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ABSTRACT 

The prevalence of urinary incontinence (UI), faecal incontinence (FI) and chronic 

constipation increases with age. Sufferers tend to have reduced quality of life, with 

treatments being far from ideal. Furthermore, treatment costs place significant financial 

burden on the economy. The lumbosacral somatic dorsolateral nucleus (DLN) and spinal 

nucleus of the bulbospongiosus (SNB), and the sacral parasympathetic nucleus (SPN), 

exert control over the external urethral sphincter (EUS) external anal sphincter (EAS), and 

bladder detrusor / colorectal smooth muscle, respectively. Pontine nuclei, including the 

pontine micturition centre (PMC), locus coeruleus (LC) and laterodorsal tegmental nucleus 

(LDTg), and the hypothalamic paraventricular nucleus (PVN) share connection pathways 

and exert control over defaecation and micturition.  

In this work, lumbosacral spinal structures were immunolabelled alongside 

inhibitory methionine-enkephalin (met-ENK) and gamma aminobutyric acid (GABA) 

boutons; pontine structures were immunolabelled alongside inhibitory met-ENK boutons; 

and the PVN was immunolabelled alongside inhibitory GABA and excitatory glutamate. 

The density of GABA and met-ENK in the SPN significantly decreased with age; the 

density of glutamate significantly increased in the PVN periventricular region (PVNpv); 

and the number of GABA inputs onto OXY+ and VP+ parvocellular soma within the PVN 

medial parvocellular dorsal division (PVNmpd) significantly increased with age. In all other 

nuclei the density / number of inputs from immunolabelled boutons remained unchanged 

with age. Furthermore, soma size and cell number (observed in pontine and spinal nuclei) 

were maintained with age. The distal colon (DC) is also extensively controlled by the 

intrinsic enteric nervous system (ENS) which is known to be subject to age-related 

structural changes. Protein was extracted from the whole DC with the future aim of 

extracting proteins specifically from the myenteric plexus (MP). Subsequently, whole DC 

protein extract was subject to downstream protein analysis to determine expression 

changes with age.  Forty-four proteins showed age-associated change in regulation. 

These findings indicate that age-associated changes occur at all levels of nervous and 

non-nervous structures that may contribute to age-related voiding dysfunctions.   
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1 INTRODUCTION 

1.1 BRIEF INTRODUCTION AND AIMS OF THESIS 

The prevalence of UI, FI, and chronic constipation increases with age (Searcy, 

2017; Shah et al., 2012; Vazquez Roque and Bouras, 2015). This has a major impact on 

the quality of life for the elderly population (Baffy et al., 2017; Bartlett et al., 2009; Ko et 

al., 2005). Treatment of bladder and bowel dysfunction are currently far from ideal and 

often involve symptom management (e.g. incontinence pads). Some pharmaceutical 

treatment options for UI show no symptom improvement in some patients and others 

(anti-cholinergics) causing adverse side effects including constipation (Samuelsson et al., 

2015). Therefore, treatment has a long way to come, with the cost of current treatments 

placing significant financial burden on individuals and the economy (Coloplast., 2016; 

NHS England., 2018; NHS England., 2016). Furthermore, UI, FI, and constipation are 

associated with an increased mortality rate in older adults (Jamieson et al., 2017; John et 

al., 2014).  

The age-associated changes resulting in bladder and terminal bowel dysfunction are 

likely multifactorial. These include ageing of effector cells (smooth muscle of the bladder 

and terminal bowel / striated muscle of external sphincters) and neurons that regulate 

their function (located in the both the central and peripheral nervous systems). The main 

aim of this PhD was to determine potential neurogenic mechanisms that may contribute to 

age-associated bladder and bowel dysfunction in mice. This was undertaken via 

immunohistochemical labelling of mouse central nervous structures (in the lumbosacral 

spinal cord, brainstem, and hypothalamus) that control bladder / bowel function (see 

Chapters 2-4). Additionally, protein analysis of mouse DC was undertaken (see Chapter 

5). This methodology was applied to various age groups for structural and proteomic 

comparisons between young and aged mice that may contribute to age-associated 

problems with storage / elimination of urine and faecal matter.  
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1.2 BLADDER AND TERMINAL BOWEL DYSFUNCTION AND PREVALENCE IN THE 

ELDERLY POPULATION 

Ageing of the bladder and terminal bowel may result in problems with storage and 

elimination of urine and faecal matter (Searcy, 2017; Shah et al., 2012; Vazquez Roque 

and Bouras, 2015). UI is defined by the International Continence Society (ICS) as 

involuntary loss of urine and can occur for different reasons. Stress UI (SUI) is involuntary 

leakage as a consequence of events such as sneezing, coughing or physical exertion and 

reflects the inability of the bladder outlet to remain closed. Urge UI (UUI) is leakage 

preceded or accompanied by a sudden compelling desire to urinate and reflects over-

activity of detrusor muscles. SUI and UUI can co-occur in the same individual and is 

known as mixed UI (MUI) (Abrams et al., 2002). UI can be secondary to urinary retention, 

of which the prevalence in the general population is unknown; however, it is thought to be 

more prevalent in aged males. Urinary retention is defined as the inability to completely 

empty the bladder of urine and can be caused by detrusor underactivity or urethral 

obstruction (Dougherty and Aeddula, 2019; Emberton and Anson, 1999). Regarding the 

terminal bowel, involuntary loss of faeces is known as faecal incontinence; and difficulty 

expelling faecal matter is known as constipation (less than three bowel movements per 

week) and can result in faecal impaction (Bharucha et al., 2006; Mounsey et al., 2015). FI 

can occur secondary to constipation or faecal impaction (Read and Abouzekry, 1986).  

The prevalence of UI has been observed to increase with age in both sexes 

(Campbell et al., 1985; Collerton et al., 2009; Condon et al., 2019; Irwin et al., 2009; 

Jerez-Roig et al., 2016; Kok et al., 1992; Lasserre et al., 2009; Nakanishi et al., 1997; 

Shaw et al., 2006; Song and Bae, 2007; Teunissen et al., 2004; Wehrberger et al., 2012; 

Wu et al., 2015; Xu and Kane, 2013). It should be noted that the majority of studies did not 

provide details on the type of bladder dysfunction e.g., SUI vs UUI etc.; and that studies 

had varying sample sizes and sex / age-groups. Additionally, due to social stigma, it is 

likely that UI (and bowel dysfunction) is underreported by sufferers. UI was consistently 

found to be more prevalent in 80+ year old individuals confined to nursing homes (58.9-69 

%) compared with community dwellers (31-47 %) (Jerez-Roig et al., 2016; Lasserre et al., 
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2009; Nakanishi et al., 1997; Song and Bae, 2007; Wehrberger et al., 2012; Xu and Kane, 

2013). Furthermore, in a study with 32,285 participants, UI was determined as a 

significant risk factor for elderly residential care admission (Schluter et al., 2017). Where 

studies distinguish between males and females, UI prevalence was higher in women of 

80+ (26.7 %) and 85+ years (26.6-36.4 %) than males of 80+ (13 %) and 85+ years (12.6-

24 %) (Collerton et al., 2009; Song and Bae, 2007; Wehrberger et al., 2012; Wu et al., 

2015). 

Studies that distinguished between types of UI in elderly community dwellers 

reported differing results. Of women over 80 years of age, 25.9-62 % suffered MUI, 9.3-26 

% SUI, and 9-9.3 % UUI (Lasserre et al., 2009; Shaw et al., 2006). Of male and females 

aged 85+, 62 % suffered MUI, 4 % SUI and 34 % UUI (Song and Bae, 2007). In 85+ 

women, UUI (35 %) and SUI (39.1 %) were more prevalent than in men (25.5 % and 13.8 

% respectively). Whereas, nocturia (waking to void one or more times during the night) 

had a higher prevalence in males (69 %) than females (49 %) (Wehrberger et al., 2012). 

Jerez-Roig et al. (2016) sought to distinguish between types of UI in institutionalised 

elderly individuals (mean age: 81.5 years). Of those suffering UI, 3.7 % suffered SUI and 

13.8 % suffered UUI. These relatively small figures can be attributed to the inclusion of 

two additional categories of UI— functional UI (physical impairment) and functional UI 

(cognitive impairment) of which 56.1 % and 54 % of individuals suffered from respectively. 

Functional UI is the loss of urine due to inability or unwillingness to access toilet facilities 

as a result of physical or cognitive impairment or psychological unwillingness. The extent 

of UI and co-morbidities associated with functional UI likely made it difficult to differentiate 

between SUI and UUI.  

Like UI, the prevalence of FI and dual incontinence (DI– the co-occurrence of UI and 

FI in the same individual) is increased with age (Chassagne et al., 1999; Chughtai et al., 

2019; Schnelle et al., 2009; Teunissen et al., 2004; Tobin and Brocklehurst, 1986; Wu et 

al., 2015). It should be noted, as was the case for UI, data collection methods were not 

consistent across studies; and FI / DI were likely underreported due to social 
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embarrassment. Separate studies observed a consistently greater prevalence of FI in 

nursing homes ranging from 20 % in those aged 60+ to 52 % in those aged 80+ 

(Chassagne et al., 1999; Chughtai et al., 2019). In community dwellers, FI prevalence was 

as low as 4.2 % in those aged 60+ and was 16.9 % in those aged 85 + (Kok et al., 1992). 

Risk factors for the development of FI or DI include older age, cognitive impairment, 

limitations in daily activities, prolonged institutionalisation, history of UI, and spinal cord 

injury (Bliss et al., 2018; Chassagne et al., 1999; Obokhare, 2012; Shamliyan et al., 2007; 

Tobin and Brocklehurst, 1986). Where studies distinguish between males and females, 

the prevalence of FI was observed to be slightly higher in women than men. In individuals 

aged 65+ confined to a nursing home, 43.9 % of women suffered FI compared to 37.5 % 

of men (Saga et al., 2013). In a sample study of both community dwellers and nursing 

home residents, 9.3 % of women aged 85+ suffered FI compared to 7.4 % of men 

(Collerton et al., 2009). In a cohort of individuals aged 50+ measuring both FI and DI 

prevalence, women had slightly lower prevalence of FI at 8.2 % compared to men at 

8.4  %. However, the prevalence of DI was much greater in women at 6 % than men at 

1.9 % (Wu et al., 2015). The increased prevalence of UI, FI, and DI observed in females 

has been linked to injuries during childbirth, often associated with pudendal nerve damage 

(Jiang et al., 2009; Snooks et al., 1985). 

The prevalence of constipation and laxative use increases with age. Over a 14-year 

period, a study using a cohort of 2,087 males and females aged 65+ saw constipation 

increase from 13.8 % to 20.9 %, and laxative use increase from 6.3 % to 15.1 % (Werth et 

al., 2015). In a study comparing free-living (mean age: 74 years) to institutionalised elderly 

(mean age: 84 years), laxative use was greater in nursing home residents (65 %) 

compared to community dwellers (20 %) (Marfil et al., 2005). In community-dwelling 

individuals aged 65+, a higher prevalence of constipation and laxative use was reported in 

women at 14.6 % and 16.6 %, than men at 6.3 % and 12.8 %, respectively (Werth et al., 

2017). Constipation / faecal impaction can lead to FI as elderly patients with faecal 

impaction showed impaired anorectal sensation during distension and a lower rectal 

volume required for anal relaxation compared to healthy controls (Read and Abouzekry, 
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1986). Furthermore, in a study of faecally incontinent nursing home residents with a mean 

age of 86 years, 81.1 % were found to suffer from constipation (Schnelle et al., 2009). 

Additionally, effective treatment of constipation in institutionalised elderly resulted in 35 % 

fewer episodes of FI (Chassagne et al., 2000). Prevalence of neurogenic constipation as a 

result of spinal cord injury (SCI) has been observed to increase with age. In a study cohort 

of individuals who had suffered SCI (median age beginning at 55 years), constipation and 

laxative use increased from 21 % and 19 % to 39 % and 31 %, respectively over a 19-

year period (Nielsen et al., 2017). Furthermore, age-associated neurodegenerative 

diseases are linked to increased prevalence of UI, FI, and constipation (Campbell et al., 

1985; Emmanuel, 2019; Tobin and Brocklehurst, 1986).  

 

1.3 IMPACT OF BLADDER AND BOWEL DYSFUNCTION ON QUALITY OF LIFE 

Incontinence negatively impacts a sufferer’s psychological well-being and overall 

quality of life (QoL) (Choi et al., 2020; Farage et al., 2008; Markland et al., 2010; Meyer et 

al., 2019; Molinuevo and Batista-Miranda, 2012; Ugurlucan et al., 2019). Both UI and FI 

have been associated with symptoms of anxiety and depression (Coyne et al., 2012; 

Molinuevo and Batista-Miranda, 2012). Anxiety symptoms can manifest from fear of 

urinary or faecal leakage and can result in adoption of coping strategies including 

restriction of food / fluid intake and toilet mapping (Anders, 2000; Andy et al., 2019; Anger 

et al., 2011; Hansen et al., 2006; Kuhn et al., 2006; Thomas and Morse, 1991). 

Furthermore, anxiety can result in reduction of daily activities, particularly activities in a 

social setting, which can impact self-confidence and promote feelings of social isolation 

and loneliness (Hunskaar and Sandvik, 1993; Stickley et al., 2017). The belief that 

incontinence is an inevitable aspect of ageing combined with the shame / embarrassment 

of disclosing personal matters prevents people from seeking help and likely worsens 

feelings of social isolation (Horrocks et al., 2004).  

Overactive bladder (OAB) and urinary retention have also shown co-occurrence with 

depression and anxiety (Drossaerts et al., 2016; Jairam et al., 2018). However, the 
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causality between bladder symptoms and mental conditions is unclear and may involve a 

mechanism in the bladder–brain-axis. Some studies observed the new onset of OAB in 

already depressed patients. Whilst other studies lack evidence of causality and suggest 

that OAB and depression / anxiety are bidirectional in nature (Vrijens et al., 2015). 

Constipation has also been linked with a decreased QoL (Belsey et al., 2010; Dennison et 

al., 2005; Wald et al., 2007). Patients with FI and concurrent constipation (FIC) reported 

worse overall QoL in comparison to patients with FI alone, and QoL scores were further 

declined with increased constipation severity. Additionally, FIC patients had higher rates 

of mental (depression) and physical impairments (pelvic organ prolapse, UI, pelvic pain, 

bladder pain, and abdominal pressure) (Cauley et al., 2019). Mental and physical 

impairments experienced alongside constipation are worsened with increased age (Wald 

et al., 2007).  

 

1.4 ECONOMIC BURDEN OF BLADDER AND BOWEL DYSFUNCTION 

With improvements in healthcare and lifestyle, the population is living longer. 18.3 % 

of the UK population was 65+ in 2018, which is projected to increase to 24.2 % in 2038 

(Office for National Statistics., 2019). The prevalence of bladder and bowel dysfunction is 

increased with age and thus treatment of incontinence will likely place a greater financial 

burden on the National Health Service (NHS) in the future. The annual NHS cost for 

incontinence pad usage is around 80 million per annum (p.a.) in England (NHS England., 

2018). In 2015, GP prescribing data observed that the cost of catheters was £115.1 

million p.a. (NHS England., 2016). Hospitalised patients with incontinence are at 

increased risk of acquiring a urinary tract infection (UTI) due to catheterisation, with costs 

of additional bed days and treatment at around £90 million p.a. Furthermore, poor 

continence care is a contributory factor to the development of pressure ulcers, of which it 

costs an average of £4,638 per pressure ulcer (NHS England., 2018).  OAB / UUI are 

predisposing risk factors for falls, and the risk of falling is increased in individuals aged 

65+ (Szabo et al., 2018). Elderly individuals suffering incontinence are 26 % more likely to 
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fall and 34 % more likely to fracture (Soliman et al., 2016). Falls from fragility fractures 

cost the NHS £4.4 billion p.a. in England (NHS England., 2017). Regarding constipation, 

GP prescription of laxatives costs £101 million p.a. across the UK. Additionally, unplanned 

hospital admissions due to constipation was £145 million in 2014 / 15. The figure for NHS 

expenditure on constipation is likely to be much higher when including GP visits and home 

visits (Coloplast., 2016). Furthermore, the cost of treating anxiety and depression as a 

result of bladder and bowel dysfunction likely places further financial burden on the NHS. 

However, at present, this cost has not been estimated.    

 

1.5 BASIC STRUCTURE OF THE BLADDER AND TERMINAL BOWEL 

The bladder and terminal bowel perform similar functions, namely the storage and 

voluntary expulsion (developed after 2-3 years of age) of urine and faecal matter, 

respectively. Additionally, they have a similar basic cellular structure consisting of smooth 

muscle with an inner lining of specialised epithelial cells. Further cell types and tissue 

structures include nervous and vascular supplies, connective tissue, interstitial cells (ICs), 

and immune system cells; the composition and properties of these cell types, however, 

are vastly different between the two organs (Merrill et al., 2016; Saffrey, 2014). The main 

focus of this thesis is the nervous control of these structures and therefore a detailed 

discussion of non-nervous / sensory cell types in the bladder will not be included. 

However, protein analysis of the DC is undertaken in whole gut sections (encompassing 

all cells types) and therefore a more detailed description of cell structure in the DC wall is 

included (see section 1.7).  

 

1.6 ANATOMY, CELLULAR ORGANISATION AND NERVOUS CONTROL OF THE 

BLADDER 

1.6.1 Functional anatomy of the bladder 

The urinary bladder is a hollow muscular organ made up of smooth detrusor muscle 

surrounding the bladder body. Urine is excreted from the kidneys and passes through the 
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ureters into the bladder until activation of the micturition reflex in which urine exits via the 

urethra (Lanzotti and Bolla, 2019). The storage phase is supported by the contraction of 

the smooth and striated muscle of the internal urethral sphincter (IUS) and EUS 

respectively, and the surrounding pelvic floor musculature; whilst the smooth detrusor 

muscle remains relaxed allowing bladder distension as it fills. During the micturition reflex, 

the EUS and IUS relax and seconds later the bladder smooth muscle contracts causing 

urine expulsion (Fowler et al., 2008). Storage and voiding reflexes are elicited by nervous 

activity. The human bladder is partially controlled by intramural cells grouped into small 

ganglia (Dixon et al., 1983). However, the majority of bladder activity is derived from 

external innervation from neurons located outside the bladder wall (Gilpin et al., 1983). In 

mice (used in the present study), only intramural nerve fibres have been observed to 

course through the bladder wall. Thus, the majority (if not all) bladder innervation is from 

extrinsic nerve supply (Koh et al., 2012).  

The muscle fibres that make up detrusor muscle are arranged arbitrarily. Individual 

cells within muscle fibres are interconnected with the presence of gap junctions between 

each cell. This muscular arrangement allows the bladder to contract in a coordinated 

manner and helps to rapidly spread nervous signals, despite multiple cells having no 

direct autonomic input (Andersson and Arner, 2004; Karicheti and Christ, 2001). Certain 

cells in the bladder are thought to play an intermediary role in its nervous control, 

including interstitial and urothelial cells (bladder epithelium) (Merrill et al., 2016). Urothelial 

cells are located in close proximity to efferent and afferent nerve endings (Birder et al., 

2002). They express a variety of receptor subtypes (including purinergic, adrenergic, 

cholinergic etc.) which indicates that urothelium can respond to diverse stimuli (from 

bladder distension to noxious stimuli). In response to chemical / mechanical stimuli, they 

release a variety of neuroactive mediators [adenosine triphosphate (ATP), acetylcholine 

(ACh), nitric oxide (NO) etc.] (Merrill et al., 2016). ATP appears as the main messenger 

released during purinergic mechanosensory transduction and acts on P2X3 receptors on 

afferent neurons to generate signals indicative of bladder fullness or pain (Burnstock, 

2009; Cockayne et al., 2000). Urothelial cells have been hypothesised to interact with ICs 
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due to their close anatomical location (in the lamina propria) and their expression of 

purinergic receptors (Merrill et al., 2016). Interstitial cells of cajal (ICCs), present in the 

GIT, are implicated in the regulation of smooth muscle contractility. In the bladder, like 

ICCs, sub-populations of cells express c-kit, vimentin and platelet-derived growth factor 

receptor alpha (PDGFRα). However, their exact function is more ambiguous at present. In 

addition to presence in the lamina propria, ICs are intermingled with detrusor muscle cells 

and have been suggested to play a role in modulation of smooth muscle activity, sensory 

processing (via contact with bladder afferents), and integration of signalling between 

bladder layers. For further explanation of the potential functions of bladder ICs, see review 

by Koh et al. (2018). 

 

1.6.2 Innervation of the bladder and urethral sphincters at spinal level 

1.6.2.1 Spinal efferents 

The bladder receives indirect (preganglionic) innervation from sympathetic and 

parasympathetic autonomic neurons and the EUS receives direct innervation from 

somatic motor neurons in the spinal cord (Chancellor and Yoshimura, 2004). The 

cholinergic SPN promotes detrusor contraction and bladder emptying (Ni et al., 2018; 

Papka et al., 1995). It is located in Lamina V in spinal segments’ S2-S4 in humans and 

L5-S1 in rodents, and projects via the pelvic nerve to the pelvic ganglion in humans / 

major pelvic ganglion (MPG) in rodents (Banrezes et al., 2002; Chancellor and 

Yoshimura, 2004). Preganglionic parasympathetic neurons excite postganglionic neurons 

by ACh release that is mediated by nicotinic receptors (Somogyi and de Groat, 1993; 

Yoshimura and de Groat, 1997). Postganglionic neurons then excite smooth muscle fibres 

by ACh transmission mediated via muscarinic receptors (M2 and M3 subtypes). Although 

ACh is the main neurotransmitter that excites detrusor muscle, ATP has also been 

observed to stimulate bladder contractions via purinergic receptors (de Groat and 

Yoshimura, 2001). Additionally, some postganglionic parasympathetic neurons innervate 
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the IUS and cause smooth muscle relaxation likely via transmission of NO (Bennett et al., 

1995).         

Spinal sympathetic innervation of the IUS derives from the intermediolateral cell 

column (IML) and the dorsal grey commissure (DGC), at spinal segments’ T12-L2 in 

humans and L1-L2 in rodents (Chancellor and Yoshimura, 2004; Ranson and Saffrey, 

2015). Sympathetic preganglionic neurons project via the hypogastric and pelvic nerves 

towards the hypogastric / pelvic ganglia in humans, or the MPG in rodents. This 

sympathetic innervation promotes urine storage via bladder neck IUS contraction and 

detrusor relaxation (de Groat and Wickens, 2013; Shefchyk, 2002). Preganglionic 

sympathetic neurons excite postganglionic neurons via ACh transmission mediated by 

nicotinic receptors (Chancellor and Yoshimura, 2004; Somogyi and de Groat, 1993). 

Postganglionic neurons then excite IUS smooth muscle via transmission of 

norepinephrine (NE) mediated by α1-adrenoreceptors. Additionally, detrusor relaxation is 

initiated by postganglionic transmission of NE mediated by β2- and β3-adrenoreceptors 

(Nomiya and Yamaguchi, 2003).  

 Onuf’s nucleus provides somatic innervation to the EUS and is located in lamina 

IX, segments S2-S4 (Mannen, 2000). The rodent homologues of onuf’s nucleus are two 

separate nuclei termed the SNB and the DLN and are located in lamina IX, segments’ L5-

L6. The DLN projects to the EUS and ischiocavernosus (related to anal flexion and 

reproductive reflexes), and the SNB projects to the EAS, ventral bulbospongiosus (related 

to sexual reflexes), and levator ani (forms main part of the pelvic floor musculature) 

(Schrøder, 1980). These motor neurons project via the pudendal nerve and excite the 

EUS by the release of ACh that acts on nicotinic receptors (Bierinx and Sebille, 2006; von 

Heyden et al., 1998). During bladder filling, EUS-projecting neurons are tonically active to 

evoke EUS contraction (Thor and de Groat, 2010).  

Parasympathetic and somatic LUT and terminal bowel spinal efferents (located in 

the lumbosacral spinal cord) were structurally compared for age-associated changes. This 
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was done by immunohistochemically labelling neurons in mice of different age groups. 

Analyses and results of this research are discussed in Chapter 3.  

 

1.6.2.2 Spinal afferents 

Sensory information is carried from the bladder via afferent fibres in the pelvic, 

hypogastric, and pudendal nerves (de Groat and Yoshimura, 2009). Afferents comprise of 

myelinated Aδ fibres and unmyelinated C fibres. Aδ fibres are present in the detrusor 

muscle layer and respond to detrusor stretching to convey bladder fullness sensations. 

C fibre afferents are more abundant and are present in the detrusor muscle layer, the 

lamina propria and in the urothelial layer. C fibres discharge during bladder distension, but 

at a higher threshold compared to Aδ fibres (de Groat and Yoshimura, 2009). The soma of 

pseudounipolar pelvic and pudendal afferents are located in the dorsal root ganglia (DRG) 

with afferents terminating in the sacral spinal cord (S2-S4 in humans; L4-S2 in rodents). 

The soma of hypogastric afferents are located in the DRG of neurons projecting to 

thoracolumbar spinal segments (T10-L2 in humans; T8-L1 in rodents) (Brumovsky et al., 

2012; Tennyson et al., 2016). Transganglionic transport of tracers show that bladder 

afferents project into Lissauer’s tract and pass rostrocaudally giving off collaterals where 

sympathetic, parasympathetic, and somatic LUT efferent soma and / or dendrites are 

located. These regions include, (in sympathetic, parasympathetic, and somatic spinal 

segments), the dorsal horn (DH) in laminae I, laminae V-VII where the SPN and further 

rostral IML are located, and the DGC in laminae X. The most prominent projection site for 

bladder afferents is the SPN (de Groat and Yoshimura, 2009). Additionally, bladder 

afferents input onto spinal interneurons that make excitatory or inhibitory synaptic 

connections with preganglionic neurons. Some bladder afferents synapse with second-

order neurons that project to nuclei in the brain involved in micturition (discussed below) 

(Fowler et al., 2008). 
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1.6.3 Supraspinal control of bladder function 

The process of micturition is partially controlled by reflexes and is partially under 

conscious control. An integral part of this process involves communication with higher 

brain centres so urination only occurs when it is appropriate (de Groat et al., 2015). 

Neuronal tracing, electrical nerve stimulation, and functional imaging studies have shown 

that a wide variety of brain centres are involved in the control of the LUT emphasising its 

complexity (Blok and Holstege, 1997; Duong et al., 1999; Griffiths and Fowler, 2013; 

Kuipers et al., 2007; Roy and Green, 2019). These include nuclei situated in the 

brainstem, cerebellum, limbic system, hypothalamus, thalamus, basal ganglia, and 

cerebral cortex.  

Brainstem nuclei, including the periaqueductal grey (PAG) and the PMC are a 

fundamental part of the spinobulbospinal voiding-reflex pathway. This pathway acts as a 

binary switch between ‘off’ (urine storage) or ‘on’ (voiding) (de Groat and Wickens, 2013). 

Higher brain centres involved in micturition control are likely associated with assessment 

of voiding safety (since an organism is vulnerable during voiding) and assessment of 

social appropriateness of voiding (Griffiths and Fowler, 2013). Brain structures that have 

been immunohistochemically labelled and analysed in the present study include the PMC, 

LC, and LDTg of the brainstem and the PVN of the hypothalamus. Therefore, these nuclei 

are one of the focuses of this thesis and are discussed below. For further explanation of 

other brain centres / nuclei involved in the control of micturition see listed reviews (de 

Groat et al., 2015; Drake et al., 2010; Griffiths and Fowler, 2013; Malykhina, 2017; Roy 

and Green, 2019).  

 

1.6.3.1 Brainstem nuclei 

The LC, PMC, and LDTg brainstem nuclei that are involved in the micturition reflex 

are located within the pontine tegmentum. These brainstem nuclei were 

immunohistochemically labelled (in mice) and structurally compared for age-associated 

changes. Analyses and results are discussed in Chapter 3. All three nuclei are situated in 
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close apposition to each other on the ventrolateral edge of the fourth ventricle. The LC is 

the furthest lateral with the PMC medial to the LC and LDTg. Nuclei are bilateral, located 

in each hemisphere (Paxinos and Franklin, 2007). In a study where retrograde tracer was 

injected into the rat urethra, the PMC and LC had the greatest number of immunopositive 

neurons in comparison to all other brain nuclei (Vizzard et al., 1995). Also known as the 

Barrington’s nucleus, the PMC was first discovered in the cat as the centre for efferent 

control of the bladder due to the blockade of micturition reflex following bilateral lesioning 

(Barrington, 1925). An electrophysiological study reported that 79 % of PMC neurons are 

active during bladder distension and the PMC is active during bladder voiding (in rodents 

and humans) (Blok et al., 1997b; Nour et al., 2000; Rouzade-Dominguez et al., 2003b; Tai 

et al., 2009; Yao et al., 2019), with the injection of glutamate or electrical current into the 

PMC triggering micturition (Kruse et al., 1991; Mallory et al., 1989; Mallory et al., 1991; 

Nishizawa et al., 1988; Sugaya et al., 1987). Recent studies in unanaesthetised rats and 

mice have shown the PMC exhibits slow background activity during bladder filling, with 

bursts of activity during and up to 20 seconds after urination (Hou et al., 2016; Manohar et 

al., 2017). The purpose of neuronal firing after urination is unknown but suggests that the 

PMC plays a more complex role in bladder emptying than a simple on/off switch. 

The PMC exerts visceral control over the micturition reflex via descending fibres 

that synapse onto spinal sympathetic IML and parasympathetic SPN neurons. 

Additionally, the PMC synapses onto inhibitory GABAergic / Glycinergic interneurons in 

the DGC that project to (somatic) onuf’s nucleus / DLN. This results in coordinated 

relaxation of the EUS and contraction of detrusor muscle during micturition (Blanco et al., 

2014; de Groat, 1998; Guo et al., 2013; Keller et al., 2018; Nuding and Nadelhaft, 1998; 

Verstegen et al., 2017). A wide variety of afferents project (directly and indirectly) to the 

PMC (Valentino et al., 1994). Known direct projections to the PMC include layer 5 neurons 

in the primary motor cortex, the ventromedial pontomedullery field, ventromedial and 

dorsomedial PAG, medial preoptic area, posterior hypothalamus, and the lumbosacral 

spinal cord (SPN and DGC) (Blok and Holstege, 1994; Ding et al., 1999; Ding et al., 1997; 

Kuipers et al., 2006; Yao et al., 2018). Recently, the PMC has been observed to have very 
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long dendritic arbours and thus potentially receive additional afferent inputs (Verstegen et 

al., 2017). Lumbosacral spinal afferents have also been observed to project to relay 

neurons in the PAG before reaching the PMC to evoke micturition in rats (Matsuura et al., 

2000). However, this pathway does not evoke micturition in cats (Ding et al., 1997; 

Takasaki et al., 2010). Inputs from higher brain afferents likely relay conscious information 

on whether it is safe or appropriate for micturition to occur (Tai et al., 2009). 

Aside from efferent influence over spinal micturition, the PMC sends collateral 

projections to the noradrenergic LC, which may serve to coordinate visceral and 

neurobehavioral aspects of the micturition (Valentino et al., 1996). The LC sends its 

widely distributed axonal network to various regions of the forebrain including the cortex 

where its noradrenergic input results in cortical electroencephalographic (EEG) activation 

(Berridge and Foote, 1991; Carter et al., 2010; Vazey and Aston-Jones, 2014). This likely 

leads to arousal and shift of focus i.e. awareness of bladder fullness. Furthermore, 

bladder distension has been linked to cortical EEG activation (Page et al., 1992; Valentino 

et al., 2011). The LC also sends direct descending projections to spinal LUT efferents 

including the sympathetic IML, the parasympathetic SPN, and the DLN / onuf’s nucleus 

(Jones and Yang, 1985; Nygren and Olson, 1977; Westlund et al., 1983). The LC’s 

influence over spinal micturition is modulatory. NE derived from LC projections can 

mediate excitatory and inhibitory spinal influences on the LUT via adenoreceptors. 

Excitation of either α1- and α2-adrenoreceptors in the sacral spinal cord have been 

observed to both cause and inhibit bladder contractions (de Groat et al., 2015). More 

specifically NE innervation of α1A- and α1D-adrenoreceptors is excitatory only, resulting in 

bladder contractions (Kadekawa et al., 2013; Sugaya et al., 2002; Yokoyama et al., 2010). 

In the IML, NE effect is more well-defined with tonic excitation occurring via α1-

adrenoreceptors and inhibition occurring via α2-adrenoreceptors. Similarly, the DLN is 

tonically excited (EUS contraction) via α1-adrenoreceptors and inhibited (EUS relaxation) 

via α2-adrenoreceptors (de Groat et al., 2015). The LC receives innervation from a variety 

of higher brain centres. Aside from the PMC, direct projections to the LC that are 

implicated in micturition control include the LDTg (caudal region) PAG (ventrolateral part), 
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rostral ventral medulla, and the preoptic area (Drolet et al., 1992; Jones and Yang, 1985; 

Luppi et al., 1995; Samuels and Szabadi, 2008).  

