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Preface
Hubs are special. They dominate the structure of all networks in which they are present, making
them look like small worlds. While two pages on the Web are 19 clicks away, Yahoo.com, a giant
hub, is reachable frommost Webpages in 2 to 3 clicks. From the perspective of the hubs the world is
indeed very tiny.

A.-L. Barabási, Linked

Almost half a century ago, the seminal bookbyV. V. Bolotin,Nonconservative problems
of the theory of elastic stability, came into print [115]. It summarized the experience
of engineers in the analysis of nonconservative systems accumulated since the 1920s
when the first attempts to take into account dissipative effects in rotor dynamics and
to explain such dangerous instabilities as aerodynamic flutter and shimmy in aircraft
landing gear were undertaken. Despite the many excellent books on stability theory
that were published during the next fifty years [37, 91, 185, 198, 222, 238, 256, 265, 283,
332, 366, 507, 533, 535, 537, 575, 586, 599, 618, 642, 688, 735, 762, 777, 838, 875, 932],
Bolotin’s monograph still remains the only one devoted solely to the methods and
challenges of nonconservative stability. Its only drawback is that this book cannot take
into account the dramatic developments in mathematics, engineering and physics
that have been made since 1963.

The book [115] was motivated mainly by the problems of stability of slender struc-
tures under follower forces and of rotating flexible shafts. Already these models deal
with the two fundamental nonconservative perturbations – viscous dissipation and
nonpotential positional forces [487, 488].

Last five decades extended considerably the range of applications in which such
nonconservative forces play a crucial role. We mention friction-induced instabilities
causing the flipping of the tippe top [129] and the problems of the acoustics of fric-
tion related to the excitation of audible vibrations in brakes and clutches [403], paper
calenders [147, 792], prostheses of hip joints [386] and even in the singing glasses of
Benjamin Franklin’s glass harmonica [13, 428].

Nonconservative models appear in modern studies of landslides on gentle slopes
when the constitutive relation of a nonassociated geomaterial, such as loose sand, is
described by a nonsymmetric matrix [90, 91, 180].

In hydrodynamics and plasma physics, the counter-intuitive destabilizing influ-
ence of dissipation on negative energy waves [177, 265, 654, 810] is an important in-
gredient in the theories of boundary layer [512], flow control [171, 172, 271] and stabil-
ity of wave propagation [141]. In rotating fluids, interplay of the nonconservative and
gyroscopic forces may lead to the paradoxical discontinuous change in the stability
boundary as happens in the case of the baroclinic instability when the Ekman layer
dissipation is infinitesimally small [489, 733, 828].

In magnetohydrodynamics, the Velikhov–Chandrasekhar paradox [184, 860] oc-
curs in the theory of magnetorotational instability when for infinite electrical conduc-
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tivity of the differentially rotating fluid the limit of the vanishing axial magnetic field
does not trace back to the Rayleigh threshold of hydrodynamics [5, 46, 305]. Non-
conservative forces play an increasing role in celestial mechanics, e. g., in the mod-
eling of tethered satellite systems, satellite and planetary rings [66, 67, 136].

A rich source of nonconservative problems ismodern robotics and automatic con-
trol [64] and biomechanics [337] – for example, the spine is frequently modeled as a
column loadedbyadistributed follower force [731]. Of course, traditional areas suchas
aerospace engineering and structuralmechanics remain one of the biggest consumers
of the nonconservative stability theory [346, 367].

Already in the 1960s Bolotin emphasized that progress in the nonconservative sta-
bility theory depends on developments in the theory of nonself-adjoint operators. Im-
portant contributions to the latter motivated mainly by mechanical applications were
made, e. g., in the 1940s by S. L. Sobolev [786] and L. S. Pontryagin [708], in the 1950s
byM.V. Keldysh [393] andM.G. Krein [491, 492] and since then bymany other authors.

The needs of optimal design and rational experiment planning required consid-
eration of multiparameter families of nonself-adjoint boundary eigenvalue problems.
In the 1970s, the studies by V. I. Arnold and his co-workers established a sharp cor-
respondence between the multiple eigenvalues of nonsymmetric matrices and geo-
metric singularities on the boundary of the asymptotic stability domain of a matrix
family [30, 33, 543, 544]. An immediate consequence of this result is the resolution of
the famous Ziegler’s paradox (1952) of destabilization of a reversible system by small
dissipation [928] by means of the Whitney umbrella singularity, which was done in-
dependently by a number of authors starting with O. Bottema in 1955–56 [125, 126].

Since the 1950s, the concept of the symplectic or Krein signature of eigenvalues
has beenwidely used in hydro- andmagnetohydrodynamics to describe waves of pos-
itive and negative energy [396, 473, 570, 572, 903, 904]. In the 1990s, the influence
of non-Hamiltonian perturbations on the stability of Hamiltonian systems became a
topic for a systematic investigation [571, 576] that gave birth to the area of research
known as ‘dissipation-induced instabilities’ [110] – a concept that touches a broad va-
riety of physical applications [488].

