aoqi|H) for all hk ∈ H and ao ∈ A×O. According
to the probability chain rule, we have at any time step s = |hk|,

p(aoqi|hs = hk) = p(ao|hs = hk) ∗ p(qi|hs+1 = hkao).

Therefore,

p(aoqi|H′) = p(ao|H′) ∗ p(qi|H′ao), (22)

where H′ and H′ao are the subsets of the joint history set H. Specifically,

H′ao = {h |h = h′ao,h ∈ H,h′ ∈ H} and H′ = {h |h = h′ \ ao,h ∈ H,h′ ∈ H′ao}.

The former set consists of all the joint histories h ∈ H ending with action-observation ao and
the latter one is obtained by truncating the terminal action-observation sequence ao for every
joint history h′ ∈ H′ao. We observe that |H′| = |H′ao|. Let p(Q|H′) be the matrix extracted
and constructed from the system state matrix Q according to the row index set I(H′,H),
i.e., p(Q|H′) ← QI(H′,H). Similarly, we have p(Q|H′ao) ← QI(H′ao,H). For simplicity, we use
QH′ and QH′ao to denote QI(H′,H) and QI(H′ao,H), respectively. Therefore, we obtain

maoqi
= p(Q|H′)−1

(
p(ao|H′) ∗ p(qi|H′ao)

)
= p(Q|H′)−1

((
p(Q|H′)mao

)
∗ p(qi|H′ao)

)
,

where the first equation is obtained from Eqs. (21) and (22), and the second one is obtained
from Eq. (3). Moreover, from Eq. (6), we have

Mao = p(Q|H′)−1diag(p(Q|H′)mao)p(Q|H′ao)

= Q−1
H′diag(QH′mao)QH′ao . (23)

If there are enough training data, we can get an precise estimation of QH′ , QH′ao and mao.
The error of calculating Mao will be sufficiently minimal, which implies that Eq. (23) is true
in general. However, due to the limited training data, it is generally impossible to obtain an
exact Mao to maintain the equality in Eq. (23).

17

Let the vector dao = QH′mao whose elements are d1
ao, . . . , d

|H′|
ao . We construct a diagonal

matrix Dao = diag(d1
ao, . . . , d

|H′|
ao) and transform Eq. (23) into the following optimization

problem

min
M

1

2
‖DaoQH′ao −QH′M‖

2
F ,

whose corresponding optimal solution is

M∗
ao = (QT

H′QH′)
−1

(QT
H′DaoQH′ao).

To conclude this section, we provide the overall process of discovering the core joint test
set and learning the model parameters of a two-agent PSR model; see Fig. 4 and Algorithm 3.
Fig. 4 consists of 8 steps and the pseudo code of each step is shown in Algorithm 3. We
explain each of the 8 steps as follows:

Step 1: Establish the system dynamics tensor D from the interaction data Φd (line 1);

Step 2: Construct a tensor optimization problem and solve it by Algorithm 2 (line 2);

Step 3: Obtain the sparse coefficient matrices X1 and X2 and their corresponding in-
dices (line 2);

Step 4: Construct the reduced coefficient matrices X̄1 and X̄2, the core test set Q, and the
core test tensor Q (lines 3-5);

Step 5: Construct the system state matrix Q and calculate the projection vector mt (lines
6-11);

Step 6: Obtain the PSR model prediction parameter mao from mt and construct two joint
history sets H′ao and H′ and matrices QH′ao and QH′ (lines 13-18);

Step 7: Compute the vector dao and the matrix Dao (lines 19-20);

Step 8: Compute the model parameter Mao (line 21).

5. Extension to Learning a (N >2)-Agent PSR Model

We proceed to extend the single-agent PSR learning to a multi-agent case. As the learning
procedures are quite similar, we briefly discuss the core test discovery and model parameter
learning in this section.

18

Data: Interaction data Φd of the two agents.
Result: Core joint test set Q, state matrix p(Q|H), and model parameters {mao} and

{Mao}.
1 Construct system dynamics tensor D from data Φd;
2 Run Algorithm 2 to obtain [X1, I] and [X2, J];
3 X̄1 ← (X1):I and X̄2 ← (X2):J ;
4 Q ← DIJ :;
5 Q← {ti1i2 |ti1i2 ∈ T , i1 ∈ I, i2 ∈ J};
6 Q← Q(3);

7 p(Q|H)← Q;
8 foreach i ∈ {1, 2, . . . n1}, j ∈ {1, 2, . . . n2}, t ∈ T do

9 mtitj ←
(
(X̄2)j: ⊗ (X̄1)i:

)T
;

10 mt ←mtitj ;

11 end
12 foreach a ∈ A,o ∈ O do
13 t← ao;
14 mao ←mt;
15 H′ao ← {h |h = h′ao,h ∈ H,h′ ∈ H};
16 H′ ← {h |h = h′ \ ao,h ∈ H,h′ ∈ H′ao};
17 QH′ao ← QI(H′ao,H);

18 QH′ ← QI(H′,H);

19 dao ← QH′mao;

20 Dao ← diag(d1
ao, . . . , d

|H′|
ao);

21 Mao ← (QTH′QH′)
−1

(QTH′DaoQH′ao) ;

22 end

Algorithm 3: Tensor-based ADMM for learning two-agent PSR model

5.1. Tensor Optimization for Discovering a Core Joint Test Set

For a dynamic system with N agents, suppose that the system dynamics tensor is D ∈
Rn1×n2×n3×···×nN+1 with the element Di1i2...iNk = p(t

(1)
i1
. . . t

(N)
iN
|hk). Analogous to Section 4.1,

we seek to find a number of sparse coefficient matrices X1, X2, · · · , XN such that

D = D ×1 X1 ×2 X2 ×3 · · · ×N XN . (24)

In practice, we relax Eq. (24) and search for a solution such that the gap ‖D − D ×1

X1 ×2 X2 · · · ×N XN‖ is minimized. Thus, we formulate it as a group LASSO problem by
using the L2,1-regularization, i.e.,

min
X1,X2,...,XN

1

2
‖D − D ×1 X1 ×2 X2 ×3 · · · ×N XN‖2

F

+ α1 ‖X1‖2,1 + α2 ‖X2‖2,1 + · · ·+ αN ‖XN‖2,1 .

