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An Optimal Day-Ahead Scheduling Framework for
E-Mobility Ecosystem Operation with Drivers’

Preferences
Mahsa Bagheri Tookanlou, Member, IEEE, S. Ali Pourmousavi, Senior Member, IEEE, Mousa Marzband, Senior

Member, IEEE

Abstract—The future e-mobility ecosystem will be a complex
structure with different stakeholders seeking to optimize their
operation and benefits. In this paper, a day-ahead grid-to-
vehicle (G2V) and vehicle-to-grid (V2G) scheduling framework
is proposed including electric vehicles (EVs), charging stations
(CSs), and retailers. To facilitate V2G services and to avoid
congestion at CSs, two types of trips, i.e., mandatory and
optional trips, are defined and formulated. Also, EV drivers’
preferences are added to the model as cost/revenue threshold
and extra driving distance to enhance the practical aspects of
the scheduling framework. An iterative process is proposed to
solve the non-cooperative Stackelberg game by determining the
optimal routes and CS for each EV, optimal operation of each
CS and retailers, and optimal V2G and G2V prices. Extensive
simulation studies are carried out for two different e-mobility
ecosystems of multiple retailers and CSs as well as numerous
EVs based on real data from San Francisco, the USA. The
simulation results show that the optional trips not only reduces
the cost of EVs and PV curtailment by 8.8-24.2% and 26.4-
28.5% on average, respectively, in different scenarios, but also
mitigates congestion during specific hours while respecting EV
drivers’ preferences. Moreover, the simulation results revealed
the significant impact of EV drivers preferences on the optimal
solutions and cost/revenue of the stakeholders.

Index Terms—E-mobility ecosystem, EV drivers’ preferences,
G2V and V2G operation, optional trips, three-layer optimization
problem.

NOMENCLATURE

Indices
e,i,r Index for EVs, CSs, and retailers, respectively
m,n Index of buses of distribution network
t Index for hours
Parameters
∆t Time step (s)
ηGUi /ηCHi Efficiency of CGU/chargers at CS i (p.u.)
η+
e /η

−
e Efficiency of EV e’s battery in G2V/V2G mode (p.u.)

γe Power consumed by EV e per km (kWh/km)
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Dt,e,i Shortest driving distance between CS i and destination
of EV e at time t, (km)

Ge EV e’s driver preference for minimum revenue in-
crease in V2G operation ($)

Ke EV e’s driver preference for maximum extra distance
to lower the cost compared to minimum route (in km)

Ot,e,i Shortest driving distance between origin of EV e and
CS i at time t (km)

ρ−/ρ− Maximum/Minimum electricity prices offered by CSs
for V2G service ($/kWh)

ρre/ρre Maximum/Minimum electricity prices offered by re-
tailers to CSs ($/kWh)

E
CGU

i /E
PV

i Capacity of CGU/PV system at CS i (kW)
E

ESS

i Capacity of ESS at CS i (kW)
Ee Capacity of EV e’s battery (kWh)
Ei Capacity of CS i (kW)
E

CH

i Capacity of chargers at CS i (kW)
N
CH

i Maximum number of chargers in CS i
Pm,n,t/Pm,n,t Maximum/Minimum active power flow be-

tween bus m and n (kW)
Qm,n,t/Qm,n,t Maximum/Minimum reactive power flow be-

tween bus m and n (kVar)
SOCe/SOCe Maximum/Minimum SOC of EV e (p.u.)
SOC

ESS

i /SOCESSi Maximum/Minimum SOC of ESS at CS
i (p.u.)

ρgast Natural gas price at time t ($/m3)
ρWM
t Wholesale electricity market price at time t ($/kWh)

∆V /∆V Lower/Upper limit of voltage deviation at bus m
ϑe EV e’s driver preference for minimum cost reduction

in G2V operation ($)
D̂Ot,e Driving distance of EV e to closest CS at time t (km)
ŜOCt,e SOC of EV e at time t if EV e charged or discharged

at the closest CS (p.u.)
a SOC target
b, c, d, f Cost of battery degradation parameters
bm,n/gm,n Susceptance/conductance of transmission line be-

tween bus m and n
HV Heat value of fuel on the operation of gas turbine-

generator (kWh/m3)
NEV/NCS/N re Number of EVs/CSs/retailers
SOCend

e SOC of EV e at the end of the day (p.u.)
V CS Virtual charging station
ζt,e Shortest driving route to reach the destination directly

from origin of EV e at time t without stopping at any
CS (km)

Sets

mailto:mahsa.tookanlou@northumbria.ac.uk
mailto: a.pourm@adelaide.edu.au
mailto:mousa.marzband


SUBMITTED TO THE IEEE TRANSACTIONS ON POWER SYSTEMS FOR REVIEW, TPWRS-01359-2020.R1, FEBRUARY 2021 2

B,E,R, S, T, F Sets of Buses, EVs, retailers, CSs, hours, and
optional trip times, respectively

Variables
βt,i,r Binary variable for retailer r by CS i at time t
∆θm,t Voltage angle deviation on bus m at time t
∆Vm,t Voltage magnitude deviation on bus m at time t
∆V̂m,t Voltage magnitude deviation obtained from the loss-

less power flow solution on bus m at time t
Γt,e,i/Πt,e,i Binary variable for CS i for charging/discharging

EV e at time t
ψt,i Binary variable for charging/discharging ESS at CS i
ρ+
t,i/ρ

−
t,i Electricity price offered by CS i at time t for charg-

ing/discharging EVs ($/kWh)
ρAGt,i Electricity price sold to the aggregator by CS i at time

t ($/kWh)
ρret,r Electricity price sold to CSs by retailer r at time t

($/kWh)
θm,t Voltage angle of bus m and time t
ρ̂+
t,e/ρ̂

−
t,e Electricity price offered by the closest CS to EV e

at time t in G2V/V2G mode ($/kWh)
Pm,n,t/Qm,n,t Active/Reactive power flow between bus m

and n at time t (kW/kVar)
PWM
t,r /QWM

t,r Active/Reactive power purchased/provided
from/by the wholesale market by retailer r at time t
(kW/kVar)

SOC0,e Initial SOC of EV e (p.u.)
SOCT,e SOC of EV e at the end of the day (p.u.)
SOCt,e SOC of EV e at time t (p.u.)
Vm,t Voltage magnitude of bus m and time t
X+
t,e,i/X

−
t,e,i Charging/Discharging power of EV e at CS i at
time t (kW)

Y +
t,i/Y

−
t,i Charging/Discharging power of ESS of CS i at time
t (kW)

Y GUt,i Power produced by CGU/PV system of CS i at time
t (kW)