The LDTg’s function in LUT control is less well-defined in comparison to the LC 

and PMC. The LDTg projects to and receives innervation from the LC (Cornwall et al., 

1990; Jones and Yang, 1985). Additionally, the LDTg has been observed (in rats) to have 

a reciprocal relationship with the sacral spinal cord whereby it sends efferents to and 

receives afferents from the SPN (Hamilton et al., 1995; Hida and Shimizu, 1982). 

Electrical stimulation of dorsal pontine tegmentum sites in anaesthetised rats showed that 

the LDTg (and PAG) were the optimum sites for evoking bladder contractions (Noto et al., 

1989). Distinct sites of the LDTg have been implicated in bladder function. Electrical 

stimulation (in rats) of a small region on the ventrolateral edge of the nucleus resulted in 

bladder contractions only; a further caudal region evoked sphincter contractions only; and 

a further lateral and caudal region evoked both bladder and sphincter contractions 

(Yamao et al., 2001). The LDTg has been observed to have a wide variety of efferent and 

afferent networks in higher brain centres including sites involved in the control of 

micturition (Cornwall et al., 1990). 

 

1.6.3.2 The PVN of the hypothalamus 

The PVN is a complex nucleus within the hypothalamus that is known to be the 

coordinator of neuroendocrine and autonomic functions, including micturition and 

defaecation. The PVN was immunohistochemically labelled (in mice) and structurally 

compared for age-associated changes. Analyses and results are discussed in Chapter 4. 

The PVN lies bilateral to the dorsal portion of the third ventricle in the periventricular 

region (Paxinos and Franklin, 2007). The PVN has three main cell types— magnocellular 

(larger soma) neuroendocrine, parvocellular (smaller soma) neuroendocrine, and 

parvocellular autonomic-projecting neurons. Magnocellular neuroendocrine neurons 

project to the posterior pituitary where they release hormones directly into the 

bloodstream. Parvocellular neuroendocrine neurons project to the median eminence for 
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controlled hormone release into the circulation via the hypophyseal portal system of the 

anterior pituitary. Parvocellular autonomic projecting neurons innervate numerous regions 

of the brain and spinal cord that are involved in the control of various autonomic functions 

including micturition (Swanson and Sawchenko, 1980). Neuronal tracing studies (in rats) 

have consistently observed that PVN parvocellular neurons indirectly project to the 

bladder and urethra (Grill et al., 1999; Marson, 1997; Rouzade-Dominguez et al., 2003a; 

Sugaya et al., 1997). Neurons within the PVN are highly immunocytochemically diverse 

and are immunopositive for numerous neuroactive substances including oxytocin (OXY), 

vasopressin (VP), corticotrophin releasing hormone (CRH), thyrotropin-releasing hormone 

(TRH), somatostatin, growth hormone-releasing hormone (GHRH), dopamine, and 

enkephalin (ENK) (Biag et al., 2012; Bruhn et al., 1987; Sawchenko and Swanson, 1982a; 

Swanson et al., 1981). Based on location and cell type, the PVN is divided into ten 

subnuclei in mice (discussed in Chapter 4).  

PVN neuroendocrine neurons can indirectly impact bladder function via hormone 

circulation. For example, circulating VP dose-dependently increases EUS contractility (in 

mice) which can result in bladder retention (Ito et al., 2018). Regarding autonomic-

projecting neurons there are several efferent and afferent connections to regions heavily 

involved in the micturition reflex. The rat PVN sends direct efferent projections via the 

lateral funiculus to the thoracic IML and DGC, and to the lumbosacral spinal DH, DGC, 

SPN, SNB, and potentially the DLN (Gerendai et al., 2001; Gerendai et al., 2003; 

Nadelhaft and Vera, 1996; Puder and Papka, 2001a; Puder and Papka, 2001b; Swanson 

and McKellar, 1979; Tang et al., 1999; Wagner and Clemens, 1993; Zheng et al., 1995). 

The PVN directly projects to brainstem sites involved in LUT control including the 

ventrolateral PAG, scattered fibres at the rostral LC, and the medullary raphe nuclei 

(which project to the lumbosacral spinal cord for partial LUT control) (Geerling et al., 2010; 

Zheng et al., 1995). Additionally, the PVN projects to some forebrain sites involved in 

micturition control including the MPO (Silverman et al., 1981). Hence, the PVN is thought 

to be a modulator between conscious (forebrain nuclei projections) and reflex micturition 

(brainstem and spinal nuclei projections). The PVN also receives afferents from various 
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regions that are involved in micturition control including the pre-frontal cortex, LC, caudal 

LDTg, and caudal dorsal raphe nucleus (Cornwall et al., 1990; McKellar and Loewy, 1981; 

Petrov et al., 1994; Sawchenko and Swanson, 1982b; Spencer et al., 2005).  

The PVN’s role in LUT function still has knowledge gaps and is more complex than 

that of spinal and brainstem nuclei discussed above. However, studies of PVN-derived 

inputs at spinal level provide some insight. CRH in the lumbosacral spinal cord (derived 

from both the PMC and PVN) causes decreased detrusor contractions (in rats) (Pavcovich 

and Valentino, 1995; Puder and Papka, 2001a; Wood et al., 2013). Whilst OXY 

intrathecally injected into the rat lumbosacral spinal cord increases bladder pressure and 

the number of non-voiding contractions (Pandita et al., 1998; Puder and Papka, 2001b). 

Therefore, PVN-derived OXY may act as a modulator in the spinal micturition reflex. 

Additionally, the PVN may partially control the EUS, as activation of vasopressinergic 

receptors (V1ARs) present on lumbosacral motor neurons results in increased EUS closure 

(Ueno et al., 2011).  

 

1.7 ANATOMY, CELLULAR ORGANISATION AND NERVOUS CONTROL OF THE 

TERMINAL BOWEL 

For the purpose of this thesis, the terminal bowel is defined as the region spanning 

the DC (descending and sigmoid colon), the rectum and anal sphincter complex (ASC), 

since these parts of the gastrointestinal tract (GIT) are the key regions in the maintenance 

of faecal continence (Brading and Ramalingam, 2006; Palit et al., 2012). The DC and 

rectum function in faecal storage and as conduits during defaecation (Hardcastle and 

Mann, 1968; Proano et al., 1990). The ASC is composed of an internal anal sphincter 

(IAS) comprised of smooth muscle and an EAS comprised of striated muscle. The main 

function of the EAS is to stop involuntary expulsion of faecal matter by remaining 

contracted during prolonged periods between defaecation (Fritsch et al., 2002; Gibbons et 

al., 1988). The GIT is unique as it is the only organ to have its own complex nervous 

system, known as the enteric nervous system (ENS) (Furness et al., 2014). Although the 
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ENS has a significant degree of autonomy, some extrinsic nervous control (originating 

from the CNS) is necessary for regulation, modulation, and control of GIT functions 

(Browning and Travagli, 2014). Furthermore, like micturition, defaecation (after the age of 

2-3) is a partially conscious process and therefore requires (indirect) input from higher 

brain centres (Palit et al., 2012).  

 

1.7.1 Faecal storage and defaecation 

Distal gut distention inhibits proximal gut motor activity and therefore rectal 

distension results in decreased colonic motility and tone— a process which inhibits faecal 

overload in the rectum and contributes to continence (Law et al., 2002). The process of 

defaecation is initiated by a burst of activity in the DC which results in a ‘mass movement’ 

of faecal matter into the rectum (Sarna, 1991). Rectal distension results in the initiation of 

the rectal anal inhibitory reflex (RAIR), whereby the rectal contents descends into the 

upper anal canal due to IAS relaxation (Bajwa and Emmanuel, 2009). This is rapidly 

followed by contraction of the EAS and pelvic floor musculature (Cheeney et al., 2012; 

Frenckner, 1975). ‘Anal sampling’ occurs during this period to distinguish between faecal 

matter and flatus. Slow wave activity in the IAS results in contents being moved back to 

rectum in a cyclic fashion over a period of less than 10 seconds (Bajwa and Emmanuel, 

2009; Kumar et al., 1990). Tone is greatest at the distal end of the IAS where slow wave 

frequency and amplitude is greatest (Keef and Cobine, 2019).  Sensory information is 

relayed to higher brain centres for perception and assessment of appropriateness of 

defaecation (Knowles, 2018). If inappropriate, the ASC remains contracted and faeces 

may move from the rectum to the colon as a result of retrograde contractions (Keef and 

Cobine, 2019; Rao and Welcher, 1996; Rao, 2004).  When appropriate, defaecation is 

initiated by Valsalva straining, which increases colon intraluminal pressure. Additionally, 

EAS is voluntarily relaxed alongside IAS relaxation (Ranson and Saffrey, 2015; Winge et 

al., 2003).  
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1.7.2 Anatomy and cellular composition of the terminal bowel 

In Chapter 5, whole tissue sections from the mouse DC underwent protein analysis 

whereby changes in protein regulation between young and aged tissue was compared. 

Therefore, a description of the cellular composition of the GIT wall is described below. The 

GIT wall has similar cellular composition throughout (from the oesophagus to ASC). 

Generally, the wall of the GIT is arranged into four main tissue layers with each layer 

composed of a variety of cell types. The outermost layer (known as the adventitia) is 

composed of loose connective tissue coating the organ and serving to maintain organ 

structure. The following adjacent layer (known as the muscularis externa) consists of 

longitudinal (LM) and circular muscle (CM) between which a complex network of ganglia, 

the MP, is located (Cheng et al., 2010; Furness et al., 2014). The third layer (known as the 

submucosa) is a connective tissue layer with vascular and lymphatic supply and contains 

a network of smaller ganglia known as a submucous plexus (SMP) (Cheng et al., 2010). 

In rodents, the submucosa contains a single layer of ganglia in comparison to human 

intestines, which comprise of two layers (Brehmer et al., 2010; Timmermans et al., 1997). 

The SMP and the MP comprise the ENS. The innermost layer is the mucosa which 

consists of three layers within itself— the muscularis mucosa (directly adjacent to 

submucosa), the lamina propria (thin layer of connective tissue) and the epithelial 

monolayer. Nerve fibres extensively innervate the smooth muscle layers (alongside other 

GIT layers) and are of both intrinsic (ENS) and extrinsic (CNS) origin (Furness et al., 

2014). See Table 1.1 for an in-depth description of the composition of the terminal bowel 

wall.  

 

Table 1.1: Cellular composition of DC wall and main functions of each cellular component  

Layer Cellular composition Main functions 

Mucosa 

Epithelial monolayer 
 

Mature and immature 
colonocytes (colon 
epithelium) 

Metabolic processes 

Goblet cells Mucous secretion 

BEST4-OTOP2 cells pH regulation 

Intraepithelial T cells  Immune response 

B-cells Immune response 
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EECs Hormone and peptide 
release 

Stem cells Cell differentiation  

Lamina propria Macrophages Immune response 

Connective tissue Structure 

Lymphatics Toxin and waste removal 

Vasculature Oxygen and nutrient supply 

Muscularis mucosa SMCs Aid contraction and 
relaxation of GIT 

Submucosa 

 Neurons (submucosal 
plexus) 

Innervation of structures 

Connective tissue Structural 

Lymphatics Toxin and waste removal 

Vasculature Oxygen and nutrient supply 

Glial cells Neuronal support 

Muscularis externa  Smooth muscle cells 
(circular alignment) 

Colonic motility 

Neurons (myenteric plexus) Innervation of structures 

Glial cells Neuronal support 

ICCs Smooth muscle contractility 

Smooth muscle cells 
(longitudinal alignment) 

Colonic motility 

Adventitia Connective tissue Structural 
Abbreviations: EECs, Enteroendocrine cells; GIT, Gastrointestinal tract; ICCs, Interstitial cells of Cajal; SMCs, 

Smooth muscle cells. 

The DC and rectal wall have the same general cellular structure as described 

above. However, the IAS has the distinct anatomical feature of a thickened CM layer 

within the muscular externa. Skeletal muscle external to the GIT wall surrounds the IAS 

and makes up the EAS and the pelvic floor musculature (Ranson and Saffrey, 2015). The 

IAS is controlled involuntarily and contributes to 50-85 % of total anal sphincter tone 

(Bajwa and Emmanuel, 2009; Bharucha, 2008; Lestar et al., 1989). The voluntarily 

controlled EAS contributes to the remaining sphincter tone (Krogh and Christensen, 

2009). 

 

1.7.3 Intrinsic nervous control of the terminal bowel  

The ENS is the main nervous supply to the GIT, with an estimated neuronal count of 

200-600 million in humans. They are functionally diverse, including intrinsic sensory 

neurons, interneurons, and motor neurons. Intrinsic sensory neurons, also known as 

intrinsic primary afferent neurons (IPANs) comprise 10-30 % of submucosal and 



 

21 
 

myenteric neurons (Furness et al., 2014). They are multi-axonal neurons that project to 

CM and mucosa for response to alterations in luminal chemistry and mechanical changes 

i.e. stretch (Bertrand et al., 1998; Bertrand et al., 1997; Brookes et al., 1995; Furness et 

al., 1998; Kirchgessner et al., 1992; Kunze et al., 1998; Neunlist et al., 1999; Smolilo et 

al., 2019; Song et al., 1991). Based on recent findings from an immunohistochemical 

labelling study (in mice), IPANs have been proposed to project to ascending (excitatory) 

and descending (inhibitory) interneurons in the MP (Smolilo et al., 2020). This likely 

causes gut contraction oral to the stimulus and relaxation aboral to promote movement of 

luminal content in the direction of the ASC (Bayliss and Starling, 1901).  

Enteric interneurons are single axon neurons that project in an ascending (orally) 

and descending (anally) manner in both the SMP and MP (Pompolo and Furness, 1993; 

Portbury et al., 1995; Song et al., 1997; Young and Furness, 1995). In addition to control 

of local motility reflexes, descending interneurons are potentially involved in activity 

associated with migrating myoelectric complexes (waves of electrical activity during the 

interdigestive period) (Portbury et al., 1995). Additionally, some interneurons have been 

observed to have mechanosensitive properties and respond directly to stretch without 

IPAN input (Costa et al., 2019; Smith et al., 2007).       

Enteric motor neurons are a diverse neuronal group which regulate the functions of 

smooth muscle, intestinal blood vessels, epithelium, EECs, immune cells, and 

intestinofugal neurons (afferent neurons with soma residing in the GIT wall, but whose 

axons project to CNS ganglia) (Ranson and Saffrey, 2015). They excite and inhibit smooth 

muscle layers (muscularis externa and muscularis mucosa) via release of acetylcholine 

and tachykinins (excitatory), and NO, vasoactive intestinal polypeptide, and ATP-like 

transmitters (inhibitory) (Furness et al., 2014). In mice, the soma of neurons supplying the 

muscularis externa (CM and LM) are located in the MP, making it a major region for the 

nervous control of gastric motility (Furness et al., 2014; Steele et al., 1991). In the 

muscularis mucosa of the colon, the nervous supply is thought to originate from neurons 

in the SMP (Furness et al., 1990).      
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Some cells play an intermediatory role in nervous control of the bowel including 

ICCs, fibroblast-like cells (FLCs), and EECs. C-kit+ ICCs and PDGFRα+ FLCs partially 

form an integrated cell network (known as SIP syncytium) that generates and regulates 

phasic and tonic GIT contractions (Sanders et al., 2014). ICCs are stellate or spindle 

shaped and are mainly located on the surface of the SMP (ICC-SMP) and the MP (ICC-

MP). Intramuscular ICCs (ICC-IM) also exist in the circular and longitudinal muscle (LM) 

layers. (Wang et al., 2018; Ward and Sanders, 2006; Yang et al., 2012). Additionally, 

ICCs have been observed in the lamina propria and are thought to regulate secretion and 

absorption (Yang et al., 2012). ICC-MP serve as pacemakers, generating and propagating 

electrical slow waves to form phasic contractions of smooth muscle (Huizinga et al., 1995; 

Ward et al., 1994). ICC-IM form gap junctions with smooth muscle cells and are in close 

synaptic contacts with terminals of enteric motor neurons. They express receptors and 

second messenger pathways necessary for enteric motor neurotransmission (Blair et al., 

2012; Drumm et al., 2019; Durnin et al., 2017; Groneberg et al., 2013; Sung et al., 2018). 

In the (mouse) IAS, ICC-IM contribute to muscle tone via the generation of slow wave 

contractions (Cobine et al., 2017).  

EECs form the largest endocrine organ in the body and play a key role in the control 

of GIT secretion and motility in addition to regulation of food intake and metabolism. In the 

colon, sub-types of EECs include L-cells and enterochromaffin cells, which both release 5-

hydroxytryptamine (5-HT) otherwise known as serotonin. In addition to 5-HT, colonic L-

cells release peptide YY (PYY), glucagon like peptide-1 (GLP1), and glucagon like 

peptide-2 (GLP2) (Habib et al., 2012). EECs possess various types of cell surface 

receptors (mainly on the luminal side) allowing them to respond to a variety of stimuli 

(Latorre et al., 2016; Ye and Liddle, 2017). In mice EECs were observed to have contact 

with ‘neuropods’ (on the lamina propria side) which consist of axonal process and glial 

cells (cells which nurture and provide support to neurons) likely providing efferent and 

afferent neuronal connections (Bohorquez et al., 2014; Bohorquez et al., 2015). Neural 

connections have been observed between EECs and vagal afferents connecting indirectly 

to higher brain centres (Dockray, 2013). Specifically, PYY / GLP1 cells coming into 
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luminal contact with protein, carbohydrates etc. send food-associated signals to brain 

regions including the hypothalamus (Bradley, 2007; Engelstoft et al., 2008; Geraedts et 

al., 2012; Thomas et al., 2009). PYY and GLP1 is secreted as a result of contact with 

short chain fatty acids produced by microbial fermentation (Psichas et al., 2015). 

Importantly, ECCs can affect gut motility through 5-HT release (Nozawa et al., 2009). 

Furthermore, enterochromaffin cells have been observed to release histamine, which 

causes periodic gastric contractions via ICCs (Naganuma et al., 2018). 

 

1.7.4 Innervation of the terminal bowel at spinal level 

As noted previously, the majority of the nervous supply to the bowel as a whole 

originates from the intrinsic ENS. However, extrinsic connections with the CNS are 

necessary for conscious control of defaecation. Furthermore, the ASC requires conscious 

control and (in humans) the major nerve supply to the IAS is arises from the spinal pelvic 

plexus (Kinugasa et al., 2014). CNS efferent and afferent control of the terminal bowel has 

overlaps with that of the LUT described in section 1.6.  

 

1.7.4.1 Spinal efferents 

Spinal efferent innervation of the terminal bowel is more complex than innervation 

of the LUT. In guineapigs, the rectum was observed to receive a much greater extrinsic 

innervation (4,177 ± 987 extrinsic neurons on average) than the DC (649 ± 125 extrinsic 

neurons on average); of which 49 % of projections to the rectum were parasympathetic, 

whilst in the DC only 17 % were (Olsson et al., 2006). Coinciding with innervation of the 

LUT, parasympathetic preganglionic neurons projecting to the terminal bowel are present 

within the SPN (described in section 1.6.2.1) (Dorofeeva et al., 2009; Payette et al., 1987). 

These preganglionic neurons project through the pelvic nerve via two pathways— directly 

to intrinsic GIT neurons, or indirectly to intrinsic GIT neurons via the MPG (Browning and 

Travagli, 2014; Olsson et al., 2006). Pelvic nerve efferents have been observed to densely 

innervate the MP and externa muscle layers, and (to a lesser extent) deeper layers 
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including the SMP, mucosa, and blood vessels, suggesting functional control beyond 

colorectal motility (Brumovsky et al., 2014). Parasympathetic innervation of the terminal 

bowel increases contractions via muscarinic receptors. Whilst sympathetic innervation 

inhibits contractions via beta-adrenoreceptors. This is also the case for IAS innervation in 

rodents (Cobine et al., 2007; Tong et al., 2010). However, in higher species (including 

humans and monkeys) sympathetic innervation of the IAS is excitatory, with 

parasympathetic inputs likely to be inhibitory (Carlstedt et al., 1988; Cobine et al., 2007). 

This must be considered when interpreting present results (in mice) for human application. 

Sympathetic preganglionic neurons arise from lumbar spinal (L1-S1 in guineapigs) 

and project to prevertebral (celiac, inferior mesenteric, and superior mesenteric) and 

paravertebral ganglia which project via the splanchnic nerves to the rectum and DC (Janig 

and McLachlan, 1987; Luckensmeyer and Keast, 1994; Olsson et al., 2006; Trudrung et 

al., 1994). In the guinea-pig DC, pre-vertebral efferent projections are more abundant that 

paravertebral. 17 %, 17 %, and 31 % of efferent projections arose from the celiac 

ganglion, the superior mesenteric ganglion and the inferior mesenteric ganglion 

respectively; whilst 18 % of efferent projections arose from the paravertebral sympathetic 

ganglia. However, paravertebral sympathetic ganglia provided the majority sympathetic 

projections to the rectum making up 37 % of efferent projections. Whilst the celiac 

ganglion (1.5 %), superior mesenteric ganglion (3 %) and inferior mesenteric ganglion (9.2 

%) only accounted for a small amount of efferent innervation (Olsson et al., 2006).  

The EAS is separate from the GIT and therefore has no intrinsic enteric nervous 

input, with all nervous input derived from spinal motor neurons. As described in section 

1.6.2.1, the EAS (in addition to the ventral spongiosus) in rodents is innervated by 

lumbosacral SNB motor neurons projecting via the pudendal nerve (McKenna and 

Nadelhaft, 1986; Schrøder, 1980).   
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1.7.4.2 Spinal afferents   

Sympathetic afferents innervating the DC, rectum, and IAS project from DRG cell 

bodies in the thoracolumbar DRG (T8-L1 in mice) via the splanchnic nerve. 

Parasympathetic afferents project from DRG soma via the pelvic nerve (L6-S1 in mice) 

(Brierley et al., 2018; Christianson et al., 2007; Robinson et al., 2004). There is also 

evidence of vagal afferent supply to the DC in rats (Berthoud et al., 1990; Berthoud et al., 

1997; Herrity et al., 2014; Wang and Powley, 2007). In mice, 20 % of DC and bladder 

spinal afferents (of which 12 % are lumbosacral) dually innervate both structures 

suggesting convergent regulation of the two organs (Christianson et al., 2007). Colorectal 

spinal afferents respond to muscle stretch / distension, mucosal distortion, noxious stimuli, 

and immune / inflammatory signals (Brierley et al., 2018). Thoracolumbar spinal afferents 

project from the wall of the DC and send collaterals to lamina I and V. Whereas, 

lumbosacral spinal afferents originate from both the DC wall (45 %) and lumen (25 %), 

with 31 % of afferents dually innervating the wall and lumen. Lumbosacral afferents from 

the DC wall send collaterals to lamina I, the DGC, and SPN. Projections from the DC 

lumen terminate in lamina I, lamina III, and the DGC, and dual (DC wall and lumen) 

projections send collaterals to lamina I and the DGC (Harrington et al., 2019). Spinal 

afferents synapse onto second order neurons in the form of reflex interneurons or 

ascending neurons projecting to the brain (De Groat and Krier, 1978; Sadeghi et al., 

2018).    

 

1.7.5 Supraspinal control of the terminal bowel 

As previously mentioned, the process of defaecation requires conscious control 

from higher brain centres. In patients with supraconal spinal injuries, FI is prevalent and 

conscious control of sphincter activity is abolished. Furthermore, discriminant rectal 

sensation during rectal distension is lost, emphasizing the importance of supraspinal 

control for the initiation of the RAIR and defaecation (Macdonagh et al., 1992; Rasmussen 

et al., 2013).  
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Functional magnetic resonance imaging (FMRI) and neuronal tracing studies have 

observed a wide variety of brain centres involved in the control of the rectum and ASC 

including the brainstem, cerebellum, limbic system, hypothalamus, thalamus, and the 

cortex (He et al., 2018; Mayer et al., 2009; Moisset et al., 2010; Mugie et al., 2018; 

Silverman et al., 1997). Brain structures that have been immunohistochemically labelled 

and analysed in the present study include the PMC, LC, and LDTg of the brainstem and 

the PVN of the hypothalamus. Therefore, their role in rectal and anal control will be 

discussed. For further explanation of CNS control of defaecation, see listed reviews 

(Drake et al., 2010; Greenwood-Van Meerveld et al., 2017; Jones et al., 2006). 

 

1.7.5.1 Brainstem nuclei 

The location and efferent and afferent connections of the LC and PMC have been 

described in section 1.6.3.1. To our best knowledge, the LDTg does not appear to be 

involved in terminal bowel control and therefore will be discussed with reference to its 

impact on LUT control in Chapter 3. Transneuronal tracer injected into the DC shows 

consistent labelling of the PMC and LC (Pavcovich et al., 1998; Rouzade-Dominguez et 

al., 2003a; Valentino et al., 2000). Furthermore, PMC and LC neurons are active during 

DC and rectal distension (Elam et al., 1986; Lechner et al., 1997; Rouzade-Dominguez et 

al., 2001; Rouzade-Dominguez et al., 2003b; Wang et al., 2009). The PMC has been 

observed to project to the LC when retrograde tracer is injected into the DC (Pavcovich et 

al., 1998). The activity in the LC during colorectal distension is caused by CRH inputs, 

since CRH antagonist injected into the LC (during colonic distension) abolishes activity 

(Kosoyan et al., 2005; Lechner et al., 1997). One third of PMC-LC-projecting neurons are 

CRH-immunopositive suggesting the PMC as the source of LC excitation (Valentino et al., 

1996).  

 Activation of the PMC via glutamate injection results in increased DC intraluminal 

pressure (Pavcovich et al., 1998). This is also potentially mediated by CRH, as CRH+ 

PMC neurons have been observed to project dually to the SPN and LC (Valentino et al., 
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1996). In addition, dual labelling with transneuronal tracer (injected into the DC) and CRH 

displays direct CRH+ projections from the PMC to the SPN (Valentino et al., 2000). This 

pathway may serve to bring attention to a mass movement of faecal matter in the bowel 

(initiated by the PMC) and therefore the urge to defaecate, since the colonic distension 

results in LC induced cortical EEG activity (Lechner et al., 1997). Additionally, CRH 

injected into the LC and SPN results in increased colonic motility (Lechner et al., 1997; 

Monnikes et al., 1994; Schwarz et al., 2015; Valentino et al., 1999; Wang et al., 2010). 

However, electromyogram activation of the LC during colorectal distension (in rats) has 

shown that the LC inhibits external abdominal oblique muscle contraction (Tsuruoka et al., 

2005). Therefore, the LC has been observed to increase visceral activity, but inhibit 

visceromotor activity. This implies that the LC has a dual function whereby it increases 

arousal / awareness during colonic transit (mediated by PMC dual CRH projections to the 

LC and SPN); however, during RAIR it may impede initiation of defaecation likely as a 

result of inappropriateness of defaecation at that time.  

Furthermore, the LC and PMC have also been implicated in the control of the EAS. 

The LC sends noradrenergic projections to the SNB (Thor and de Groat, 2010). In cats, 

stimulation of the LC was observed to increase and decrease pudendal nerve firing and 

EAS contraction. Therefore, the LC likely plays a modulatory role in EAS control 

(Abysique et al., 1998). In rats, tracing studies have shown (indirect) projections from the 

PMC to the SNB, likely via interneurons in the DGC and SPN (Dobberfuhl et al., 2014; 

Tang et al., 1999). However, to our best knowledge, information on how the PMC may 

affect EAS excitability is currently unavailable. 

The PMC has also been implicated in dual innervation and functioning of the 

bladder and terminal bowel. In rats, 53 % of PMC neurons are activated during both 

bladder and colon distension (but not colon distension alone) (Rouzade-Dominguez et al., 

2003b). A separate study (in rats) whereby transsynaptic tracer was injected into the DC 

and bladder revealed that 70 % of PMC neurons were double-labelled, with only 10 % of 

neurons single labelled for DC injections (Rouzade-Dominguez et al., 2003a).  
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1.7.5.2 The PVN of the hypothalamus 

The location, immunocytochemistry, and efferent and afferent connections of the 

PVN have been described in section 1.6.3.2. Transneuronal tracer injected in the DC has 

displayed PVN labelling, particularly in the dorsal portion (in rats) (Pavcovich et al., 1998; 

Rouzade-Dominguez et al., 2003a; Valentino et al., 2000). Furthermore, the PVN is active 

during colonic distension, with 81 % of OXY neurons, 18 % of VP neurons and 16 % of 

CRH neurons showing activity (Martínez et al., 2006; Wang et al., 2009). The exact 

function of the PVN in colonic control is not fully understood. Adding to this, it is difficult to 

determine projection sites of subsets of PVN neurons i.e. projection to the hypophysis (for 

circulatory hormone release); or projection to various CNS sites involved in terminal bowel 

control. The PVN has been observed to project to brainstem and spinal sites involved in 

DC efferent control including the LC, PAG, nucleus tractus solitaries (NTS), dorsal motor 

nucleus of the vagus (DMV), and the lumbosacral spinal cord (Geerling et al., 2010; 

Portillo et al., 1998; Zheng et al., 1995).  

Within the LC, CRH inputs increase colonic motility and these inputs may partially 

be derived from the PVN (as well as the PMC) (Lechner et al., 1997; Monnikes et al., 

1994; Schwarz et al., 2015; Valentino et al., 1999). Furthermore, CRH inputs onto the 

SPN have been observed to increase colonic motility, and PVN-derived CRH inputs have 

been observed in the lumbosacral spinal cord (Puder and Papka, 2001a; Wang et al., 

2010). However, dual labelling with transneuronal tracer (injected into the DC) and CRH 

showed that CRH+ inputs in the SPN derived solely from the PMC (and not the PVN) 

(Valentino et al., 2000). PVN-derived CRH may impact colonic motility via circulatory 

release, as CRH delivered to the inferior mesenteric artery (IMA) (main blood supply to 

the DC and rectum) and intraperitoneally (in rats) results in increased colonic motility and 

defaecation via activation of myenteric neurons (Maillot et al., 2000; Maillot et al., 2003; 

Million et al., 2000).    

In addition, PVN-derived VP may impact colonic motility via circulatory release as 

VP delivered to the IMA in the monkey resulted in inhibition of phasic contractions at lower 
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doses and caused giant migratory contractions at higher doses (Zhu et al., 1992). A 

similar phenomenon was observed when VP was applied directly to the guineapig colon 

(Botting and Turmer, 1966). Therefore, VP may be partially responsible for faecal ‘mass 

movement’ prior to or during defaecation. Furthermore, PVN-derived OXY has been 

observed to increase colonic motility (in mice) via circulatory release and does so via 

activation of OXY receptors present of MP neurons (Xi et al., 2019).    

PVN OXY neurons have also been observed to project to the lumbosacral spinal 

cord (Puder and Papka, 2001b). However, there has been no evidence reported thus far 

of these projections in direct control of colon or rectal function, with most studies reporting 

OXY inputs onto the SNB resulting in penile erection (Giuliano et al., 2001; Tang et al., 

1998; Veronneau-Longueville et al., 1999). However, PVN-derived OXY inputs onto the 

lumbosacral SNB have been observed to innervate the pubococcygeus muscle of the 

pelvic floor and likely results in muscle contraction (Perez et al., 2005). The 

pubococcyceus muscle is a key striated muscular structure connected to the EAS and 

thus OXY input onto the SNB likely aids faecal storage and continence during rectal 

distension (Garavoglia et al., 1993). Therefore, PVN control of DC contractility is likely 

mainly via circulatory release of hormones at the hypophysis, with control of pelvic floor 

contractility via central pathways. See Figure 1.1 for projection pathways of nuclei of 

interest involved in controlling the LUT and terminal bowel.  
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Figure 1.1: Connections between nuclei of interest that directly and indirectly innervate the 

LUT and terminal bowel. Brain connections: the PVN projects to the pituitary for circulatory 

hormone release (that controls EUS and DC smooth muscle); the PVN projects to and 

receives innervation from the LC; the LC projects to and receives innervation from the LDTg; 

and the PMC sends collateral projections to the LC and SPN. Brain-spinal connections: the 

PVN projects to the SPN; the PMC projects to and receives innervation from the SPN; the 

PMC projects to the inhibitory neurons in the DGC which project to the DLN and SNB; the 

LDTg projects to and receives innervation from the SPN; and the LC projects to the SPN. 