This is an unconstrained optimization problem and can be solved by alternately mini-
mizing, i.e., optimize one Xi while other N − 1 Xi’s are fixed until the procedures converge.

19

1 1

Q ′Q ′ Q ′ Q
𝐚𝐨
′

Step 2

Step 3

Step 7
Q 𝐚𝐨

′ Q ′

Step 1

Agent interaction data

1 1 2 2

1 2

𝑛1 𝑛2 𝑛3
Test (Agent 1) 𝟏
Test (Agent 2) 𝟐
Joint Histories

1 2 3

2 21 2 3

Step 4 Q

3 1 2

Step 5

Step 8

Step 6

𝐭 2 𝑗 : 1 𝑖:
𝑇

1 2

 Q ′

′
1 2

′ ′′
1 2

′
1 21 2 1 2

′
1 2 1 2

Fig. 4. An overall framework of learning a two-agent PSR model

Without loss of generality, let us consider the case of optimizing the matrix X1, i.e., we fix
variables X2, X3, · · · , XN and optimize the following problem

min
X1

1

2
‖D − D ×1 X1 ×2 X2 × · · · ×N XN‖2

F + α1 ‖X1‖2,1 . (25)

Let A = D ×2 X2 ×3 · · · ×N XN and (25) is then equivalent to

min
X1

1

2
‖X1A(1) −D(1)‖2

F + α1 ‖X1‖2,1 .

We find that all the N subproblems again have the same unified form as the optimization
problem (15), which can be efficiently solved by Algorithm 1.

When the solution coefficient matrices X1, X2, · · · , XN are available, we extract reduced
coefficient matrix X̄i from the matrix Xi according to its nonzero column index set Ii where
|Ii| = mi for each i ∈ {1, 2, . . . , N}. Hence, the dimension of each X̄i is ni × mi. Each
element of tensor D can be written as

Di1i2...iNk =
∑
i′1∈I1

∑
i′2∈I2

· · ·
∑
i′N∈IN

Di′1i′2...i′Nk(X1)i1i′1(X2)i2i′2 . . . (XN)iN i′N

=

m1∑
i
′
1=1

m2∑
i
′
2=1

· · ·
mN∑
i
′
N=1

Qi′1i′2...i′Nk(X̄1)i1i′1
(X̄2)i2i′2

. . . (X̄N)iN i′N
. (26)

The above can also be written as the tensor mode product form

D = Q×1 X̄1 ×2 X̄2 · · · ×N X̄N ,

where the core tensor Q ∈ Rm1×m2×···×mN×nN+1 is extracted from the tensor D according to
the nonzero column index sets I1, I2, . . . , IN , i.e., Q = DI1I2...IN :.

20

The core joint test set Q can be obtained correspondingly, i.e.,

Q = {ti1i2...iN | ti1i2...iN ∈ T , i1 ∈ I1, i2 ∈ I2, . . . , iN ∈ IN}.

This solves the discovery problem of a multi-agent PSR model.

5.2. Learning Model Parameters

In this part, we discuss how to learn state vectors, prediction parameters, and further
transition parameters of a multi-agent PSR model.

Let Q = Q(N+1) ∈ RnN+1×(m1m2...mN) be the mode-(N + 1) unfolding of the core test
tensor Q. Then, each row vector of the the state matrix Q is the state vector at the time
step s = |hk| with the joint history hk ∈ H, i.e., Qk: = p(Q|hk). On the other side, from
Eq. (19), we derive that

Di1i2...iNk = (vec(Q:···:k))
T ((X̄N)iN : ⊗ · · · ⊗ (X̄2)i2: ⊗ (X̄1)i1:

)T
= Qk:

(
(X̄N)iN : ⊗ · · · ⊗ (X̄2)i2: ⊗ (X̄1)i1:

)T
,

indicating that the prediction parameter is

mt =
(
(X̄N)iN : ⊗ · · · ⊗ (X̄2)i2: ⊗ (X̄1)i1:

)T
.

Next, we let t = ao and we can find the one-step projection vector mao from the
prediction parameter for all a ∈ A and o ∈ O. We are now ready to present the calculation
of transition parameters. We construct three matrices QH′ , QH′ao and Dao analogous to that
in Section 4.3, establish an optimization problem, and then find an optimal solution M∗ to
the transition matrix Mao, i.e.,

M∗ = (QT
H′QH′)

−1
(QT
H′DaoQH′ao).

The overall learning process for a multi-agent PSR model is summarized in Algorithm 4.
We first construct the system dynamics tensor D from the agents interaction data Φd and
and sparse tables I, I1, I2, . . . , IN (lines 1). Then, we can use alternating minimization
strategy with a mapping technology to optimize one variable at each time while keeping
others fixed until the procedures converge (lines 2-11) where we adopt Algorithm 1 to solve
the embedding sub-problems. Therefore, we find the nonzero column index set Ii and reduce
the coefficient matrix X̄i for all i ∈ {1, 2, . . . , N} (lines 12-15). The next step is to find
the core test set Q and the system state matrix Q (lines 16-19). Furthermore, we find the
prediction parameters {mao} from {mt} (lines 20-23). Finally, we calculate the transition
parameters {Mao} of the multi-agent PSR model (lines 23-34).