Y PVt,i Local PV generation of CS i at time t (kW)
Y ret,i,r/Q

re
t,i,r Active/Reactive power purchased/provided
from/by retailer r by CS i at time t (kW/kVar)

I. INTRODUCTION

RECENT advances in battery storage technologies, that
lowered the prices, together with unprecedented aware-

ness towards global warming, created a momentum for elec-
trification of the transportation sector. While offering indis-
putable environmental benefits and cost saving for consumers
in the long term, a large penetration of electric vehicles
(EVs) introduces concerns and challenges for power system
operation due to uncoordinated EV charging in grid-2-vehicle
(G2V) mode. This may lead to severe voltage deviations,
power losses and overload of power lines and transformers
[1], [2]. Electrifying transportation sector, however, provide
new opportunities for the power system operators as well as
the EV owners through vehicle-to-grid (V2G) technology. This
is because an EV fleet is essentially a mobile storage that
can supply flexibility and energy arbitrage services to the grid
while creating a new revenue stream for the EV owners [3].

Previous studies on V2G and G2V operation show that
coordinated/regulated charging and discharging of EVs can

be beneficial for the grid operation [4]–[6]. Also, the possi-
bility of various business models is investigated for charging
stations (CSs) operation that provide V2G and G2V services
at competitive prices, e.g., [7], where EVs were supposed to
select a CS. At the same time, CSs need to choose a retailer
to purchase energy while optimising the operation of their
onsite generation and storage assets. It, therefore, portrays an
ecosystem of EVs, CSs and retailers in which each participant
is seeking to maximize its profit or minimize its cost. It is
a challenging task to manage EVs demand, and CSs and
retailers operation in the ecosystem to achieve satisfaction of
all stakeholders. Thus, a day-ahead scheduling framework is
required to optimize the operation of the entire system while
fulfilling individual stakeholders’ objectives.

Numerous studies have investigated different aspects of this
problem, which are highlighted in Section I-A. Then, the
contributions of this paper are listed in Section I-B.

A. Literature review

The EV scheduling problem has been investigated in nu-
merous research papers from different perspectives in recent
years. Most of the literature propose coordinated G2V and
V2G operation mechanisms to minimize their impact on the
grid. For instance, a two-step EV scheduling methodology
was proposed in [8] to minimize EVs’ charging impact on
the distribution network. The optimal number of EVs to be
charged during each hour was determined in the first step and
the maximum number of EVs that should be charged during
the next hour was obtained in the second step. An iterative
two-layer optimization model was proposed in [9] based on
a mixed-integer programming to alleviate the negative impact
of uncoordinated charging/discharging of a large number of
EVs on the grid. In [10], an optimal V2G and G2V control
mechanism was offered to reduce the negative impact of EVs
on the grid while minimizing EV charging cost and losses of
the power system. The authors in [11] developed a two-stage
scheduling optimization model including EVs, thermal power
units and load demand. The day-ahead schedules of charging
and discharging EVs and thermal units were determined in the
first step, and charging and discharging schedules of the EVs
were obtained afterwards considering demand uncertainties.
A smart charging approach was presented in [12] for EV
aggregator’s operation to optimize power delivered to EVs
during G2V mode. Three different options were considered
based on electricity prices and charging power rates, and
the final decision was made by the EV owners based on
their waiting time preferences. In [13], a smart management
and scheduling model was proposed for EVs considering
desired charging electricity prices, remaining battery capacity,
remaining charging time and age of the battery as EV owners’
preferences. The proposed algorithms have been developed to
optimize EVs operation in [10], [12], [13] and the grid in
[8], [9], [11], where the impact of CSs operation is neglected.
Thus, only one or two stakeholders were considered by ne-
glecting the impact of other players in the future e-mobility
ecosystem. Also, prices were treated as given parameters as
opposed to obtaining them in the solutions.

Another group of studies focused on optimal pricing of G2V
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and/or V2G services in the future e-mobility ecosystem. For
example, an optimal pricing scheme was proposed in [14] to
coordinate the charging processes of EVs. Another model was
developed in [15] for managing EVs in a public CS network
through differentiated services including optimal pricing and
routing. In their method, CSs were assigned to EVs based
on their energy demand and their traveling preferences (i.e.,
which stations they are willing to visit) to manage waiting time
and electricity prices. In [16], a pricing scheme for charging
an EV was proposed including two optimization problems to
maximize social welfare of CSs and EV owners. In [17], an
incentive-based scheduling of EV charging among multiple
CSs was studied based on game theory. It aimed to minimize
the total electricity cost of the utility and to maximize the
payoff of each station. In [18], a pricing methodology for CSs
was developed to facilitate consumption of renewable genera-
tion. The selection of CSs by EV owners was modeled based
on the charging prices, driving distance to CSs and traffic
congestion information. In [19], an algorithm was proposed
to schedule EVs for G2V and V2G services according to EV
driving demand while planning the time and location of the
services. The scheduling was based on Time-of-Use pricing.
In [20], a CS operation mechanism was developed that jointly
optimized pricing, charging scheduling and admission of a
single CS. CS’s profit was maximized by reducing waiting
time at the CS. Unfortunately, the impact of retailers’ operation
and prices is disregarded in this group of literature, which is
quite important as the major provider of electricity and thus
a price maker. Also, V2G prices have not been determined in
the proposed algorithms.

Game theory has also been used in several studies on this
subject, which facilitates price calculation. A day-ahead G2V
scheduling was proposed in [21] based on an aggregative
game model accounting for the interaction between the EV
charging demand and its impact on the electricity prices. In
[7], a Stackelberg game was developed, where CSs (as leaders)
offered their G2V prices to EVs (as followers), who then
select CSs based on prices, travel distances, and expected
waiting times at CSs. In [22], an optimization framework based
on non-cooperative game was developed using mixed-integer
linear programming to allocate CSs to EVs for G2V operation
in order to minimize EV waiting times. In these papers, the
proposed algorithms can only solve the scheduling problem
for a subset of the players in future e-mobility ecosystem,
which may lead to sub-optimal solutions, thus lower public
acceptance.

Several papers proposed EV scheduling algorithms to pro-
vide various services to the grid. A decentralized algorithm
was proposed to optimally schedule EV charging and dis-
charging to fulfil load shifting in [23], [24]. In [25], an
energy management problem was formulated using dynamic
programming to minimize the daily energy cost of plug-in
hybrid EVs. In that study, an optimal charging scheme for
plug-in hybrid EVs was developed to shave the peak load and
flatten the overall load profile from the distribution system
operator’s perspective. Nevertheless, the CSs operation has not
been investigated in these studies.