Spinal efferents: the SPN projects to the MPG which innervates the bladder detrusor and 

DC smooth muscle; the DLN projects directly to the EUS; and the SNB projects directly to 

the EAS. DC, Distal colon; DLN, Dorsolateral nucleus; LC, Locus coeruleus; LDTg: 

laterodorsal tegmental nucleus; EAS, External anal sphincter; EUS, External urethral 

sphincter; MPG, Major pelvic ganglion; PMC, Pontine micturition centre; PVN, 

Paraventricular nucleus; SNB, Spinal nucleus of the bulbospongiosus; SPN, Sacral 

parasympathetic nucleus.  
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1.8 NEUROACTIVE SUBSTANCES INVOLVED IN BRAIN AND SPINAL CONTROL OF 

LUT / TERMINAL BOWEL  

Many neuroactive substances have been previously discussed that impact CNS and 

PNS outflow for LUT and terminal bowel function. In the present study, specific 

neuroactive substances have been immunohistochemically labelled. These include met-

ENK inputting onto brainstem (LC, PMC, and LDTg) and lumbosacral spinal (SPN, DLN, 

and SNB) nuclei; gamma-Aminobutyric acid (GABA) within the lumbosacral spinal cord 

and the PVN of the hypothalamus; and glutamate within the PVN. The roles of these 

neuroactive substances in the control of micturition and defaecation are discussed below.   

 

1.8.1 Met-Enkephalin 

Enkephalin is a neuropeptide that exists in two forms— met-ENK and leucine-

enkephalin (leu-ENK), which are both products of the proenkephalin gene. ENK is 

expressed in neurons in various regions of the CNS and binds to delta opioid (DOR), mu 

opioid receptors (MOR), and kappa opioid receptors (KOR) which are inhibitory G-protein-

coupled receptors (Takahashi, 2016). Activation of opioid receptors results in inhibition of 

adenylyl cyclase and voltage-gated calcium channels, and the opening of inward rectifying 

potassium channels (Waldhoer et al., 2004). 

 

1.8.1.1 Met-ENK in the lumbosacral spinal cord (Chapter 3) 

In Chapter 3, the impact of ageing on of met-ENK density was observed in the 

lumbosacral spinal cord within the SPN, SNB, DLN, DH (lamina I), DGC, and VH (ventral 

portion of lamina VIII). Intrathecal administration of ENK in the lumbosacral spinal cord (of 

rats and cats) inhibits bladder, DC, and EAS contractions (Abysique et al., 1998; Dray and 

Metsch, 1984; Hisamitsu and de Groat, 1984; Kennedy and Krier, 1987). Furthermore, it 

likely inhibits EUS contractions (at spinal level) as subcutaneously administered ENK (in 

humans) results in decreased urethral pressure (Vaidyanathan et al., 1989). In the 

lumbosacral spinal cord (of rats), ENK fibres are present in the SPN, DLN, SNB, DGC, 
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DH, and VH (Katagiri et al., 1986; Micevych et al., 1986; Romagnano and Hamill, 1985; 

Sasek and Elde, 1986; Shimosegawa et al., 1987). Furthermore, ENK inputs appose 

SNB, DLN, and SPN soma and neuronal processes, and likely influence spinal outflow to 

the terminal bowel and LUT resulting in inhibition of contractions (Micevych et al., 1986; 

Sasek and Elde, 1986). Additionally, SPN soma and neuronal processes are 

immunopositive for MORs in rats (Dou et al., 2013).     

 Knowledge of ENK+ fibre origin is incomplete. However, mid-thoracic spinal 

transections (in rats) have shown no change in lumbosacral ENK fibre density, suggesting 

intraspinal origin (Micevych et al., 1986; Romagnano et al., 1987). Therefore, lumbosacral 

ENK fibres are likely to be derived from spinal afferents or interneurons. In rats, ENK+ 

bladder and penis afferents are present, but sparse. Retrograde tracer injected into the 

DRG shows that ENK+ afferents are mainly derived from the colon (in comparison to the 

bladder and penis) (Keast and de Groat, 1992). Therefore, ENK fibres likely present in the 

DH, SPN, and / or DGC partially derive from colon (and to a less extent) bladder and 

penis DRG afferents (de Groat and Yoshimura, 2009; Harrington et al., 2019). The 

remaining lumbosacral spinal afferents are likely from spinal interneurons caudal to the 

mid-thoracic region. Indeed, ENK+ soma have been observed in the DH (L3-L5), DGC 

(L1-L5), and SPN in rodents (Huang et al., 2010; Nicholas et al., 1999; Sasek and Elde, 

1986; Shimosegawa et al., 1987). Furthermore, ENK+ fibres extend between the SPN and 

DGC, indicating interactions between neuronal populations (Sasek and Elde, 1986).    

 

1.8.1.2 ENK in the pontine tegmentum (Chapter 3)  

ENK tonically inhibits pre-sympathetic and pre-parasympathetic PMC neurons (via 

MORs) and regulates bladder capacity (in rats and cats) (Fowler et al., 2008; Guo et al., 

2013). The impact of ENK inputs onto PMC neurons on colonic function, to our best 

knowledge, is unknown. However, since it tonically inhibits bladder-projecting SPN 

neurons, it likely has a similar effect on DC and rectum-projecting SPN neurons (Guo et 

al., 2013). The source of ENK inputs onto PMC neurons is unknown. However, PAG, 
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MPO, and lumbosacral DGC and SPN all contain ENK+ neurons and are CNS sites that 

innervate the PMC for bladder control (Blok and Holstege, 1994; Ding et al., 1999; Ding et 

al., 1997; Moss et al., 1983; Nicholas et al., 1999; Sasek and Elde, 1986; Shimada et al., 

1987; Shimosegawa et al., 1987). Therefore, these nuclei are possible regions of ENK 

projections to the PMC.  

ENK innervation of the LC (via MORs) inhibits bladder contractions (in cats) and 

increases bladder capacity (Guyenet and Aghajanian, 1979; Matsuzaki, 1990). ENK-LC 

and impact on colorectal motility has, to our best knowledge, not been reported. However, 

ENK injected into the (cat) LC results in decreased EAS contraction and tone (Abysique et 

al., 1998). ENK inputs in the LC are derived from the rostral medulla in the nucleus 

prepositus hypoglossi and the nucleus paragigantocellularis (Drolet et al., 1992). In 

addition, ENK+ neurons have been observed in the PMC (in rats) and may be a source of 

LC innervation (Morita et al., 1990).  

LDTg neurons are DOR+ and inhibit neuron firing (Arvidsson et al., 1995; Capece 

et al., 1998). The effects of ENK-LDTg on LUT function are unknown. Additionally, the 

source of ENK inputs onto LDTg neurons are currently unknown.  

 

1.8.2 GABA 

GABA is the principle inhibitory neurotransmitter in the CNS. GABA inhibits 

neurons via ionotropic (GABAAR) and metabotropic (GABABR) receptors. GABAARs are 

selective cation channels that open upon GABA binding resulting in Cl- influx. GABABRs 

are G-protein-coupled receptors that decrease Ca2+ intracellular concentration and inhibit 

cAMP production (Jembrek and Vlainic, 2015). Vesicular GABA transporters (VGATs) are 

present in the plasma membrane of synaptic vesicles, which release GABA upon neuronal 

stimulation (Albers et al., 2017). Anti-VGAT antibodies were used to label GABAergic 

synaptic boutons in the present study. 
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1.8.2.1 GABA in the lumbosacral spinal cord (Chapter 3) 

Intrathecal administration of bicuculline (GABAAR antagonist) in the lumbosacral 

spinal cord increases bladder and colorectal contractions (in rats) (Nakamori et al., 2018; 

Sugaya et al., 2019). Therefore, GABA decreases contractile responses in the bladder 

and colorectum at lumbosacral spinal level (via GABAARs). This likely occurs via 

GABAergic inputs onto the SPN, since immunolabelled GABA synaptic boutons have 

been observed in contact with rat SPN soma and dendrites (Ranson et al., 2006; Santer 

et al., 2002). The PMC (in cats) projects to GABAergic sacral spinal interneurons in the 

DGC, which are thought to project to onuf’s nucleus / DLN for EUS inhibition (during PMC-

induced bladder contractions via the SPN) (Blok et al., 1997a; Sie et al., 2001).  

GABAergic projections from the rostral ventromedial medulla have been observed 

to synapse in the DH and DGC of the lower lumbar spinal cord (in rats) (Antal et al., 1996; 

Holstege, 1991). The remainder of GABAergic inputs (to SPN and motor neurons) are 

likely derived from spinal interneurons projecting from the DH and DGC (in the rat and cat) 

(Blok et al., 1997a; Polgar et al., 2003).  

 

1.8.2.2 GABA in the PVN (Chapter 4)  

GABA is the principle inhibitory neurotransmitter in the PVN (Johnson et al., 2018). 

It inhibits PVN neurons via GABAARs and GABABRs (Chen and Pan, 2006; Herman et al., 

2004; Park et al., 2007; Yamaguchi et al., 2019). GABA synaptic boutons in the (rat) PVN 

have been observed to project from hypothalamic structures including the PVN itself 

(rostral portion), supraoptic nucleus (SON), suprachiasmatic nucleus (SCN) and the 

perifornical region (Hermes et al., 1996; Roland and Sawchenko, 1993). However, these 

studies only account for local GABAergic connections, mainly observed inputting onto 

parvocellular neurons. Therefore, there are likely further brain GABAergic connections to 

the PVN, particularly for magnocellular neuronal control.  
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1.8.3 Glutamate in the PVN (Chapter 4) 

Glutamate is the principle excitatory neurotransmitter in the PVN (and CNS in 

general) (Brann, 1995; Platt, 2007). Glutamate excites neurons via metabotropic 

(mGluRs- Group I-III) and ionotropic (iGluRs- NMDA, kainite, and AMPA) receptors. 

IGluRs are non-selective cation channels that open upon glutamate binding resulting in 

cation influx (e.g. Na+, K+, and Ca2+). Group I mGluRs are present in the PVN and are G-

protein-coupled receptors whose activation results in generation of diacylglycerol and 

inositol 1,4,5-trisphosphate, which eventually activates protein kinase C  (Herman et al., 

2000; Mahato et al., 2018; Reiner and Levitz, 2018; van den Pol, 1994; Van Den Pol et 

al., 1995). Vesicular glutamate transporters (VGLUTs) are present in the plasma 

membrane of synaptic vesicles, which release glutamate upon neuronal stimulation. Three 

types of VGLUTs exist, VGLUT1-3 (Liguz-Lecznar and Skangiel-Kramska, 2007). In the 

PVN, VGLUT1 and VGLUT2 are present in pre-synaptic terminals. However, anti-

VGLUT2 antibodies label the vast majority of glutamate terminals in the mouse PVN and 

therefore were used in the present study (Nakamura et al., 2005). Glutamate afferents 

projecting to the PVN (in rats) are derived from a variety of nuclei of which the majority are 

hypothalamic (including from interneurons within the PVN itself), while the remainder are 

from telencephalonic, thalamic, and midbrain projections (including substantial VGLUT2-

containing projections from the PAG) (Csáki et al., 2000; Hermes et al., 1996; Ulrich-Lai et 

al., 2011; Ziegler et al., 2012).  

 

1.9 AGEING OF THE LUT, TERMINAL BOWEL, AND CNS STRUCTURES INVOLVED 

IN THE CONTROL OF PELVIC VISCERA 

1.9.1 Ageing in the bladder 

Changes in bladder function with age varies between species and gender. Age-

associated detrusor underactivity and overactivity have both been reported. Increased 

pressure threshold for voiding with age appears to be a widespread phenomenon across 

various species (Birder et al., 2018). Studies have shown age-associated changes in 
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intrinsic nervous and non-nervous tissue, and in extrinsic innervation of the bladder. In 

humans, fMRI has revealed an age-associated decrease in cortical activation during 

bladder filling indicating decreased conscious control (Griffiths et al., 2007; Griffiths et al., 

2009) In this thesis, the impacts of ageing on LUT function were observed at specific CNS 

regions [lumbosacral (SPN, DLN, and SNB), brainstem (LC, PMC, and LDTg) and 

hypothalamic (PVN)]. Therefore, age-associated changes within these specific AOIs are 

discussed below. See listed reviews for further description of age-associated changes 

within the LUT and other nervous structures involved in its control (Birder et al., 2018; 

Finkbeiner, 1993; Ranson and Saffrey, 2015).  

 

1.9.2 Ageing in the terminal bowel  

As the GIT is one of the most complex organs with a vast cellular diversity, it is 

subject to a variety of age-associated changes. Analysis of the ENS suggests that enteric 

neurons (in the MP and SMP) may be more susceptible to age-associated degeneration 

than neurons in other parts of the nervous system (Saffrey, 2013). This likely impacts GIT 

motility and defaecation, potentially resulting in constipation and / or FI (Wiskur and 

Greenwood-Van Meerveld, 2010). For a more in-depth discussion of how ageing affects 

the DC and GIT as a whole, see listed reviews (Merchant et al., 2016; Saffrey, 2014; 

Saffrey, 2013; Soenen et al., 2016; Wiskur and Greenwood-Van Meerveld, 2010).  

 

1.9.3 Ageing in the lumbosacral spinal areas of interest controlling the LUT and terminal 

bowel 

As discussed previously, the lumbosacral SPN is the main source of spinal 

parasympathetic innervation to the bladder and terminal bowel. Whilst the DLN and SNB 

provide somatic control of the EUS and EAS, respectively. Some studies have reported 

the impact of ageing on these neuronal structures and their synaptic inputs, which may 

contribute to LUT / terminal bowel dysfunction. In male rats (but not females), DLN and 

SNB dendritic length are decreased with age (Fargo et al., 2007). However, neuron 
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number and cell size in rats show differing results. Neuron number has been observed to 

be decreased and maintained with age, whilst soma size has been observed to be both 

increased and decreased with age (Fargo et al., 2007; Jacob, 1998). In aged rats where 

soma size was increased, a significant build up of lipofuscin was noted (Jacob, 1998). 

Lipofuscin is an aggregate formed by lipids, metals, and misfolded proteins and is thought 

to contribute to free radical1 formation by preventing the degradation of oxidised proteins 

(Moreno-García et al., 2018).  

Changes in motor neuron innervation have been noted with age. The density of 

(unlabelled) synaptic inputs in apposition to SNB soma and glutamate inputs to SNB / 

DLN dendrites decrease with age (in rats) (Matsumoto, 1998; Ranson et al., 2007). These 

changes likely diminish EUS and EAS contractile properties since glutamate excites 

sphincter muscles at the level of the spinal cord (Furuta et al., 2009). Additionally, tyrosine 

hydroxylase+ (representing dopamine and NE) and serotonin+ synaptic density within DLN 

was declined with age. This likely results in diminished EUS control, since duloxetine2 is 

used to treat UI and increases EUS contractility (Thor and de Groat, 2010).  

In the rat SPN no age-associated changes have been observed regarding neuron 

numbers or size / complexity of dendritic arbors (Dering et al., 1998; Dering et al., 1996; 

Santer et al., 2002). Whole (unlabelled), serotonergic, GABAergic, and glycinergic 

boutons inputting onto (rat) SPN neurons have also been observed to remain unchanged 

in rats with age (Ranson et al., 2003a; Santer et al., 2002). Furthermore, the density of 

GABABRs within the SPN remain unchanged with increased age (Dorfman et al., 2006). 

Therefore, SPN structures in the rat appear to remain largely intact with age. However, 

the density the substance P and tyrosine hydroxylase immunoreactive boutons in the SPN 

show an age-associated decrease (Ranson et al., 2003a; Ranson et al., 2005). Since NE 

both excites and inhibits SPN firing via different adrenergic receptors, the impact on 

detrusor contractility is ambiguous. However, substance P has been observed to induce 

 
1 Free radicals are highly reactive unpaired electrons associated with oxidative damage which 
occurs via removal of electrons from biologically functional molecules rendering them 
dysfunctional. 
2 Duloxetine is a selective NE and serotonin-reuptake inhibitor. 
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immediate bladder contractions at the level of the SPN and thus an age-related decrease 

may contribute to delayed contractile response and bladder retention (Mersdorf et al., 

1992).  

 

1.9.4 Ageing in brainstem nuclei that control LUT and terminal bowel  

Within brainstem AOIs (LC, PMC, and LDTg), the vast majority of age-associated 

studies have been carried out in the LC due to its implication in the pathophysiology of 

Parkinson’s disease (Bari et al., 2020). The age-associated changes that may impact LUT 

and terminal bowel dysfunction are summarised below. Despite exerting major influence 

over spinal micturition and defaecation pathways, few studies have observed age-

associated changes in the PMC. A study using fMRI showed diminished PMC activity 

during bladder filling in elderly women suffering detrusor overactivity (Griffiths et al., 2007; 

Griffiths and Fowler, 2013). This is suggestive of a lack of coordination between reflex and 

conscious micturition as suprasacral spinal cord injury (i.e. reduced / absent PMC-

lumbosacral input) results in detrusor overactivity and detrusor sphincter dysnergia (DSD)3 

(Taweel and Seyam, 2015). Therefore, lack of PMC activity in ageing suggests reduced 

‘switch’ from bladder filling to conscious urination.  

In the LC and LDTg, age-associated changes in neuron number and morphology 

have been reported. In the LDTg, soma size, dendritic length, and number (in mice and 

cats) is decreased with age. However, neuron numbers are maintained (in mice, rats, and 

cats) (Kawamata et al., 1990; Lolova et al., 1996b; Zhang et al., 2005). In the LC, neuron 

size is reported to decrease or be maintained with age (in humans) (Lohr and Jeste, 1988; 

Mouton et al., 1994). Some studies (in mice and humans) show age-associated neuronal 

loss, whilst others (in rats and humans) show no change (Goldman and Coleman, 1981; 

Lohr and Jeste, 1988; Manaye et al., 1995; Mouton et al., 1994; Ohm et al., 1997; 

Sturrock and Rao, 1985; Vijayashankar and Brody, 1979; Wree et al., 1980). Where LC 

age-associated neuronal loss was observed, a significant increase in intracellular 

 
3 DSD: involuntary contractions of the EUS during involuntary detrusor contractions.   
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neuromelanin labelling was noted (Lohr and Jeste, 1988; Manaye et al., 1995). 

Neuromelanin provides neuronal protection from oxidative stress and accumulation and is 

indicative of the build-up of high levels of toxins in aged LC neurons. Furthermore, 

neuromelanin released by degenerating neurons activates microglia which results in an 

accompanying inflammatory response (Zucca et al., 2017). Increased activation of 

microglia occurs in normal ageing and is associated with neurodegenerative diseases 

including Parkinson’s disease (Akiguchi et al., 2017; Zucca et al., 2017). 

Lipopolysaccaride-induced inflammation in the mouse LC resulted in a variety of age-

associated pathophysiologies including constipation and thus LC neuroinflammation may 

play a significant role in age-associated terminal bowel dysfunction (Song et al., 2019).  

Additional age-associated changes have been observed in the LC including 

synaptic inputs and projection pathways as discussed below. Noradrenergic innervation of 

sympathetic preganglionic boutons in the spinal cord, that are likely LC-derived, are 

diminished in aged rats (Ko et al., 1997; Lyons et al., 1989). This may impact sympathetic 

bladder outflow since LC lesioning results in bladder retention in cats (Yoshimura et al., 

1990). Furthermore, ageing affects LC innervation of parasympathetic and somatic 

pathways, since NE density is decreased in the SPN and DLN of aged rats (Ranson et al., 

2003a), with potential the impact on bladder outflow discussed in section 1.9.3. 

Additionally, lesioning of LC to spinal projections results in loss of diurnal rhythm 

micturition patterns in aged, but not young rats suggesting alterations in micturition 

circuitry with age (Ranson et al., 2003b). Furthermore, LC innervation of the cortex shows 

age-associated changes including electrophysiological changes and decreased LC inputs 

(Ishida et al., 2001a; Ishida et al., 2001b; Shirokawa et al., 2000). This may impact 

conscious control of the urination / defaecation. Innervation of the LC has shown age-

associated changes whereby synaptic inputs onto LC soma had increased levels of 

synaptic vesicle protein (Iwanaga et al., 1996). Synaptic vesicle protein is involved in 

regulation of neurotransmitter release and therefore may be indicative of increased age-

associated post-synaptic innervation of LC neurons (Madeo et al., 2014).  
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1.9.5 Ageing in the PVN and potential impacts on LUT and terminal bowel function 

Various studies have observed age-associated changes in the PVN. The PVN is 

involved in a variety of autonomic and neuroendocrine functions, and thus emphasis will 

be placed upon age-associated changes that may impact functional micturition and 

defaecation. Changes in PVN neuron numbers have shown differing results in species. In 

monkeys, whole PVN neuron numbers increase with age (Roberts et al., 2012). In 

humans, an age-associated increase in select PVN cell populations including VP+ and 

CRH+ neurons was observed (Zhou and Swaab, 1999). However, in mice and rats, whole 

PVN numbers have been observed to be maintained, whilst selected OXY+ and VP+ 

neuron numbers and area occupied by OXY and VP magnocellular neurons were 

decreased (Calza et al., 1990; Hsu and Peng, 1978; Lolova et al., 1996a; Peng and Hsü, 

1982; Sartin and Lamperti, 1985; Sturrock, 1992). Considering present study PVN work 

was carried out in mice, implications of age-associated neuron number change in mice 

and rats will be considered. A decrease in OXY and VP neuron numbers and area of 

magnocellular neurons in the PVN would likely result in decreased hormone circulatory 

release and a potential decrease in lumbosacral spinal projections of parvocellular 

neurons. Since both OXY and VP (in circulation) contribute to terminal bowel motility this 

could potentially result in constipation (Xi et al., 2019; Zhu et al., 1992). Furthermore, 

decreased spinal-projecting OXY would likely result in bladder underactivity and 

diminished awareness of bladder filling since intrathecal OXY administration results in 

non-voiding contractions (Pandita et al., 1998). Spinal-projecting OXY and VP, and 

circulatory VP decrease would also contribute to a decrease in EUS and EAS contractility 

and associated decrease in continence (Perez et al., 2005; Ueno et al., 2011; Wagner and 

Clemens, 1993).  

In terms of morphological and ultrastructural changes in PVN neurons, an age-

associated swelling of dendritic spines has been observed (in rats) in addition to an 

overall decrease in dendritic spine number (Itzev et al., 2003). Additionally, OXY and VP 

soma size increase with age (in rats) (Lolova et al., 1996a). Ultrastructural changes with 
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increased age include mitochondrial aberration and chromatolysis4 (Verbitskaia and 

Bogolepov, 1984). Furthermore, Ageing in rats results in decreased (unlabelled) synaptic 

inputs onto PVN neurons (Itzev et al., 2003). These changes likely impact neuronal 

function and projection pathways. Indeed, a decrease in PVN–vagal output has previously 

been reported and this potentially impacts DC motility since vagal nerve stimulation elicits 

DC contractions (Calza et al., 1990; Tong et al., 2010).  

 

1.10 C57BL / 6J MALE MICE: A MODEL FOR AGE-RELATED BLADDER AND 

TERMINAL BOWEL DYSFUNCTION  

The present study has utilised C57BL / 6J male mice for immunohistochemical 

studies of central nervous structures that control bladder / bowel function, and protein 

analysis of the DC. They are the most widely used inbred strain in research and are often 

used as a model of ageing (Birder et al., 2018). C57BL / 6J show bladder / bowel 

dysfunction with increasing age. Cystometric studies have shown that aged mice (27-30 

months) have weaker detrusor contractile responses followed by weaker relaxant 

responses compared to middle-aged mice (12 months). These impairments are more 

pronounced in males (Kamei et al., 2018). Additionally, male C57BL / 6J mice (up 24 

months old) have shown impaired colonic motility and increased faecal impaction with 

increasing age (Patel et al., 2014).   

 

1.11 AIMS AND OBJECTIVES 

Chapter 3: 

• Immunohistochemically double-label brainstem (LC, PMC, and LDTg) and 

lumbosacral spinal nuclei (SPN, DLN, and SNB) alongside met-ENK (brainstem 

 
4 Chromatlysis is the dissolution of nissl bodies in the soma which is often associated with 
increased soma and nucleus size and is frequently a precursor to apoptosis.  
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and spinal cord) and VGAT (spinal cord only) boutons in different age groups (3-5, 

12-14, 24-26, and 29-30 months). 

• Analyse age-associated changes in brainstem structures including soma size, 

neuron number, ENK density, and number of ENK-soma inputs. 

• Analyse age-associated changes in lumbosacral spinal structures including soma 

size, ENK / VGAT immunoreactivity, and number of ENK / VGAT-soma inputs. 

Chapter 4: 

• Immunohistochemically double-label OXY or VP PVN neurons alongside VGAT or 

VGLUT2 boutons in different age groups (3-4, 12-14, 24-25, and 30 months). 

• Categorise OXY and VP-immunolabelled soma into subnuclei (based on location) 

and parvocellular or magnocellular cell types (based on soma size) utilising 

previous work in the mouse PVN (Biag et al., 2012; Castel and Morris, 1988; 

Kadar et al., 2010).  

• Analyse age-associated changes in VGAT / VGLUT2 density (within PVN 

subnuclei), and number of VGAT / VGLUT2 inputs onto OXY / VP parvocellular / 

magnocellular soma (within PVN subnuclei).  

Chapter 5: 

• Develop methodology for successful extraction of protein from formalin-fixed 

paraffin-embedded (FFPE) mouse DC tissue and apply to different age-groups (3 

and 30 months).  

• Apply extracted proteins to in-gel trypsin digestion and downstream analyses using 

liquid chromatography / mass spectrometry / mass spectrometry (LC / MS / MS). 

• Analyse DC whole mouse proteome using MascotTM (Matrix Science, London, UK) 

software. 

• Analyse age-associated change in protein regulation between 3 and 30 months 

using ProgenesisTM LC-MS data analysis software (Nonlinear Dynamics, 

Newcastle upon Tyne, UK).  
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2 GENERAL MATERIALS AND METHODS 

Main methodology used in present study included immunohistochemical labelling and 

protein analysis. Immunohistochemical labelling was undertaken in mouse CNS structures 

(detailed in Chapter 3 and 4) and therefore techniques are described collectively in this 

chapter. Protein analysis was undertaken in formalin fixed paraffin embedded (FFPE) 

mouse gut tissue. Method development was required when extracting proteins for 

downstream analysis from FFPE samples. Therefore, all methods (aside from ethics 

approval and animal housing) for protein analysis are detailed in Chapter 5.   

 

2.1 ETHICS APPROVAL 

This study required ethical consideration as perfusion fixed and FFPE animal tissue 

was used. Experiments were designed to minimise the number of animals used and 

sacrifices were performed with accuracy to minimise duration of suffering. The ‘1986 

Animal Science Procedures act’ governs animal experimentation and laboratory care 

stated by UK national law. Murine brains, spinal cords and gut samples were obtained 

from the Open University. Harvesting was either made following schedule 1 terminal 

anaesthesia or post perfusion fixation licensed by UK Home Office. Animal licensing was 

held by supervisor’s Dr R.N.Ranson (UK Home Office personal licence) and Dr 

M.J.Saffrey (UK Home Office project licence). Samples were transported to Northumbria 

University for immunofluorescence labelling and microscopy analyses, or for extraction of 

proteins and downstream protein analyses. See Appendix A for letter detailing ethical 

approval. 

 

2.2 ANIMALS AND HOUSING 

Housing maintenance and experimentation were performed in accordance with 

UK Home Office regulations under the animals (Scientific Procedures) Act 1986. 

Male C57BL / 6J mice were obtained from Harlan, UK at 8 weeks of age. Mice were 

housed in groups of five within a designated facility at the Open University where 
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Veterinary and Home Officials performed inspections on a regular basis. Mice were 

maintained under 12-hour light / dark photoperiods at a temperature of 21 ± 2oc and 

50 ± 10% humidity. Mice were fed ad libitum with RM1 (E) 801002 (Special Diet 

Services) chow and UV sterilised mains water.  

 

2.3 GENERAL TISSUE PREPARATION 

2.3.1 Dissection and fixation of paraformaldehyde fixed mouse brain and spinal cord  

Once mice had reached the required age ranges of 3-5, 12-14, 24-25 and 30-31.5 

months old, they were terminally anaesthetized using sodium pentobarbital. Animals were 

initially exsanguinated with heparinized saline before transcardial perfusions with 4 % 

paraformaldehyde (PFA) in 0.1 M phosphate buffered saline (PBS) (pH = 7.4). Spinal 

cords and whole brains from each animal were removed and further fixed for four hours at 

21 oC. Tissues were then rinsed three times with PBS at one hour intervals prior to 

storage at  4 oC in PBS until use.   

 

2.3.2 Sectioning 

All sections collected were separated by 90 µm or more so that neither neurons, 

nor boutons could be counted twice in subsequent analysis. 

 

2.3.2.1 Sectioning of the lumbosacral spinal cord (Chapter 3) 

Spinal cords were washed three times in PBS at one-hour intervals. Spinal cord 

segments L5-S1 were excised and the rostral end (with larger surface area) was fixed to 

the vibratome specimen base (VT1000S, Leica Microsystems, UK) and immersed in PBS. 

The spinal cord was sectioned serially at 45 µm at 0.5-0.125 mm / s at a frequency of 70 

Hz. Sections were viewed under the light microscope until the rostral-most end (since 

sections were collected caudal-rostral) of the DLN, SNB and RDLN motor neurons were 

observed at L5, and two additional sections were collected as controls. Twenty sections 
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prior to the caudal-most end of motor neurons at L6 were collected as SPN-containing 

sections5 (L6-S1), and two additional sections were collected as controls. Sections 

containing motor neurons were placed alternately in two separate vials containing PBS— 

one for VGAT and one for met-ENK bouton staining. The same collection method was 

applied for SPN-containing sections.    

 

2.3.2.2 Sectioning of brainstem (Chapter 3) 

Brains were removed from storage buffer and washed in PBS as described 

previously. Using the Mouse Brain Atlas (Paxinos and Franklin, 2007) as a guide, and 

Bregma as a measuring point6, a transverse cut was made adjacent to the cerebellum 

(Bregma: -5.88 mm). Another transverse cut was made 5 mm rostral to that to ensure 

entirety of pontine AOIs (LC, PMC and LDTg) were retained. The larger, rostral end was 

fixed to the vibratome base and sectioned at 45 µm as described previously. Sections 

were collected in order in PBS-filled 24-well plate. Sections were viewed under the light 

microscope and structures were cross-reference with those imaged in the Mouse Brain 

Atlas until the rostral-most end of pontine nuclei was collected (Paxinos and Franklin, 

2007). Two additional sections were collected as controls. The sections were alternately 

separated (maintaining rostral to caudal order) into 24-well plates— one for combined LC 

and met-ENK and one for combined LDTg and met-ENK staining.  

 

2.3.2.3 Sectioning of hypothalamus (Chapter 4) 

Using the Mouse Brain Atlas, a transverse cut was made at Bregma -0.3 mm and 

5 mm caudal to ensure entirety of PVN was retained. The larger caudal end of the 

hypothalamus was fixed to the vibratome specimen base, sectioned at 45 µm, and 

collected as described previously. Sections were viewed under light microscope until the 

 
5 SPN neurons are not visible under the light microscope (unless labelled) and therefore, the visible 
motor neurons were used as a guide. 
6 Bregma is the anatomical point on the skull where the coronal suture is intersected 
perpendicularly by the sagittal suture. 
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rostral-most end of the PVN was observed. Four additional sections were collected as 

controls. Sections were separated into four separate plates in order, for example, in the 

first plate, the first, fifth and ninth sections etc. were collected. This was so that combined 

OXY and VGAT, OXY and VGLUT2, VP and VGAT, and VP and VGLUT2 antibody 

labelling regimes could be applied.   

 

2.3.3 Immunohistochemistry and microscopy  

All sections (from spinal cord, pons and hypothalamus) were washed with PBS 

three times for five minutes. Sections were subsequently incubated in blocking solution 

consisting of of 10 % normal donkey serum (NDS, 017-000-121, Stratech Scientific, 

Suffolk) and 0.3 % TritonTM X-100 (X-100, Sigma-Aldrich, Dorset) in PBS for 2 hours at   

21 oC. Tissue sections were then incubated in primary antibody combinations in Table 2.3 

(for concentrations and catalogue numbers see Table 2.1) in diluent containing 1 % 

normal donkey serum and 0.03 % TritonTM X-100 in PBS for 48 hours at 4 oC. After 

washing in PBS (as described above), labelling was visualised using secondary antibody 

combinations in Table 2.3 (for concentrations and catalogue numbers see Table 2.2) for 

1.5 hours at 21 oC in darkness to avoid light-induced fluorophore bleaching. In order to 

reduce autofluorescence attributable to age-pigment accumulation, sections were washed 

in PBS and treated with 2 mM copper sulphate and 50 mM ammonium acetate in distilled 

water (dH2O) for 10 minutes at 21 oC. Sections were subsequently washed in PBS and 

were mounted on microscope slides before coverslipping with Vectashield mounting 

medium (H-1000, Vector Lab Ltd, Peterborough). In control sections, the omission of 

primary antibodies abolished any significant labelling other than autofluorescence.  
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Table 2.1: Primary antibodies used for immunofluorescence labelling of structures in the 

lumbosacral spinal cord, brainstem, and hypothalamus. 