The discovery-based learning approaches using a combinatorial search for the set of core
tests have the time complexity of O((|A||O|)L) in the worst case, where L is the max-
length of a joint action-observation sequence in a training dataset. This discovery-based
time complexity can be reduced to O (|H||Q||T |) when the minimal size of set of core tests
is provided as an input. However, this assumption is not available in practice in most
cases. In contrast, Algorithm 4 without mapping technique for the discovery problem has

21

Data: Interaction data Φd of N agents, parameters αi (i = 1, 2, . . . , N) and µ.
Result: Core joint test set Q, state matrix p(Q|H), and model parameters {mao} and

{Mao}.
1 Construct system dynamics tensor D and sparse tables I, I1, I2, . . . , IN from data Φd;
2 while the stopping criterion is not satisfied do

3 Initialize matrices A
(1)
(1) ← D(1);

4 X1 ← ADMM(A
(1)
(1), D(1), α1, µ, ε);

5 foreach i ∈ {2, . . . , N} do
6 A

(i)
(i−1) ← X(i−1)A

(i−1)
(i−1);

7 A
(i)
(i−1){Ii−1} 7→ A

(i)
(i){Ii} ;

8 Xi ← ADMM(A
(i)
(i), D(i), αi, µ, ε);

9 Update Xi;

10 end

11 end
12 foreach i ∈ {1, 2, . . . , N} do
13 Find Ii;
14 X̄i ← (Xi):Ii ;

15 end
16 Q ← DI1I2...IN :;
17 Q← {ti1i2...iN |ti1i2...iN ∈ T , i1 ∈ I1, i2 ∈ I2, . . . , iN ∈ IN};
18 Q← Q(N+1);

19 p(Q|H)← Q;
20 foreach i1 ∈ {1, 2, . . . n1}, i2 ∈ {1, 2, . . . n2}, . . . , iN ∈ {1, 2, . . . nN}, t ∈ T do

21 mti1 ti2 ...tiN
←
(
(X̄N)iN : ⊗ · · · ⊗ (X̄2)i2: ⊗ (X̄1)i1:

)T
;

22 mt ←mti1 ti2 ...tiN
;

23 end
24 foreach a ∈ A,o ∈ O do
25 t← ao;
26 mao ←mt;
27 H′ao ← {h|h = h′ao,h ∈ H,h′ ∈ H};
28 H′ ← {h|h = h′ \ ao,h ∈ H,h′ ∈ H′ao};
29 QH′ao ← QI(H′ao,H);

30 QH′ ← QI(H′,H);

31 dao ← QH′mao;

32 Dao ← diag(d1
ao, . . . , d

|H′|
ao);

33 Mao ← (QTH′QH′)
−1

(QTH′DaoQH′ao) ;

34 end

Algorithm 4: Tensor-based ADMM for learning a multi-agent PSR model

the computational complexity of O(Nn3/ε+ |H|n2N−1), where n = maxNi=1(|T (i)|). By intro-
ducing mapping technique, the computational complexity of Algorithm 4 for the discovery
problem (lines 1-19) can be further reduced to O(Nn3/ε + nmn), where m = maxNi=1(|Ii|),

22

Table 3. Basic information of the two-agent domains

Domain |A| |O| |S| Relationship
Tag 5× 5 24 × 24 870 Competitive

Gridworld∗ 4× 4 24 × 24 2704 Competitive
ColoredGridworld∗ 4× 4 28 × 28 2704 Competitive

Poc-Man∗ 4× 4 ≈ 29 × 29 ≈ 1056 Cooperative

n = maxNi=1(
∏N

j=1,j 6=i nj). Moreover, the time complexity of our algorithm for the learning

problem (lines 20-34) is O(|A||O|d3
max), where dmax = max(|Q|, |H′|). In summary, Algo-

rithm 4 with mapping technique for learning a multi-agent PSR model has the computational
complexity of O(Nn3/ε+ nmn+ |A||O|d3

max).

6. Experimental Study

We will test the learning algorithms for a multi-agent PSR model (i.e., Algorithms 3
and 4) over four different extended versions of benchmarks that are commonly used for
the PSR research, i.e., Tag [22], Gridworld∗ [9], ColoredGridworld∗ [8] and Poc-Man∗ [26].
We present basic information of a two-agent setting, including the size of action space A,
observation space O, system state space S and the relationship between the two agents in
Table 3. The detailed descriptions of the four domains can also be seen in the reference [5].
In addition, we simply add one more agent in domains Gridworld∗ and Tag to formulate a
three-agent system for testing our algorithm.

We adapt traditional learning PSR methods that were developed for a single-agent
case (i.e., transformed PSR (TPSR) and compressed PSR (CPSR) approaches [9, 8]) and
empirically compare them with our algorithms in the aforementioned domains. To conduct
a fair comparison, we pre-set the compressed dimension of our algorithms equal to that of
TPSR and CPSR algorithms. All the prediction models are implemented in the integrated
development environment of MATLAB conducted on a Windows PC with a 4-core Intel Core
i7-8550U 1.99 GHz CPU and 16 GB RAM.

For evaluating the learnt PSR models, a series of action-observation sequences with length
L are generated in every domain d, which are collected during agents applying random
exploration strategy to continuously interact with the environment. Then, we split the
sequences into two datasets, one is training dataset Φd and the other is test dataset Ψd. The
training dataset Φd contains 2000 sequences of action-observation with a maximum length
L = 10. While in the test dataset Ψd, there are 3000 sequences of action-observation with
a maximum length L = 15. For each domain, Rnum = 20 rounds are conducted to evaluate
the average performance of each model. In each round r, a subset Φr

d is randomly sampled
from the training dataset Φd with size |Φr

d| = 500, and a subset Ψr
d is randomly sampled

from the test dataset Ψd with size |Ψr
d| = 1000 for all the domains.

As we can see in Table 4, a subset Φr
d is randomly sampled from the training dataset

Φd with size |Φr
d| = 500 for all domains and the joint test set is generated according to a

rule, which specifies the expected maximum length of the joint tests in the joint test set
(l = max({|t| | ∀ t ∈ T })). When we let the value l increase from 1 to 10 (L = 10), the

23

Table 4. Examples of system dynamics tensor
Domain N l |T | |D| Required

RAM(GB)

Tag

2

1 1367 73× 74× 4721 < 16
2 5788 1225× 1294× 4721 55.8
3 9776 4199× 4398× 4721 649.6
...

...
...

...
10 23707 17981× 18227× 4721 11528.0

3

1 4259 75× 77× 71× 4897 ≈ 16
2 8855 1092× 1222× 1203× 4897 58642.4
3 12851 4109× 4493× 4535× 4897 —
...

...
...

...
10 26826 17531× 17961× 18125× 4897 —

GridWorld∗

2

1 1135 62× 61× 4713 < 16
2 5564 1108× 1136× 4713 44.2
3 9564 4293× 4290× 4713 646.7
...