Multi-objective formulation has also been used in the liter-

ature for the EV scheduling problem. In [26], a day-ahead co-
optimization problem was proposed to minimize the negative
effects of plug-in EVs on the distribution network by minimiz-
ing the cost of energy losses and transformer operation cost,
while managing reactive and active powers. In [27], a multi-
objective optimization problem was proposed to co-optimize
customer and system operator objectives. The proposed model
controlled the peak load from the system operator’s perspective
and optimized EVs’ costs/revenues and the battery degradation
cost from the EVs’ perspective. In [28], a multi-objective
optimization problem was presented to obtain optimal charging
schedule of EVs regarding the operation of transportation
network, power network, and CSs. In [29], a multi-objective
optimization was developed for scheduling EV’s V2G and
G2V operation. Co-optimization of electricity cost, battery
degradation, grid net exchange and CO2 emissions has been
performed. It can be seen that the proposed multi-objective
methods only optimize one stakeholder’s operation without ac-
counting for the impact of optimal operation of the other ones.
Also, the G2V and V2G prices for different stakeholders have
not been obtained in the proposed multi-objective frameworks.
Other potential challenges related to multi-objective problems
are the dilemma over determining appropriate weights for
different objectives and the tractability of a larger optimization
problem that should be solved in a single shot [30].

A careful review of the literature shows that the proposed al-
gorithms find the best CS based on the EV drivers’ preferences
such as minimum driving distance [20], minimum cost of G2V,
maximum revenue of V2G [13], and minimum waiting time
in CSs [12], [31] without considering diverse attitude of EV
drivers to economic incentives. In addition, the EV drivers may
react differently to extra driving distances required for cheaper
(more expensive) G2V (V2G) services. In other words, EV
drivers are modelled fully rational in the literature, which may
jeopardize the EV drivers’ welfare. In summary, an extensive
review of the existing studies indicates the following gaps in
knowledge:
• A whole system approach has not been adopted to

optimize major stakeholders operation in the ecosystem.
Also, the mutual impacts of the stakeholders are ignored
by optimizing each stakeholder’s operation individually;

• The role of retailers on the operation of the EV’s schedul-
ing system and prices has not been investigated;

• They do not offer a mechanism to determine V2G prices;
• In the proposed algorithms, some of the practical aspects

of EV scheduling, e.g., EV drivers’ preferences and G2V
and V2G operation outside of declared trips, were not
considered.

B. Main Contributions

In this paper, a comprehensive day-ahead scheduling frame-
work is developed for an e-mobility ecosystem including
EVs, CSs, and retailers (as the three major stakeholders)
for V2G and G2V operation. In an attempt to improve the
practical aspects of the EV scheduling formulation, we propose
two major improvements. First, the optional trips (besides
mandatory trips) are introduced in the formulation to provide
opportunities for G2V and V2G services beyond mandatory
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trips, explained in Section II-A. As we will see in the sim-
ulation studies in Section IV-A, it will enhance convenience
and flexibility in EV scheduling and provide an opportunity to
encourage more G2V and V2G participation. Second, two new
parameters, namely driver’s cost/revenue threshold and driver’s
route preference, are defined and formulated to model diverse
reaction of EV drivers to economic incentives, as described in
Section II-B. The G2V and V2G prices are also obtained by
considering the mutual impact of the stakeholders through an
iterative process, which is presented in Section II-C.

The main contributions of this paper are:
1) Formulating and solving a three-layer optimiza-

tion problem: A comprehensive model is developed
to consider the operation of all stakeholders in the
future e-mobility ecosystem as a three-layer optimization
problem. An iterative solution is proposed to solve the
problem as a non-cooperative Stackelberg game.

2) Optional trips: This provision is expected to improve
the practical aspects of EV scheduling problem and
provides an opportunity for EV drivers to take advan-
tage of cheaper G2V prices and more expensive V2G
prices beyond mandatory trips’ timeframe. The effect of
optional trips on the cost/revenue of three stakeholders,
CS congestion and PV spillage are investigated.

3) Preferences of EV drivers: Two important practical
aspects of the EV scheduling problem are considered by
adding new constraints in order to model economically-
irrational decisions taken by the EV drivers in response
to economic incentives. These constraints are driver’s
cost/revenue threshold and driver’s route preference.

The rest of the paper is organised as follows: Section II
presents problem definition and describes the structure of the
proposed G2V and V2G framework including the three stake-
holders. It is followed by the proposed three-layer optimization
formulation in Section III. In Section IV, two ecosystems are
proposed for simulation and a series of studies are carried
out to show the effectiveness of the proposed framework.
Simulation results are discussed and the paper is concluded
in Section V.

II. PROBLEM DEFINITION

This paper presents a day-ahead scheduling framework for
e-mobility ecosystems including EVs, CSs, and retailers as
three major players. In the proposed ecosystem, illustrated
in Fig 1, there are multiple retailers selling electricity to
CSs from the wholesale electricity market. The CSs are the
charging stations located in the scheduling area. They operate
at the distribution system to serve EVs during G2V and V2G
operation. For the sake of completeness, each CS is assumed
to own and operate an onsite small gas turbine/diesel generator
as a conventional generation unit (CGU), photovoltaic (PV),
and energy storage system (ESS), which can be used to
supply electricity to EVs during G2V operation. Also, CSs
purchase V2G services from EVs and sell it in the wholesale
electricity market through aggregators. It is assumed that
conventional retailers are not allowed to sell electricity to the
wholesale market (i.e., simultaneous buying and selling energy
are prohibited).

In order to facilitate cost-effective operation of the stake-
holders, to mitigate congestion and PV curtailment at CSs,
and to consider EV drivers’ preferences, two kinds of trips
and extra constraints are defined and formulated in this paper,
which are explained in detail in Sections II-A and II-B,
respectively.
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. . .
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Fig. 1. Schematic diagram of the future e-mobility ecosystem.

A. Different types of trips

As shown in Fig. 2, EVs can have two kinds of trips
during a typical day: mandatory trip and optional trip. Each
EV can have multiple mandatory trips with known departure
time, origin, and destination for each trip. These trips will
be fulfilled at any cost. In other times, e.g., between two
mandatory trips, EV drivers may have time for G2V and/or
V2G services if the prices are right. This is the basis for what
is called optional trip in this study. An optional trip, as opposed
to mandatory trip, provides a chance for EV drivers to take
advantage of cheap G2V or expensive V2G services outside of
the mandatory trip time frame; thus reduce their overall cost.
Overall, EVs with a known location and initial state of charge
(SOC) seek a G2V and V2G plan for the combined mandatory
and optional trips such that it minimizes their overall cost
while respecting their preferences. The optional trips also help
CSs to sell their excess energy, to provide services to the upper
grid that generates revenue for EVs, and to enable CSs to
alleviate congestion.