Optimal concentrations were tested and confirmed as suggested by manufacturer. 

Primary antibody Host species  Catalogue 
number, 
company and 
country  

Optimal 
concentration 

Lumbosacral Spinal cord: 

Anti-MAP2 Chicken AB5392, Abcam, 
Cambridge, UK 

1.5000 

Anti-ChAT Goat AB144P, Merck 
Millipore, Watford, 
UK 

1.200 

Anti-ENK, 
methionine antibody 

Rabbit AB5026, Merck 
Millipore, Watford, 
UK 

1.1000 

Anti-VGAT Guinea pig 131-308, Synaptic 
Systems, 
Goettingen, 
Germany 

1.500 

Brainstem: 

Anti-TH Sheep AB152, Merck 
Millipore, Watford, 
UK  

1.1000 

Anti-ChAT Goat AB144P, Merck 
Millipore, Watford, 
UK 

1.200 

Anti-ENK, 
methionine antibody 

Rabbit AB5026, Merck 
Millipore, Watford, 
UK 

1.1000 

Hypothalamus: 

Anti-OXY Rabbit AB911, Merck 
Millipore, Watford, 
UK 

1.5000 

Anti-VP Rabbit AB1565, Merck 
Millipore, Watford, 
UK 

1.5000 

Anti-VGAT Guinea pig 131-308, Synaptic 
Systems, 
Goettingen, 
Germany 

1.500 

Anti-VGLUT2 Guinea pig AB2251, Merck 
Millipore, Watford, 
UK 

1.5000 

Abbreviations: ChAT, Choline acetyle transferase; ENK, enkephalin; MAP2, Microtubule-associated proteion 2; 

OXY, Oxytocin; TH, Tyrosine Hydroxylase; VGAT, Vesicular GABA transporter; VGLUT2, Vesicular glutamate 

transporter 2; VP, Vasopressin.  
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Table 2.2: Secondary antibodies with conjugated fluorophores used for 

immunofluorescence labelling of structures in the lumbosacral spinal cord, brainstem, and 

hypothalamus.  

Secondary 
antibody 

Fluorophore Catalogue 
number, 
company and 
country 

Concentration 

Lumbosacral Spinal cord: 

Donkey anti-
chicken 

Alexa Fluor® 488 703-545-155, 
Jackson 
ImmunoResearch, 
Cambridgeshire, 
UK 

1.200 

Donkey anti-goat Cy3 A21432, Thermo 
Fisher Scientific, 
Loughborough, UK 

1.400 

Donkey anti-rabbit Alexa Fluor® 488 711-545-152, 
Jackson 
ImmunoResearch, 
Cambridgeshire, 
UK 

1.200 

Donkey anti-guinea 
pig  

Fluorescin 
isothiocyanine 
(FITC) 

AP193F, Merck 
Millipore, Watford, 
UK 

1.200 

Donkey anti-rabbit Cy3   711-545-152, 
Jackson 
ImmunoResearch, 
Cambridgeshire, 
UK 

1.400 

Donkey anti-guinea 
pig 

Cy3 706-165-148, 
Jackson 
ImmunoResearch, 
Cambridgeshire, 
UK 

1.400 

Brainstem: 

Donkey anti-sheep 555 A21436, Thermo 
Fisher Scientific, 
Loughborough, UK 

1.400 

Donkey anti-goat Cy3 A21432, Thermo 
Fisher Scientific, 
Loughborough, UK 

1.400 

Donkey anti-rabbit Alexa Fluor® 488 711-545-152, 
Jackson 
ImmunoResearch, 
Cambridgeshire, 
UK 

1.200 

Hypothalamus: 

Donkey anti-rabbit Alexa Fluor® 488 711-545-152, 
Jackson 
ImmunoResearch, 
Cambridgeshire, 
UK 

1.200 



 

49 
 

Donkey anti-guinea 
pig  

Cy3 706-165-148, 
Jackson 
ImmunoResearch, 
Cambridgeshire, 
UK 

1.400 

 

 

Table 2.3: Double immunofluorescence labelling combinations for nuclei and surrounding 

neurotransmitter terminals of AOIs in spinal cord, brainstem and hypothalamus.  

Nucleus Neuronal 
marker 

Secondary 
antibody 

Terminal 
Marker 

Secondary 
antibody 

Lumbosacral spinal cord: 

DLN, SNB and 
RDLN 

MAP2 Donkey anti-
chicken 488 

ENK Donkey anti-
rabbit Cy3 

VGAT Donkey anti- 
guinea pig 
Cy3 

SPN ChAT Donkey anti-goat 
Cy3 

ENK Donkey anti-
rabbit 488 

VGAT Donkey anti- 
guinea pig 
FITC 

Brainstem: 

LC TH Donkey anti- 
sheep Cy3 

ENK Donkey anti-
rabbit 488 

LDTg ChAT Donkey anti-goat 
Cy3  

Hypothalamus: 

PVN OXY Donkey anti-
rabbit 488 

VGAT Donkey anti-
guinea pig 
Cy3 

VGLUT2 

VP VGAT 

VGLUT2 
Abbreviations: ChAT, Choline acetyle transferase; DLN, Dorsolateral nucleus; ENK, enkephalin; LC, Locus 

coeruleus; LDTg, Laterodorsal tegmental nucleus; MAP2, Microtubule-associated proteion 2; OXY, Oxytocin; 

PVN, Paraventricular nucleus; RDLN, Retrodorsolateral nucleus; SNB, Spinal nucleus of the bulbospongiosus; 

SPN, Sacral parasympathetic nucleus; TH, Tyrosine Hydroxylase; VGAT, Vesicular GABA transporter; 

VGLUT2, Vesicular glutamate transporter 2; VP, Vasopressin.  

 

2.3.3.1 Primary antibody validation and optimisation of immunolabelling 

All primary antibodies were validated by the manufacturers via western blot to 

confirm that the antibody binding was only at the expected molecular weight of the target 

protein. Additionally, IHC / ICC was used by manufacturers to confirm expected 
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subcellular localization of the target protein. Where available, manufacturers further 

validated antibody specificity using knockout / knockdown cell lines. Furthermore, 

manufacturers undertook consistency testing to confirm antibody quality remained stable 

during the manufacturing process (Abcam, 2020; Merck, 2020; Synaptic-Systems, 2020).  

In-house antibody validation was based on IHC and comparison to literature. For 

example, Biag et al. (2012) provides a detailed cyto- and chemoarchitecture of the C57BL 

/ 6J mouse PVN, including the location of OXY and VP immunopositive cells. This was 

then cross-referenced with the cellular localization of OXY and VP immunolabelled 

neurons that were observed in the present study. Additionally, primary antibodies were 

initially tested within the concentration ranges suggested by manufacturers for IHC to 

produce optimal immunolabelling.  

 

2.3.3.2 Immunofluorescence light microscopy in Leica DM 5000B 

 The presence of nuclei of interest and neurotransmitter presumed terminals in 

spinal, brainstem and hypothalamic sections were identified on a Leica DM 5000B 

fluorescence microscope (Leica Microsystems, Milton Keynes, UK) at a 5x magnification 

prior to capturing images for analyses. Sections with inconsistent staining, folds, or tears 

in the AOIs were excluded from the study. Images were captured using a Leica DFC 310 

FX digital camera (Leica, Milton Keynes, Uk) in overlay format to merge the image of 

immunolabelled neurons with immunolabelled presumed terminals at x20, x40 and x63 

magnification. In pontine sections, images were taken in the region medial to the TH-

immunolabelled LC and the ChAT-immunolabelled LDTg and this region was presumed to 

be the PMC in accordance with the Mouse Brain Atlas (Paxinos and Keith B. J. Franklin, 

2007). Additionally, VGAT and met-ENK presumed terminals in spinal sections, were also 

captured in the DGC, DH and VH.  
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3 EFFECTS OF AGEING ON INHIBITORY INPUTS TO NEURONAL 

STRUCTURES OF THE BRAINSTEM AND THE LUMBOSACRAL SPINAL 

CORD  

 

3.1 INTRODUCTION 

The prevalence of LUT and terminal bowel dysfunction increases with age resulting 

in UI, FI, and / or constipation (as discussed in section 1.2). Cystometric studies and 

studies of contractility of isolated bladder strips suggest that age-related changes are 

largely associated with changes in bladder innervation as opposed to alterations in 

bladder contractility and this is potentially also the case with the terminal bowel and 

defaecation (Chun et al., 1988; Chun et al., 1989; Chun et al., 1990; Hotta et al., 1995). 

Brainstem and spinal nuclei are involved in the control of reflex micturition and 

defaecation and have shown age-associated changes within these structures which is 

discussed in detail in section 1.9. The present study aim was to establish any age-

associated structural changes by immunohistochemically labelling select pontine and 

spinal regions involved in the control of micturition and defaecation in male C57BL / 6J 

mice. 

Nuclei within the lumbosacral spinal cord exert parasympathetic and somatic control 

over the bladder and colorectal smooth muscle, and somatic control over the EUS and 

EAS (as described in sections 1.6.2.1 and 1.7.4.1). The SPN is the main source of 

(indirect) spinal parasympathetic control of the bladder detrusor and colorectal smooth 

muscle (Dorofeeva et al., 2009; Ni et al., 2018; Papka et al., 1995; Payette et al., 1987), 

whilst the DLN and SNB are spinal motor neurons that directly innervate the EUS and 

EAS respectively (McKenna and Nadelhaft, 1986; Schrøder, 1980). The PMC, located in 

the brainstem, exerts direct and indirect control over all three nuclei. The PMC initiates 

micturition by exciting the SPN via direct projections and simultaneously relaxes the DLN 

via projections to inhibitory GABAergic / glycinergic neurons in the DGC (Blanco et al., 

2014; de Groat, 1998; Guo et al., 2013; Keller et al., 2018; Nuding and Nadelhaft, 1998; 
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Verstegen et al., 2017). This results in detrusor muscle contraction and EUS relaxation 

allowing for urine expulsion via the urethra. Excitation of the PMC causes DC contraction 

via the SPN (Pavcovich et al., 1998). Like the micturition reflex, the PMC likely 

simultaneously excites the SPN and inhibits the SNB during defaecation, since indirect 

projections have been observed from the PMC to the SNB (Dobberfuhl et al., 2014; Tang 

et al., 1999).  

Other brainstem nuclei involved in the control of micturition and defaecation include 

the LC and LDTg. The PMC sends projections to the adjacent LC (Valentino et al., 1996) 

which controls conscious micturition and defaecation via cortical connections (Berridge 

and Foote, 1991; Carter et al., 2010; Lechner et al., 1997; Page et al., 1992; Valentino et 

al., 2011; Vazey and Aston-Jones, 2014). Furthermore, the LC exerts modulatory control 

over micturition and defaecation via projections to the SPN, DLN, SNB and sympathetic 

IML (in the thoracic spinal cord) (Jones and Yang, 1985; Nygren and Olson, 1977; Thor 

and de Groat, 2010; Westlund et al., 1983). Additionally, the LC sends projections to and 

receives innervation from the LDTg, which has been implicated in the control of micturition 

only (Cornwall et al., 1990; Jones and Yang, 1985). The LDTg also sends and receives 

projections from the SPN (Cornwall et al., 1990; Jones and Yang, 1985). Furthermore, 

LDTg stimulation evokes detrusor and EUS contractions (Noto et al., 1989; Yamao et al., 

2001). 

The neuropeptide met-ENK has been implicated in LUT and terminal bowel control 

within pontine nuclei. ENK inhibits PMC, LC and LDTg neuron activity. Some studies have 

reported inhibitory effects of ENK on these structures that are directly linked to LUT and 

terminal bowel control, whereby ENK regulates bladder capacity within the PMC and 

decreases detrusor contraction within the LC (Capece et al., 1998; Fowler et al., 2008; 

Guo et al., 2013; Guyenet and Aghajanian, 1979; Matsuzaki, 1990). Furthermore, it 

inhibits EAS contraction when injected into the LC (Abysique et al., 1998).   

ENK and GABA-immunolabelling have been observed at lumbosacral level (in the 

SPN, DLN, SNB, DGC, DH and RDLN) and input onto SPN, DLN and SNB soma and 
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neuronal processes (Katagiri et al., 1986; Micevych et al., 1986; Ranson et al., 2006; 

Romagnano and Hamill, 1985; Sasek and Elde, 1986; Shimosegawa et al., 1987). ENK 

and GABA inhibit bladder, colorectal, EAS, and likely EUS contraction at this level 

(Abysique et al., 1998; Dray and Metsch, 1984; Hisamitsu and de Groat, 1984; Kennedy 

and Krier, 1987; Nakamori et al., 2018; Sugaya et al., 2019; Vaidyanathan et al., 1989).  

Since pontine and lumbosacral spinal nuclei are heavily involved in the control of 

micturition and defaecation, they may be subject to age-associated structural changes. 

Furthermore, ENK and GABA both exert major inhibitory influences on nuclei of interest 

and thus may also be subject to change with age. Indeed, the PMC shows decreased 

activation with age (in humans) (Griffiths et al., 2007; Griffiths and Fowler, 2013), and this 

may be modulated by an increase in enkephalinergic inhibitory input. The SNB, DLN, LC, 

and LDTg have shown structural changes with increased age including changes in neuron 

number, soma size and dendrite length in cats, rats and mice (discussed in detail in 

section 1.9). For direct comparison to the present study, changes in mice include 

decreases in LC and LDTg neuron number and decreases in LDTg soma size and neurite 

length (Kawamata et al., 1990; Sturrock and Rao, 1985).  

Change in density or number of ENK inputs to nuclei of interest have not been 

observed. However, ENK density at lumbar level is unchanged with age in rats (Missale et 

al., 1983) and this likely incorporates enkephalinergic interneurons that potentially project 

to spinal nuclei of interest (Huang et al., 2010; Nicholas et al., 1999; Sasek and Elde, 

1986; Shimosegawa et al., 1987). In the SNB, a decrease in unlabelled synaptic inputs 

have been observed in rats and may reflect a change in ENK innervation (Matsumoto, 

1998). Number of GABAergic inputs and GABABRs on SPN neurons remains unchanged 

with age in rats (Dorfman et al., 2006; Santer et al., 2002). However, this may differ in 

present study mice due to interspecies variability. 

In order to establish age-associated changes that may result in voiding dysfunction, 

brainstem and spinal structures were immunohistochemically labelled and compared 

across age groups. In lumbosacral spinal sections, percentage area measurements of 
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GABA and ENK were taken in additional regions to spinal nuclei of interest, including the 

DH, VH and DGC. These structures were included since ENK bladder and DC afferents, 

project to these regions (Keast and de Groat, 1992). Furthermore, GABAergic and 

enkephalinergic interneuron fibres likely project through the DH and DGC to the SPN and 

motoneurons (Blok and Holstege, 1994; Ding et al., 1999; Ding et al., 1997; Huang et al., 

2010; Kuipers et al., 2006; Micevych et al., 1986; Nicholas et al., 1999; Sasek and Elde, 

1986; Shimosegawa et al., 1987; Yao et al., 2018). The SNB and DLN are sexually 

dimorphic nuclei that respond to changes in testosterone (Breedlove and Arnold, 1981; 

Jordan et al., 1982; Kurz et al., 1991; Matsumoto, 2001; Matsumoto, 1997; Matsumoto et 

al., 1988). Therefore, the RDLN7, an additional motor neuron structure that is largely 

unaffected by age-associated decrease in circulating testosterone was analysed, to help 

account for any age-associated changes that are testosterone-induced (Leslie et al., 

1991; Nicolopoulos-Stournaras and Iles, 1983).  

The main study hypothesis is that LUT and terminal bowel-controlling CNS 

structures are subject to age-associated changes that result in voiding disorders. Analysis 

of immunocytochemically labelled spinal and brainstem structures was undertaken to help 

determine if this is the case.       

 

3.2 MATERIALS AND METHODS 

3.2.1 Measurement parameters 

Measurement parameters undertaken in pontine immunolabelled neurons in the 

LC (TH-immunopositive), LDTg (ChAT-immunopositive) and PMC (unstained) were 

compared across four age ranges: 3-5, 12-14, 25-26 and 29-31 months (n=3 for 12-14 

and 25-26 months; n=4 for 3-5 and 29-31 months). Measurement parameters undertaken 

in lumbosacral spinal immunolabelled neurons in the SPN (ChAT-immunopositive), DLN, 

SNB, RDLN (MAP2-immunopositive), DGC, VH, and DH (unstained) were quantified and 

 
7 The RDLN contains motor neurons that innervate the flexor digitorium brevis muscle within the 
foot. 
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compared across two age ranges: 3-5 and 29-31 months (n=4 per age group). Analyses 

was undertaken using captured overlay images of sections. Over 4,100 images were 

analysed.  

 

3.2.1.1  Cell counts 

Cell counts were carried out in images taken at x20 magnification (see section 

2.3.3.2 for imaging methodology) in immunolabelled nuclei including the LC, LDTg, SPN, 

DLN, and SNB.  The mean number of labelled soma per section was calculated by 

counting immunolabelled neurons from the rostral to caudal extent of the nucleus and 

dividing the sum by the number of sections8. Abercrombie’s correction factor was applied 

to avoid double counts of soma in consecutive sections (Abercrombie, 1946).  

 

3.2.1.2 Soma perimeter measurements  

Soma perimeter was carried out in images taken at x40 magnification in 

immunolabelled nuclei including the LC, LDTg, SPN, DLN, and SNB. All neurons 

(containing a visible nucleolus) were numbered in a section and up to six neurons were 

randomly selected using a random number generator. Perimeter measurements were 

undertaken using Image-pro Plus 7.0 (Media Cybernetics, Inc., Rockville USA) whereby 

soma were drawn around and the length was recorded. The mean soma perimeter of 

each nucleus was calculated per animal.  

 

3.2.1.3 Percentage area coverage of ENK and VGAT within pontine and spinal areas of 

interest  

Image-pro Plus 7.0 (Media Cybernetics, Inc., Rockville USA) was used to determine 

the percentage area coverage (per area) of ENK and VGAT in pontine and spinal areas of 

 
8 Quantification of neurons across entire nuclei was not possible in LC / LDTg due to alternate 
section labelling with TH or ChAT (see Chapter 2). Cell counts per section in spinal nuclei were 
continued for consistency. 
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interest (AOIs).  ENK per area was measured in all spinal and brainstem regions 

mentioned in section 3.2.1. VGAT immunolabelling was undertaken in the lumbosacral 

spinal cord only and thus VGAT per area was measured in all spinal regions. Thresholds 

for fluorescence intensity were applied to reduce aberrant signalling. These were set 

manually by the same experimenter so only fluorescently labelled terminals were 

included. The percentage area coverage was determined in all sections containing set 

AOIs and the average per section was calculated in each animal.   

In order to maintain consistency, shapes of a set size were placed over each 

nucleus or AOI for measurement of VGAT or ENK percentage coverage within each 

shape’s boundaries (see Figure 3.1) The boundaries of each shape were mapped out to 

be roughly the average size of the nucleus from its rostral to caudal extent. To reduce the 

chance of shape boundaries overlapping into peri-nuclear regions, shapes were placed in 

the most central regions of AOIs.  

Images of ENK and VGAT presumed terminals were taken at x40 magnification and 

analysed. Every section containing immunolabelled nuclei was measured using the 

corresponding shape. This resulted in roughly 9 measurements being taken per nucleus 

per animal within one antibody labelling regime in brainstem material, and 7 

measurements being taken per nucleus in lumbosacral spinal material. In spinal sections, 

for every section containing labelled neurons in nuclei of interest (SPN, DLN and SNB) the 

per area of the RDLN, DH, VH and DGC was also measured within the same section. The 

mean percentage area coverage of VGAT and ENK in AOIs was then calculated per 

mouse.  
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Figure 3.1: Shapes applied to pontine and lumbosacral spinal AOIs for per area 

measurement within AOI boundaries. A-H show the varying heights, widths, or diameters 

(µm), and types of shapes (rectangular, square or ellipses) applied to each AOI. AOI, Area 

of interest; DGC, Dorsal grey commissure; DH, Dorsal horn; DLN, Dorsolateral nucleus; 

LC, Locus coeruleus; LDTg, Laterodorsal tegmental nucleus; PMC, Pontine micturition 

centre; RDLN, Retrodorsolateral nucleus; SNB, Spinal nucleus of the bulbospongiosus; 

SPN, Sacral parasympathetic nucleus; VH, Ventral horn. 
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3.2.1.4 Quantifying ENK and VGAT terminal inputs in apposition to immunopositive cells 

within each nucleus    

Overlay images of pontine and spinal nuclei showed ENK and VGAT presumed 

terminals making contact with immunolabelled neurons. Using overlay images at x63 

magnification, the number of VGAT / ENK inputs in apposition to soma were counted on 

up to six randomly selected soma per section. All neurons (containing a visible nucleolus) 

were numbered in a section and six soma were randomly selected using a random 

number generator. Although a worthwhile measurement parameter, input counts onto 

neurites could not be done reliably. This was due to few neurites visibly extending from 

soma. Therefore, conditions were not replicable across neurons.  

 

3.2.2 Tabulation, graphical representation, and statistical analyses 

Means of each parameter were calculated per animal. Animals were then grouped 

into age groups. The mean for each sample group was then calculated ± standard error of 

the mean (SEM). For all parameters measured, data distribution was tested for using an 

Anderson-Darlington test, which allows determination of whether data samples came from 

a population with a specific distribution. The Anderson-Darling test is a goodness-of-fit test 

of distribution of a random variable and is one of the most powerful statistical tools for 

testing divergence from normality (Stephens, 1979). Its null hypothesis is that data follow 

a specified distribution i.e. a bell-shaped curve. It is based on empirical distribution 

function (EDF) statistics which is a non-parametric statistical estimation of distribution 

modelled on sample data. The Anderson Darling places more weight on tails than other 

statistical tests for normality e.g. the Kolmogorov-Smirnoff test. 

 

3.2.2.1 Data derived from brainstem nuclei 

To test for equal variance, a Bartlett’s test was used for all brainstem data. All 

brainstem results were observed to have abnormal distribution or unequal variance and 
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thus assumptions of a one-way ANOVA were defied. Therefore, to determine data 

significance a Kruskal-Wallis test was applied.  

 

3.2.2.2 Data derived from spinal nuclei  

To test for equal variance, an F-test was used for all spinal data. For parameters 

displaying homogenous variance a two-sample t-test assuming equal variance was 

performed. For parameters that showed heterogeneity of variance, a two-sample t-test 

with Welch’s correction factor was used to test significance of data. 

 

3.3 RESULTS 

3.3.1 Pontine AOIs 

The LC was present between Bregma -2.00 to -1.54 mm and was a crescent-

shaped nucleus. It was located just ventral to fourth ventricle and sat bilateral to the 

ventrolateral edge of the fourth ventricle. The LDTg was present between Bregma -1.88 to 

-1.16 mm. It was ventral to the fourth ventricle and was located more medially than the 

LC. There was a gap between the LC and the LDTg where the PMC was presumed to 

reside (Paxinos and Franklin, 2007). Antibodies to TH consistently labelled 1-46 soma per 

section within the LC, and antibodies to ChAT consistently labelled 1-18 soma per section 

within the LDTg in all age groups (see Figure 3.2). 

LC neurons appeared unipolar with spindle or oval shaped soma. LDTg neurons 

appeared multipolar with spindle or oval shaped soma. Neurite labelling was evident in 

both the LC and LDTg. Neurites were more prominent within the LC and appeared to have 

ventromedial projections towards the PMC. Although more sparse, LDTg neurites were 

still evident, with projections appearing more arbitrary in direction. Cell packing density in 

the LC was greater than that of the LDTg. Control sections, where primary antibodies had 

been omitted, showed no specific fluorescent labelling (see Appendix B, Figure 8.3). 
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3.3.1.1 Neuron counts and soma perimeter  

The number of immunolabelled neurons in both regions was consistent across age 

groups. There was no significant change in the number of LC or LDTg neurons across 

age groups. Similarly, no significant differences were observed in LC/LDTG soma 

perimeter with age (Table 3.1). 

Table 3.1: cell counts and soma perimeters of TH immunolabelled LC and ChAT 

immunolabelled LDTg neurons ± standard error of the mean (SEM). 

 LC LDTg 

Age (months) Cell count Soma  
perimeter (µm) 

Cell count Soma  
perimeter (µm) 

3-5 15.31 ± 
1.23 

53.48 ± 
1.14 

7.52 ± 
1.30 

61.32 ± 
2.87 

12-14 9.87 ± 
1.14 

53.06 ± 
2.97 

5.91 ± 
0.59 

54.81 ± 
3.18 

24-26 10.76 ± 
0.37 

52.84 ± 
1.79 

7.31 ± 
0.93 

53.97 ± 
2.77 

29-31 9.57 ± 
2.52 

59.82 ± 
2.12 

9.27 ± 
1.61 

60.85 ± 
1.68 

Abbreviations: LC, Locus coeruleus; LDTg, Laterodorsal tegmental nucleus. 

 

3.3.1.2 Per area measurement of ENK immunolabelling 

Immunofluorescence labelling of ENK terminals comprised of punctate labels 

depicting neuron terminal boutons. ENK terminals were distributed across the entirety of 

whole brainstem sections. However, terminals were particularly concentrated within the 

region of the medial parabrachial nucleus and PMC. ENK terminals appeared to input 

onto immunolabelled LC and LDTg soma and neurites. Control sections (omission of 

primary antibodies) showed no specific labelling (see Appendix B, Figure 8.1 and Figure 

8.2).  

 The distribution of ENK across entire sections allowed for the quantification of the 

percentage ENK immunofluorescence within individual pontine nuclei. ENK per area 

immunofluorescence within the PMC, LC and, LDTg displayed consistent concentrations 

across all age groups, with no significant changes across age groups (Figure 3.2.H). 
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3.3.1.3 ENK inputs onto LC / LDTg soma 

Widespread distribution of ENK presumed terminals in apposition to consistently 

labelled LC / LDTg soma allowed for quantitative comparisons across age groups of 

presumptive ENK inputs onto soma. There were a similar number of soma appositions in 

each nucleus with the means for both falling between 0.5-2.7 (Figure 3.2.I). The number of 

ENK terminals in appostion to LC / LDTg soma showed no significant change across age 

groups.  
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Figure 3.2 A-I: Immunolabelling of pontine nuclei and ENK terminals. A-C show ENK 

labelling within the LC, PMC, and LDTg. Graph H reflects the increased ENK 

immunolabelling density in the PMC. D-E show ENK inputs in apposition to LC soma; F-G 

show ENK inputs in apposition to LDTg soma. Arrows depict ENK inputs in apposition to 

soma. Group means ± SEM; n=3 (12-14 & 24-26 months); n=4 (3-5 & 29-31 months). All 

data were determined to have abnormal distribution and/ or unequal variance when 

Anderson-Darling and the Bartlett’s test were applied, respectively. Data was tested for 

significant differences between age groups with a Kruskal Wallis test.  Scale bars = 10 µm. 

ChAT, Choline acetyltransferase; ENK, Met-enkephalin; LC, Locus coeruleus; LDTg, 

Laterodorsal tegmental nucleus; M, Months; PMC, Pontine micturition centre; TH, Tyrosine 

hydroxylase.   

 

3.3.2 Lumbosacral spinal AOIs 

The DLN and SNB (in lumbosacral sections) were located in the ventral horn in 

lamina IX. The SPN (in sacral sections only) was located at the dorsolateral edge of 

lamina VII.  Antibodies to MAP2 consistently labelled 1-5 SNB and 1-6 DLN soma per 

section. Antibodies to ChAT consistently labelled 1-8 SPN soma per section in both age 

groups (Figure 3.5). DLN and SNB soma were oval in shape with labelled neurites that 

were dense within each nucleus. These neurites surrounded labelled soma, but few were 

observed to visibly extend from soma and projected in varying directions. SPN soma were 

spherical in shape, a nucleolus often was not visible. SPN neurites were sparse and often 

not visible within individual sections.  

 

3.3.2.1 Neuron counts and soma perimeter  

The number of immunolabelled neurons within each nucleus was consistent 

across both age groups (Table 3.2). Soma perimeter also showed no significant difference 

between age groups. DLN / SNB soma perimeter was larger than SPN perimeter (Table 

3.2).  
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Table 3.2: Age-associated changes in cell counts and soma perimeters of ChAT 

immunolabelled SPN neurons and MAP2 immunolabelled DLN/SNB neurons ± SEM. 

 SPN DLN SNB 

Age 
(months) 

Cell 
count 

Soma 
perimeter 
(µm) 

Cell 
count 

Soma 
perimeter 
(µm) 

Cell 
count 

Soma 
perimeter 
(µm) 

3-5 2.91 ± 
0.63 

46.85 ± 
8.41 

3.15 ± 
0.27 

92.28 ± 
3.73 

3.18 ± 
0.13 

78.90 ± 
4.99 

29-31 3.41 ± 
0.26 

60.40 ± 
4.56 

3.31 ± 
0.21 

91.11 ± 
5.97 

3.03 ± 
0.18 

82.48 ± 
4.89 

Abbreviations: DLN, Dorsolateral nucleus; SNB, Spinal nuclues of the bulbospongiosus; SPN, Sacral 

parasympathetic nucleus.  

 

3.3.2.2 Per area measurement of VGAT and ENK immunolabelling 

Antibodies to VGAT and ENK produced punctate labelling depicting terminal 

boutons that were spread ubiquitously across entire spinal cord sections. There was more 

concentrated immunolabelling of VGAT / ENK within the DH / DGC of both age groups 

(see graphs in Figure 3.3-2.4). SPN VGAT per area immunoreactivity showed a significant 

decrease of 66.4 % with age (see Figure 3.3). Similarly, SPN ENK per area 

immunoreactivity showed a significant decrease of 57.4 % with age (see Figure 3.4). 
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Figure 3.3 A-D: VGAT per area in lumbosacral spinal AOIs, with a decrease in VGAT 

immunoreactivity in the SPN with age. A-B shows VGAT immunolabelling in 3- and 30-

month SPN. C-D show graphs depicting VGAT immunolabelling per area in spinal AOIs 

across age groups. Group means ± SEM; n=4 per age group; ***p≤0.01. Anderson Darling 

and F-tests were applied to test for normality and variance, respectively. To test for 

significant differences between age groups, two-sample t-tests assuming equal variance 

were applied to data with an equal variance; two-sample t-tests with Welch’s correction 

factor were applied to data with unequal variance. Scale bars = 20 µm. AOIs, Areas of 

interest; DLN, Dorsolateral nucleus; DGC, Dorsal grey commissure; DH, Dorsal horn; 

RDLN, Retrodorsolateral nucleus; SNB, Spinal nucleus of the bulbospongiosus; SPN, 

sacral parasympathetic nucleus; VGAT, Vesicular GABA transporter; VH, Ventral horn.  
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Figure 3.4 A-D: ENK per area in the lumbosacral spinal AOIs. A-B show ENK 

immunolabelling in 3- and 30-month SPN. C-D show graphs depicting ENK immunolabelling 

in spinal AOIs across age groups. Group means ± SEM; n=4 per age group; *p≤0.1. 

Anderson Darling and F-tests were applied to test for normality and variance, respectively. 

To test for significant differences between age groups, two-sample t-tests assuming equal 

variance were applied to data with an equal variance; two-sample t-tests with Welch’s 

correction factor were applied to data with unequal variance. Scale bars = 20 µm. AOIs, 

Areas of interest; DLN, Dorsolateral nucleus; DGC, Dorsal grey commissure; DH, Dorsal 

horn; ENK, Met-enkpehalin; RDLN, Retrodorsolateral nucleus; SNB, Spinal nucleus of the 

bulbospongiosus; SPN, sacral parasympathetic nucleus; VH, Ventral horn. 

 

3.3.2.3 VGAT/ ENK inputs onto spinal motoneurons 

 Presumptive ENK and VGAT terminals in apposition to DLN, SNB, and SPN 

immunolabelled soma allowed for quantitative comparisons across age groups. SPN 

soma had more ENK inputs in apposition than motor neuron soma (see Figure 3.5.H). In 

terms of age-associated changes, there was no significant differences in the number of 

VGAT / ENK inputs in apposition to SPN, DLN, or SNB some (Figure 3.5).  
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Figure 3.5: ENK and VGAT inputs onto lumbosacral spinal nuclei showing decreased VGAT 

inputs onto SPN and DLN soma with age; results were not significant. A & D show VGAT 

inputs in apposition to SPN soma (3 and 30 months). B and E show VGAT inputs in 

apposition to DLN soma (3 and 30 months). C shows VGAT inputs in apposition to SNB 

soma (3 months). F shows ENK inputs in apposition to SNB soma (30 months). G-H show 

graphs depicting the mean number of VGAT / ENK inputs in apposition to SPN/DLN/SNB 

soma. Group means ± SEM; n=4 per age group. Anderson Darling and F-tests were applied 

to test for normality and variance, respectively. To test for significant differences between 

age groups, two-sample t-tests assuming equal variance were applied to data with an equal 

variance; two-sample t-tests with Welch’s correction factor were applied to data with 

unequal variance. Scale bar = 10 µm.  ChAT, Choline acetyltransferase; DLN, Dorsolateral 

nucleus; ENK, Met-enkpehalin; MAP2, Microtubule associated protein 2; SNB, Spinal 

nucleus of the bulbospongiosus; SPN, sacral parasympathetic nucleus; VGAT, Vesicular 

GABA transporter. 