...
...

...
10 23589 18271× 18195× 4713 11710.7

3

1 3816 62× 58× 59× 4907 < 16
2 8525 1152× 1132× 1015× 4907 48391.7
3 12525 4417× 4332× 3811× 4907 —
...

...
...

...
10 26525 18343× 18251× 17543× 4907 —

CloloredGridWorld∗

2

1 1125 74× 74× 4725 < 16
2 4906 1232× 1214× 4725 52.7
3 8895 3604× 3648× 4725 462.8

10 22894 17023× 17145× 4725 10274.6

3

1 3337 67× 62× 113× 4898 17.1
2 7272 1200× 1201× 1141× 4898 60009.3
3 11272 3557× 3604× 3422× 4898 1600875.5
...

...
...

...
10 25272 16980× 17084× 16779× 4898 —

Poc-Man∗

2

1 3440 76× 95× 4489 < 16
2 7011 3669× 3280× 4489 402.5
3 10085 6734× 6324× 4489 1424.3
...

...
...

...
10 19205 16027× 13937× 4489 7470.7

3

1 4608 108× 145× 117× 4930 67.3
2 9108 2597× 2520× 2474× 4930 594715.5
3 13108 6032× 5830× 5877× 4930 —
...

...
...

...
10 27108 19962× 19732× 19794× 4930 —

24

constructed joint test set has an increasing number of joint tests and the size of the system
dynamics tensor also increases. As a result, the RAM memory required for storing system
dynamics tensor, modelling and solving the optimization becomes unbearable. Thanks to the
probability chain rule, when obtaining a sufficiently long history, we can use a joint test set
(l = 1) and a history set to construct the system dynamics tensor for modelling and prediction
without losing any solution quality. Therefore, instead of creating a sparse and large tensor,
wasting time to the never occurred sequences in the dataset and computing matrix unfoldings
via auxiliary tensors and tensor mode product, we use a sparse representation of tensor and
mapping technique for skipping all the time-consuming and memory-expensive operations in
Algorithms 2, 3 and 4.

6.1. Performance Measurements

We compare the models in terms of prediction accuracy, which calculates the gap between
the true predictions and the estimated ones given by the learnt PSR models over the test
dataset Ψr

d. Therefore, we use the metric absolute error (AE) to measure this difference,
which computes the average of absolute error of one-step prediction error per time step given
an arbitrary history hk ∈ Hs at time step s = |hk|, defined by

AE =
1

NT

NT∑
t=1

|p̂(otk+1|htkatk+1)− p(otk+1|htkatk+1)|. (27)

In Eq. (27), NT is the total number of test sequences (NT = |Ψtest
d | × Rnum = 1000 × 20),

and k is the test length starting from 0 to L − 1 (where L = 15). The probability p(·) is
obtained from the Monte-Carlo roll-out prediction [9] (since we do not have any POMDP
files, we cannot obtain the true predictions or calculations), and the estimated probability
p̂(·) is computed by the learnt model.

6.2. Parameter Selection in ADMM

We use a grid search method to choose the suitable parameters µ and αi (i = 1, 2, . . . , N)
in the ADMM procedure in Algorithm 4. The details are shown in the following.

• Let s1 and s2 be integer numbers in the intervals [1, 3] and [1, 8], respectively, and then

create the search space for parameters µ = e−s1 and αi = es2/(1 − e−s2) ∗ N‖D(i)‖2F
2log(ni)

,
where e is Euler’s number;

• Run Algorithm 1 to obtain the optimal solution X and its non-zero column index set
I for each parameter combination in the above space for each agent;

• Compute the value of objective function

vobj =
1

2
‖D−D×1X1×2X2×3 · · ·×NXN‖2

F +α1 ‖X1‖2,1+α2 ‖X2‖2,1+· · ·+αN ‖XN‖2,1 ,

and the size of core joint test set (|Q| =
∏N

i=1 |Ii|), then we have the gap

gap =
√
v2
obj + |Q|2

for each parameter combination;

25

Table 5. Selected parameters in various domains with two or three agents

N Domain µ∗ α∗
i |Q| |D|

2

Tag 0.449329 3.15334,1.50441 9× 1 = 9 74,74,4661
Gridworld* 0.149569 1.57363,0.750751 8× 2 = 16 59,59,4673

ColoredGridworld* 0.049787 11.59446, 2.740408 7× 6 = 42 73,74,4725
Poc-Man* 0.049787 9.584841,2.265424 9× 5 = 45 76,95,4441

3

Tag 0.449329 11.20784,3.751926,3.751926 9× 4× 1 = 36 75,77,71,4897
Gridworld* 0.149569 7.04372, 2.35795,0.305283 3× 3× 3 = 27 58,61,59,4882

ColoredGridworld* 0.449329 21.75155,21.75155,21.75155 16× 14× 1 = 224 59,64,107,4666
Poc-Man* 0.449329 15.56419,15.56419,15.56419 16× 5× 2 = 160 113,144,113,4726

• Select the parameters µ∗ and α∗i that achieve the minimum gap.

For each round of testing of each domain in a multi-round test setting, there are inac-
curacies and inconsistencies in the system dynamics tensor obtained from the training data,
which ultimately leads to inconsistencies and changes of the obtained parameters µ∗ and
α∗i during model learning. Therefore, it is not necessary to keep every specified value of
parameters µ∗ and α∗i for each domain in a multi-round test. For example, Table 5 shows
some selected parameters µ∗ and α∗i of the four domains with 2 agents or 3 agents. We
observe that in some domains with 3 agents, the value α∗i is identical for every agent and the
size of core joint test set (|Q|) is very large. Therefore, we can reduce the parameter search
space to two dimensions (µ∗ and α∗i), and add a constraint on the output coefficient matrices
Xi (i = 1, 2, . . . , N), i.e., we only select the columns of these matrices whose L2-norm is in
top-k (k = 5). As a result, we can reduce the computational time and required memory of
data and computations in the grid search, learning model parameters and making prediction
as well.