The scheduling problem is solved for the entire day ahead.
EV drivers submit their plans for mandatory and optional trips
to the scheduling centre (which could be a cloud platform with
monthly subscription fee) a day before the scheduling day. As
shown in Fig. 2, there are NCS real CSs with known driving
routes from EV origin in each trip, only one of which might
be scheduled for EV e. Therefore, each CS is represented by
two binary variables in the EV e problem for G2V and V2G
operation at each time interval (as shown in Fig. 3).
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As mentioned before, a mandatory trip should always be
accomplished. Let’s consider a mandatory trip in which the
most economic decision for EV e is not to be charged nor
discharged. In this case, none of the actual CSs should be
selected and yet, the battery SOC values should be updated at
the end of the trip and the shortest route should be selected.
For this purpose, we introduced Virtual CS (VCS) in our
model that represents the shortest route to reach the destination
directly from EV’s origin, as shown in Fig. 2. When VCS
is selected, EV e arrives at the destination from its origin
without charging or discharging, while it is ensured that the
EV’s preferences and constraints are satisfied. Hence, G2V
and V2G power of a VCS in a mandatory trip are equal to
zero for EV e. A VCS is also needed for EV e in an optional
trip to correctly model the solution in which neither G2V or
V2G services are recommended. The only difference between
VCS in optional and mandatory trips is that the driving route
of a VCS is zero in the optional trip. Thus, the EV will be
idle for that optional trip.
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VCS
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Fig. 2. A schematic of two mandatory trips and one optional trip for EV e.

B. EV drivers preferences

In this study, two practical aspects of the EV schedul-
ing problem are modeled by defining “driver’s cost/revenue
threshold” and “driver’s route preference” constraints. They
represent economically-irrational decisions of the EV drivers,
as explained in the following subsections.

1) Driver’s cost/revenue threshold
We are assuming that EV drivers accept an alternative route

(instead of the shortest route) only if there is an economic
incentive greater than or equal to the drivers’ expectation.
When a CS offers a lower price than the nearest CS for
G2V service, the EV driver accepts it only if the charging
cost reduction is equal to or more than the driver’s cost
threshold. Otherwise, the EV driver would prefer to charge
at the nearest CS although it may be a bit more expensive.
The same argument can be made during the V2G services,
where a driver chooses a CS with higher V2G prices over the
nearest CS only if the increase in revenue is equal to or more
than the driver’s revenue threshold.

2) Driver’s route preference
In addition to the cost/revenue threshold, an EV driver

may accept a CS other than the nearest CS only when the

required extra driving distance is equal to or less than “driver’s
route preference”. In other words, the driver’s route preference
ensures that not only selecting an alternative route makes sense
economically to the driver, but also the driver’s desire for not
being on the road for more than “driver’s route preference” is
fulfilled in the scheduling process.

Let’s see the two preferences in an example. Consider an EV
driver whose “cost/revenue threshold” and “route preference”
are $5 and 2 km, respectively. An alternative route will be
selected only if the cost-benefit of the alternative route is at
least $5 AND the extra driving distance does not go beyond
2 km, both in comparison with the nearest CS.

Fig. 3. The proposed framework for day-ahead G2V and V2G scheduling
for all stakeholders.

C. The proposed day-ahead scheduling framework/solution

The proposed scheduling framework is a non-cooperative
Stackelberg game, which is formed among the three layers
[32]. The leader of the Stackelberg game is the retailer and
the first and second followers are CSs and EVs, respectively.
Typically, three- or n-level non-cooperative games are solved
using Karush–Kuhn–Tucker (KKT) optimality condition or
strong duality theorem by replacing the lower level problem
with a set of constraints in the upper level problem. In this
paper, however, the lower level problem is a mixed-integer
quadratic program, which doesn’t satisfy the KKT optimality
condition. Even if there was a differentiable objective function
and constraints in the lower level, formulating the complemen-
tarity conditions of the lower level in the middle-level problem
would result in a non-convex optimisation problem [33], [34].

In this study, we adopted an iterative approach to solve
the Stackelberg game, which is common in three-level games
in the literature [33], [35]. The solution of this formulation
provides a Nash equilibrium, although the uniqueness and
existence of Nash equilibrium cannot be guaranteed [33], [34].

As shown in Fig. 4, the electricity prices, estimated using
historical wholesale market prices, are generated by retailers
in the first iteration. Then, the prices will be given to the CS
layer. In this iteration, the prices will be modified by adding
CSs’ profit margin. Afterwards, CSs’ prices will be passed
on to EV layer where the first optimization problem will be
solved in the first iteration. Please note that the prices for V2G
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services are also estimated by the CS layer in the first iteration.
In the EV layer, the decision variables are EVs’ power during
G2V and V2G operation, and CS selection for each trip (as
shown in Fig. 3). The optimal solutions (i.e., G2V and V2G
power of EVs and optimal CSs) for this iteration are sent back
to the CS layer, where its optimization problem is solved.
The optimal solutions in the CS layer are electricity prices for
V2G service, power generation of onsite CGU and PV system,
power purchased from retailers, charging/discharging power
and operation mode of stationary ESS and optimal retailers
for each CS. Afterwards, the EV layer problem will be solved
with the updated V2G prices and new EV and CS schedules
will be obtained. The inner loop (see Fig 4) will continue
between CS and EV layers until the convergence criterion of
the optimization problems in the CS layer is satisfied for the
given retailers’ prices. Since the aggregator operation is not
modelled in this paper, the same V2G prices from the first
iteration will be used in the inner loop. Upon convergence of
the inner loop in the first iteration (of the outer loop), optimal
solutions (i.e., selected retailers and power purchased from
each) are passed on to Retailer layer. Then, an optimization
problem is solved to identify new electricity prices offered by
retailers to CSs according to the reactions of CSs and EVs to
original prices. Second iteration of the outer loop starts with
the new Retailers’ prices (see Fig 4). The iterative process
will be terminated when the change in the relevant objective
functions in the last two iterations for both inner and outer
loops is less than or equal to 0.001.