Though very excellent, a network of these results is chaotically scattered at
present throughout the specialized journals. Many brilliant physical phenomena that
could crown the nonconservative stability theory are almost unknown to the stability
theoristswith a classicalmechanical background. On the other hand, achievements of
the theory of nonself-adjoint operators [615, 909], the theory of operators in the spaces
with indefinitemetric (Krein andPontryagin spaces) [308], Lidskii–Vishik–Lyusternik
perturbation theory for multiple eigenvalues [631], theory of multiparameter eigen-
value problems [42, 869], modern results of applied linear algebra [850] as well as
singularity theory appear to be still not familiar to many engineers, physicists and
even stability theorists working with nonconservative stability problems.

However, the combination of these approaches of modern applied mathematics
with the complex fundamental nonconservative phenomena of physics and mechan-
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ics seems to be the only way to understand the latter and to create a rather com-
plete and unified constructive theory of stability of nonconservative systems and of
dissipation-induced instabilities. That is why there is a strong need for a detailed ex-
position which would bring together the scattered results of the last fifty years and
which would endeavor to unify and to systematize both the results and the methods
of treatment of the nonconservative stability problems of modern physics. This book
is an attempt to fill this need.

In it an effort is made to present the subject of nonconservative stability from the
modern point of view as completely as possible within the allotted space. It presents
relevant mathematical concepts, both already familiar and the new ones for this sub-
ject as well as rigorous stability results and numerous classical and contemporary ex-
amples from mechanics and physics. The book is substantially based on the results
of the author; although by necessity it contains some results of other authors without
which it is impossible to create a self-consistent exposition. It is hoped that this book
will serve the present and prospective specialist in the field by acquainting him with
the current state of knowledge in this actively developing field.

The book has 12 chapters. After a number of examples accompanied by a histori-
cal overview in the Introduction, the first six chapters deal with the finite dimensional
nonconservative systems, while the rest of the book is dedicated to the infinite dimen-
sional ones. Naturally, the first part of the book contains fundamentals of the theory
and more general results because of the wide variety of mathematical tools available
in finite dimensions. The center of gravity in the second part is shifted to studies of
concrete physical problems. All chapters contain illustrative physical examples.

I would like to express my warmest gratitude to all the colleagues and col-
laborators whose support, friendly advice, encouraging discussions and fruitful
joint research were among the main inspirational factors driving my work on this
project: Abd Rahim Abu Bakar, Sergei Agafonov, Vadim Anischenko, Teodor Atanack-
ovic, Vladimir Beletsky, Carl Bender, Michael Berry, Noël Challamel, Gengdong
Cheng, Richard Cushman, Felix Darve, Barbara Dietz, Mikhail Efroimsky, Yasuhide
Fukumoto, Gunter Gerbeth, Valentin Glavardanov, Yuanxian Gu, Eva-Maria Graefe,
Samvel Grigorian, Uwe Günther, Peter Hagedorn, Hanns-Ludwig Harney, Daniel
Hochlenert, Norbert Hoffmann, Igor Hoveijn, Wolfhard Kliem, Anthony Kounadis,
Yuri Leschinski, Alexei Mailybaev, Vadim Marchenko, Jerrold Marsden, Maxim Miski-
Oglu, OliverO’Reilly, HuajiangOuyang, Pauli Pedersen, Dmitry Pelinovsky, Alexandra
Perlova, Karl Popp, Achim Richter, Ingrid Rotter, Florian Schäfer, Guido Schneider,
Alexander Seyranian, Sergei Sorokin, Gottfried Spelsberg-Korspeter, Frank Stefani,
Ferdinand Verhulst, Alexander Zevin, and Miloslav Znojil.

I learned a lot from the lectures and seminars given during my studies at the
Moscow Institute of Physics and Technology in 1989–1995 by Alexander Abramov,
Oleg Besov, Boris Fedosov, Victor Galactionov, Victor Lidskii, Boris Rauschenbach,
Victor Zhuravlev, and other brilliant professors and lecturers of my AlmaMater whose
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enthusiastic work in the ‘stormy 1990s’ in Russia was an impressive example of a no-
ble dedication to students and the profession that deeply influenced my formation as
a scientist.

I thank the Russian Foundation for Basic Research (RFBR, Russia), the National
Natural Science Foundation of China (NSFC, China), INTAS (EU), the CivilianResearch
and Development Foundation (CRDF, USA), the Alexander von Humboldt Founda-
tion (Germany), Deutsche Forschungsgemeinschaft (DFG, Germany), Saxon Ministry
of Science (Germany) and the Japan Society for the Promotion of Science (JSPS, Japan)
for their most valuable funding.

I am indebted to my wife Ksenia and to my daughter Marina and son Nikolay who
generously gifted me time, support, and understanding.