6.3. Comparative Results

We demonstrate the comparison results of the PSR models in this section, including the
one-step prediction accuracy and the running time. We denote Algorithm 3 as PSR-TA2 and
Algorithm 4 for three-agent as PSR-TA3 for short. Specifically, we compare the prediction
error of TPSR, CPSR and PSR-TA2 in four two-agent domains (i.e., Tag, Gridworld∗,
ColoredGridworld∗, and Poc-Man∗) in Fig. 5 and the corresponding running time in Fig. 6.
We further compare the prediction error of TPSR, CPSR and PSR-TA3 in four three-agent
domains (i.e., Tag, Gridworld∗, ColoredGridworld∗, and Poc-Man∗) in Fig. 7.

In Fig. 5, the x-axis represents the step length of action-observation and the y-axis rep-
resents the prediction error of NT trials of each model evaluated by Eq. (27). To comprehen-
sively compare the performance of the learnt models, we present the mean value and standard
deviation of the prediction errors in the four two-agent domains. We observe that the predic-
tion error of our algorithm (PSR-TA2) increases slightly with the step-length as compared
with TPSR and CPSR for almost all cases in two-agent systems except in ColoredGridworld∗.
The learnt model by our algorithm is more accurate than others, especially in Tag and the
very large domain Poc-Man∗.

The corresponding running time of each algorithm in four domains is given in Fig. 6,
including the time of three main parts: data preprocessing, modelling and making prediction.

26

0 2 4 6 8 10 12 14 16

steplength

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
re

d
ic

tio
n

 e
rr

o
r

TPSR
CPSR
PSR-TA2

(a) Tag

0 2 4 6 8 10 12 14 16

steplength

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
re

d
ic

tio
n

 e
rr

o
r

TPSR
CPSR
PSR-TA2

(b) Gridworld∗

0 2 4 6 8 10 12 14 16

steplength

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
re

d
ic

tio
n

 e
rr

o
r

TPSR
CPSR
PSR-TA2

(c) ColoredGridworld∗

0 2 4 6 8 10 12 14 16

steplength

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

p
re

d
ic

tio
n

 e
rr

o
r

TPSR
CPSR
PSR-TA2

(d) Poc-man∗

Fig. 5. Prediction errors of TPSR, CPSR and PSR-TA2 for the two-agent domains Tag,
Gridworld∗, GridworldColor∗ and Poc-Man∗

In the data preprocessing phase, we compute the time of establishing and normalizing the
dynamics matrix (tensor) of the system and the auxiliary matrices required in an algorithm.
The modelling time mainly includes finding a core test set in a PSR model and learning
model parameters, that is, solving the discovery and learning problems. For the TPSR and
CPSR methods, the singular value decomposition (SVD) operation on the system dynamics
matrix is required, while our algorithm PSR-TA2 needs to solve the tensor optimization
problem. We have the following observations:
• Data preprocessing. Compared to CPSR and PSR-TA2, TPSR method costs much more

time in this phase since TPSR needs to construct more auxiliary matrices before applying
SVD on a system dynamics matrix;
• Modelling. Compared to the traditional CPSR method, the computations of the aux-

iliary tensor A and matrix X required in our method may need more time due to the larger
state space and observation space of domain ColoredGridworld∗. Thanks to the benefit of
the sparse table, the time of PSR-TA2 is less than others for domains without a large state
space and observation space. Notice that the grid search method in selecting parameters can
be accelerated by parallel computing.
• Making prediction. Without the help of reduction of coefficient matrices Xi (i =

27

Tag GridWorld* ColoredGridWorld* Poc-man*
0

5

10

15

20

25

30

35

40

45

ru
nt

im
e(

se
co

nd
s)

TPSR-preprocessing
TPSR-modeling
TPSR-test
CPSR-preprocessing
CPSR-modeling
CPSR-test
PSR-TA2-preprocessing
PSR-TA2-modeling
PSR-TA2-test

Fig. 6. Runtime in building and testing the models for four different two-agent domains

1, 2, . . . , N), our algorithm takes about the same amount of time or even more than other
methods in this phase because our algorithm obtains a larger set of projection vectors in all
domains (see Table 5). It eventually takes more time to update the states of the PSR model
during prediction execution. Therefore, it is naturally considered to perform an important
feature screening on the obtained core test set, we thus add a constraint on the output
coefficient matrices Xi (i = 1, 2, . . . , N) to help us eliminate the less important core tests
and reduce the time cost of the algorithm for predicting. Then, we preset the size of state
vectors for all the three methods to the same value in each domain. Hence, the consuming
time of all the three methods are almost the same.

In Figs. 7-8, we add one more agent in all the domains. For all horizons of these four
domains, PSR-TA3 performs better than the other two algorithms and produces more com-
petitive predictions. The modelling time of TPSR increases rapidly especially in Poc-man∗
because the system dynamics matrices become huge as the number of agents increases. PSR-
TA3 is not effected by the increase of the size of system dynamics tensor ascribed to the
usage of sparse representation of tensor and the mapping technique. All of the compared
models give more accurate prediction in these domains, and the predictive uncertainty of all
models accumulates as the time step increases, leading to the oscillation of the final predic-
tion error, which gradually expands or even diverges. For all horizons of these four domains,
the prediction error curves of our method has either a slow rise, a small dynamic oscillation,
or a small fluctuation (small standard deviation), which means it has higher stability and
accuracy than other models.

In summary, our algorithms perform better, partially because the tensor approach can
exploit the embedded connections of high dimensional data and it is not significantly effected
by noisy data generated in a dynamic system. As we see in Table 4, adding extra agents
into the system will cause much more complicated interactions between agents. In domains
with a very large set of states and action-observations, the system dynamics tensor eventually
becomes a space with high dimensional and sparse data, which exceeds the maximum size of a
matrix that can be constructed and calculated in Matlab. Hence, we can not further conduct
the scalability tests of our algorithms in these large problem domain and will investigate the
scalability in a commonly used small problem domain in Section 6.4.