III. MATHEMATICAL MODELING

A. Optimization problem in the EV layer

The objective function of EV e is the net cost of EV
operation to be minimized. It is the difference between cost
of EV e and the revenue from selling electricity to CS i in
V2G mode. The cost of EV e comprises electricity purchased
from CS i in G2V mode and battery degradation cost (the term
inside the bracket of Eq. (1)). We used the battery capacity
degradation model from [36], which works for any arbitrary
battery charging/discharging profile and captures the impact of
battery SOC and charge/discharge power levels. As a result,
EVs will be scheduled for V2G services only if they can
recover the cost of battery degradation and make a profit.
During G2V operation, the battery degradation model ensures
that EVs won’t be charged excessively unless the benefits
of low G2V prices exceed the extra degradation cost of the
battery. Please note that the objective is sum of the objective
functions of all EVs in this layer.

min
X+

t,e,i,X
−
t,e,i,

Γt,e,i,Πt,e,i

T∑
t=1

E∑
e=1

X+
t,e,i · ρ

+
t,i

+

[
b ·
(
SOCt,e − a · (Γt,e,i + Πt,e,i)

)2
+ c.X+

t,e,i − d.X
−
t,e,i + f.X−

2
t,e,i

]
−X−t,e,i.ρ

−
t,i ∀i ∈ S
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Fig. 4. Flowchart of the three-layer optimization problem.

SOCt,e= SOC0e +

η+
e .

t∑
t=1

X+
t,e,i.∆t

Ee
−

t∑
t=1

X−t,e,i∆t

η−e Ee

−
t∑
t=1

ζt,e.γe

Ee
.(1− Γt,e,i −Πt,e,i)

− (Ot,e,i+Dt,e,i).γe
Ee

(Γt,e,i + Πt,e,i)

∀t ∈ T, ∀e ∈ E,∀i ∈ S

(1b)

SOCe ≤ SOCt,e ≤ SOCe ∀t ∈ T, ∀e ∈ E (1c)

SOCT,e ≥ SOCend
e ∀e ∈ E (1d)

0 ≤ X+
t,e,i ≤ E

CH

i .Γt,e,i ∀t ∈ T, ∀e ∈ E,∀i ∈ S (1e)

0 ≤ X−t,e,i ≤ E
CH

i .Πt,e,i ∀t ∈ T, ∀e ∈ E,∀i ∈ S (1f)
S∑
i=1

(Πt,e,i + Γt,e,i) ≤ 1 ∀t ∈ T, ∀e ∈ E (1g)∑
e∈E

(Γt,e,i + Πt,e,i) ≤ N
CH

i ∀t ∈ T, ∀i ∈ S (1h)

ρ+
t,i.X

+
t,e,i≤

(
ϑe + ρ̂+

t,e.ŜOCt,e.Ee
)
.Γt,e,i

∀t ∈ T, ∀e ∈ E,∀i ∈ S
(1i)

ρ−t,i.X
−
t,e,i≥

(
Ge + ρ̂−t,e.ŜOCt,e.Ee

)
.Πt,e,i
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Γt,e,i.(Ot,e,i +Dt,e,i)≤ (D̂Ot,e +Ke).Γt,e,i
∀t ∈ T, ∀e ∈ E,∀i ∈ S

(1k)

Πt,e,i.(Ot,e,i +Dt,e,i)≤ (D̂Ot,e +Ke).Πt,e,i

∀t ∈ T, ∀e ∈ E,∀i ∈ S
(1l)

X+
t,e,i= 0 ∀t ∈ T, ∀e ∈ E,∀i = V CS (1m)

X−t,e,i= 0 ∀t ∈ T, ∀e ∈ E,∀i = V CS (1n)

Ot,e,i +Dt,e,i= ζt,e∀t ∈ (T − F ),∀e ∈ E,∀i = V CS (1o)
Ot,e,i +Dt,e,i= 0 ∀t ∈ F,∀e ∈ E,∀i = V CS (1p)
SOC of EV e after each charge and discharge is calculated
by Eq. (1b), while Eq. (1c) ensures that the SOC level is
maintained within a lower and upper bound at all times. The
SOC of EV e must be greater than or equal to the desired SOC
level specified by the driver at the end of the day, as expressed
in Eq. (1d). Maximum and minimum charging and discharging
capacity of the chargers at CS i are enforced by Eqs. (1e) and
(1f). Sum of the binary variables of CSs must be less or equal
to one for EV e in order to select one CS for either G2V or
V2G operation at time t, imposed by Eq. (1g). Equation (1h)
ensures that the number of used chargers in a CS during G2V
and V2G operation does not exceed the number of existing
chargers. Equations (1i) and (1j) enforce drivers’ cost/revenue
preferences. Based on Eq. (1i), an EV will be assigned an
alternative CS from the nearest CS only if the driver’s cost
reduction is greater than or equal to her/his expected cost
reduction. In V2G mode, Eq. (1j) guarantees a minimum
incentive greater than or equal to drivers’ revenue expectation
for a CS that is not on the shortest route. Equations (1k) and
(1l) enforce the driver’s route preference in G2V and V2G
mode, respectively. In this case, an alternative route will be
selected only if the extra driving distance (in comparison with
the shortest route) is less than or equal to the specified value.
Equations (1m) and (1n) set the VCSs’ G2V and V2G power
to zero. Based on Eq. (1o), the driving route assigned to VCS
for the mandatory trip is equal to the shortest route to reach
the destination directly from EV’s origin. Equation (1p) set
the driving route distance to zero between the EV and VCS
in the optional trips.

B. Optimization problem in CS layer

The objective function of CS i is the net revenue of the CS.
The revenue of CS i comes from selling electricity to EV e
and aggregator during G2V and V2G operation, respectively.
We assumed that the electricity purchased from EV e is equal
to the electricity sold to the aggregator. The expenses of CS
i consists of onsite operational costs [37] and cost of energy
purchased from retailer r and EV e during G2V and V2G
services, respectively. The overall objective function is the sum
of the individual CSs’ objective functions.

max
Y re
t,i,r,Y

GU
t,i ,Y PV

t,i

Y +
t,i,Y

−
t,i,ρ

−
t,i,
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S∑
i=1

∑
e∈E

(X+
t,e,i.ρ

+
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∑

e∈E
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−
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−
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t

ηGU
i .HV
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(2a)

s.t.
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∑
e∈E
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∑
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i

+

∑
e∈E X
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+ Y +
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(2b)

0 ≤ Y GUt,i ≤ E
GU

i ∀t ∈ T, ∀i ∈ S (2c)

0 ≤ Y PVt,i ≤ E
PV

i ∀t ∈ T, ∀i ∈ S (2d)

0 ≤ Y ret,i,r ≤ Ei.βt,i,r ∀t ∈ T, ∀i ∈ S, r ∈ R (2e)
R∑
r=1

βt,i,r ≤ 1 ∀t ∈ T, ∀i ∈ S (2f)

0 ≤ Y +
t,i ≤ E

ESS

i .ψt,i ∀t ∈ T, ∀i ∈ S (2g)