 

3.4 DISCUSSION 

3.4.1 Summary of main findings 

In this chapter, application of immunohistochemistry allowed for the identification 

of age-associated changes in ENK and VGAT immunoreactivity in lumbosacral spinal 

nuclei. There was a significant 66.5% decrease in ENK immunoreactivity in the aged (29-

31 month) mouse SPN compared with young (3-5 month). Additionally, there was a 

significant 57.5% decrease in VGAT immunoreactivity in the aged SPN compared with 

young. No age-associated changes in soma size, neuron number or ENK / VGAT inputs 

onto to spinal or brainstem nuclei of interest were noted.  

 

3.4.2 Immunolabelled structures 

Immunolabelling of LC (TH) and LDTg (ChAT) neurons agreed with previous 

literature regarding cell shape, neurite projection and cell packing density (Armstrong et 
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al., 1983; Holets et al., 1988; Pickel et al., 1977; Standaert et al., 1986). Putative ENK 

punctate terminals were ubiquitous throughout the LC, PMC, and LDTG suggesting 

rostro-caudal projection of ENK fibres. This has been observed in previous studies of the 

rat LC and PMC using anti-met-ENK antibodies (Drolet et al., 1992; Van Bockstaele et al., 

1995). ENK-immunoreactive cells were also observed in the rat PMC and were not 

observed in the present study (Drolet et al., 1992). This difference may be due to 

interspecies variability between mice and rats; or may be due to partially masked ENK+ 

antigen loci meaning that ENK+ soma often go undetected with standard 

immunohistochemical techniques (Huang et al., 2010; Todd et al., 1992). ENK 

immunoreactivity has not previously been reported in the LDTg. However, δ-opioid 

receptor (DOR) immunopositive cells have been observed in the rat LDTg (and LC), and 

ENKs are the endogenous ligands for DORs (Arvidsson et al., 1995). Within the PMC, the 

mean ENK-immunoreactive percentage ranged between 11.4-30.2 % which was more 

concentrated than LC (2.6-6.1 %) and LDTg (1.5-3.5 %) ENK-immunoreactivity. 

Consequently, ENK appears more closely associated with autonomic control of the 

bladder than control of other behaviours linked with LC / LDTg activation. 

VGAT and ENK punctate labelling was ubiquitous throughout lumbosacral spinal 

grey matter, which has been previously reported. VGAT and ENK immunoreactivity 

showed the highest density of immunolabelling within the DH and DGC which also 

corresponds with previous literature (Gibson et al., 1981; Magoul et al., 1987; Marvizon et 

al., 2009; Snow et al., 1996). ChAT-immunoreactivity in rat SPN neurons is reflective of 

that in the present study labelling. Additionally, like present work, ENK inputs have been 

observed in apposition to ChAT-immunoreactive SPN neurons (at ultrastructural level) 

(Kohno et al., 1989).                                                                                                                                                                                                                                                                                                                                                                                          

 

3.4.3 Ageing in pontine AOIs 

The present study observed that ageing did not impact the soma size or neuron 

number within ChAT-immunolabelled LDTg and TH-immunolabelled LC nuclei. 
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Furthermore, ENK per area within pontine nuclei remained robust with age, indicating that 

age-associated dysfunction of structures within the peritoneum cavity is unlikely to be 

attributed to changes in ENK levels within these nuclei. Similarly, ENK inputs observed in 

apposition to LC and LDTg soma were also maintained with increasing age. The mean 

number of ENK inputs onto LC and LDTg soma in general fell within the same range of 

0.5-2.7 inputs onto each nuclei’s soma. To the best of our knowledge, age-associated 

changes in ENK input numbers, density, or concentration have not previously been 

observed within these structures.  

ENK inputting onto PMC neurons plays an important role in regulating bladder 

capacity. Stimulation of MORs in rats results in decreased firing of pre-sympathetic and 

pre-parasympathetic spinal-projecting neurons of the PMC (Guo et al., 2013), and PMC-

injected ENK has been observed to reduce bladder contraction in cats (Hisamitsu and de 

Groat, 1984; Jubelin et al., 1984). Furthermore, microinjection of opioid blocking naloxone 

into the PMC of decerebrated cats and dogs reduced bladder capacity by 17-57 %, with 

effects reversed by the microinjection of the opioid fentanyl (Matsumoto et al., 2004). 

Thus, ENK likely plays an important role in setting the bladder volume threshold for which 

micturition should occur. Studies of the impact of ENK-PMC inputs and defaecation have 

not been undertaken; however, it likely has an inhibitory effect on colorectal motility. In 

aged humans, fMRI studies have shown reduced activity in the PMC during bladder filling 

(Griffiths et al., 2007; Griffiths and Fowler, 2013), which suggests that inhibitory influence 

over the PMC, or inhibitory receptor density, is increased with age. As previously 

mentioned, this was not the case regarding ENK density within the region of the PMC, 

which was maintained in aged mice. However, ENK inputs onto PMC soma and neurites 

was not presently observed and thus this parameter may show age-associated changes. 

Furthermore, the PMC receives inhibitory inputs from GABA and glycine which decrease 

neuronal activity (Guo et al., 2013). Thus, increased age may impact the distribution of 

GABAergic and glycinergic density within the PMC. Alternatively, there may be an ag-

associated change in the receptor density that inhibitory neurons input onto. Additionally, 

age-associated changes may result within PMC neurons themselves. For example, 
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neuron morphology or number may change which could impact neuron projection 

pathways to spinal LUT-innervating neurons, and these parameters were not presently 

observed.       

As presently reported, ENK presumed synapses appose LC neurons, and this has 

been previously observed, as well as the presence of opioid receptors on LC neurons 

(Drolet et al., 1992; Guyenet and Aghajanian, 1979; Uhl et al., 1979). Opiate inputs cause 

prolonged depression of spontaneous LC neuronal activity (Bird and Kuhar, 1977). 

Additionally, ENK activation of LC MORS in cats results in reduced bladder contractility 

and increased bladder capacity (Guyenet and Aghajanian, 1979; Matsuzaki, 1990), and 

thus ENK inputs in the LC have a similar function to ENK inputs in the PMC. In addition, 

ENK injected into the cat LC results in decreased EAS contractility and therefore likely 

partially functions in control of voluntary defaecation. Within the present study, no 

changes were observed that may impact the function of the LC. However, extensive age-

associated changes have previously been observed in the LC (see section 1.9.4).  

Synpatic vesicle protein, involved in regulation of neurotransmitter release, is increased 

within synapses onto LC neurons in aged humans (Iwanaga et al., 1996). If this is also the 

case in mice, then it likely impacts non-ENK synapses as these were maintained in the 

present study. Noradrenergic innervation of spinal pathways that control the LUT and 

terminal bowel (including the SPN and DLN) that are likely derived from the LC, are 

decreased with age in rats (Ko et al., 1997; Lyons et al., 1989; Ranson et al., 2003a). This 

indicates decreased excitatory innervation of the LC or age-associated decline in LC 

neuron function potentially resulting in neuron loss. In mice, age-associated neuron loss 

has been observed in the LC which contrasts with the maintenance presently observed 

(Sturrock and Rao, 1985). This may be due to the use of a different strain of mice i.e. 

male ASH / TO strain as opposed the presently used male C57BL / 6J mice. Comparable 

age groups and counting techniques were applied across studies; however, differing 

methodology in tissue fixation (use of Bouin’s solution and parrafin wax) and staining (use 

of Lapham’s stain) may have also contributed to disparity between results. 
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 LDTg neurons are DOR+ and ENK input reduces neuron activity (Arvidsson et al., 

1995; Capece et al., 1998). The effects of ENK-LDTg inputs in bladder control are 

unknown, however they are likely to have a similar effect to the LC and PMC since the 

LDTg directly innervates to the SPN (Hamilton et al., 2009; Hida and Shimizu, 1982). 

Studies of age-associated change in ENK or general synaptic inputs onto LDTg neurons 

have not previously been reported. However, the effects of age on neuron number and 

morphology have been noted (see section 1.9.4 for reports across species). In aged mice, 

neuron number has been observed to be maintained, emulating present results. However, 

soma size has been reported to decrease in aged mice which opposes the maintenance 

in size presently observed. This may be attributable to the use of a different strain of mice 

i.e. male DDD mice compared to present male C57BL / 6J mice since analysis and age 

groups were comparable between studies.  

 

3.4.4 Ageing in lumbosacral spinal AOIs  

The present study observed that neuron number and soma size are maintained in 

the lumbosacral SPN, DLN, and SNB. Furthermore, the number of ENK and VGAT inputs 

that oppose SPN, DLN, and SNB soma did not change with age. The density of ENK and 

VGAT immunoreactivity remained unchanged in all lumbosacral AOIs with the exception 

of the SPN, whereby a significant age-associated decrease in VGAT and ENK density 

was reported. This may be reflective of fewer dendritic inputs since no age-associated 

changes were observed with the number of VGAT or ENK inputs that apposed SPN 

soma. However, GABA inputs onto SPN soma and dendrites are unchanged in aged rats 

at ultrastructural level (Santer et al., 2002). This difference between studies may be 

attributable to interspecies variability. The effects of ageing on the distribution ENK fibres 

within the SPN have not previously been observed. However, unlabelled synaptic inputs 

onto SPN neurons remains unchanged with increased age in rats (Santer et al., 2002). 

Again, this may be attributable to interspecies variability, or may simply not be reflective of 

a change that is specific to ENK+ synapses.   
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 The age-associated changes reported at spinal level likely impact bladder and 

terminal bowel function of C57BL / 6J male mice used presently. Aged C57BL / 6J mice 

have weaker detrusor contractile and relaxant responses in the bladder, that is more 

pronounced in males (Kamei et al., 2018). SPN stimulation results in reflex bladder 

contractions (Ni et al., 2018), whilst ENK and GABA at lumbosacral level inhibits bladder 

detrusor activity (Dray and Metsch, 1984; Hisamitsu and de Groat, 1984; Sugaya et al., 

2019). A decline in inhibitory ENK and GABAergic inputs may result in decreased relaxant 

responses in the bladder.  

Additionally, aged male C57BL / 6J mice suffer from decreased colonic motility 

and faecal impaction (Patel et al., 2014). Stimulation of the SPN evokes colorectal and 

IAS contractions (Dorofeeva and Panteleev, 2007; Tai et al., 2001), whilst ENK and GABA 

at lumbosacral level inhibits DC contractions (Kennedy and Krier, 1987; Nakamori et al., 

2018). A decrease in inhibitory SPN inputs with age would likely result in increased DC 

contractile responses which would oppose age-associated changes in colonic motility 

observed previously in aged male C57BL / 6J mice (Patel et al., 2014). However, 

decreased spinal inhibition of DC contractility may be a compensatory mechanism as a 

result of the potential increase in DC rigidity and DC smooth muscle deterioration with age 

discussed in section 5.4. 

GABAergic innervation of the SPN is derived from spinal interneurons projecting 

from the DGC and DH, and descending neurons from the rostal ventromedial medulla 

(Antal et al., 1996; Blok et al., 1997a; Holstege, 1991; Polgar et al., 2003). To our best 

knowledge, age-associated changes in GABAergic descending rostal ventromedial 

medulla and spinal interneurons have not been reported. Therefore, it is difficult to ascribe 

a potential cause for decreased VGAT density observed in the SPN.  

ENK innervation to the SPN likely originates from spinal afferents and interneurons 

since mid-thoracic spinal transection produces no change in lumbosacral ENK density 

(Micevych et al., 1986; Romagnano et al., 1987). Spinal afferents are thought to supply 

lesser amounts of ENK to the SPN, since few bladder, DC, and penis afferents are ENK+ 
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(Keast and de Groat, 1992). ENK soma observed in the thoracic and lumbar spinal DH 

and DGC likely innervate SPN neurons (Huang et al., 2010; Nicholas et al., 1999; Sasek 

and Elde, 1986; Seybold and Elde, 1980). Furthermore, the SPN itself contains ENK+ 

neurons and this may provide short local projections to ChAT+ neurons presently 

observed (Shimosegawa et al., 1987). However, due to partially masked antigen loci, 

ENK+ SPN soma were not observed in the present study as ENK+ soma often go 

undetected with standard immunohistochemical techniques (Huang et al., 2010; Todd et 

al., 1992). If this was the case, these neurons likely project rostrally or caudally since 

punctate ENK+ fibres were observed presently with no evidence of lateral projections. 

ENK immunoreactivity change with age was measured in the rat spinal cord using 

radioimmunoassay. Within the lumbar cord, ENK+ content was observed to be unchanged 

with age. However, it was decreased at thoracic level (Missale et al., 1983). Therefore, 

loss of thoracic ENK+ neurons that may project to the SPN (as described above) may 

result in the age-associated decline in ENK SPN density presently reported.    

Studies in rats showed maintenance of SPN neuron numbers and soma with age 

and agree with present study results (Dering et al., 1998; Dering et al., 1996; Santer et al., 

2002). Studies of the sexually dimorphic DLN and SNB showed age-associated changes 

in neuron numbers and morphology in male Fischer 344 rats, with a study reporting a 

decline in neuron numbers. Soma size were observed to be increased (with evident 

lipofuscin build-up) in one study and decreased in the other study with age (Fargo et al., 

2007; Jacob, 1998). Results were likely attributed to decline in circulating testosterone 

since acute and chronic testosterone treatment reversed age-related DLN and SNB 

number and morphological changes (Fargo et al., 2007). However, plasma testosterone 

levels are not significantly decreased in male C57BL / 6J mice (of up to 31 months) with 

age (Nelson et al., 1975; Svare et al., 1983), and thus may potentially explain 

maintenance of neuron number and soma size presently observed in aged SNB / DLN 

neurons. Furthermore, age-associated decline of unlabelled synaptic inputs onto SNB 

soma have been reported in rats with castration and therefore decreased plasma 

testosterone being observed to result in significantly reduced SNB synaptic input 
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(Matsumoto, 1998). Thus, age-associated maintenance of GABA and ENK SNB (and 

likely DLN) soma inputs is likely attributed to the fact that plasma testosterone does not 

decrease in aged male C57BL / 6J mice (Nelson et al., 1975; Svare et al., 1983).  

 

3.4.5 Study Limitations 

 The main limitation of the present study was the inability to count inputs onto 

dendrites as few labelled dendrites visibly extended from labelled soma. This resulted in a 

loss of potential information that could have added further insight to age-associated 

dysfunction; particularly since dendrites and axons have previously been reported to be 

subject to age-associated loss within the SNB and DLN (Fargo et al., 2007). This could 

have been improved by the use of transneuronal tracing techniques, which provide better 

labelling of neuritic structures than standard immunocytochemical methods (Ugolini, 

2010). Furthermore, VGAT and ENK punctate structures that apposed soma were 

presumed to be synapses inputting onto neurons. The clarification of synaptic input onto 

neurons at ultrastructural level would have improved study validity.      

Due to limited availabilty of samples, there was an uneven number of replicates for 

brainstem sections with n=3 for 12-14 and 24-26 months and n=4 for 3-5 and 29-31 

months. Thus, lower replicate numbers potentially reduced the reliability of results. In 

addition, spinal cord analyses was only undertaken within the two extreme young and 

aged groups (3-5 and 29-31 months) due to lack of sample availability.  

The PMC was unstained in the present study. Thus, ENK input counts onto soma 

could not be undertaken. Additionally, precise location of the nucleus was predicated 

based on LC and LDTg location and therefore is subject to error. Staining of the PMC with 

atriopeptin, as done previously, would likely have proved beneficial (Holets et al., 1988).  
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3.5 Conclusion  

In conclusion, the selected nuclei within the brainstem and lumbosacral spinal cord 

observed in this study were largely unaffected by ageing in terms of soma size, cell count 

and, ENK and VGAT appositions onto soma and thus unlikely to influence bladder and 

terminal bowel dysfunction with increased age. However, the SPN was reported to have a 

significant decline in inhibitory ENK and VGAT immunoreactivity with age. This may result 

in reduced relaxant responses in bladder detrusor muscle and increased contractility of 

DC muscle. The increased DC contractility may be a compensatory mechanism as a 

result of potential age-associated increased DC wall rigidity as reported in Chapter 5. The 

decrease in ENK+ SPN density may be due to a decrease in thoracic ENK+ neurons 

potentially projecting to the SPN.  
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4 EFFECTS OF AGEING ON GABA AND GLUTAMATE INPUTS ONTO 

SUBNUCLEI WITHIN THE HYPOTHALAMIC PARAVENTRICULAR 

NUCLEUS 

   

4.1 INTRODUCTION 

The prevalence of LUT and terminal bowel dysfunction increases with age resulting 

in UI, FI and / or constipation (as discussed in section 1.2). The hypothalamic PVN is 

involved in the control of LUT and terminal bowel function and may be subject to age-

associated change. The PVN is active during colonic distension (Martínez et al., 2006; 

Wang et al., 2009), while neuronal tracing studies consistently show projections from the 

PVN parvocellular neurons to the LUT (Grill et al., 1999; Marson, 1997; Rouzade-

Dominguez et al., 2003a; Sugaya et al., 1997). Hypothalamic lesioning in humans 

(following surgery to remove hypothalamic-extending pituitary adenomas) resulted in 

detrusor overactivity during urine storage phase and detrusor underactivity during voiding 

(Yamamoto et al., 2005). This is similar to age-associated weakening of detrusor 

contractile and relaxant responses observed in C57BL / 6J mice, which is more 

pronounced in males (Kamei et al., 2018). The present study aim was to 

immunohistochemically label OXY and VP PVN neurons and GABA and glutamate 

synaptic structures in male C57BL / 6J mice and analyse structural changes with 

increased age that may result in dysfunctional voiding.  

As described in section 1.6.3.2, the PVN is a complex nucleus that is involved in the 

control of multiple neuroendocrine and autonomic functions via pituitary and CNS 

projections respectively (Qin et al., 2018). The PVN contains OXY and VP posterior 

pituitary-projecting magnocellular neurons and these comprise 10 % of mouse PVN 

neurons (Qin et al., 2018; Sturrock, 1992). The remainder of the PVN is made up of 

parvocellular neurons that are immunopositive for a variety of hormones and neuroactive 

substances, including OXY and VP, and these project to both the anterior pituitary and 

various regions of the CNS (Biag et al., 2012; Qin et al., 2018; Swanson and Kuypers, 
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1980). The PVN in the rat was originally categorised into eight subnuclei based upon 

location and cell type, and was generally observed to have a magnocellular core with a 

parvocellular surround (Swanson and Kuypers, 1980). A more recent study shows that the 

PVN in mice is more heterogeneously organised as magnocellular and parvocellular 

neurons are interspersed throughout the rostral to caudal and dorsal to ventral extent of 

the nucleus. Subsequently, the mouse PVN is divided into ten subnuclei based on 

predominant cell type and location (Biag et al., 2012). These subnuclei divisions were 

used in the present study and are depicted in Figure 4.2. Additionally, the location of the 

PVN is depicted in Figure 4.1. 

 

Figure 4.1: Schematic drawing of mouse hypothalamic brain transverse section at Bregma 

-0.82 mm showing location of PVN, SON and SCN. 3V, Third ventricle; AV, Anteroventral 

thalamic nucleus; CA3, CA3 region of the hippocampus; D3V, Dorsal third ventricle; DG, 

Dentate gyrus; LV, Lateral ventricle; PVN, Paraventricular nucleus; SCN, Suprachiasmatic 

nucleus; SON, supraoptic nucleus. Nuclei labels derived from Paxinos and Franklin (2007). 

The PVN sends efferents and receives afferents from various CNS regions 

involved in LUT and terminal bowel control, which are discussed in section 1.6.3.2 and 
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1.7.5.2. The PVN sends OXY projections directly to the lumbosacral SPN (Puder and 

Papka, 2001b; Swanson and McKellar, 1979), and intrathecal administration of OXY 

causes increases in non-voiding detrusor contractions, which results in increased bladder 

pressure (Pandita et al., 1998; Puder and Papka, 2001b). VP+ neurons have been 

observed to project to the spinal cord (Cechetto and Saper, 1988), and may terminate 

within the lumbosacral DLN (Nadelhaft and Vera, 1996; Swanson and McKellar, 1979). 

This potential pathway may partially control EUS function since activation of DLN VP 

receptors results in EUS closure (Ueno et al., 2011). Furthermore, CRH-containing 

neurons of the PVN have been observed to project to the lumbosacral spinal cord (Puder 

and Papka, 2001a) and intrathecal injection of CRH at this level results in decreased 

detrusor contractions (Pavcovich and Valentino, 1995; Wood et al., 2013). The PVN may 

also control EUS closure via circulatory release at the pituitary, since circulating VP dose-

dependently increases EUS contractility (Ito et al., 2018). 

During colonic distension, 81 % of OXY, 18 % of VP, and 16 % of CRH PVN 

neurons are active (Wang et al., 2009). Studies so far suggest that PVN control over the 

terminal bowel is mainly via circulatory hormone release as opposed to CNS projections, 

and is discussed below. OXY released from the PVN into the circulation causes increased 

colonic motility via activation of myenteric neurons (Xi et al., 2019). Additionally, VP 

injected into the inferior mesenteric artery inhibits phasic contractions of the colon at low 

doses and causes giant migratory contractions at high doses (Zhu et al., 1992). 

Furthermore, CRH delivered intraperitoneally and into the inferior mesenteric artery inputs 

onto myenteric neurons and increases colonic motility (Maillot et al., 2000; Maillot et al., 

2003; Million et al., 2000). There is some evidence, discussed below, that suggests PVN 

CNS projections are involved in terminal bowel control. The PVN is known to project 

directly to the LC (Schwarz et al., 2015), and these projections may contain CRH that is 

known to input onto LC neurons and increase colonic motility (Lechner et al., 1997). 

Furthermore, OXY+ PVN neurons innervate lumbosacral spinal motor neurons that project 

to the pubococcygeus muscle (Perez et al., 2005). The pubococcygeus muscle is a 
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striated muscular structure connected to the EAS and thus, the PVN may function in 

control of EAS closure (Garavoglia et al., 1993).  

GABA and glutamate are the main neurotransmitters involved in the control of 

PVN neurons (Herman et al., 2002; Hermes et al., 1996; Womack et al., 2007). GABA 

inhibits PVN neurons whilst glutamate excites them as discussed in sections 1.8.2 and 

1.8.3. Vesicular transporters VGAT and VGLUT2, employed in the present study are 

ubiquitous throughout the PVN. Both neurotransmitters label at least 85 % of 

synaptophysin-containing (pre-synaptic) terminals in the mouse and rat PVNmpd 

(Johnson et al., 2018). Therefore, GABA and glutamate are the most abundant 

neurotransmitters that influence PVN post-synaptic activity. Thus, increased age may 

impact GABA or glutamate PVN synapses and may result in voiding dysfunctions. 

Age-associated decreases have been observed in unlabelled synapses inputting 

onto rat PVN neurons (Itzev et al., 2003), and this may be associated with GABA and 

glutamate synaptic changes with age. Morphological changes within PVN neurons have 

been reported with age and are detailed in section 1.9.5.  

The main hypothesis is that LUT and terminal bowel-controlling PVN neurons may 

be subject to age-associated changes in GABA and glutamatergic innervation that results 

in voiding disorders. In order to establish any age-associated changes, OXY and VP PVN 

neurons and VGAT and VGLUT2 (representing GABA and glutamate terminals 

respectively) were immunohistochemically labelled. Percentage area measurements of 

VGAT and VGLUT2-immunolabelling were analysed within individual subnuclei. 

Additionally, the number of VGAT+ and VGLUT2+ inputs onto PVN parvocellular and 

magnocellular OXY+ and VP+ soma was counted within individual subnuclei. Results were 

then compared across age groups to determine any age-associated changes.  
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4.2 MATERIALS AND METHODS 

4.2.1 Identification of PVN subnuclei 

Biag et al., (2012) mapped out the mouse PVN and created appropriate subnuclei 

nomenclature (for mouse brains) that was utilised in the present study (see Figure 4.3) 

(Biag et al., 2012). In order to identify the most rostral and caudal ends of the PVN, the 

Mouse Brain Atlas was employed (Paxinos and Franklin, 2007). Sections were compared 

to the Atlas under a light microscope.   

 

4.2.2 Differentiating between parvocellular and magnocellular OXY and VP-

immunopositive PVN neurons  

To differentiate between parvocellular and magnocellular neurons, soma diameter 

measurements were used based on previous studies in mice. A separate study measured 

TRH+ soma diameter (known to be parvocellular) and VP+ soma diameter (known to be 

predominantly magnocellular) in 100 randomly selected PVN neurons and observed that 

magnocellular (VP+) soma were ≥ 14 µm. One study measured the diameter of OXY / VP 

labelled soma in the SON (shown in Figure 4.1), since virtually all SON OXY / VP neurons 

are magnocellular. The smallest diameter measurement observed was 12.5 µm (Castel 

and Morris, 1988). The same approach was used in the present study and the diameter of 

50 randomly selected OXY+ and VP+ SON soma were 12.6 µm in diameter at their 

smallest. Consequently, a mean of 13 µm was calculated from all three measurements. 

Therefore, cells were categorised as parvocellular if soma diameter was < 13 µm and 

magnocellular if soma diameter ≥ 13 µm.  

 

4.2.3 PVN measurement parameters 

Analyses of sections focused on age-associated structural change in VGAT and 

VGLUT2 labelling within the PVN. Analyses was undertaken using captured overlay 

images of sections (see Chapter 2). Over 5,500 images were analysed.  
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4.2.3.1 Percentage area coverage of VGLUT2 and VGAT within each subnucleus  

Image-pro Plus 7.0 (Media Cybernetics, Inc., Rockville, USA) was used to 

determine the percentage area coverage for VGAT and VGLUT2 immunoreactivity within 

each PVN subnucleus. This was then compared across four age ranges; 3-4, 12-14, 24-

25, and 30 months (n=4 for all age groups except 24-25 months in which n=2, due to lack 

of tissue availability). Thresholds for fluorescent intensity were applied to reduce aberrant 

signalling. These were set manually by the same experimenter, so only fluorescently 

labelled terminals were included. The percentage area coverage was determined in all 

sections containing set AOIs and the average per section was calculated in each animal.   

In order to maintain consistency, shapes of a set size were placed over subnuclei 

for measurement of VGAT and VGLUT2 coverage within each shape’s boundaries (see 

Figure 4.2). The boundaries of each shape were mapped using the smallest region of 

each subnucleus. For example, the PVNmpd appeared smallest when it emerged at 

Bregma -0.58 mm and therefore a shape was chosen to fit within the PVNmpd at this 

transverse plane. During measurement, shapes were placed in the most central region of 

subnuclei. This lessened the chance of shape boundaries overlapping into other PVN 

subnuclei.   

Images of GABA and glutamate presumed terminals were taken at x40 

magnification (see section 2.3.3.2 for imaging methodology) and analysed. Every section 

containing PVN subnuclei was measured using the corresponding shapes as boundaries. 

This resulted in roughly four measurements taken for each subnucleus per labelling 

regime per animal. The mean percentage area coverage of VGAT and VGLUT2 within 

each subnucleus was then calculated per animal.  
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Figure 4.2: Shapes applied to PVN subnuclei for per area measurement within AOI 

boundaries. A-D shows the varying heights, widths or diameters (µm), and types of shapes 

(rectangular or ellipses) applied to each subnucleus. Ellipses were applied to more rounded 

subnuclei (PVNap, PVNam, PVNmm, PVNmpd, PVNpmm, PVNdp, PVNpml and PVNmpv). 

Rectangles were applied to more elongated subnuclei (PVNpv and PVNlp). AOI, Area of 

interest; PVNam, Paraventricular nucleus, anterior magnocellular; ap, anterior 

parvocellular; pv, periventricular part; mpd, medial parvocellular, dorsal zone; mm, medial 

magnocellular; pmm, posterior magnocellular, medial zone; pml, posterior magnocellular, 

lateral zone; dp, dorsal parvocellular; mpv, medial parvocellular, ventral zone; lp, lateral 

parvocellular. 
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4.2.3.2 Quantifying VGAT and VGLUT2 terminal inputs in apposition to OXY and VP-

immunopositive cells within each subnucleus    

Overlay images showed VGAT and VGLUT2 synaptic terminal inputs making 

contact with OXY and VP labelled neurons. Using overlay images at x63 magnification the 

number of presumed GABA or glutamate inputs in apposition with soma were counted. 

Soma input counts were calculated separately for each subnucleus and each cell type 

(parvocellular or magnocellular). Although a worthwhile measurement parameter, input 

counts onto neurites could not be reliably quantified. This is due to few neurites extending 

visibly from immunolabelled soma (see Figure 4.3). Therefore, conditions would not be 

replicable.  

 Prior to counting inputs, soma diameters of labelled OXY and VP neurons were 

measured using Image-pro Plus 2.0 to determine whether cells were parvocellular or 

magnocellular. Double labelling regimes of antibodies for synaptic terminals and 

antibodies for neuron types were used. Therefore, as two synaptic terminal types (GABA 

and glutamate) and two neuron types (OXY and VP) were labelled this gave rise to four 

antibody labelling regimes (see section 2.3.2.3).  Thus, each labelling regime was applied 

to one in every four sections, with a distance of 180 µm (45 µm per section) between 

regimes. Consequently, incidences occurred in which soma of a subnucleus did not fall 

under a set neuron type. For example, in the PVNam of one mouse there may have been 

no visible VP-immunopositive parvocellular soma labelled alongside presumed glutamate 

terminals. These soma may have not been present at all [as few VP soma are known to 

reside within the PVNam (Biag et al., 2012)] or may simply have been overlooked and 

were present in sections in which a separate labelling regime was used.  

 

4.2.4 Tabulation, graphical representation, and statistical analyses  

Means of each parameter analysed were calculated per animal. Animals were then 

grouped into four age groups: 3-4, 12-14, 24-25, and 30 months. For each parameter, the 

mean of each sample group was calculated ± standard error of the mean (SEM). 
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Data distribution and variance were determined using Anderson-Darling and 

Bartlett’s tests, respectively. All data was observed to have normal distribution and equal 

variances. As data met the test assumptions, a one-way ANOVA was applied to test for 

statistically significant differences between the four age groups. Any data that had p- or f-

values observed to be significant were subject to post-hoc tests. A Tukey-Kramer test was 

applied to determine where significant differences lay between pairs of data.  

As mentioned in section 4.2.3.2, not all cell types (i.e. OXY, VP, parvocellular and 

magnocellular) were present or visible within each PVN subnucleus in any given mouse 

for GABA and glutamate input quantification. Therefore, some replicates within an age 

group did not produce data. If less than two replicates within an age group produced data, 

then statistical tests were not applied to that parameter. For example, in the 24-25-month 

age group there were two replicates. If OXY-immunopositive parvocellular cells were only 

observed in one 24-25-month animal in the PVNmpv alongside glutamate terminal inputs, 

then a one-way ANOVA was not applied to this parameter (i.e. number of glutamate 

inputs in apposition with OXY parvocellular cells within the PVNmpv).    
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4.3 RESULTS 

4.3.1 Organisation of the mouse PVN based on OXY and VP-immunolabelling 

Neurons labelled with OXY and VP were observed to be oval or triangular in shape 

(see Figure 4.5-4.6). Labelled neurites projected ventro-laterally outwards from the third 

ventricle, with scattered punctate fibres visible (see Figure 4.3.I-J). Control sections, 

where primary antibodies had been omitted, showed no specific fluorescent labelling (see 

Appendix C, Figure 8.4). The PVN as a whole changed shape over its rostral to caudal 

extent. It sat bilaterally next to the third ventricle, matching ipsilateral/contralateral 

subnuclei (see Figure 4.3). The rostral tip of the PVN emerged at Bregma -0.34 mm 

extending laterally from the upper quarter of the third ventricle. Just caudal to this area 

was a cell sparse region with little OXY or VP immunolabelling. At around Bregma -0.58 

mm the PVN took the form of a slim, vertically orientated cylinder encompassing the upper 

half of the third ventricle. Between Bregma -0.7 to -1.06 mm the dorso-ventral span of the 

PVN decreased and took on a triangular shape encompassing the upper quarter of the 

third ventricle. At Bregma -1.22 mm the nucleus became slimmer and extended further in 

length horizontally after which the PVN terminated.  