28

0 2 4 6 8 10 12 14 16

steplength

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pr
ed

ic
tio

n
er

ro
r

TPSR
CPSR
PSR-TA3

(a) Tag (N=3)

0 2 4 6 8 10 12 14 16

steplength

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pr
ed

ic
tio

n
er

ro
r

TPSR
CPSR
PSR-TA3

(b) Gridworld∗ (N=3)

0 2 4 6 8 10 12 14 16

steplength

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

p
re

d
ic

tio
n

 e
rr

o
r

TPSR
CPSR
PSR-TA3

(c) ColoredGridworld∗(N=3)

0 2 4 6 8 10 12 14 16

steplength

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

p
re

d
ic

tio
n
 e

rr
o
r

TPSR
CPSR
PSR-TA3

(d) Poc-man∗(N=3)

Fig. 7. Prediction errors of TPSR, CPSR and PSR-TA3 for three-agent domains Tag,
Gridworld∗, GridworldColor∗ and Poc-Man∗

6.4. Scalability Test

We choose the well-known Tiger problem domain [14] - a classical benchmark to measure
the performance of POMDP models. To evaluate our algorithm, we propose a multi-agent
version of the Tiger problem as shown in Fig. 9. In the multi-agent Tiger domain, the agents
are randomly assigned to a room with a door, they have to avoid being eaten by the tiger
when they open the door. Of course, they can choose to listen when they are not sure about
the tiger position. The set of actions for each agent is A = {Open, Listen}. The agent fails
to execute an action with the probability 0.1. If this happens, the agent randomly choose the
other action. The set of all possible observations of each agent is O = {Null,Tiger}. When
the agent listens, it will receive an observation with the probability 0.85; otherwise, it opens
the door and receives the observation with the probability 0.5. The door of room without
an agent will be randomly opened with the probability 0.1. The tiger randomly moves to a
door if the door is opened, and will stay in the same position if all doors are closed. The
termination condition of the game is that only one agent is alive.

We set the maximum length of the joint tests in the joint test set as 1 for more than 6
agents, 2 for more than 3 agents but fewer than 6 agents, and 3 for fewer than 4 agents.
Under this setting, we can obtain a more sufficient system dynamics tensor without exceeding

29

Tag GridWorld* ColoredGridWorld* Poc-man*
0

20

40

60

80

100

120

ru
nt

im
e(

se
co

nd
s)

TPSR-preprocessing
TPSR-modeling
TPSR-test
CPSR-preprocessing
CPSR-modeling
CPSR-test
PSR-TA3-preprocessing
PSR-TA3-modeling
PSR-TA3-test

Fig. 8. Runtime in building and testing the models for four different three-agent domains

Tiger

Agent 2

Door1 Door2

Agent 1

Door3

(a) Tiger@2

Agent 3

Tiger

Door1 Door2

Agent 7 Agent 1

Door3

Agent 4

Door4 Door5

Agent 5

Door6 Door7

Agent 2 Agent 6

Door8

(b) Tiger@7

Fig. 9. The multi-agent Tiger domain with two agents and seven agents

the maximum size of a matrix that can be constructed and calculated in Matlab.
In Figs. 10(a)-10(f), we add one agent at each time in the tests. For all horizons, PSR-

TAM(M = 2, . . . , 7) performs better than the other two algorithms and produces more
competitive predictions. The corresponding running time of each algorithm in four domains
is given in Fig. 11. The modelling time of TPSR increases rapidly especially in the domain
with seven agents. This is because the system dynamics matrices become huge as the number
of agents increases. PSR-TA7 is not effected by the increase of the size of system dynamics
tensor ascribed to the usage of a sparse representation of tensor and the mapping technique.
For all horizons of these four domains, the prediction error boxes of our model are small,
which shows that the algorithm is more reliable than other models.

In summary, our tensor-based PSR method performs better than the state-of-art PSR
methods for dealing with multi-agent PSR problems. Meanwhile, it achieves better scalability
in the domain with a small set of actions and observations. Due to the limited matrix
computational space in Matlab, more complicated domains can’t be processed to compare
the results. We will investigate more efficient matrix decomposition techniques to improve
the proposed algorithm.

7. Related Works

A PSR model utilizes a function of statistic vectors about future action-observation se-
quences to capture the state of a dynamical system, which was first proposed by Littman et

30

0 2 4 6 8 10 12 14 16

steplength

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

p
re

d
ic

tio
n
 e

rr
o
r

TPSR
CPSR
PSR-TA2

(a) Tiger@2

0 2 4 6 8 10 12 14 16

steplength

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

p
re

d
ic

tio
n
 e

rr
o
r

TPSR
CPSR
PSR-TA3

(b) Tiger@3

0 2 4 6 8 10 12 14 16

steplength

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
re

d
ic

tio
n
 e

rr
o
r

TPSR
CPSR
PSR-TA4

(c) Tiger@4

0 2 4 6 8 10 12 14 16

steplength

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
re

d
ic

tio
n
 e

rr
o
r

TPSR
CPSR
PSR-TA5

(d) Tiger@5

0 2 4 6 8 10 12 14 16

steplength

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
re

d
ic

tio
n
 e

rr
o
r

TPSR
CPSR
PSR-TA6

(e) Tiger@6

0 2 4 6 8 10 12 14 16

steplength

0

0.1

0.2

0.3

0.4

0.5

0.6

p
re

d
ic

tio
n
 e

rr
o
r

TPSR
CPSR
PSR-TA7

(f) Tiger@7

Fig. 10. Prediction errors of TPSR, CPSR and PSR-TA2 for multi-agent Tiger domain

31

2 3 4 5 6 7
Number of Agents

0

50

100

150

200

250

300

350

400

450

ru
nt

im
e(

se
co

nd
s)

TPSR--preprocessing
TPSR--modeling
TPSR--test
CPSR--preprocessing
CPSR--modeling
CPSR--test
PSR-TAM--preprocessing
PSR-TAM--modeling
PSR-TAM--test

Fig. 11. Runtime in building and testing the models for multi-agent Tiger domain

al. [17] in 2001. Their work not only established theoretical foundations of PSR, but also il-
lustrated the advantages of the PSR models compared to other common approaches, such as
hidden Markov model (HMM) and partially observable Markov decision process (POMDP),
and discussed the conversion relationship between the PSR models and others.