0 ≤ Y −t,i ≤ E
ESS

i .(1− ψt,i) ∀t ∈ T, ∀i ∈ S (2h)

SOCESS
i ≤

t∑
t=2

(Y +
t,i − Y

−
t,i).∆t

E
ESS

i

≤ SOCESS

i ∀t ∈ T, ∀i ∈ S

(2i)

ρ− ≤ ρ−t,i ≤ ρ
− ∀t ∈ T, ∀i ∈ S (2j)

During G2V and V2G operation, the power balance between
supply and demand at CS i will be maintained at all times by
Eq. (2b). Therefore, the total power produced by PV system,
CGU, stationary ESS during discharging, and power purchased
from retailer r and EVs must be equal to the total power
demand, including power of stationary ESS in charging mode,
power sold to the aggregator and EVs during V2G considering
chargers’ efficiency. CGU and PV upper and lower capacity
limits at CS i are enforced in Eqs. (2c) and (2d), respectively.
The power purchased from retailer r is limited by Eq. (2e).
βt,i,r is a binary variable showing if retailer r is selected by
CS i. Equation (2f) ensures that only one retailer is selected
by CS i at time t. Charging and discharging power of the
stationary ESS at CS i are enforced by Eqs. (2g) and (2h).
The upper and lower limits of ESS’ SOC in CS i at time t are
guaranteed by Eq. (2i). The electricity prices offered by CS i
to EV e for V2G services are confined by Eq. (2j).

C. Optimization problem in Retailer layer

The objective function in this layer is the net revenue of all
retailers to be maximized. It includes the difference between
revenue obtained by selling electricity to CS i, and the cost
of electricity purchased from the wholesale market, as given
by:

max
ρret,r

T∑
t=1

R∑
r=1

∑
i∈S

Y ret,i,r.ρ
re
t,r − PWM

t,r .ρWM
t

∀i ∈ S

(3a)

s.t.

PWM
t,r =

∑
i∈S

Y ret,i,r (3b)

QWM
t,r =

∑
i∈S

Qret,i,r (3c)

Pm,n,t= gm,n.(1 + ∆V̂m,t).(∆Vm,t −∆Vn,t)

−bm,n.(θm,t − θn,t) ∀m,n ∈ B, ∀t ∈ T
(3d)
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Qm,n,t= −bm,n.(1 + ∆V̂m,t).(∆Vm,t −∆Vn,t)

−gm,n.(θm,t − θn,t) ∀m,n ∈ B, ∀t ∈ T
(3e)

Vm,t = 1 + ∆Vm,t ∀m ∈ B, ∀t ∈ T (3f)
θm,t = 0 + ∆θm,t ∀m ∈ B, ∀t ∈ T (3g)

∆V m ≤ ∆Vm,t ≤ ∆V m ∀m ∈ B (3h)

Pm,n ≤ Pm,n,t ≤ Pm,n ∀m,n ∈ B, ∀t ∈ T (3i)

Q
m,n
≤ Qm,n,t ≤ Qm,n ∀m,n ∈ B, ∀t ∈ T (3j)

ρre ≤ ρre
t,r ≤ ρre ∀t ∈ T, ∀r ∈ R (3k)

Equations (3b) and (3c) maintain the balance of active
and reactive power at all times. Thus, sum of the electricity
purchased from wholesale electricity market through retailer
r must be equal to the electricity purchased by CS i from
retailer r for active and reactive power at time t. Equations (3d)
and (3e) represent real and reactive power flows in the net-
work based on voltage magnitude and angle deviations [38].
Voltages and angles deviations are obtained by Eqs. (3f) and
(3g). Equation (3h) guarantees that bus voltages are within
permissible range. Active and reactive power of the line are
constrained by Eqs. (3i) and (3j). The electricity prices offered
by retailers are limited by Eq. (3k) based on their profit margin.

IV. SIMULATION RESULTS

To assess the effectiveness of the proposed model and the
impact of new practical constraints and optional trips on the
solutions, a comprehensive simulation study is carried out.
The first simulation model contains three retailers, nine CSs,
and 600 EVs in San Francisco, the USA, and IEEE 37-bus
distribution test system. Without loss of generality, all CSs
are assumed to have 30 bidirectional fast DC chargers (50kW).
Other simulation parameters are:
• A 65 kW CGU for each CS;
• 16kW, 19.2kW, 24kW, 27.2kW, and 32kW of PV systems

randomly assigned to CSs;
• Five one-hour ESS with the capacity of 45kW, 50kW,

65kW, 70kW, and 85kW randomly assigned to CSs;
• Four types of EVs with battery capacity of 14.5kWh,

16kWh, 28kWh, and 40kWh are considered; and
• The initial SOC of EVs is randomly generated between

10% and 95% with mean value of 28%; and
• The desired SOC of EVs at the end of day specified by

the drivers is randomly selected between 70% and 90%.
Without loss of generality, it is assumed that each EV plans

two mandatory trips and one optional trip in a typical day. The
first mandatory trip of 90% of EVs in the fleet is randomly
scheduled between 06:00 to 10:00. The optional trip of 90% of
EVs is randomly planned between 11:00 to 15:00. Finally, the
second mandatory trip of 90% of EVs is assumed to take place
between 16:00 to 20:00. The shortest routes between origin of
EV e, location of CS i, and destination of EV e for each
trip are determined by ArcGIS® prior to optimization. Since
end-users should pay network maintenance costs, ancillary
services costs, taxes, and etc., the day-ahead electricity prices
of the wholesale market (California ISO [39]) is multiplied
by 4.5 homogeneously to obtain the prices offered to the CS
operators by the retailers. The profit margin of the retailers is
assumed to be 5-30%, while the CSs profit margin is varied

between 10% to 30%. In addition, electricity prices offered for
the V2G service is between 60-85% less than prices offered
by retailers. The electricity prices sold to the aggregator by
CSs is 10% more than what CSs pay for V2G service to
the EV owners. Four simulation scenarios are defined, see
Table I, to assess the impact of optional trips and EV drivers’
preferences on the cost/revenue of all stakeholders, explained
in subsections IV-A and IV-B. The optimization problems are
solved by Branch-and-Bound method using Gurobi® solver in
Python on a laptop with Intel Core i7 CPU with 1.80GHz
processor and 8GB RAM. The MIP optimality gap is set to
0.0001 for all optimization problems.

A larger ecosystem with 1000 EVs, 18 CSs, and three
retailers on IEEE 69-bus distribution test system is also
simulated, where the simulation parameters and results are
explained in Section IV-E.