 

4.3.1.1 Rostral Subnuclei: emergence at Bregma -0.34 mm 

Figure 4.3 depicts the overall organisation of the PVN subnuclei. The rostral end of 

the nucleus at Bregma -0.34 mm, consisting of the PVNam, the PVNap and the rostral 

end of the PVNpv (see Figure 4.3.A, B & I), contained mainly OXY-immunopositive 

neurons, with only 1-2 VP soma visible per animal at this transverse plane. The PVNpv 

differed from all other subnuclei as it spanned the entire length of the nucleus. It consisted 

of a band of cells (around 3-4 cells thick) sitting immediately bilateral to the third ventricle. 

OXY and VP cells were dispersed evenly, but sparsely throughout this subnucleus. It had 

a low OXY and VP cell packing density compared to other PVN subnuclei, with the 

exception of the PVNlp. Caudal to the PVNam, a cell-sparse region was observed with a 
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small number of OXY neurons located within the PVNpv and the PVNap (see Figure 

4.3.B). 

 

4.3.1.2 Medial Subnuclei: emergence at Bregma -0.58 mm 

 At Bregma -0.58 mm OXY and VP neurons were observed to be more evenly 

distributed compared to rostral sections. At this point of the PVN, the PVNmpd, the 

PVNmm and the PVNpmm subnuclei emerged (see Figure 4.3.C). All three subnuclei 

contained a relatively even dispersal of OXY and VP soma. The PVNmm made contact 

with the dorsal half of the PVNpv; it terminated at Bregma -0.7 mm. The PVNmm 

consisted of both OXY and VP-immunopositive cells dispersed throughout the 

subnucleus. The PVNpmm lay ventral to the PVNmm and lateral to the ventral half of the 

PVNpv. It was present until Bregma -0.82 mm in which it decreased in size and was 

positioned on the lateral edge of the nucleus, medial to the ventral half of the PVNmpd 

and the rostral tip of the PVNmpv (see Figure 4.3.E).  

The PVNmpd began as a small subnucleus (diameter = around 190 µm) at 

Bregma -0.58 mm and was located at the dorsolateral tip of the nucleus (see Figure 

4.3.C). Caudal to this at Bregma -0.7 to -0.82 mm, it increased in size (diameter = around 

248 µm). At this region it was located immediately lateral to the PVNpv and medial to the 

ventral region of the PVNpml / PVNdp and the dorsal region of the PVNpmm / PVNmpv 

(see Figure 4.3.D-E). At Bregma -0.94 mm the PVNmpd marginally decreased in size 

(diameter = around 230 µm) and sat at the dorsolateral edge of the PVN, lateral to the 

PVNdp and dorsal to the PVNmpv (see Figure 4.3.F). The PVNmpd was observed to 

contain the greatest number of OXY and VP-immunopositive cells within the PVN. This 

was largely attributed to it spanning across multiple transverse sections between Bregma 

-0.58 to -0.94 mm. Thus, it had the largest surface area, as cell packing density within the 

PVNmpd was similar to other subnuclei (with the exception of the PVNpml that had a 

higher cell packing density).  
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4.3.1.3 Caudal Subnuclei: emergence at Bregma -0.7 mm and further caudal 

 The PVNpml emerged at more caudal levels at Bregma -0.7 mm and was a 

smaller subnucleus (maximum diameter = around 117 µm) that sat at the most dorsal 

region of the PVN above the PVNmpd (see Figure 4.3.D-E). It was observed to be a VP-

predominant nucleus with a dense sphere of VP-immunopositive neurons; this was the 

region of the nucleus that had the highest cell packing density. A small number of OXY-

immunopositive neurons also sat either side of this VP-immunopositive neuron-dense 

sphere. This subnucleus remained in the same position throughout sections and was 

present until Bregma -0.82 mm.  

The PVNdp emerged at Bregma -0.82 mm and terminated at Bregma -1.06 mm. It 

was located medial to the PVNpml / PVNmpd / PVNlp and the top portion of the PVNpv 

(see Figure 4.3.E-G). It was a small subnucleus (maximum diameter = around 140 µm) 

and had the lowest OXY and VP-immunopositive cell count. Within the PVNdp, there was 

an OXY-immunopositive cell predominance, with only 1-2 VP cells visible per mouse. 

Inferior to the PVNdp, the PVNmpv was situated immediately lateral to the ventral half of 

the PVNpv. It spanned between Bregma -0.82 mm and Bregma -1.06 mm.    

The most caudal subnucleus, the PVNlp, emerged at Bregma -1.06 mm as a small 

subnucleus mediolateral to the PVNdp and the PVNmpv (see Figure 4.3.G). Further 

caudal, at Bregma -1.22 mm, it increased in size extending laterally as a thin cylinder (see 

Figure 4.3.J). OXY and VP neurons were observed to have a low cell packing density. 

They were sparsely dispersed extending bilaterally from the dorsal end of the third 

ventricle; both cell types were relatively evenly scattered.   
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Figure 4.3 A-J: Organisation of the mouse paraventricular nucleus. A-H are schematic 

drawings, from coronal sections, illustrating the shape and distribution of the PVN subnuclei. 

Figures are ordered rostral (A) to caudal (H). I and J show Oxytocin (OXY) and Vasopressin 

(VP) immunolabelled cells in regions equivalent to A (I) and D (J). Scale bars = 20 µm.  

PVNam, Paraventricular nucleus, anterior magnocellular; ap, anterior parvocellular; pv, 

periventricular part; mpd, medial parvocellular, dorsal zone; mm, medial magnocellular; 
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pmm, posterior magnocellular, medial zone; pml, posterior magnocellular, lateral zone; dp, 

dorsal parvocellular; mpv, medial parvocellular, ventral zone; lp, lateral parvocellular.  

 

4.3.2 Age-associated change in VGAT and VGLUT2 inputs onto OXY and VP-

immunopositive soma within PVN subnuclei  

Input appositions were counted on parvocellular (diameter ≤ 13 µm) and 

magnocellular (diameter ˃ 13 µm) perikarya for comparison between age groups. Inputs 

were also evident along neuritic extensions. However, input counts onto neurites could not 

be reliably quantified (see section 4.2.3.2 for explanation). Table 4.1-4.2 summarise the 

number of VGAT, and Table 4.3-4.4 summarise the number of VGLUT2 presumed inputs 

onto OXY and VP-immunopositive soma compared across different age groups.  

 

4.3.2.1 Age-associated change in number of VGAT inputs onto OXY-immunopositive 

soma within PVN subnuclei 

Table 4.1 shows age-associated changes in the number of GABA inputs onto OXY 

magnocellular and parvocellular soma. Compared across age groups, nine out of ten 

subnuclei showed no age-associated change in number of VGAT inputs in apposition to 

parvocellular or magnocellular OXY-immunopositive soma. However, the number of 

VGAT inputs in apposition with PVNmpd OXY-immunopositive parvocellular soma 

showed significant age-associated changes (see Table 4.1 and Figure 4.4). A significant 

increase (with 95 % confidence) of 8.2 and 6.6 VGAT inputs was observed between 3-4 / 

12-14 and 24-25 months respectively. A decline of 5.1 VGAT inputs was reported 

between the 24-25- and 30-31-month tissue. However, this was only observed to be 

significant with 90 % confidence.  
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Table 4.1. Age-associated change in the number of VGAT synaptic inputs onto OXY-

immunopositive magnocellular and parvocellular soma within separate PVN subnuclei. 

Number of VGAT inputs onto OXY immunolabelled soma ± SEM; *p ≤ 0.05. 

Subnucleus 3-4 months 
(n=4) 
 

12-14 months 
(n=4) 

24-25 months 
(n=2) 

30 months 
(n=4) 

Magnocellular neurons 
 

PVNap 6 ± 1.2 4 ± 0 -9 7.1 ± 3.5 

PVNam 4.7 ± 2.1 5.1 ± 1.3 3 ± 3 6.2 ± 3.3 

PVNpv 5.5 ± 3.6 4.9 ± 0.1 3.5 ± 3.5 5.7 ± 1.7 

PVNmpd 2.3 ± 1.1 - - 4.5 ± 1.8 

PVNmm 3.6 ± 0.9 2.5 ± 1 3.3 ± 0.3 5.8 ± 2.7 

PVNpmm 5.1 ± 1.7 3.4 ± 1 7 ± 0.5 7.2 ± 3.3 

PVNpml 3.6 ± 1.2 3.5 ± 0.5 - 6.4 ± 1.6 

PVNdp 3.9 ± 2 3.5 ± 1.4 - 3.6 ± 3 

PVNmpv 4.3 ± 3 3.8 ± 1.3 - 1.7 ± 0.4 

PVNlp 3.2 ± 1.7 2.3 ± 0.6 - 6.7 ± 2.3 

Parvocellular neurons 
 

PVNap 3.3 ± 0.9 3.2 ± 0.6 - 3.2 ± 0.9 

PVNam 3.5 ± 0.5 - 0.8 ± 0.3 6.7 ± 4.7 

PVNpv - 1.8 ± 0.9 - 6.6 ± 2.1 

PVNmpd * 0.8 ± 0.8 2.4 ± 0.5 9 ± 1 3.9 ±1.4 

PVNmm 1 ± 0.6 - - 2 ± 2 

PVNpmm 7 ± 2.4 2 ± 1 4.8 ± 0.8 8.3 ± 4.4  

PVNpml 2 ± 0.6 5.3 ± 0.4 3 ± 3 6.5 ± 1.6 

PVNdp 1.5 ± 1.5 2.5 ± 0.9 - 3.7 ± 1.1 

PVNmpv 2.3 ± 1.2 2.5 ± 1 4.3 ± 1.3 3.2 ± 1.4 

PVNlp 4.9 ± 4.1 3.1 ± 1 2.8 ± 0.8 6.3 ± 2.7 
Abbreviations: OXY, Oxytocin; PVNam, Paraventricular nucleus, anterior magnocellular; ap, anterior 

parvocellular; pv, periventricular part; mpd, medial parvocellular, dorsal zone; mm, medial magnocellular; pmm, 

posterior magnocellular, medial zone; pml, posterior magnocellular, lateral zone; dp, dorsal parvocellular; mpv, 

medial parvocellular, ventral zone; lp, lateral parvocellular; SEM, Standard error of the mean; VGAT, Vesicular 

GABA transporter.  

 

 

 
9 Null values are due to ≤ 1 replicates within an age group containing immunolabelled soma that 
met set requirements (see section 4.2.3.2 for further description).  
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Figure 4.4 A-G: Age-associated changes in number of VGAT presumed terminal inputs in 

apposition to OXY parvocellular soma within the PVNmpd.  A-F are images of fluorescently 
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labelled VGAT boutons (red – CY3) in apposition to OXY-immunopositive soma (green - 

FITC) in the PVNmpd. A-B show 3-4-month and 24-25-month tissue respectively. 24-25-

month tissue has a greater number of VGAT inputs onto soma. C-D are increased 

magnification images of soma in images A and B, respectively. E-F show presumed inputs 

onto soma of 12- and 30-month-old mice. Boutons of varying sizes were noted. White 

arrows depict VGAT inputs. G is a graph displaying mean number of VGAT inputs onto OXY 

parvocellular soma within the PVNmpd across all age groups ± SEM; *p ≤ 0.05. All data had 

normal distribution and equal variance which was determined by application of the 

Anderson Darling and Bartlett’s tests, respectively. A one-way ANOVA was applied, and 

data was subject to a Tukey-Kramer post-hoc test where p- or f-values were significant to 

test for significant differences between age group pairs. Scale bars = 10 µm. OXY, Oxytocin; 

Parvo, Parvocellular; PVNmpd, Paraventricular nucleus, medial parvocellular, dorsal zone; 

VGAT, Vesicular GABA transporter.  

 

4.3.2.2 Age-associated change in number of VGAT inputs onto VP-immunopositive 

soma within PVN subnuclei 

Nine out of ten subnuclei showed no consistent age-associated change in number 

of VGAT inputs onto VP magnocellular and parvocellular soma (see Table 4.2). A 

significant age-associated trend was noted within the PVNmpd. A significant increase 

(with 95 % confidence) of (4.7, 5.4, and 7.5) VGAT inputs onto VP parvocellular PVNmpd 

soma was reported between the 3-4 / 12-14 / 24-25 and 30-31 month tissue respectively 

(see Table 4.2 and Figure 4.5). 
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Table 4.2. Age-associated change in number of VGAT inputs onto VP-immunopositive 

magnocellular and parvocellular soma within separate PVN subnuclei. 

Number of VGAT input counts onto VP immunolabelled soma ± SEM; *p ≤ 0.05. 

Subnucleus 3-4 months 
(n=4) 

12-14 months 
(n=4) 
 

24-25 months 
(n=2) 

30 months 
(n=4) 

Magnocellular neurons 
 

PVNap -10 - - - 

PVNam - - - - 

PVNpv 4.3 ± 1.3 4.2 ± 0.7 2.3 ± 0.3 3.1 ± 0.8 

PVNmpd 4.2 ± 1.3 5.4 ±1.6 1.4 ± 0.6 7.9 ± 2 

PVNmm 5.6 ± 1.5 3.8 ± 0.8 1 ± 0.2 5.1 ± 1.8 

PVNpmm 5.2 ± 0.8 3.8 ± 1.1 1.4 ± 0.1 7.7 ± 3.5 

PVNpml 3.3 ± 1 5.3 ± 1.9 - 5.9 ± 2.8 

PVNdp - - - - 

PVNmpv - - - - 

PVNlp 3.3 ± 1.8 5 ± 1 - 6.3 ± 3.4 

Parvocellular neurons 
 

PVNap - - - - 

PVNam - - - - 

PVNpv 4.3 ± 2.8 3.9 ± 1.1 0.9 ± 0.4 2.1 ± 1.1 

PVNmpd * 4.5 ± 0.3 3.8 ± 0.8 1.7 ± 1.4 9.2 ± 1.4 

PVNmm 7.3 ± 5.7 - 0.8 ± 0.8 3.1 ± 1.9 

PVNpmm 4.7 ± 2 3.4 ± 1.4  - 6.8 ± 2.9 

PVNpml 3.8 ± 0.8 2.8 ± 0.3 1.3 ± 1.3 2.9 ± 0.6 

PVNdp - - - - 

PVNmpv - - - - 

PVNlp 3 ± 1.6  2.4 ± 0.6 3.5 ± 3.5  4.4 ± 1.5 
Abbreviations: PVNam, Paraventricular nucleus, anterior magnocellular; ap, anterior parvocellular; pv, 

periventricular part; mpd, medial parvocellular, dorsal zone; mm, medial magnocellular; pmm, posterior 

magnocellular, medial zone; pml, posterior magnocellular, lateral zone; dp, dorsal parvocellular; mpv, medial 

parvocellular, ventral zone; lp, lateral parvocellular; SEM, Standard error of the mean; VGAT, Vesicular GABA 

transporter; VP, Vasopressin.  

 

 
10 Null values are due to ≤ 1 replicates within an age group containing immunolabelled soma that 
met set requirements (see section 4.2.3.2 for further description). 
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Figure 4.5 A-F: Age-associated changes in the number of VGAT inputs in apposition to VP 

parvocellular soma within the PVNmpd.  A-E are images of fluorescently labelled presumed 

GABA terminals (red - CY3) in apposition to VP-immunopositive soma (green - FITC) in the 

PVNmpd. A shows the PVN subnuclei of a 24-month-old mouse at Bregma    -0.7 mm. Note 

that there is an increase in peri-PVN concentration of presumed GABA terminals compared 

to concentration of terminals within the PVN itself. B is an increased magnification image of 

a soma and input in image A. Measurements of soma diameter display the difference 

between parvocellular (11.1 µm) and magnocellular (19.7 µm) soma. C-E show inputs onto 

soma of 3-, 12-, and 30-month-old mice. White arrows depict VGAT inputs. E is a graph 

displaying mean number of VGAT inputs onto VP parvocellular soma within the PVNmpd 

across all age groups ± SEM; *p ≤ 0.05. All data had normal distribution and equal variance 

which was determined by application of the Anderson Darling and Bartlett’s tests, 

respectively. A one-way ANOVA was applied, and data was subject to a Tukey-Kramer 

post-hoc test where p- or f-values were significant to test for significant differences between 

age group pairs. Scale bars = 10 µm.   3V, Third ventricle; Magno, Magnocellular; Parvo, 

Parvocellular; PVNmpd, Paraventricular nucleus, medial parvocellular, dorsal zone; pml, 

posterior magnocellular, lateral zone; pmm, posterior magnocellular, medial zone; pv, 

periventricular part; VGAT, Vesicular GABA transporter; VP, Vasopressin.  

 

4.3.2.3 Number of VGLUT2 inputs onto OXY-immunopositive soma within PVN 

subnuclei 

There were no significant age-associated changes in the number of VGLUT2 

inputs in apposition with OXY soma within all PVN subnuclei (see Table 4.3).  
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Table 4.3. Age-associated change in number of VGLUT2 inputs onto OXY-immunopositive 

magnocellular and parvocellular soma within separate PVN subnuclei. 

Number of VGLUT2 input counts onto OXY immunolabelled soma ± SEM. 

Subnucleus 3-4 months 
(n=4) 
 

12-14 months 
(n=4) 

24-25 months 
(n=2) 

30 months 
(n=4) 

Magnocellular neurons  
 

PVNap 5 ± 2.3 -11 - 2 ± 0.3 

PVNam 4 ± 1.4 3.1 ± 1.7 3.5 ± 0.5 5.7 ± 2.1 

PVNpv 1.4 ± 0.7 2.3 ± 0.3 - 2.2 ± 0.5 

PVNmpd 3.7 ± 2.3 1.9 ± 0.8 - 4.1 ± 2.6 

PVNmm 3.5 ± 1.1 3.1 ± 1.1 3.5 ± 0.5 3.5 ±1.5 

PVNpmm 3.5 ± 1.5 4.9 ± 2.1 3.2 ± 0.2 5.5 ± 1.1 

PVNpml 2.5 ± 1.2 1.4 ± 0.7 4.8 ± 1.2 4.3 ± 1.5 

PVNdp 3.7 ± 1.8 1.5 ± 1.5 - 3.2 ± 2.7 

PVNmpv 1 ± 1 1.9 ± 1.1 - 3.9 ± 1.9 

PVNlp 3.3 ± 3.3 2.5 ± 0.8 - 2.7 ± 1.2 

Parvocellular neurons 
 

PVNap 2 ± 1.2 2.3 ± 0.7 - 4.1 ± 1.4 

PVNam - 3.5 ± 0.5 - 1.8 ± 0.2 

PVNpv 1.6 ± 0.7 1.5 ± 0.4 - 3.8 ± 1.8 

PVNmpd 3.4 ± 2.3 3.7 ± 0.7 - 4.4 ± 1.3 

PVNmm 2.3 ± 0.9 - - 2.8 ± 1.5 

PVNpmm 5.5 ± 2.5 5.3 ± 3.8 - 5.6 ± 2.9 

PVNpml 5 ± 4 1.8 ± 0.3 - 1 ± 0 

PVNdp 1.7 ± 1.2 1.7 ± 0.3 - 2.4 ± 0.8 

PVNmpv 2.7 ± 1.1 4.8 ± 0.6 - 3.5 ± 1.5 

PVNlp 3.6 ± 1.7 3.1 ± 0.7 6 ± 2 2.7 ± 1.3 
Abbreviations: OXY, Oxytocin; PVNam, Paraventricular nucleus, anterior magnocellular; ap, anterior 

parvocellular; pv, periventricular part; mpd, medial parvocellular, dorsal zone; mm, medial magnocellular; pmm, 

posterior magnocellular, medial zone; pml, posterior magnocellular, lateral zone; dp, dorsal parvocellular; mpv, 

medial parvocellular, ventral zone; lp, lateral parvocellular; SEM, Standard error of the mean; VGLUT2, 

Vesicular glutamate transporter 2. 

 

 

 

 
11 Null values are due to ≤ 1 replicates within an age group containing immunolabelled soma that 
met set requirements (see section 4.2.3.2 for further description). 
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4.3.2.4 Age-associated change in number of VGLUT2  inputs onto VP-immunopositive 

soma within PVN subnuclei 

There were no significant age-associated changes in the number of presumed 

VGLUT2 inputs in apposition with VP soma across all PVN subnuclei (see Table 4.4). 

 

Table 4.4. Age-associated change in number of VGLUT2 inputs onto VP-immunopositive 

magnocellular and parvocellular soma within separate PVN subnuclei. 

Number of VGLUT2 input counts onto VP immunolabelled soma ± SEM. 

Subnucleus 
 

3-4 months 12-14 months 24-25 months 30 months 

Magnocellular neurons 
 

PVNap -12 - - - 

PVNam 7.5 ± 0.5 - - - 

PVNpv 2.8 ± 0.8 1.3 ± 0.3 2 ± 1.7 3.1 ± 1.7 

PVNmpd 2 ± 0.6 1.3 ± 0.3 3.6 ± 1.2 3.8 ± 1.2 

PVNmm 5.2 ± 3.6 3.5 ± 2.2 2.4 ± 0.9 4.9 ± 1.9 

PVNpmm 1.9 ± 0.7 3.7 ± 1.6 0.9 ± 0.9 3.1 ± 0.8 

PVNpml 2 ± 0.6 2.3 ± 0.5 3.4 ± 3.4  2.8 ± 0.3 

PVNdp - - - - 

PVNmpv - - - - 

PVNlp 4.5 ± 1.3 3.7 ± 2.1 - 4.7 

Parvoocellular neurons 
 

PVNap 0.5 ± 0.5 - - - 

PVNam - - - - 

PVNpv 0.9 ± 0.6 2 ± 0.6 - 1.6 ± 1.6 

PVNmpd 2.2 ± 0.6 3 ± 1.3  - 3 ± 1.5 

PVNmm 1.1 ± 0.8  4.1 ± 1.7 2 ± 1 6 ± 3 

PVNpmm 1.8 ± 0.9 3.2 ± 0.9 2.3 ± 1.7 2.4 ± 0.3 

PVNpml 1.2 ± 0.8 1.8 ± 0.5 - 1.7 ± 0.2 

PVNdp - - - - 

PVNmpv - - - - 

PVNlp 2.7 ± 0.4 2.8 ± 1.4 1.2 ± 0.2 2.8 ± 1.2 
Abbreviations: PVNam, Paraventricular nucleus, anterior magnocellular; ap, anterior parvocellular; pv, 

periventricular part; mpd, medial parvocellular, dorsal zone; mm, medial magnocellular; pmm, posterior 

magnocellular, medial zone; pml, posterior magnocellular, lateral zone; dp, dorsal parvocellular; mpv, medial 

parvocellular, ventral zone; lp, lateral parvocellular; SEM, Standard error of the mean; VGLUT2, Vesicular 

glutamate transporter 2; VP, Vasopressin. 

 
12 Null values are due to ≤ 1 replicates within an age group containing immunolabelled soma that 
met set requirements (see section 4.2.3.2 for further description). 
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4.3.3 Age-associated change in VGAT and VGLUT2 immunolabelling and distribution 

within PVN subnuclei  

VGAT and VGLUT2 primary antibodies showed presumed GABA / glutamate 

terminals to be ubiquitously distributed throughout the PVN. VGLUT2 abundance was 

similar to that of VGAT.  Peri-PVN regions had significantly higher levels of VGAT and 

VGLUT2 immunolabelling compared to the PVN itself (see Figure 4.5.A). Immunolabelled 

boutons appeared as small, punctate structures often present as rings surrounding soma 

(see Figure 4.4-4.5). Control sections (omission of primary antibodies) showed no 

fluorescent labelling (see Appendix C, Figure 8.4). Table 4.5 summarises the percentage 

area coverage of VGAT and VGLUT2 bouton labelling within subnuclei across age 

groups. VGAT labelling appeared as the most concentrated in the PVNpv compared to 

other PVN subnuclei. There appeared to be a dense clustering of VGAT terminals on the 

innermost edge of the PVNpv, adjacent to the outer edge of the third ventricle. There was 

no significant age-associated change in VGAT or VGLUT2 percentage area coverage 

within the PVNam, ap, mm, mpd, pmm, pml, mpv, dp or lp.  

However, the VGLUT2 immunolabelling within the PVNpv showed significant age-

associated changes in percentage area coverage. This subnucleus showed a statistically 

significant decrease in VGLUT2 immunolabelled structures between the 3-4-month 

samples and 12-14- / 24-25-month tissues. Furthermore, there were statistically significant 

increases between 12-14- / 24-25- and 30-month tissue (see Table 4.5 and Figure 4.6). 
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Table 4.5. Age-related changes in percentage area coverage of VGAT and VGLUT2 within 

separate PVN subnuclei. 

Mean percentage area coverage of immunolabelled presumed terminals ± SEM; **p ≤ 0.01. 

Subnucleus 3-4 months 
(n=4) 

12-14 months 
(n=4) 

24-25 months 
(n=2) 

30 months 
(n=4) 

VGAT percentage area coverage 
 

PVNap 29.6 ± 4.4 29.5 ± 11.4 19.2 ± 11.2 18.1 ± 2.9 

PVNam 24.9 ± 9.4 31.7 ± 16 10.6 ± 5.7 32.8 ± 2.4 

PVNpv 30.2 ± 4.1 30.7 ± 2.7 18 ± 0.3 30.7 ± 5 

PVNmpd 20.1 ± 2.9 27.3 ± 8.4 13.2 ± 3.9 25.7 ± 6.8 

PVNmm 31.2 ± 10.6 22.5 ± 7 3.7 ± 1.5 20 ± 3.4 

PVNpmm 24.2 ± 7.7 23.4 ± 8.1 25 ± 11.7 24 ± 6.2 

PVNpml 22.3 ± 2.7 23.9 ± 10.3 11.3 ± 2.4 30.3 ± 6.4 

PVNdp 14.6 ± 4.8 14.7 ± 8.1 7.9 ± 7.6 28.7 ± 8.6 

PVNmpv 25.9 ± 2.2  27.2 ± 9.8 5.1 ± 0.2 26.6 ± 6.8 

PVNlp 32.3 ± 3.6  26.7 ± 9.8 19.2 ± 0.6 30.4 ± 7.7 

VGLUT2 percentage area coverage 
 

PVNap 42.4 ± 12.3 21.9 ± 8.8 12.5 ± 8 17.5 ± 7.7 

PVNam 33.6 ± 12.3 17.6 ± 5.4 4.4 ± 3.3 21.5 ± 9.3 

PVNpv ** 31.6 ± 3.4 12.5 ± 3.9 4.5 ± 2.4 30.1 ± 2.8 

PVNmpd 24.2 ± 5.3 16 ± 0.8 12.1 ± 3.8 23.7 ± 2.3 

PVNmm 23.5 ± 8.7 8.8 ± 2.6 16.1 ± 0.9 21.9 ± 3.5 

PVNpmm 26 ± 5.4 19.6 ± 2.6 11.5 ± 2.2  27.4 ± 5.6 

PVNpml 17.3 ± 7.5 15.7 ± 3 6.8 ± 6.4 20.9 ± 5.8 

PVNdp 17.7 ± 7.5 4.5 ± 2.2  5.5 ± 4.5 18.3 ± 6.4 

PVNmpv 19.8 ± 3.5 15.4 ± 4.5 21.4 ± 1.3 23.5 ± 5.1 

PVNlp 21.4 ± 3.4 28.2 ± 10.8 18.7 ± 2.2 26.4 ± 5.1  
Abbreviations: PVNam, Paraventricular nucleus, anterior magnocellular; ap, anterior parvocellular; pv, 

periventricular part; mpd, medial parvocellular, dorsal zone; mm, medial magnocellular; pmm, posterior 

magnocellular, medial zone; pml, posterior magnocellular, lateral zone; dp, dorsal parvocellular; mpv, medial 

parvocellular, ventral zone; lp, lateral parvocellular; SEM, Standard error of the mean; VGAT, Vesicular GABA 

transporter; VGLUT2, Vesicular glutamate transporter 2. 
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Figure 4.6 A-D: Age-associated changes in density of VGLUT2 terminals within the 

PVNpv. A-B are images of fluorescently labelled VGLUT2 terminal boutons (red - CY3) 

within the PVNpv of the 24-25- and 30-month tissue. A marked increase in the number of 

VGLUT2 terminals of the PVNpv is evident between the 12-14- / 24-25-month and 30-

month tissue. D is a graph depicting the mean VGLUT2 percentage area coverage within 

the PVNpv across different age groups ± SEM; *p ≤ 0.05; **p ≤ 0.01. All data had normal 

distribution and equal variance which was determined by application of the Anderson 

Darling and Bartlett’s tests, respectively. A one-way ANOVA was applied, and data was 

subject to a Tukey-Kramer post-hoc test where p- or f-values were significant to test for 
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significant differences between age group pairs. Scale bars = 10 µm. 3V, Third ventricle; 

PVNpv, paraventricular nucleus, periventricular region; VGLUT2, Vesicular glutamate 

transporter 2. 

 

4.4 DISCUSSION 

4.4.1 Summary of main findings 

In this chapter, application of immunohistochemistry allowed for the identification 

of age-associated changes in VGAT and VGLUT2 density within the mouse PVN. An age-

associated increase in the number of VGAT inputs onto OXY (up to 91.1%) and VP (up to 

81.5%) parvocellular soma of the PVNmpd was noted. Additionally, there was a significant 

age-associated increase in the density of VGLUT2 immunoreactivity of up to 85% in the 

PVNpv. In all other PVN subnuclei the density and number of VGAT and VGLUT2 inputs 

onto soma remained unchanged with age.   

4.4.2 PVN cyto- and chemoarchitecture  

Previous studies of the mouse PVN cytoarchitecture, from rostral to caudal extent, 

exhibit a comparable organisation to that described in the present study. (Biag et al., 

2012; Broadwell and Bleier, 1976; Castel and Morris, 1988; Kadar et al., 2010; Rood and 

De Vries, 2011). The nucleus location, shape, and size as a whole was similar to that 

observed in rats. However, rats’ chemoarchitecture, parvocellular, and magnocellular 

arrangement differ throughout, as described below (Armstrong et al., 1980; Hou-Yu et al., 

1986; Sawchenko and Swanson, 1982a; Swanson and Kuypers, 1980; van den Pol et al., 

1984). This must be noted, as the majority of PVN studies, including tracing studies for 

determination of efferent and afferent connections, have been undertaken in rats. 

Therefore, known interspecies variability should be taken into account.  

Previous immunohistochemical studies of OXY and VP neurons in the mouse PVN 

showed analogous soma arrangement across subnuclei. For example, the PVNmpd had 

an even distribution of OXY and VP-immunoreactive soma with moderate cell packing 

density and was consistent with other mouse studies (Biag et al., 2012; Castel and Morris, 
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1988; Kadar et al., 2010). In rat homologues of the PVNmpd, OXY and VP soma are the 

predominant cell type which have a higher cell packing density than mice (Armstrong et 

al., 1980). Lower cell packing density in mouse PVNmpd is due to an overall CRH-

immunoreactive cell predominance (CRH neuron labelling was not presently observed) 

(Biag et al., 2012). A further example of interspecies variability between the mouse and rat 

PVN is the organisation of magnocellular and parvocellular cells. In the present study, 

magnocellular and parvocellular soma were distributed heterogeneously throughout 

mouse PVN subnuclei, consistent with other studies (Biag et al., 2012; Castel and Morris, 

1988; Kadar et al., 2010). Whereas, the rat PVN appears to have a magnocellular-pituitary 

projecting core surrounded by parvocellular neurons (Swanson and Kuypers, 1980).  See 

discussion by Biag et al., (2012) for further description of cyto- and chemoarchitectural 

interspecies variability between mice and rats (Biag et al., 2012). 

 

4.4.3 PVN OXY and VP neuron morphometry 

OXY and VP-immunoreactive soma were observed to be oval or triangular in shape, 

consistent with previous studies in mice and rats (Biag et al., 2012; Castel and Morris, 

1988; Lolova et al., 1996a; Rood and De Vries, 2011). Immunohistochemical studies in 

mice show comparable OXY and VP neurite labelling (Castel and Morris, 1988; Rood and 

De Vries, 2011). OXY and VP-immunoreactive PVN axons projected ventro-laterally from 

the third ventricle and merged to form part of the hypothalamo-neurohypophysial tract 

(HNT) for circulatory hormone release at the pituitary (Swaab and Lucassen, 2009). 

Subsets of OXY and VP neurons project to forebrain, brainstem and spinal regions for 

cognitive and autonomic control (Cechetto and Saper, 1988; Cui et al., 2013; Knobloch et 

al., 2012; Moga et al., 1990; Sawchenko, 1987; Swanson et al., 1980; Zheng et al., 1995). 