After nearly two decades of development, PSR becomes more and more powerful in
modelling a dynamical system, especially when we can’t explicitly enumerate the system
states or the state space is very large. For example, Hefny et al. [10] proposed recurrent
predictive state policy (RPSP) networks - a reinforcement learning approach with a recurrent
architecture and used PSR represent a state in POMDPs environments. Liu et al. [18]
introduced an approach with the benefit of the theoretical advantages of PSRs and no prior
knowledge of the underlying system is required for online modelling and planning POMDPs
domains. Zhang et al. [33] developed a method that extracts causal state representations
from a recurrent neural network for representing states, which generalizes PSRs to non-linear
predictive models. In the following, we summarize the relevant literatures of learning PSR
models as three parts according to the methodology, i.e. matrix-based approaches and other
techniques.

Inspired by the basic theory and powerful expression of PSR models, researchers have
developed a number of mathematical methods for learning PSR. James et al. [12] studied a
controllable and resettable dynamic system and first provided discovery and learning algo-
rithm for a PSR model mainly based on the rank theory of matrices. McCracken et al. [21]
proposed a constrained gradient descent method that discovers the core tests of PSR by using
a very small amount of training data and provide an accurate predictions when having suffi-
cient data, which improves the efficiency and accuracy of a PSR model. Moreover, by taking
advantages of the landmarks, James et al. [13] proposed a PSR model called memory-PSRs
that utilize memories of the past and predictions of the future. Some researchers were also
dedicated to learning approaches for non-resettable dynamical systems, such as suffix-history
algorithm [29] and learning PSR models from a single sequence (i.e., history) [28].

The matrix-based modelling approaches for learning PSR models have become very pop-
ular and been well-studied since the system dynamics matrix [27] was proposed, e.g., the
spectral learning approach [2, 1, 3, 15, 16, 24, 11] and the compressed sensing approach [9, 8].
The spectral learning methods tried to solve PSR models by analysing the principal compo-

32

nents of system dynamics matrix. Kulesza et al. [16] proposed a spectral learning algorithm
that can handle insufficient data, which could reduce prediction errors compared to stan-
dard spectral learning approaches. Kulesza et al. [15] further proposed a low-rank spectral
learning method with a particular weighted loss function to overcome the consequence of
discarding arbitrarily small singular values of the system dynamics matrix [16]. They also
gave a bound on the loss of the learned low-rank model in terms of the discarded singu-
lar values. Recently, Huang et al. [11] developed an approach for finding a limited set of
columns (basis selection) in spectral learning of PSR and used a model entropy to evaluate
the accuracy of the learnt PSR model. Meanwhile, TPSR method proposed by Rosencrantz
et al. [24] efficiently alleviated the learning progress of PSR based on matrix SVD. Subse-
quently, some variants of TPSR were proposed in the recent years. For example, Boots et
al. [2, 3] applied incremental SVD and random projections for scaling the traditional TPSR
model to online TPSR, which suits for a complex system with an extremely large dataset.
Hamilton et al. [9, 8] presented compressed TPSR for relatively large domains via employing
a particularly sparse structure of a system dynamics matrix.

In parallel, Liu et al. [19] utilized a landmark technique for partitioning an entire state
space into several sub-state space, learnt a local PSR model for each sub-state space, and
combined all local PSR models into a whole PSR for a dynamical system. They also modelled
the discovery problem as a sequential decision making problem and solved it via Monte-carlo
tree search [20] . Zeng et al. [32] employed a group lasso technique and formulated the
discovery problem as an optimization problem without specifying the number of core tests
in advance, which had a well performance in a large domain. However, all the existing
algorithms were solely proposed for learning a single-agent PSR model.

8. Conclusion and Future Work

We investigate an extension of a single-agent PSR model in a multi-agent setting. The
challenge lies in learning the model parameters from the high-dimensional data that records
how multiple agents interact over times. Tensors seem to be a natural way to describe high-
dimensional data owing to its multidimensionality. In this paper, by utilizing the system
dynamics tensor to represent the interaction data of multiple agents, we formulate the PSR
discovery problem as a tensor optimization problem with group lasso, where the ADMM
method is adopted to efficiently solve its subproblems. With the benefit of a group sparsity
structure of the optimization solutions, we can easily get the core joint test test and learn the
prediction parameters and state vectors. Moreover, we obtain the transition parameters of
PSR model through linear regression. Hence, the PSR model of the underlying system can be
established accordingly. We utilize a sparse representation of tensor and mapping technique
for skipping all the time-consuming and memory-expensive operations when implementing
our algorithms. Experimental results show that our tensor approach is capable of learning
multi-agent PSR models on several domains including one large domain. We also observe
that our method outperforms two other popular methods (TPSR and CPSR) in terms of
prediction error, especially for the case of more agents.

This work is the first attempt at learning a multi-agent PSR model. We are planning
to develop more efficient technique to solve the optimization problem, and explore other
ways for learning the PSR models, e.g., incremental learning by partitioning the system

33

dynamics tensor and taking advantage of the tensor sparsity. This will allow us to improve
the scalability of our proposed methods.

Acknowledgements

Dr. Bilian Chen and Dr. Yinghui Pan were supported in part by the National Natural
Science Foundation of China (Grants No. 61772442, 61806089 and 61836005). Professor
Yifeng Zeng and Dr. Biyang Ma thanks the support of the EPSRC New Investigator Award
in 2019.

References

[1] B. Boots and G.J. Gordon. Predictive state temporal difference learning. Advances in
Neural Information Processing Systems, 23(0):271279, 2010.

[2] B. Boots and G.J. Gordon. An online spectral learning algorithm for partially observ-
able dynamical systems. AAAI’11 Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence, (0):293–300, 2011.

[3] B. Boots, S. Siddiqi, and G.J. Gordon. Closing the learning-planning loop with predictive
state representations. International Journal of Robotics Research, 30(7):954–966, 2010.

[4] S. Boyd, N. Parikh, E. Chu, Peleato B., and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. 3(1):1–122, 2011.

[5] B. Chen, B. Ma, Y. Zeng, Cao L., and Tang J. Tensor decomposition for multi-agent
predictive state representation. arXiv: Multiagent Systems, 2020.