TABLE I
DIFFERENT SIMULATION SCENARIOS

Scenario Optional trip? EV drivers’ preferences?
s1 Yes Yes
s2 Yes No
s3 No Yes
s4 No No

TABLE II
TOTAL DAILY NET COST AND REVENUE OF THE STAKEHOLDERS WITH

MIP OPTIMALITY GAP
Scenario Total net cost of

EVs [$] (relative
MIP gap)

Total net
revenue of CSs

[$] (relative MIP
gap)

Total net revenue
of retailers [$]
(relative MIP

gap)
s1 1153.4 (0.0097%) 256.4 (0%) 958.1 (0%)
s2 1000.1 (0.002%) 418.9 (0%) 1333.9 (0%)
s3 1240.5 (0%) 238.0 (0%) 1040.5 (0%)
s4 1118.8 (0.0044%) 389.4 (0%) 1382.6 (0%)

TABLE III
TOTAL NUMBER OF CHARGED AND DISCHARGED EVS

Total # of EVs # of EVs charged (discharged)Scenario Charged Discharged Mandatory trips Optional trip
s1 688 32 434 (30) 254 (2)
s2 739 327 448 (320) 291 (7)
s3 566 27 566 (27) –
s4 556 297 556 (297) –

A. The impact of optional trips

In order to quantify the significance of optional trips on the
net cost of EVs and the net revenue of CSs and retailers,
s1 and s2 can be compared with s3 with s4, respectively.
Table II shows the cost/revenue of each stakeholder obtained in
each scenario, where the total net cost of EVs decreased from
$1240.5 to $1153.4 and the total revenue of CSs increased
from $238.0 in s3 to $256.4 in s1. The reduction in retailers’
revenue is due to less PV curtailment at CSs (see Fig. 8) in
s1 and thus less energy purchase from the retailers by the
CSs. Also, it can be seen from Table III that the number
of EVs participated in G2V (V2G) increased from 566 (27)
in s3 to 688 (32) in s1, and from 556 (297) in s4 to 739
(327) in s2. The impact of optional trips on the congestion
can be seen in Fig. 5, where more EVs are scheduled to
charge in the middle of the day rather than early morning.
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A similar pattern has been observed by comparing scenarios
s1 and s3. It shows that the consideration of optional trips
can eliminate/reduce G2V congestion during the hours of
mandatory trips, which consequently affect power system
operation as a whole by avoiding new peaks and voltage issues,
although its impact on V2G is negligible. The optimal hourly
averaged electricity prices offered by retailers and CSs during
V2G and G2V operation for scenario s1 are shown in Fig. 6.
Since unique prices will be obtained for each stakeholder in
this framework, only stakeholders with non-zero prices in an
hour are considered in the hourly average calculation. Zero
price in an hour shows that no G2V or V2G activity was
scheduled in that hour. The prices in Fig. 6 are aligned with
the G2V and V2G operation in Fig. 5. Note that the higher
G2V prices of CSs from 18:00 to 21:00 is consistent with high
V2G prices of CSs and zero prices of retailers to encourage
services to the grid by EVs.
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Fig. 5. Number of EVs charged and discharged under s2 and s4.
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The number of EVs who selected VCS during V2G and
G2V operation in the mandatory and optional trips is shown
in Fig. 7 in s1. EVs selected VCS 347 times during optional
trips, which means that they didn’t participate in either G2V
or V2G program in those hours. Also, EVs are not scheduled
for G2V or V2G 766 times during mandatory trips (176 EV
in the first mandatory and 590 in the second mandatory trip)
in a day of simulation. In the remaining 687 times, EVs have
been scheduled for either G2V or V2G operation.

The impact of optional trips on the total PV curtailment is
shown in Fig. 8 for CS#1, CS#2, and CS#6, where considering
optional trips led to significant reduction (49.8%, 16.3%, and
13%, respectively,) in PV curtailment. In other CSs, no PV
generation was curtailed in the four scenarios.

B. The impact of EV drivers’ travel preferences

In this subsection, the impact of drivers’ cost/revenue and
extra driving distance preferences are investigated. The sim-
ulation results in Table II show that when the constraints
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Fig. 8. CS#1, CS#2, and CS#6 PV curtailment in scenario s1 and s3.

in Eqs. (1i), (1j), (1k), and (1l) are enforced, the total net
cost of EVs increased from $1000.1 in s2 to $1153.4 in s1.
Also, the total net revenue of CSs and retailers decreased
from $418.9 and $1333.9 in s2 to $256.4 and $958.1 in s1,
respectively. Also, Fig. 9 shows that significantly fewer EVs
participated in the V2G program due to drivers’ preferences.
In particular, the number of EVs participated in V2G increased
from 32 in s1 to 327 in s2, and from 27 in s3 to 297 in s4.
Therefore, eliminating these preferences leads to significant
overestimation of the G2V and V2G services and revenue of
retailers and CS, and underestimation of EV’s costs.
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Fig. 9. Number of EVs in G2V and V2G operation in s3 and s4.

C. The impact of V2G services

To show the impact of V2G services, the iterative three-layer
optimization problems is solved in all scenarios by eliminating
V2G services from the framework. A comparison between
Table II and Table IV reveals 6.8% increase in the total net cost
of EVs on average, and 26.5% and 16.2% decrease in the total
net revenue of CSs and retailers on average, respectively, in
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the absence of V2G services. It depicted the sheer magnitude
of V2G impact on the financial interests of all stakeholders in
the ecosystem.

TABLE IV
TOTAL DAILY NET COST AND REVENUE OF THE STAKEHOLDERS AFTER

ELIMINATING V2G SERVICE
Scenario Total net cost of

EVs [$]
Total net revenue

of CSs [$]
Total net revenue

of retailers [$]
s1 1166.1 (0%) 245.8 (0%) 941.3 (0%)
s2 1154.7 (0.007%) 242 (0%) 933.7 (0%)
s3 1250 (0%) 235.1 (0%) 1037.4 (0%)
s4 1249 (0%) 234.1 (0%) 1037.7 (0%)

D. The impact of three-layer iterative optimization

Table V shows a comparison between cost/revenue of three
stakeholders for two different cases as defined below:
� Case I: This the case in which the proposed three-

layer optimization problem is solved iteratively to find
equilibrium based on the flowchart in Fig. 4.

� Case II: The optimization problems in the three layers
are solved individually, not iteratively. Thus, G2V and
V2G prices are not updated and the impact of G2V prices
offered by retailers and V2G prices offered by CSs are
not considered.