Scattered punctate OXY and VP fibres presently observed (in transverse sections) 

amongst PVN neurons likely represent these rostro-caudal projection pathways.   
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4.4.4 VGAT and VGLUT2 immunoreactivity  

VGAT and VGLUT2 presumed terminals immunolabelled as punctate structures and 

were ubiquitous throughout the PVN. Peri-PVN regions (in the immediate surround) 

showed greater abundance of both transporters. This immunolabelling was consistent with 

previous studies in mice (Inoue et al., 2013; Johnson et al., 2018). Interspecies variability 

also exists between mice and rats regarding VGAT and VGLUT2 immunolabelling. 

Johnson et al. (2018) observed that mice had similar VGAT and VGLUT2 density 

throughout the PVN, consistent with present results. In rats, there was a significant 10 % 

decrease in VGLUT2 PVN density compared to VGAT, further highlighting the difference 

between the two species.     

 

4.4.5 Effects of ageing on number VGAT and VGLUT2 inputs in apposition to PVN OXY 

and VP soma  

A significant age-associated increase in the number of VGAT inputs in apposition to 

OXY and VP parvocellular soma of the PVNmpd was observed. For OXY parvocellular 

soma, VGAT inputs significantly increased between 3-4- / 12-14- and 24-25-month-old 

mice. For VP parvocellular soma, VGAT inputs significantly increased between  3-4- / 12-

14- / 24-25- and 30-31-month-old mice. This likely results in increased inhibition of OXY 

and VP parvocellular PVNmpd neurons since GABA is the main inhibitory 

neurotransmitter in the PVN (Johnson et al., 2018). In the remaining PVN subnuclei, 

VGAT and VGLUT2 inputs in apposition to OXY and VP parvocellular and magnocellular 

soma were unchanged with age.  

The cellular composition of the mouse PVNmpd is reported by Biag et al., (2012). 

Double-labelling of OXY / VP neurons with fluorogold (injected intravenously) was 

observed depicting OXY / VP neurons that project to pituitary. Single-labelled OXY / VP 

neurons were also observed that likely project to CNS regions. Single-labelling of spinally-

projecting neurons (in the PVNmpd) were observed in separate mice and thus spinally-

projecting PVNmpd may be OXY+ and / or VP+ (Biag et al., 2012). Therefore, results 
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observed have the potential to impact various autonomic and neuroendocrine functions. 

However, emphasis here will be placed upon how age-associated changes may result in 

dysfunctional voiding as the main focus of research.  

Increased inhibition of OXY and VP parvocellular soma may result in decreased 

controlled release of OXY from the hypophysis (Swanson and Kuypers, 1980). Decreased 

circulating OXY would likely result in decreased colonic contractions (Xi et al., 2019), 

which may be a precursor to the decreased colonic motility and faecal output observed in 

aged male C57BL / 6J mice (Patel et al., 2014). Furthermore, decreased circulating VP 

would likely result in a decrease in colonic giant migratory contractions (Zhu et al., 1992), 

and this likely prevents colonic faecal ‘mass movement’ that is necessary for the effective 

initiation of the RAIR (Bajwa and Emmanuel, 2009; Sarna, 1991). Decreased circulatory 

VP would also potentially cause decreased EUS contractility (Ito et al., 2018), that may 

result in urine leakage. 

Increased GABA input onto OXY and VP neurons may impact spinally-projecting 

neurons. This could potentially result in decreased non-voiding contractions due to a 

decrease in OXY SPN input (Pandita et al., 1998; Puder and Papka, 2001b; Swanson and 

McKellar, 1979) and may be a precursor to weaker detrusor contractile responses 

observed in aged C57BL / 6J mice (Kamei et al., 2018). Furthermore, VP projections to 

the spinal cord may result in further inhibition of EUS contractility (Cechetto and Saper, 

1988; Nadelhaft and Vera, 1996; Swanson and McKellar, 1979; Ueno et al., 2011).  

To the best of our knowledge, age-associated changes in the number of GABA 

inputs in apposition to PVN neurons has not previously been reported. HPLC 

measurement of PVN GABA concentration showed no age-associated change, reflective 

of the maintenance of VGAT density presently observed (Banay-Schwartz et al., 1989). 

Other nuclei in the hypothalamus report dissimilar age-associated changes in GABAergic 

inputs onto neurons. GABA inputs are declined with age (between 2-3 and 9-11 months) 

in apposition to MPO GnRH neurons in rats (Khan et al., 2010) and declined between 2-3 
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and 18-20 months in the SCN in mice (labelled in Figure 4.1) (Palomba et al., 2008). 

However, this may simply be attributed to location-specific age-associated changes. 

Ageing may impact the neuronal structures that provide GABAergic input onto 

PVNmpd neurons. GABAergic structures observed to project to the PVN parvocellular  

neurons (in rats) include rostral end of the PVN, the anterior hypothalamic area, 

perinuclear zone of the SON, perifornical region, and SCN (shown in Figure 4.1), and 

these structures were specifically observed to input onto the rat equivalent (in location) of 

the PVNmpd (Hermes et al., 1996; Roland and Sawchenko, 1993). An age-associated 

increase in the number of neurons within aforementioned nuclei may partially explain the 

increased number of VGAT inputs. Neuron number change with age has been observed 

in mice in the PVN and SON; however, neuron number remain unchanged or decreased 

with age (Sturrock, 1992; Yaghmaie et al., 2006). Additionally, in rats, other GABAergic 

PVN-projecting regions show neuronal maintenance or loss with increased age (Chee et 

al., 1988; Hsu and Peng, 1978; Kessler et al., 2011; Madeira et al., 1995; Peng and Hsü, 

1982; Roozendaal et al., 1987; Tsukahara et al., 2005). Furthermore, specific GABAergic 

PVN neurons have been observed to be declined in aged rats (Li et al., 2017). Therefore, 

a change in PVN-projecting neuron number is unlikely the cause of age-related increased 

VGAT inputs presently reported. 

Age-associated increase in VGAT inputs is thus potentially due to intracellular 

changes within pre-synaptic neurons. This may include endocannabinoid (EC) signalling 

which is known to deteriorate in the ageing hypothalamus and brain as a whole (Di Marzo 

et al., 2015). EC Cannabinoid receptor 1 (CB1) receptors are present on pre-synaptic 

terminals and their activation results initiation of a retrograde signalling pathway that 

causes transient reduction of GABA and glutamate release within the PVN (Iremonger et 

al., 2011; Kola et al., 2008; Mazier et al., 2019). Therefore, a decline in this pathway 

would result in increased GABA and glutamate release. However, age-associated 

changes in EC signalling specific to the PVN have not yet been observed and thus is a 

topic that requires further research.   
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4.4.6 Effects of ageing on VGAT and VGLUT2 percentage area coverage 

A significant age-associated change in VGLUT2 percentage area coverage within 

the PVNpv was observed. These included decreases immunoreactivity between 3-4- and 

12-14- / 24-25-month tissue and increases between 12-14- / 24-25- and 30-31-month 

tissue. In the remaining PVN subnuclei, VGAT and VGLUT2 percentage area was 

unchanged with age. The PVNpv is a complex subnucleus with the greatest heterogeneity 

in immunocytochemical labelling of neurons (Biag et al., 2012). Results observed have the 

potential to impact various autonomic and neuroendocrine functions. However, emphasis 

will be placed upon how present study age-associated changes may result in 

dysfunctional voiding.  

Increased VGLUT2 density with age likely results in increased post-synaptic 

neuron firing since glutamate is excitatory (Brann, 1995; Platt, 2007). In order to decipher 

how age-associated increased VGLUT2 may impact PVNpv functional output it is 

important to know the cellular composition of this subnucleus. The mouse PVNpv contains 

neurons immunopositive for somatostatin, OXY, TRH, CRH, and VP. Furthermore, a small 

proportion of neurons at the caudal end of the subnucleus project to the dorsal vagal 

complex (DVC) and the spinal cord (Biag et al., 2012). Somatostatin neurons are the pre-

dominant cell type in the PVNpv and are mainly implicated in the inhibition of growth 

hormone (GH) release into the circulation via projections to the median eminence (Fodor 

et al., 2006; Larsen et al., 2003). They may also be implicated in LUT / terminal bowel 

control since somatostatin PVN neurons project to the LC (Viollet et al., 2008). However, 

to our best knowledge, the impact of somatostatin inputs onto LC neurons and its effects 

on LUT and terminal bowel control have not previously been reported.  

Although presently observed age-associated increase in VGLUT2 density did not 

impact the number of VGLUT2 OXY / VP soma inputs within the PVNpv, they may still 

impact the number of inputs onto OXY+ and VP+ neurites (which was not presently 

reported). Particularly since approximately 90 % of GABA and glutamate appositions to 

PVN CRH+ neurons are non-somatic, and this is likely similar with OXY and VP neurons 
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(Johnson et al., 2018). Most OXY and VP neurons within the mouse PVNpv are pituitary-

projecting, since neurons double-labelled with OXY / VP and intravenously-injected 

fluorogold have been reported by Biag at al., (2012). Some scattered OXY and VP 

neurons were also single-labelled suggesting CNS projections. Single-labelled DVC and 

spinal-projecting neurons were labelled with neuronal tracer in separate mice, and these 

may be OXY+ and VP+ (Biag et al., 2012).  

Age-related potential increase in VGLUT2 boutons inputting onto OXY and VP 

neurites (of pituitary-projecting and spinally-projecting neurons) would likely have the 

opposite effect on bladder, colonic and EUS contractions to those mentioned in section 

4.4.5. This includes an overall increase in colonic motility, bladder contractions and EUS 

closure. Furthermore CRH neurons (not presently labelled) exist within the PVNpv and 

may be affected by the age-associated increase in VGLUT2 density. CRH+ neurons in the 

PVNpv are unlikely to be spinally or DVC-projecting since they are located at the rostral 

end of the PVN13 and thus are expected to be pituitary-projecting (Biag et al., 2012). Age-

associated increased excitation of CRH projections to the pituitary and accompanying 

CRH circulatory release would likely cause an increase in colonic motility (Maillot et al., 

2000; Maillot et al., 2003; Million et al., 2000).  

However, age-related increased glutamatergic neuronal excitation may result in 

cellular excitotoxicity that may deplete neuron function. This is particularly associated with 

excessive activation of NMDA receptors (which are abundant in the PVN) (Eyigor et al., 

2001; Herman et al., 2000). Excessive iGluR activation causes ion influx accompanied by 

water entry and dendritic swelling (Rothman and Olney, 1986). The PVN may be subject 

to age-associated excitotoxic effects since swelling of dendritic spines has been reported 

with increased age in rat PVN neurons (Itzev et al., 2003). The process of excitotoxicity 

also includes cellular entrance of Ca2+ ions (via activation of NMDA receptors) with 

prolonged elevation in cytosolic Ca2+ triggering events including activation of intracellular 

 
13 Where neuronal tracing from the spinal cord and DVC was not observed in mouse study by Biag 
et al., (2012), as previously mentioned. 
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lipases and proteases resulting in free radical generation. Additionally, activation of Ca2+ 

ATPase results in depletion of energy reserves and impairment of mitochondrial oxidative 

phosphorylation (Dykens, 1994). Therefore, excessive VGLUT2 labelling with age may be 

a precursor of PVN neuronal damage and may ultimately result in the overall decline of 

projection pathways discussed above.  

To the best of our knowledge, the effects of ageing on glutamate terminal density 

in the PVN has not been previously described. However, age-associated glutamatergic 

changes in the hypothalamus of female mice and rats have been documented and are 

detailed as follows. In mouse hypothalamus, effects of ageing on glutamate transporter 

mRNA expression was measured for VGLUT1, VGLUT3, glutamate transporter-1 (GLT-1) 

and glutamate aspartate transporter (GLAST). No age-associated changes were observed 

reflective of results for VGLUT2 density in nine subnuclei observed in the present study 

(Hascup et al., 2016). With one subnucleus showing change in VGLUT2 density, it is likely 

that ageing affects glutamate density / expression in specific regions of the hypothalamus.  

Indeed, in the median eminence, VGLUT2 density was significantly declined 

between young (4-5 months) and middle aged (11-12 months) female rats reflective of 

present study results between 3-4- and 12-14-month material (Yin et al., 2015). In the 

preoptic area, at the anterior end of the hypothalamus, the number of VGLUT2 inputs in 

apposition to gonadotrophin releasing hormone (GnRH)-immunopositive neurons was 

increased between young (2-3 month) and middle aged (9-11 month) female rats, 

opposing present study results in the PVNpv (Khan et al., 2010). GnRH neurons control 

diestrus and proestrus cycling which is one of the first systems to show age-related 

dysfunction in females (Wise, 1982). Therefore, ageing of this pathway takes place earlier 

in lifespan. Increased number of VGLUT2 inputs may emulate presently observed 

increases in PVNpv VGLUT2 density in older (30-31 month) mice whose majority 

functional pathways show age-associated decline later in lifespan (Gupta and Morley, 

2014; Ishunina and Swaab, 2002; Qin et al., 2018; Zhou and Swaab, 1999). 
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 CNS sources of PVN glutamate terminals were identified in rats via neuronal 

tracing, immunohistochemical labelling, electrophysiology studies and application of 

glutamate receptor (ant)agonists (Chitravanshi et al., 2016; Csáki et al., 2000; Cservenak 

et al., 2017; Cui et al., 2001; Larsen and Vrang, 1995; Llewellyn et al., 2012; Ulrich-Lai et 

al., 2011; Ziegler et al., 2012). The majority of these regions have been reported to project 

near to PVNpv (and closely apposed subnuclei) as discussed below.   

Studies so far have not reported specific neuronal sources of glutamate terminals 

in the PVNpv. However, Csáki et al., (2000) injected [3H]D-aspartate tracer14 into two 

tracer sites– the border of medial PVNpv and the PVNmpd, and the border of the caudal 

PVNpv and the PVNdp / PVNmpv. This labelled glutamatergic PVN interneurons in 

structures homologous to the mouse PVNpv, PVNmpd, PVNmpv, PVNdp, and PVNlp. 

Extra-PVN sites that project to the PVNpv are summarised in Table 4.6. Glutamatergic 

brainstem regions that project to the PVN were not reported (Csáki et al., 2000). 

Therefore, brainstem sources of glutamate terminals in the PVNpv remain unknown. 

   

Table 4.6: Summary of known glutamatergic CNS regions that project to the rat PVNpv. 

Constructed from retrograde tracing study carried out by Csáki et al., (2002).   

Nucleus / area Region Quantity of labelled 

neurons (per section) 

Septal complex Lateral septum, ventral 

aspect, caudal region 

20-63 

Lateral septum, ventral 

aspect, rostal region 

2-6 

Septohypothalamic nucleus Few scattered neurons 

Preoptic area Medial preoptic nucleus 10-49 

Medial preoptic area, ventral Few scattered neurons 

Lateral preoptic area  Few scattered neurons 

Ventral premammillary 

nucleus  

Rostrocaudal extent 20-38 

 
14 Tracer that is selectively uptaken by terminals of neurons that are glutamatergic / aspartergic.  
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Bed nucleus of the stria 

terminalis  

Medio-ventral  8-35 

Latero-ventral  5-16 

SCN Medial 11-28 

Ventromedial nucleus  Rostrocaudel extent  6-22 

Anterior hypothalamic area  Medial 4-22 

Anterior  0-4 

Dorsmedial nucleus Rostrocaudel extent 8-21 

Lateral hypothalamic area  -15 5-17 

Supramammillary nucleus Medial and lateral 12 

Arcuate nucleus Posterior 7-11 

Thalamic PVN  - 1-7 

Abbreviations: CNS, central nervous system; PVNp, Paraventricular nucleus, periventricular region. 

  

 Age-associated increased VGLUT2 PVNpv immunoreactivity may have been due 

to increased neuron number within PVNpv-projecting glutamatergic neurons mentioned 

above. However, where studies report age-associated changes of neuron number in mice, 

they are observed to be maintained or decreased in the PVN, arcuate nucleus and bed 

nucleus of the stria terminalis (Kuwahara et al., 2004a; Kuwahara et al., 2004b; Sturrock, 

1993; Sturrock, 1992). To the best of our knowledge, neuron number change across age 

has not been documented in the septal complex, ventral premammillary nucleus, or 

thalamic PVN across species. In all other regions mentioned in Table 4.6, neuron numbers 

were maintained or decreased in aged rats, rhesus monkeys, and humans (Chee et al., 

1988; Diene et al., 2019; Funabashi and Kimura, 1995; Hsu and Peng, 1978; Lolova et al., 

1996a; Madeira et al., 2000; Madeira et al., 2001; Madeira et al., 1995; Peng and Hsü, 

1982; Rance et al., 1993; Roberts et al., 2012; Roozendaal et al., 1987; Sabel and Stein, 

1981; Sartin and Lamperti, 1985; Shiromani et al., 2000; Tsukahara et al., 2005; Witkin, 

1987; Yang et al., 1993; Zhou and Swaab, 1999). Therefore age-associated increase in 

VGLUT2 PVNpv immunoreactivity is potentially due to intracellular changes within pre-

 
15 Not noted in the study.  
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synaptic neurons and may be associated with decline in EC signalling, as discussed in 

section 4.4.5.  

 

4.4.7 Study Limitations 

The main limitation of the present study was the inability to determine if reported 

age-associated changes specifically impacted LUT and terminal bowel-projecting 

neurons. This is partially due to the complexity of the nucleus. Use of neuronal tracer 

injected into the bladder, DC, or external sphincter structures alongside immunolabelling 

of VGAT and VGLUT2 may help overcome this. Furthermore, neuronal tracer injected 

intravenously, as undertaken by Biag et al. (2012), would help define specific pituitary-

projecting structures, whose circulatory hormone release impacts LUT and colonic 

function (as discussed above). Additional immunostaining of PVN neuron subtypes would 

be beneficial, particularly for delineating which neuron subsets were affected by the age-

associated increase in VGLUT2 immunoreactivity within the PVNpv. Furthermore, the 

number of inputs in apposition to neurites was not quantified. This was not possible to 

undertake in the present study (see section 4.2.3.2). A different staining approach, for 

example the use of tracing techniques [such as that undertaken by Ranson et al. (2007)], 

may increase the visibility of neurites extending from labelled soma (Ranson et al., 2007).  

With regards to terminal labelling, glutamate transporters VGLUT1 and VGLUT2 

have been observed in the PVN. VGLUT1 has low abundance in the PVN (Nakamura et 

al., 2005). Nonetheless, a small proportion of PVN glutamate terminals were unidentified. 

Additionally, it was assumed that VGAT / VGLUT2 inputs that appeared in apposition to 

labelled soma were synapsing onto these neurons. For confirmation of inputs making 

contact with soma, ultrastructural studies, such as electron microscopy would prove 

beneficial. Furthermore, due to limited availability of samples, there was only n=2 for 24-

25-month material. This lower replicate number potentially reduced reliability of results.  
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4.5 CONCLUSION 

Two key age-associated findings were observed in VGAT and VGLUT2 PVN 

labelling. Increased VGLUT2 immunoreactivity was reported in the PVNpv. This may 

result in age-associated pathophysiology’s including excitotoxity of post-synaptic neurons. 

PVNpv neurons that were affected by this age-related change remain unknown and thus 

further research is required. The second key finding was an age-associated increase in 

VGAT inputs in apposition with OXY and VP parvocellular soma within the PVNmpd. The 

exact projection pathways of PVNmpd OXY and VP parvocellular neurons in mice remain 

unknown and require further research. However, specific to the LUT / terminal bowel 

function, potential age-associated impacts may include decreased colonic motility, bladder 

contractions, and EUS activity. These potential effects emulate the decreased bowel 

motility and detrusor contractile response reported in other studies of in aged C57BL / 6J 

mice.   
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5 EFFECTS OF AGEING ON PROTEIN EXPRESSION WITHIN THE DISTAL 

COLON  

 

5.1 INTRODUCTION 

The prevalence of terminal bowel dysfunction increases with age resulting in FI and 

/ or constipation. The MP is an intrinsic neuronal structure that is essential for DC motility 

(Smith and Koh, 2017; Spencer et al., 2016), and is known to be subject to age-

associated structural change including changes in cellular morphology, number, and 

density. Furthermore, a build-up of intracellular aggregates with age including tau, 

lipofuscin and α-synuclein have been observed in MP neurons that likely results in 

defective function (Ranson and Saffrey, 2015; Saffrey, 2013). The finer molecular / 

proteomic changes that occur to cause these structural abnormalities are unclear. To 

rectify this, methodology development that allows for isolation and extraction of the MP 

from DC tissue and application of subsequent protein analysis is currently in progress (as 

described in the present study). 

 

5.1.1 Method Development 

The proposed strategy behind the methodology was to first extract MP structures 

from formalin-fixed paraffin-embedded (FFPE) DC tissue sections using laser capture 

microdissection (LCMD). Following that, protein was to be extracted and contaminants 

(wax, lipids etc.) removed. Once protein was extracted in large enough concentrations it 

was to be applied to in-gel trypsin digestion16 to prepare it for application to LC / MS / MS 

and further downstream analysis.   

There are a number of complications that must be considered during methodology 

development including: (1) It must be possible to visualise the MP and distinguish it from 

surrounding muscular tissue in order for successful application of LCMD; (2) Staining 

 
16 In-gel trypsin digestion involves denaturing proteins and breaking them into smaller peptide 
fragments required for application to LC / MS / MS. 
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techniques that allow for MP visualisation can affect protein analysis (if they are antibody-

based) or reduce protein yield; (3) Given the previous point, haematoxylin and eosin 

(H&E) staining is the most suitable technique for MP visualisation without excessively 

impacting downstream protein analysis. This staining method is best suited to FFPE 

tissue sections which makes extracting protein more challenging given the additional 

contaminants and formation of protein-protein cross-links that occur during fixation; (4) 

Proteins cannot be amplified (as is the case with genomic analysis) and therefore protein 

concentration must exceed a minimum threshold (usually around 10 µg); (5) With the 

previous point in mind, it is potentially time-consuming to laser microdissect large enough 

areas of MP to reach this protein yield, given its small size. 

As a result of the aforementioned complications, FFPE C57BL / 6J male mouse 

DC tissue was used and stained with H&E. The process of protein extraction and 

downstream analysis (described in detail in section 5.2) took time to develop. Therefore, 

this pilot study only got to the stage of protein analysis of whole DC sections. This was 

applied to young (3 month) and aged (30 month) tissue for age-associated comparison of 

change in protein regulation. The DC wall is a vastly heterogeneous structure with four 

main layers composed of various cell types (described in section 1.7.2). Therefore, any 

age-associated changes observed in protein expression may have been ubiquitous 

throughout all cells but was more likely to be within specific cell types. Assigning age-

associated changes to specific cell types was attempted presently but was not definitive. 

Therefore, further study development and subsequent use of LCMD for the extraction of 

specific cell groups e.g. MP, would likely eliminate this obstacle. 

Development of protein analysis methodology in FFPE tissue may prove beneficial 

in subsequent, unrelated research, since retrospective analysis can be undertaken in the 

vast archive of FFPE hospital samples available. This may aid understanding of disease 

protein make-up in tissues whose pathological status has already been confirmed.  
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5.1.2 Molecular ageing in the DC 

In the present study, protein analysis was carried out in whole mouse DC sections 

with the aim of application to extracted MP. Comparative protein analysis studies have not 

been undertaken in MP or whole colon sections. However, genomic study of young vs 

aged MP and whole colon tissue have been undertaken in humans and rats, respectively 

(Hetz et al., 2014; Lee et al., 2001). DC MP genes encoding for Ret receptors, 

neurotrophin p75 receptors and nitric oxide synthase 1 (NOS1) were significantly 

decreased between <1 year old and 48-58 / 70-75 year old humans. Furthermore, ChAT 

was significantly increased between <1 year old and 48-58 / 70-75 year old humans (Hetz 

et al., 2014). The decline in NOS117 and the increase in ChAT18 suggests increased 

excitation of the DC smooth muscle since NO input inhibits GIT motility (Pelletier et al., 

2010), whilst ACh increases it (Matsuyama et al., 2013; Tanahashi et al., 2013). Ageing in 

the whole rat colon (between 4 and 24 month animals) revealed upregulation of 51 genes 

including genes encoding for proteins involved in the cell cycle, nutrient digestion and 

absorption, signal transduction, intracellular signalling pathways, and metabolism; and 

downregulation of 5 genes encoding for proteins involved in nutrient absorption and 

intracellular signalling (Lee et al., 2001). 

 

5.1.3 Main hypothesis and aims 

The main hypothesis is that the mouse DC undergoes age-associated changes in 

protein expression that may contribute to decreased colonic motility and faecal impaction 

observed in aged male C57BL / 6J mice (Patel et al., 2014). In order to establish if this is 

the case, methodology involving protein analysis of mouse FFPE DC sections was 

developed and applied as discussed above.     

 
17 NOS1 encodes for neuronal nitric oxide synthase which catalyses the production of NO.   
18 ChAT catalyses the production of acetylcholine. 
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5.2 MATERIALS AND METHODS 

5.2.1 Animal housing and tissue preparation  

Male C57BL / 6J mice were housed and sacrificed as described in section 2.2. 

Post-sacrifice the GIT was removed and placed in PBS and the DC was separated using 

a sterile surgical blade. Tissue was further flushed in PBS and external fat tissue was 

removed. 0.5 cm long cross-section pieces of DC were fixed for 24 hours in 4 % PFA. 

Tissues were dehydrated over a 12-hour period using Shandon Hypercenter XP enclosed 

tissue processor (GMI – Trusted Laboratory Solutions, Minneapolis) and embedded in 

paraffin wax.  

 

5.2.2 Tissue sectioning 

Wax blocks containing FFPE mouse DC tissue sacrificed at 3 and 30 months of 

age were trimmed to remove excess wax. 12 µm thick transverse sections were cut using 

the wax microtome (RM2125, Leica Biosystems, Milton Keynes) were collected directly 

into an Eppendorf.  

Sections collected into Eppendorfs were deparaffinized and used for downstream 

protein analysis as described in subsequent sub-chapters. Prior to collection of sections 

(for protein analysis), the transverse surface area of DC was determined as 2 mm2. To 

make up roughly 100 mm2 surface area (as recommended for 10-15 µm thick sections for 

deparaffinization and extraction buffer application), 50 sections were collected per 

Eppendorf.  

   

5.2.3 Deparaffinization of DC sections  

0.5 ml n-Heptane was added per Eppendorf containing 50 FFPE DC sections. The 

Eppendorf was vortexed and incubated at room temperature for one hour. 25 ml Methanol 

was then added to sections, vortexed, and centrifuged at 9000 x g for two minutes. 

Supernatant was removed and tissue pellet was left to air dry for five minutes.  
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5.2.4 Protein extraction  

Post deparaffinization, 94 µl ExB plus Qproteome® FFPE tissue extraction buffer 

(37623, Qiagen, UK) supplemented with 6 µl β-mercaptoethanol (M3148, Sigma-Aldrich, 

Suffolk, UK) was added to the Eppendorf containing DC tissue pellet and vortexed. The 

Eppendorf was sealed using a sealing clip, incubated on ice for 5 minutes, vortexed and 

then incubated at 100 oC for 20 minutes. Using a thermomixer (5382000031, Eppendorf, 

Stevenage), the Eppendorf was incubated at 80 oC for two hours with 750 rpm agitation. 

The Eppendorf was then incubated at 4 oC for one minute and was centrifuged at 14,000 x 

g at 4 oC for fifteen minutes. Supernatant containing extracted protein was transferred into 

a fresh Eppendorf.  

 

5.2.5 Protein quantification 

To test in-solution protein concentration post-extraction, Bradford and 

bicinchoninic acid (BCA) assays were trialled. This was undertaken to find the most 

reliable methodology for protein quantification to determine the minimum amount of 

mouse DC tissue required for downstream analysis. 

 

5.2.5.1 Bradford assay 

Bovine serum albumin (BSA) was used as the protein standard and added (in 

triplicates) to a flat-based 96-well plate. The following dilutions (using mqH2O) were 

added: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, and 1.4 mg / ml (5 µl per 

well). Extracted protein sample was diluted with mqH2O to 1:5 concentration. 5 µl of 

extracted protein sample (unknown concentration) was added in triplicates. 250 µl 

Bradford reagent (ab102535, Abcam, Cambridge, UK) was added to wells and incubated 

at 21 oC for 10 minutes. 96-well plate absorbance was read at 595 nm and a standard 

curve was plotted from results to determine protein concentration of extracted mouse DC 

sample(s).        
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5.2.5.2 BCA assay 

5 µl BSA standards were added to 96-well plate in triplicates in the following 

concentrations: 200, 40, 20, 10, 5, 1, 0.5, 0 µg / ml diluted with 1:250 extraction buffer ExB 

plus:dH2O. Extracted protein sample was diluted to 1:250 using dH2O and 5 µl was added 

in triplicates to 96-well plate. 150 µl BCA working reagent was added to wells and 

incubated at 37 oC for 2 hours. 96-well plate absorbance was read at 562 nm and a 

standard curve was plotted from results to determine protein concentration of extracted 

mouse DC sample(s).  

 

5.2.6 SDS-PAGE 

SDS-gels were used in two forms of methodology. Protein concentration of mouse 

DC samples were not possible to measure using Bradford or BCA assays (see section 

5.3.1). Therefore, SDS-PAGE was initially used to confirm presence of protein in mouse 

DC extract samples and decide concentration of protein used based on level of band 

staining. Secondly, SDS-PAGE was used to disrupt tertiary protein structure for in-gel 

trypsin digestion and downstream protein analyses.  

 

5.2.6.1 Initial run  

6x SDS loading buffer (375 mM Tris-HCl, 9 % SDS, 50 % glycerol, and 9 % β-

mercaptoethanol) was added to protein extract / BSA solution to give 1x final 

concentration and was incubated for 10 minutes at 100 oC. A 12 % SDS polyacrylamide 

gel was made and added between glass plates (see Figure 5.1 for SDS gel components). 

Once set, stacking gel was added with a comb inserted to create wells. The gel tank was 

filled with 1x running buffer (0.2 M tris, 0.2 M glycine, and 10 % SDS). Protein solution(s) 

and BSA were pipetted into wells. The gel was then run at 200 volts, until protein samples 

had reached the end of the gel. Gel was removed and placed in a square petri dish. R250 

Coomassie Blue was added to cover gel and was incubated at 21 oc for 15 minutes. 

Coomassie blue was removed and gel was washed with Destain (45 % methanol, 45 % 
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H2O, 10 % glacial acetic acid) three times. Gel was then incubated in Destain for 24 hours 

at 21 oC. Destain was removed and gel was imaged on Syngene G-box.  

  

Table 5.1: Buffers and volumes used to make SDS polyacrylamide resolving and stacking 

gels. Resolving buffer components: 46.75 g tris base, 1 g SDS and 250 mL H2O; stacking 

buffer components: 1.125 g tris base, 1 g SDS and 250 mL H2O.  

12 % resolving gel  

30 % Acrylamide  3.0 µl 

mqH2O 4.5 µl 

Resolving buffer 2.5 µl 

10 % Ammonium persulphate (APS- A3678, Sigma-

Aldrich, Suffolk, UK) 

100 µl 

N,N,N’,N’- Tetramethyl ethylenediamine (TEMED- 

T9281, Sigma-Aldrich, Suffolk, UK) 

20 µl 

Stacking gel 

30 % Acrylamide  0.5 µl 

mqH2O 2.5 µl 

Stacking buffer 1.0 µl 

10 % APS 30 µl 

TEMED 10 µl 

 

 

5.2.6.2 SDS-PAGE for in-gel trypsin digestion 

Based on initial SDS-PAGE results from mouse DC, 1.6 µl protein extract was 

diluted with 8.4 µl dH2O. This concentration was selected based on visibility of protein on 

SDS-gel at lowest concentration (see Figure 5.1) to avoid blockage of LC / MS / MS trap 

column due to overloading. Additionally, 10 µl of 10 mg/ml BSA was added as an 

experimental quality control (QC). All SDS-PAGE set-up was the same as section 5.2.6.1, 

aside from run time. The gel was run at 200 volts for 15 minutes until protein had migrated 

1 cm into resolving gel.  
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5.2.7 In-gel trypsin digestion 

In-gel trypsin digestion methods were applied to break protein samples into 

peptide fragments for downstream protein analysis. Two experiments utilising this 

technique were undertaken. Methodology was initially applied to one mouse DC sample (3 

months old) to qualitatively analyse mouse DC proteome and confirm experimental 

reproducibility. Secondly, methodology was applied for downstream quantitative 

comparison of young (3 months, n = 2) versus old (30 months, n = 2) DC tissue to 

determine change in protein regulation.  