Dresden, 12 April 2012
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Since 2013, when the first edition of this book came out of print, the interpercolation
of ideas between the fields of nonconservative dynamics and non-Hermitian physics
only intensified. I mention excellent new reviews [40, 133, 159, 194, 199, 208, 321, 327,
330, 361, 378, 547, 578, 581, 623, 694, 776, 854, 864, 908] and books [74, 86, 92, 119,
140, 142, 203, 223, 224, 271, 320, 358, 388, 452, 511, 580, 600, 665, 680, 717, 732, 820,
868, 879, 883–885, 888] reflecting this process.

In particular, the concept of exceptional points has found applications in new
areas of physics and engineering such as thermoacoustics [378, 581, 674].

Nonconservative circulatory forces (sometimes under the name of curl forces [82,
321]) being the natural component of the radiation pressure force of light [821] are
discussed more and more in the publications related to optical tweezers [41, 304, 318,
893], otpomechanics [29], and light robotics [699, 827].

The concept of the nonconservative follower force has recently been realized in a
series of controlled mechanical experiments [92–96, 178, 820] that also confirmed the
Ziegler–Bottema destabilization paradox [93, 95]. Nowadays follower forces find new
application in the modeling of subcellular structures (organelles) such as celia and
flagella. The latter are made up of microtubules that can exhibit flutter and induce
a wave-like propulsion [60, 229]. In its turn, this phenomenon inspires biomimetic
design of microrobots exploiting electrohydrodynamic instabilities to reproduce the
natural propulsion mechanism [920, 921].

A remarkable discovery of the last decade is the link between the phenomenon
of stability loss delay in the systems with adiabatically slow variation of parameters
(existing, e. g., in the Ziegler pendulum [650]) and nonadiabatic transitions accompa-
nying encircling of exceptional points in non-Hermitian systems with gain and loss
[622] that originated a full new line of research in non-Hermitian physics [263].

Diabolical and exceptional points re-appear in the emerging field of topological
mechanics [361, 562, 628, 825, 826, 878, 908] that engineers chiral mechanical meta-
materials [151, 648, 659] using the concept of gyroelastic continua [143, 898].

Recent studies of the precession of orbits of Brouwer’s particle in a rotating saddle
potential [447, 448] have led to an advancement in the classical averaging theory [547,
767, 900] accompanied by the discovery of the ponderomotive magnetism [216, 217].

The works [121, 482, 483, 915, 916] link 𝒫𝒯 -symmetry, pseudo-Hermiticity, and
G-Hamiltonian structure. In particular, [441] finds 𝒫𝒯 -symmetry and the correspond-
ing G-Hamiltonian structure in themodel of themagnetized Taylor–Couette flowwith
finite viscosity and resistivity subject to the azimuthal magnetic field which helps to
treat the azimuthal magnetorotational instability as a double-diffusive phenomenon
and place it in the framework of the theory of dissipation-induced instabilities.

Finally, it is worth to mention the topic of radiation damping [788, 879] tracing
back to the famous Lamb oscillator coupled to a continuum [54, 503, 669] and related

https://doi.org/10.1515/9783110655407-202
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to it phenomenon of radiation-induced instabilities [109, 331, 529] that, in its turn,
goes back to the classical Chandrasekhar–Friedman–Schutz instability of Maclaurin
spheroids due to radiation reaction caused by emission of gravitational waves [187–
189, 257, 750, 751]. Note that radiation reaction is discussed as a nonconservative force
[1]. The radiation-induced instabilities are connected to the anomalous Doppler effect
[299, 300, 654] and, taken wider, to superradiance [63] that includes also Cerenkov
radiation [551]. Flutter due to the anomalous Doppler effect [4, 239, 290] is a hot topic
in modern aeroelasticity [499, 500, 639] and solid mechanics [619].

The present edition is revised and extended to take into account the new devel-
opments and contains more than 50 pages of new material with illustrations as well
as an updated list of literature that includes now more than 900 titles.

I thankmy colleagues for friendly discussions and generous collaboration during
preparation of the second edition: Davide Bigoni, Alexei Borisov, Gert Botha, Michele
Brun, Thomas Bridges, Olivier Doare, Yasuhide Fukumoto, Joris Labarbe, Rodrigo
Ledesma-Aguilar, Mark Levi, Valerii Kozlov, Glen McHale, James McLaughlin, Ivan
Menshikov, Andrei Metrikine, Diego Misseroni, Innocent Mutabazi, Giovanni Noselli,
Oliver O’Reilly, Michael Overton, Andy Ruina, Frank Stefani, J. Michael T. Thompson,
Mirko Tommasini, Laurette Tuckerman, John Woodward, and Rong Zou.

I acknowledge the funding from the London Mathematical Society, Northumbria
University, University of Trento, University of Cagliari, CISM, CNRS, and theUniversity
of Le Havre.

Finally, I thank my wife Ksenia, my daughter Marina, and son Nikolay who are an
indispensable source of joy and inspiration.

Durham, 12 April 2020
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