Similar optional trips and EV drivers’ preferences are con-
sidered in both cases. It can be observed in Table V that the
total net cost of EVs in Case II increased by 1.65% and the
total net revenue of CSs and retailers decreased by 22.5%
and 3.95%, respectively, compared to Case I. It should be
mentioned that when the optimization problems in the three
layers are solved individually, fewer EVs participated in G2V
and the V2G program, which led to significant decrease in the
total net revenue of CSs.

TABLE V
TOTAL NET COST AND REVENUE OF ALL STAKEHOLDERS IN s1

Cost/Revenue Case I Case II
Total net cost of EVs ($) 1153.4 1172.4

Total net revenue of CSs ($) 256.4 198.7
Total net revenue of retailers ($) 958.1 920.3
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Fig. 10. (a) EV layer, (b) CS layer, and (c) Retailer layer objective function
values at different iterations

The optimization algorithms convergence for the three lay-
ers is shown in Fig. 10 in scenario s1, where optimal results
are obtained after 18 iterations of the outer loop in 37 minutes.

E. Scalability and convergence of the proposed solution

In this section, a larger e-mobility ecosystem with 1000
EVs, 18 CSs, three retailers on the IEEE 69-bus distribution
test system is designed to show the scalability of the proposed
solution. In this simulation study, the first mandatory trip of
88.5% of EVs in the fleet is randomly scheduled between
06:00 to 10:00. The optional trip of 85% of EVs is ran-
domly planned between 11:00 to 15:00. Finally, the second
mandatory trip of 76.8% of EVs is assumed to take place
between 16:00 to 20:00. Simulation parameters of CSs and
EVs are identical to the first simulation study with 600 EVs.
The optimal results are obtained after only 19 iterations of the
outer loop in 113 minutes on average. The total net cost of
EVs and total net revenue of CSs and retailers for all scenarios
are given in Table VI. It shows that the proposed solution can
manage to solve scheduling problem of a larger ecosystem in
a reasonable time. The trends in the cost and revenue changes
of the stakeholders from one scenario to another are similar
to those observed in the smaller ecosystem in Section IV-A.

TABLE VI
TOTAL DAILY NET COST AND REVENUE OF THE STAKEHOLDERS FOR

LARGER E-MOBILITY ECOSYSTEM

Scenario Total net cost of
EVs [$] (relative

MIP gap)

Total net revenue
of CSs [$]

(relative MIP gap)

Total net revenue
of retailers [$]

(relative MIP gap)
s1 1653.2 (0%) 400.8 (0.0015%) 1422.61 (0%)
s2 1413.3 (0.0083%) 649.3 (0%) 1960.8 (0%)
s3 2050.1 (0.0096%) 375.5 (0.0016%) 1545.5(0%)
s4 1986.7 (0.0041%) 417.2 (0%) 1612.1 (0%)

Furthermore, a sensitivity analysis is performed for 10
cases with different simulation parameters to demonstrate the
convergence of the proposed iterative algorithm. The simula-
tion parameters (# of EVs and CSs and trips planning) are
presented in Table VII. The total net cost of EVs and total
net revenue of CSs and retailers as well as the corresponding
relative MIP Gap are reported in Table VII for s1. In Fig. 11,
the convergence rates for total net cost of EVs and optimal
total net revenue of CSs and retailers are illustrated. The
average computation time for c1-c6 and c7-c10 was 39 and
115 minutes, respectively. It can be seen that the proposed
solution solved all cases in a reasonable time with a near-zero
relative MIP gap.

V. CONCLUSION

In this study, a comprehensive day-ahead scheduling frame-
work is proposed for the future e-mobility ecosystem including
EVs, CSs, and retailers by considering both G2V and V2G
operation. Two kinds of trips, namely mandatory and optional
trips, as well as EV drivers’ preferences are formulated to
enhance practical aspects of the proposed algorithm. The
proposed tool finds the best CS for EV’s G2V and V2G
operation and the best retailers for CSs to purchase electricity.
Also, electricity prices offered by CSs for G2V and V2G
services and optimal charging and discharging scheduling of
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Fig. 11. Objective function values of (a) EV layer, (b) CS layer, and (c) Retailer layer for cases c1 to c10

TABLE VII
SIMULATION PARAMETERS AND THE TOTAL DAILY NET COST AND REVENUE OF THE STAKEHOLDERS FOR CASES c1 TO c10

Total # of % of EVs
Case EVs CSs Optional

Trip
(11:00-
15:00)

Second
Mandatory

Trip
(16:00-20:00)

Distribution
network

Initial SOC
(Mean value)

Total net cost of
EVs [$] (relative

MIP gap)

Total net revenue
of CSs [$]

(relative MIP
gap)

Total net revenue
of retailers [$]
(relative MIP

gap)
c1 600 9 90% 70% 37-bus system 10-95% (28%) 1162.3 (0%) 255.3 (0%) 954.3 (0%)
c2 600 9 65% 80% 37-bus system 25-95% (38%) 783.0 (0.0072%) 208.1 (0%) 671.7 (0%)
c3 600 9 94% 80% 37-bus system 10-95% (28%) 1161.2 (0%) 255 (0%) 956.1 (0%)
c4 600 9 90% 70% 37-bus system 15-100% (56%) 345 (0%) 169.8 (0%) 389.6 (0%)
c5 600 9 94% 60% 37-bus system 15-86% (36%) 835.8 (0.0078%) 194.8 (0.0089%) 676.3 (0%)
c6 600 9 70% 90% 37-bus system 10-74% (37%) 769.3 (0%) 211.6 (0%) 685.8 (0%)
c7 600 9 60% 60% 37-bus system 25-95% (38%) 789.9 (0%) 201 (0%) 659.2 (0%)
c8 1000 18 75% 65% 69-bus system 10-100% (33%) 1655.5 (0.009%) 397.5 (0.0015%) 1408.4 (0%)
c9 1000 18 65% 55% 69-bus system 10-80% (30%) 1806.2 (0.0082%) 400.5 (0%) 1500.6 (0%)
c10 1000 18 55% 45% 69-bus system 10-70% (27%) 1930.4 (0.0077%) 407.9 0.0056% 1597.1 (0%)

EVs are determined considering the impacts of prices offered
by retailers through a three layer optimization problem. An it-
erative solution is proposed to solve the three-level Stackelberg
game. Simulation results confirm the value of optional trips to
reduce total cost of EVs and congestion at CSs during early
morning peak. Furthermore, the proposed scheduling system
helped to reduce the cost of EVs and to increase the revenue of
CSs and retailers. The drivers’ preferences are proven to have
an immense impact on the solutions and financial benefits of
the stakeholders. In the future study, we plan to model different
sources of uncertainties, e.g., EV drivers and PV generation,
and solve a stochastic optimization.
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