[6] C. Ding, D. Zhou, X. He, and H. Zha. r1−pca: rotational invariant l1-norm principal
component analysis for robust subspace factorization. In Proceedings of the 23rd Inter-
national Conference on Machine Learning. ICML ’06. Pittsburgh, Pennsylvania, USA:
ACM, page 281288, 2006. 10.1145/1143844.1143880.

[7] P. J Gmytrasiewicz and P. Doshi. A framework for sequential planning in multiagent
settings. Journal of Artificial Intelligence Research (JAIR), 24:49–79, 2005.

[8] W.L. Hamilton, M. MilaniFard, and J. Pineau. Modelling sparse dynamical systems with
compressed predictive state representations. In Proceedings of the 30th International Con-
ference on Machine Learning, Atlanta, Georgia, USA, JMLR:W&CP, volume 28, pages
178–186, 2013.

[9] W.L. Hamilton, Mahdi M. Fard, and J. Pineau. Efficient learning and planning with
compressed predictive states. Journal of Machine Learning Research, 15:3395–3439, 2014.

[10] A. Hefny, Z. Marinho, W. Sun, S. Srinivasa, and G. Gordon. Recurrent predictive state
policy networks. arXiv preprint arXiv:1803.01489, 2018.

[11] C. Huang, Y. An, Z. Sun, Z. Hong, and Y. Liu. Basis selection in spectral learning of
predictive state representations. Neurocomputing, 310(1):183–189, 2018.

34

[12] M.R. James and S.P. Singh. Learning and discovery of predictive state representations
in dynamical systems with reset. In Proceedings of the 21st International Conference on
Machine Learning, Banff, Alberta, Canada, pages 695–702, 2004.

[13] M.R. James, B. Wolfe, and S. Singh. Combining memory and landmarks with predictive
state representations. In International Joint Conference on Artificial Intelligence, pages
734–739, 2005.

[14] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and
acting in partially observable stochastic domains. Artificial Intelligence, 101(1):99 – 134,
1998.

[15] A. Kulesza, N. Jiang, and S. Singh. Low-rank spectral learning with weighted loss
functions. pages 517–525, 2015.

[16] A. Kulesza, N. Jiang, and S. Singh. Spectral learning of predictive state representations
with insufficient statistics. In AAAI’15 Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, AAAI Press, pages 2715–2721, 2015.

[17] M.L. Littman and S. Singh. Predictive representations of state. In International Confer-
ence on Neural Information Processing Systems: Natural and Synthetic, pages 1555–1561,
2001.

[18] Y. Liu and J. Zheng. Online learning and planning in partially observable domains
without prior knowledge. arXiv preprint arXiv:1906.05130, 2019.

[19] Y.L. Liu, Y. Tang, and Y. Zeng. Predictive state representations with state space par-
titioning. In Proceedings of the 14th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum(eds.), pages 1259–
1266, 2015.

[20] Y. Liu, H. Zhu, Y. Zeng, and Z. Dai. Learning predictive state representations via
monte-carlo tree search. pages 3192–3198, 2016.

[21] P.N. McCracken and M.H. Bowling. Online discovery and learning of predictive state
representations. In Advances in Neural Information Processing Systems, volume 18, pages
875–882, 2006.

[22] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm
for pomdps. In International Joint Conference on Artificial Intelligence, pages 1025–1030,
2003.

[23] Z. Qin, K. Scheinberg, and D. Goldfarb. Efficient block-coordinate descent algorithms
for the group lasso. Mathematical Programming Computation, 5(2):143–169, 2013.

[24] M. Rosencrantz, G.J. Gordon, and S. Thrun. Learning low dimensional predictive
representations. In International Conference on Machine Learning, page 88, 2004.

35

[25] S. Seuken and S. Zilberstein. Formal models and algorithms for decentralized deci-
sion making under uncertainty. Journal of Autonomous Agents and Multi-Agent Systems,
17(2):190–250, 2008.

[26] D. Silver and J. Veness. Monte-carlo planning in large pomdps. In Neural Information
Processing Systems, pages 2164–2172, 2010.

[27] S.P. Singh, M. James, and M. Rudary. Predictive state representations: A new theory
for modeling dynamical systems. In Conference on Uncertainty in Artificial Intelligence,
pages 512–519, 2004.

[28] E. Wiewiora. Learning predictive representations from a history. In Proceedings of the
22nd International Conference on Machine Learning, Bonn, Germany, pages 969–976,
2005.

[29] B. Wolfe, M.R. James, and S.P. Singh. Learning predictive state representations in
dynamical systems without reset. In International Conference on Machine Learning, pages
980–987, 2005.

[30] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(1):49–67, 2006.

[31] Y. Zeng and P. Doshi. Exploiting model equivalences for solving interactive dynamic
influence diagrams. Journal of Artificial Intelligence Research (JAIR), 43:211–255, 2012.

[32] Y. Zeng, B. Ma, B. Chen, J. Tang, and M. He. Group sparse optimization for learning
predictive state representations. Information Sciences, 412:1–13, 2017.

[33] A. Zhang, Z. C Lipton, L. Pineda, K. Azizzadenesheli, A. Anandkumar, L. Itti,
J. Pineau, and T. Furlanello. Learning causal state representations of partially observable
environments. arXiv preprint arXiv:1906.10437, 2019.

36

	Introduction
	Preparations
	Technical Background of PSR Models
	A Single-agent PSR Model
	A multi-agent PSR Model

	Learning Two-Agent PSR Based on Tensor Optimization
	Discover a Core Joint Test Set
	Formulation of Optimization Model and Its Relaxation
	Group LASSO and ADMM Method
	Extract a Core Joint Test Set

	Learning Prediction Parameters and State Vectors
	Learning Transition Parameters

	Extension to Learning a (N>2)-Agent PSR Model
	Tensor Optimization for Discovering a Core Joint Test Set
	Learning Model Parameters

	Experimental Study
	Performance Measurements
	Parameter Selection in ADMM
	Comparative Results
	Scalability Test

	Related Works
	Conclusion and Future Work