Stained protein bands (sample and QC) were excised and cut into 1 mm2 cubes 

and placed in separate Lobind microcentrifuge tubes. Tubes were vortexed with 200 µl 

100 mM ammonium bicarbonate (NH4HCO3) and 60 µl acetonitrile (ACN) for fifteen 

minutes at 21 oC to remove stain. NH4HCO3 / ACN solution was removed and gel pieces 

were dehydrated with 200 µl ACN. ACN was removed. To break protein disulphide bonds, 

gel pieces were rehydrated with 100 µl 20 mM Dithiothreitol (DTT) for thirty minutes at 56 

oC. DTT was removed and gel pieces were dehydrated as above. ACN was then 

removed. To prevent reformation of protein disulphide bonds (via addition of acetoamide 

to the sulfhydryl group), gel pieces were rehydrated with 100 µl 56 mM Iodoacetamide 

(IAA) for twenty minutes at 21 oC (in the dark). IAA was removed and gel pieces were 

vortexed with 100 µl 100 mM NH4HCO3 twice at ten-minute intervals. NH4HCO3 was 

removed and gel pieces were dehydrated as above. ACN was then removed and any 

excess ACN was evaporated by placing tubes in a vacuum centrifuge for five minutes at 

30 oC. Protein-containing gel pieces were then digested by complete saturation with 30 µl 

20 µg / ml Trypsin [reconstituted with acetic acid] for 20 minutes on ice. 50 µl 50 mM 

NH4HCO3 was then added to Trypsin-saturated gel pieces and incubated at 37 oC for 18 

hours. Trypsin solution (containing some peptide extract) was decanted into new protein 

Lobind Eppendorfs and stored on ice. To further extract peptides, gel pieces were 

vortexed with 50 µl 50% ACN and 50 µl 5% Formic acid (FA) for 30 minutes at 21 oC. 

ACN / FA Solution was decanted into corresponding tubes. To extract remaining peptides, 

gel pieces were vortexed with 50 µl 86% ACN and 50 µl 0.2 % FA for 30 minutes at 21 oC. 
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ACN / FA solution was decanted into corresponding tubes. To facilitate freeze drying, a 

hole was pierced in LoBind microcentrifuge tube lid. Tubes were then snap frozen in liquid 

nitrogen and placed in the freeze drier for 18 hours until completely lyophilised. Tubes 

were stored at -80 oC until analysis. Once ready for LC / MS / MS, lyophilised samples 

were resuspended in 20 µl of 5 % ACN and 0.1 % FA.  

 

5.2.8 Liquid chromatography and mass spectrometry 

All sample handling and analyses regarding liquid chromatography and mass 

spectrometry (LC / MS) was undertaken by fellow Post-doctoral researcher William 

Cheng.  

 

5.2.8.1 System information 

Peptide characterisations were performed on Nanoflow DionexTM 3000 RSLC 

(Dionex, Sunnyvale, CA) linked to a Q-Exactive Plus (Thermo, Hemel Hempstead, UK). 

High resolution MS was performed using C18 EasySpray column, in a data dependent 

acquisition.    

 

5.2.8.2 LC instrument settings 

Nanoflow liquid chromatographic separation used a binary buffer system for 

peptide separation. This involved Buffer A (95 % ultrapure water / 5 % ACN with 0.1 % 

FA), Buffer B (95 % ACN / 5% ultrapure water with 0.1 % formic acid) and a loading and 

transport buffer (95 % ultrapure water/ 5 % ACN with 0.1 % Tetrafluoruacetic acid). The 

sample injection amount was 5 µl; flow rate was set 0.3 µl / minute. The trap column used 

was Acclaim™ PepMap™ 100 C18 LC column (Thermo Scientific™) (5 μm particle size; 

pore size 100 Å), maintained at 45 oc. 
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5.2.8.3 LC gradient elution  

The liquid chromatographic profile was performed using the following gradient. 

Starting condition (4 % buffer B / 96 % buffer A); 3 minutes with 8 % buffer B / 92 % buffer 

A; 93 minutes with 30 % buffer B / 70 % buffer A; 98 minutes with 80 % buffer B / 20 % 

buffer A. This was held for an additional 10 minutes, then returned to starting condition for 

20 minutes allowing for column equilibration. 

 

5.2.8.4 MS instrument settings 

Full scan MS was performed at 70,000 MS resolution with an automatic gain control 

of 1e6 and injection time of 100 ms. The scan range was set to 375 to 1400 m / z. For 

data-dependant-MS2, acquisition was performed at 35,000 MS with an automatic gain 

control of 1e5 with a maximum injection time of 100 ms. The isolation window was set to 

1.3 m / z, with an underfilled ratio of 0.4 %. Dynamic exclusion was set to 15 seconds, and 

the top 10 most abundant ions were selected for MS / MS with a normalized Collison 

energy level of 10, 30, and 50.  

  

5.2.9 Qualitative proteome analysis 

Prior to age comparison, qualitative protein analysis was applied to the DC of one 

3-month-old mouse, was subject to in-gel trypsin digestion, and analysed by LC / MS / 

MS. This allowed for observation of the mouse DC proteome as a whole before analysis 

of age-associated changes was undertaken. Analysis was undertaken using MascotTM 

(Matrix Science, London, UK) by fellow PhD student, Jonathan Thompson. 

 

5.2.9.1 Identification of mouse DC proteome 

Thermo RAW files (containing raw uninterpreted mass spectral ion peaks) were 

converted to mascot generic format (.MGF) using RawConverter. A MascotTM MS / MS ion 

search was then performed using the following parameters: (a) database: mus musculus, 
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(b) enzyme: Trypsin, (c) missed cleavages: allow up to one, (d) fixed modifications: 

carbamidomethyl (cysteine)19 (e) variable modifications: oxidative (methionine)20, (f) 

peptide tolerance: 25 ppm, (g) MS / MS tolerance: 50 ppm, (h) peptide charge: 2+, 3+ and 

4+, (i) monoisotopic, (j) data format: Mascot generic, and (k) instrument: ESI-TRAP. A 

peptide score21 for each protein match was generated. Proteins were deemed significant 

based upon meeting the threshold peptide score (p ≤ 0.05). MascotTM produces a 

threshold score based upon experimental data and thus each score is experiment-

specific. All proteins scoring ≥ to the threshold peptide score were included in results.      

 

5.2.10 Quantitative proteome analysis 

Quantitative proteome analysis was applied to quantify any age-associated changes 

in protein expression between 3- and 30-month mouse DC. Analysis was undertaken 

using ProgenesisTM LC-MS data analysis software (Nonlinear Dynamics, Newcastle upon 

Tyne, UK) and MascotTM (Matrix Science, London, UK) by fellow PhD student, Jonathan 

Thompson. See Sitek et al. (2012) for more detailed protocol.  

 

5.2.10.1 Differential proteome analysis 

RAW thermo files created from LC / MS / MS analysis were imported onto 

ProgenesisTM. Using software, identified peptides were automatically aligned to a 

reference run (sample run with minimal noise signifying stable LC-MS conditions) 

represented in a two-dimensional map. Additionally, vectors were manually applied to 

unaligned regions in each sample. Peptides with charges 2+, 3+ and 4+ were included, all 

other charges were excluded22. Experimental design was created by grouping samples 

 
19 Carbamidomethyl (cysteine) is a deliberate post-translational modification introduced to cysteine 
residues by reaction with IAA carbamidomethyl (cysteine). 
20 Addition of IAA to protein solution results in non-specific oxidation of methionine.  
21 The peptide score reflects the combined scores of all amino acids that can be matched to 
peptide sequences within a protein. A higher score indicates a more confident match.  
22 The charge states of tryptic peptides are between 2+ and 5+. This reduces introduction of 
contaminations into results, which usually have a charge state of 1+. 
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into young (3 months, n=2) versus aged (30 months, n=2). Peptides with a fold change of 

≥ 2 and a p-value ≤ 0.05 (based on one-way ANOVA) were tagged. With parameters 

applied, features that were differentially regulated were exported to .MGF file format for 

protein identification.   

  

5.2.10.2 Identification of differentially regulated proteins  

Using the .MGF file created in section 5.2.10.1, a MascotTM MS / MS ion search 

was performed. Parameters used were identical to those in section 5.2.9.1. Identification 

data produced was exported to .XML file format and imported into ProgenesisTM. To refine 

identified proteins, parameters were set for peptide scores ≥ 30 and hits ≥ 2. Conflicts 

(when a peptide sequence is associated with more than one protein) were resolved 

manually based on number of hits, protein score, and mass error. Post-conflict resolution, 

peptide counts < 2 were removed from database. 

 

5.2.11 Functional clustering analysis of differentially regulated proteins  

After age-associated changes in protein regulation were identified, functional 

clustering was undertaken to further understand which cellular structures and processes 

may be impacted by this age-associated change in protein expression. Proteins that were 

upregulated with age were analysed separately to those that were downregulated. This 

was undertaken using the g:GOSt function on the g:profiler web server (g:Profiler, 2020) 

which uses several gene databases to functionally cluster identified genes or proteins in a 

sample. The gene nomenclature of each protein, that showed an age-associated change 

in protein regulation, was input into the g:GOSt query. The query was then run with ‘mus 

musculus (mouse)’ as the selected organism resulting in functional clustering of proteins. 

Only significantly enriched biological processes, pathways and cellular components were 

included in results.  All ambiguous queries were removed.  
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5.3 RESULTS  

5.3.1 Protein concentration measurement 

Post-protein extraction from FFPE mouse DC sections, efforts to measure sample 

protein concentration were made. Bradford and BCA assays were attempted (see section 

5.2.5). However, results run in triplicates were unreliable as they produced vastly differing 

values when read on the microplate reader.  Based on appearance of SDS-gels (see 

Figure 5.1), a standard protein dilution of 1.6 µl extract (roughly one 12 µm section per 2 

µl extraction buffer) added to 8.4 µl mqH2O was applied to SDS-PAGE and further 

downstream protein analysis was undertaken. 

 

5.3.2 Application of mouse DC protein extract to SDS-PAGE  

Trypsin digestion of individual protein bands separated by SDS-PAGE (known as 

GeLC-MS / MS) is preferential for LC / MS / MS analysis. This maximises sequence 

coverage due to the fractionation of a complex sample (Dzieciatkowska et al., 2014). 

However, gels ran with DC protein extract appeared smeared with few visibly identifiable 

bands. Thus, whole protein samples were used for trypsin digestion and LC / MS / MS 

analysis (see section 5.2.6).  As it was not possible to ascertain protein concentration 

(from Bradford / BCA assay) varying concentrations were tested (see Figure 5.1).  
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Figure 5.1: Mouse DC (3 months) protein extract on SDS-gel run in varying unknown 

concentrations and imaged on Syngene G-box. All amounts labelled were made up to 10 

µl with mqH2O (with additional SDS loading buffer– see section 5.2.6). Most obvious bands 

are depicted with a white arrow. Smearing on gel at all concentrations was evident.  

 

5.3.3 Qualitative analysis (mascot)  

The protein composition of a whole 3-month mouse DC was analysed using 

Mascot software. Output from LC / MS / MS analysis allowed for identification of proteins 

using MascotTM database. 330 proteins were reliably identified within set parameters (see 

Appendix D for list of identified proteins). Due to successful methodology, a subsequent 
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experiment analysing changes in protein regulation between age groups was undertaken 

(see section 5.3.4).  

 

5.3.4 Quantitative analysis: changes in protein regulation in 3-month versus 30-month 

mouse DC  

The changes in protein expression between 3- and 30-month mice were analysed 

using ProgenesisTM LC-MS data analysis software (Nonlinear Dynamics, Newcastle upon 

Tyne, UK) and proteins were identified with MascotTM (Matrix Science, London, UK). 

Output LC / MS / MS analyses applied to 3- and 30-month mouse DC samples (n = 2 per 

age group) allowed for identification of age-associated changes in protein regulation. 

Parameters set in sections 5.2.10.1–5.2.10.2 were the threshold for protein regulation 

change that was reliably identified. Additionally, identified proteins with a fold change < 2 

were discounted. Within these parameters, 44 proteins were identified to have a 

significant regulation change with age (see Table 5.2). 41 proteins of these 44 were 

upregulated with age.  

 

Table 5.2: Mouse DC proteins that were differentially regulated with age. Proteins were 

categorised by main function based on uniprot search (UniProt, 2020). 

 For a more extensive tabulation of results, see Appendix E. 

Protein Gene 

nomenclature 

Peptides  Score Anova 

(p)* 

Fold Ageing 

effect 

Respiratory and metabolic enzymes 

Aspartate 

aminotransferase, 

mitochondrial 

Got2 2 156.9

1 

 

2.33E-

03 

 

4.14 

 

↑ 

Dihydrolipoyllysine-

residue 

succinyltransferase 

component of 2-

oxoglutarate 

Dlst  
 

2 89.16 

 

6.55E-

04 

 

3.79 

 

↑ 
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Protein Gene 

nomenclature 

Peptides  Score Anova 

(p)* 

Fold Ageing 

effect 

dehydrogenase 

complex, 

mitochondrial 

Electron transfer 

flavoprotein subunit 

alpha 

Etfa 2 160.5

3 

 

2.82E-

03 

 

3.4 

 

↑ 

Isocitrate 

dehydrogenase [NAD] 

subunit alpha, 

mitochondrial 

Idh3a 2 123.7 

 

3.63E-

03 

 

2.91 

 

↑ 

Malate 

dehydrogenase, 

cytoplasmic 

Mdh1 2 101.1

1 

 

5.72E-

04 

 

2.74 

 

↑ 

Electron transfer 

flavoprotein subunit 

beta 

Etfb 4 251.0

6 

 

1.13E-

03 

 

2.67 

 

↑ 

ATP synthase subunit 

alpha, mitochondrial 

Atp5f1a  

 

2 153.5 

 

6.49E-

03 

2.62 

 

↑ 

Aldo-keto reductase 

family 1 member B1 

Akr1b1  
 

2 153.1

3 

0.01 

 

2.58 

 

↑ 

Aconitate hydratase, 

mitochondrial 

Aco2  
 

3 164.0

3 

0.02 

 

2.47 

 

↑ 

Isocitrate 

dehydrogenase 

[NADP], cytoplasmic 

Idh3a  
 

2 87.73 

 

8.08E-

03 

 

2.41 

 

↑ 

Malate 

dehydrogenase, 

mitochondrial 

Mdh2  
 

2 117.3

7 

 

1.09E-

03 

 

2.39 

 

↑ 

Transketolase Tkt  
 

3 214.2

6 

1.34E-

03 

2.28 

 

↑ 

Pyruvate kinase Pkm 2 92.9 

 

4.44E-

04 

2.15 

 

↑ 

UDP-glucose 6-

dehydrogenase 

 

 

Ugdh  2 98.89 

 

0.02 

 

2.12 

 

↑ 
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Protein Gene 

nomenclature 

Peptides  Score Anova 

(p)* 

Fold Ageing 

effect 

Detoxifying enzymes 

Glutathione S-

transferase Mu 1 

Gstm1  2 96.81 

 

1.42E-

03 

2.43 

 

↑ 

Aldehyde 

dehydrogenase, 

mitochondrial 

Aldh2  2 125.3

6 

 

0.02 

 

2.17 

 

↑ 

Peroxiredoxin-1 Prdx1  3 140.8

5 

3.10E-

03 

2.1 

 

↑ 

Protein metabolism  

Protein disulfide-

isomerase A3 

Pdia3  
 

3 174.1

6 

0.01 

 

2.69 

 

↑ 

60S ribosomal protein 

L18 

Rpl18  
 

2 171.7

6 

6.95E-

03 

2.46 

 

↑ 

Protein-glutamine 

gamma-

glutamyltransferase 2 

Tgm2  
 

2 86.03 

 

9.44E-

03 

 

2.46 

 

↑ 

Eukaryotic translation 

initiation factor 5A-1  

Eif5a  2 95.63 2.13E-

03 

2.39 

 

↑ 

Cell cycle and nuclear proteins  

Annexin A11 Anxa11  
 

3 144.9

4 

6.77E-

03 

3.27 

 

↑ 

Prelamin-A Lmna  2 169.0

6 

0.02 2.59 ↑ 

Histone H1.2 Hist1h1c  
 

2 114.2

5 

9.10E-

04 

2.57 

 

↑ 

Tubulin alpha-1A 

chain 

Tuba1a  
 

2 155.3

5 

0.02 

 

2.27 

 

↑ 

Histone H3.3C H3f3c  2 96.39 

 

9.36E-

03 

2.07 

 

↑ 

Chaperone proteins  

Heat shock protein 

HSP 90-beta 

Hsp90ab1  
 

3 162.1 

 

0.01 

 

3.22 

 

↑ 

Heat shock cognate 

71 kDa protein 

 

 

Hspa8  
 

2 166.1

9 

0.03 

 

2.15 

 

↑ 
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Protein Gene 

nomenclature 

Peptides  Score Anova 

(p)* 

Fold Ageing 

effect 

Cytoskeleton proteins 

Profilin-1 Pfn1  2 122.0

3 

0.03 3.11 ↑ 

Keratin, type II 

cytoskeletal 1 

Krt1  
 

2 (1) 

 

204.1

8 

0.03 

 

3.04 

 

↓ 

 

Calponin-1 Cnn1  
 

3 231.8

9 

2.02E-

03 

3.01 

 

↑ 

Vinculin Vcl  2 131.6

2 

0.03 2.76 ↑ 

Transgelin Tagln  4 252.9

7 

6.68E-

03 

2.47 

 

↑ 

Filamin-A Flna  6 480.6

6 

3.56E-

03 

2.42 ↑ 

Keratin, type II 

cytoskeletal 79 

Krt79  
 

2 (1) 

 

100.3

2 

0.05 

 

2.38 

 

↓ 

Desmin Des 2 165.0

9 

1.99E-

04 

2.15 

 

↑ 

Vimentin Vim 3 178.2

1 

0.01 2.13 ↑ 

Keratin, type II 

cytoskeletal 5 

Krt5  
 

4 (3)23 

 

268.6

3 

0.03 

 

2.12 

 

↓ 

 

Extracellular matrix proteins 

Lumican Lum 2 84.91 

 

5.25E-

03 

3.18 

 

↑ 

Collagen α-1(VI) 

chain 

Col6a1  5 317 2.04E-

03 

2.46 ↑ 

Collagen α-2(VI) 

chain 

Col6a2  6 351.5

9 

1.74E-

03 

2.4 ↑ 

Proteins involved in other processes 

Serum albumin  Alb  5 274.2

4 

7.31E-

05 

3.58 

 

↑ 

Transgelin-2  Tagln2 2 97.45 

 

1.33E-

03 

2.43 ↑ 

 
23 This protein had 4 distinct identified peptides, but only 3 peptides were used for quantitation.  
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Protein Gene 

nomenclature 

Peptides  Score Anova 

(p)* 

Fold Ageing 

effect 

Annexin A4 Anxa4  2 172.9

6 

0.02 2.39 ↑ 

 

5.3.5 Functional clustering of proteins that showed regulation change with age 

Appendix F shows the functional clustering of proteins that were upregulated with 

age. Statistically significant results were identified within the following databases: Gene 

Ontology: Molecular Function (GO:MF), Gene Ontology: Biological Processes (GO:BP), 

Gene Ontology: Cellular Component (GO:CC), Kyoto Encyclopedia of Genes and 

Genomes (KEGG), Reactome Pathways (REAC), WikiPathways (WP), Transcription 

Factor (TF), and CORUM Protein Complexes.   

Of the 41 proteins upregulated with age, the majority of molecular functions and 

biological processes that were enriched are involved in cellular respiration. Protein binding 

and tissue growth were also cellular functions that observed to be enriched. In terms of 

tissue and cellular structure, there were a variety of structures that were upregulated. 

Some of these structures support cellular respiration e.g. mitochondrion, mitochondrial 

matrix, and electron transport flavoprotein complex. Other cellular structures that were 

substantially increased include the myelin sheath and the collagen-containing extracellular 

matrix.  

Appendix G shows the functional clustering of proteins that were downregulated. 

Statistically significant results were identified in GO:CC and REAC databases. All three 

proteins that were downregulated are likely structural components of the cytoskeleton. 

Proteins were also functionally clustered into cellular components of the skin e.g. keratin 

filament and intermediate filament. However, these results were disregarded as samples 

did not contain any mouse skin.  
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5.4 DISCUSSION 

5.4.1 Summary if main findings 

In this chapter, the application LC / MS / MS identified a significant increase in 41 

proteins, and a significant decrease in three proteins in aged (30 months; n = 2) mouse 

DC compared with young (3 months; n = 2).  

5.4.2 Methodology development  

Study methodology was successful regarding main aims. This included protein 

extraction (from FFPE DC tissue) and application to LC / MS / MS producing reliably 

identified proteins and detection of protein regulation change with age. However, the 

inability to accurately measure protein extract concentration adds complexity to further 

method development. Proteins extracted from a sample cannot be amplified, unlike 

genomic analysis. Therefore, for LCMD of DC MP to be applied, it should be ensured that 

it would be possible to extract minimum amount of protein required (usually around 10 

µg). Protein extracts from whole mouse DC sections supplied sufficient protein 

concentration. However, MP encompasses a small fraction of tissue amongst the vastly 

heterogenous cell structure of the colon. Protein extraction is decreased when tissue is 

H&E stained, adding further complexity (Becker et al., 2008). Recommended kits for 

protein quantification, to be used alongside extraction buffer ExB plus, included Bio-Rad 

DC Protein Assay Kit 1 for Lowry method or Pierce Micro BCA Protein Assay Kit (used in 

the present study) (Geoui et al., 2010). Bradford reagent is known to react with β-

mercaptoethanol [added to extraction buffer ExB plus (1:16)] and thus partially explains 

Bradford failure (Bradford, 1976).  

An additional methodological obstacle was the smeared appearance of DC 

extracted proteins on SDS gels with few visible bands (see Figure 5.1). Although not 

imperative, tryptic digestion of individual bands maximises sequence coverage 

(Dzieciatkowska et al., 2014). Furthermore, identification of bands in SDS-gel allows for 

determination of protein molecular weight (when run alongside a protein standard) which 

can be compared to LC / MS / MS mass read-out to ensure reliability of results (Wu et al., 
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2002). Mouse colon protein extract (from fresh tissue) has previously shown gel smears 

when applied to SDS-PAGE.  Protein bands were more evident than the present study. 

This may be due to the use of fresh colon with protein extracted immediately after animal 

sacrifice (Magdeldin et al., 2012). Thus, removing introduction of tissue contaminants 

during fixation process (see section 5.2.1).  

Potential presence of non-protein contaminants such as wax and lipids would likely 

have been due to sample over-loading. This would reduce efficacy of n-heptane and 

methanol during deparaffinization, and ExB plus extraction buffer during protein 

extraction. It was recommended that two sections of 10-15 µm thickness and 100 mm2 

surface area were used for analysis (Geoui et al., 2010). However, since mouse DC 

sections were around 2 mm2 in surface area, fifty sections were applied per extraction. 

Therefore, reducing section number (per extraction) and re-testing protein quantification 

assays may prove beneficial. An additional sample clean-up step for removal of interfering 

buffer components as [undertaken by Geoui et al. (2010)] may similarly prove beneficial.  

Previous protein extraction from colon of C57BL / 6J mice (2 months old) reliably 

identified 1,237 proteins using LC / MS / MS. This study was undertaken in fresh colon 

tissue, with methods applied immediately after animal sacrifice (Magdeldin et al., 2012). In 

comparison, 330 proteins were reliably identified in the present study. The process of 

formalin fixation induces protein–protein cross-links (especially between arginine, lysine, 

serine, and cysteine residues). These cross-links are thought to increase over time as 

protein identification decreases in tissues stored for longer periods (Nirmalan et al., 2009; 

Ralton and Murray, 2011; Wolff et al., 2011). For example, Wolff et al. (2011) used the 

same deparaffinization and protein extraction methodology in the present study (see 

section 5.2.4) and noted that FFPE tissues stored over a 20 year period had a mean 

decrease in protein yield of 42 % compared to those stored over a 10 year period. Present 

study tissue storage time was over a five year period and thus partially explains the 

decrease in protein yield compared to studies using fresh mouse colon tissue immediately 

post-surgery (Magdeldin et al., 2012).  
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Noted experimental defects were also likely attributed to presence of glycosylated 

proteins within the sample. Many known proteins in the mouse colon undergo post-

translational modification, including the addition of oligosaccharide to nitrogen (N-linked) 

or oxygen (O-linked) atoms (Ruhaak et al., 2018). Furthermore, protein concentration 

methods have been trialled with glycosylated proteins and have been observed to result in 

underestimation of protein concentration in Bradford assays and overestimation of protein 

content in BCA assays (Fountoulakis et al., 1992). Tryptic digestion of glycoproteins is 

often incomplete due to steric hindrance from the presence of large oligosaccharides 

(Bernard et al., 1983). Additionally, glycoproteins have been observed to reduce MS 

protein detection due to unusually high molecular mass and inefficient ionization. This 

results in loss of spectral data and likely affects protein migration through SDS-gel 

resulting in gel smearing (Qiao et al., 2014). A future remedy is the treatment of protein 

extract with glycosidases as undertaken in previous studies (Ostasiewicz et al., 2010; 

Tarentino and Plummer, 1982). 

Furthermore, during data processing and protein identification, Magdeldin et al. 

(2012) incorporated additional variable modifications to the present study, including 

glutamine to pyroglutamate (N-terminal), glutamate to pyroglutamate and oxidation of 

histidine, which likely increased protein identification. On reflection, additional variable 

modifications should have been applied during present study analysis since post-

translational protein processing (in eukaryotic cells), and the application of formalin 

fixation result in proteins undergoing several modifications as discussed in listed studies 

(Metz et al., 2006; Perchey et al., 2019; Zhang et al., 2015b).   

 

5.4.3 Age-associated changes in DC protein regulation  

The majority of proteins that showed significant age-associated changes in 

expression, were upregulated with age, with 41 upregulated versus three downregulated. 

Whole colon proteome / genome expression change with age has not previously been 

documented in mice. However, Lee et al., (2001) compared regulation change in colon 
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gene expression in male 4- and 24-month-old rats. Similar to the present study, ageing 

resulted in increased gene expression, whereby 51 genes were upregulated with age 

versus five that were downregulated (Lee et al., 2001). Of the genes observed to be 

upregulated in the rat colon, seven corresponding proteins encoded for by those gene 

families were observed to be upregulated in the aged mouse colon (see Table 5.3). This 

upregulation of proteins in aged tissue may indicate reduced cellular clearance of 

damaged or misfolded proteins that is known to have increased occurrence systemically 

in aged tissue (Vilchez et al., 2014; Watanabe et al., 2019). 

 

Table 5.3: Proteins presently observed to be upregulated in the aged mouse colon and 

comparable upregulated genes / gene families in aged rat colon from study by Lee et al. 

(2001)  

Mouse protein upregulated with age Corresponding rat gene family member 
upregulated with age 

ATP synthase subunit alpha, mitochondrial ATP synthase subunits beta and delta 

Aldehyde dehydrogenase, mitochondrial Aldehyde reductase  

60S ribosomal protein L18 60S ribosomal protein L21 

Eukaryotic translation initiation factor 5A-1 Eukaryotic translation initiation factor 2A 

Annexin A11 Annexin A5 

Annexin A4 Annexin A5 

Calponin-1 Calponin 

 

When proteins were functionally clustered from the present study results, the 

proteins that were upregulated with age were heavily involved in cellular respiration. 

Additionally, an upregulation in structural elements, including the myelin sheath, collagen-

containing extracellular matrix (ECM), and ageing markers, peroxisomes, and pigment 

granules, was observed. The three proteins that were downregulated are all involved in 

the cytoskeleton. The general increase in protein expression may indicate an increased 

accumulation of damaged / misfolded proteins, with a decrease in cellular clearance of 

dysfunctional proteins, two phenomena which are known hallmarks of ageing (Gadecka 
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and Bielak-Zmijewska, 2019; Vilchez et al., 2014). These processes and implicated 

functionally enriched proteins are described further in sections 5.4.3.1–5.4.3.4. 

 

5.4.3.1 Ageing mouse DC and upregulation of proteins involved in cellular respiration   

Of the 41 proteins upregulated with age, several of them were observed to be 

functionally enriched in pathways involved in cellular respiration: for example, the TCA 

cycle, malate dehydrogenase (MDH) activity, isocitrate dehydrogenase (IDH) activity, and 

NAD and NADH activity etc. The mitochondria is known as the powerhouse for cellular 

respiration, where the majority of the aforementioned processes occur (Giacomello et al., 

2020). In healthy ageing, it is widely accepted that mitochondrial function declines in 

addition to mitophagy (the cellular removal of dysfunctional mitochondria by autophagy) 

(Chen et al., 2020; Chistiakov et al., 2014). This may result in accumulation of 

dysfunctional mitochondrial proteins such as mitochondrial enzymes and elements of the 

electron transfer chain reflective of the increase in mitochondrial proteins presently 

observed in the 30-month-old mouse DC. Indeed, markers of oxidative stress, which is 

strongly associated with cellular damage, were observed to be upregulated and are 

described in section 5.4.3.4. Furthermore, proteasome and autophagic-lysosomal 

degradation of damaged / misfolded proteins is susceptible to age-associated functional 

decline, which may exacerbate the potential cellular accumulation of these proteins 

(Vilchez et al., 2014).  

Mitochondrial dysfunction may also be associated with a change in glucose 

metabolism in the form of reductive carboxylation coupled with glycolysis. The process of 

reductive carboxylation is displayed in Figure 5.2 and the proteins upregulated in the 30-

month-old mouse involved in this process are depicted in green text. Reductive 

carboxylation occurs in cells with mitochondrial dysfunction (Gaude et al., 2018; Halbrook 

et al., 2018), which is thought to affect ageing cells in the GIT (Camilleri et al., 2000). 

Furthermore, hypoxic cancerous cells have been observed to undergo reductive 

carboxylation (Filipp et al., 2012; Wise et al., 2011), and hypoxia is observed to impact the 
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aged rat GIT with up to a 60 % reduction in mucosal blood flow (Tarnawski et al., 2007). 

Additionally, this may indicate the presence of cancerous cells as the prevalence of 

colorectal cancer is increased with age in humans (Hamilton et al., 2009; Hoops and 

Traber, 1997). Additionally, mucosal scrapings from aged C57BL / 6J colon revealed an 

increased expression of immune-related genes (Steegenga et al., 2012) indicative of 

increased inflammation and potentially cancerous tissue (Leman et al., 2018).   

Figure 5.2: Reductive carboxylation coupled with glycolysis proposed to occur in aged 

mouse colon. Enzymes enhanced with age in the present study mouse DC are coloured 

green. A) shows the process of glycolysis. B) shows the coupling of reductive carboxylation 

to glycolysis via MDH redox reaction of OAA and NADH resulting in NAD production for 

GADPH activity. C) shows reductive carboxylation with the conversion of α-ketoglutarate to 

citrate, which can be converted to OAA (in the mitochondria) providing fuel for MDH. D) 

shows that carbon derived from reductive carboxylation can be used for lipid and nucleotide 

biosynthesis. α-KG, Alpha-ketoglutarate; AAT, Aspartate aminotransferase; Acon, 

Aconitase; ADP, Adenosine diphosphate; ATP, Adenosine triphosphate; IDH, Isocitrate 

dehydrogenase; MDH, Malate dehydrogenase; NAD, Nicotinamide adenine dinucleotide; 
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NADH, Nicotinamide adenine dinucleotide + hydrogen; OAA, Oxaloacetate; PK, Pyruvate 

kinase. 

 

Reductive carboxylation is the reversal of the TCA cycle, a cellular process 

presently reported to be functionally enriched in the aged mouse DC. Reductive 

carboxylation utilises glutamine to produce cytosolic citrate allowing for continued 

biosynthesis and energy production. One of the key features of reductive carboxylation is 

the increased activity of isocitrate dehydrogenase (IDH). Cytoplasmic and mitochondrial 

IDH activity are largely involved in reverse TCA flux. IDH reductively carboxylates 

glutamine derived α-ketoglutarate to indirectly produce citrate which is utilised in the 

cytosol for biosynthesis (Filipp et al., 2012; Metallo et al., 2012; Mullen et al., 2012). 

Additionally, studies undertaken in hypoxic cancerous cells and cells with mitochondrial-

induced dysfunction showed that MDH was observed to directly couple reductive 

carboxylation to glycolysis via nicotinamide adenine dinucleotide (NAD), with glycolysis 

also presently reported to be functionally enriched in the aged mouse DC. MDH reduces 

cytosolic OAA to malate and reduces NADH (NAD + hydrogen) to NAD in the process. 

NAD then functions as an electron acceptor in the reaction catalysed by Glyceraldehyde 

3-phosphate dehydrogenase (GADPH) during glycolysis (Gaude et al., 2018; Hanse et al., 

2017).  

Furthermore, mitochondrial aconitase has been presently reported to be 

upregulated with age. Aconitase is also involved in the reductive carboxylation pathway, 

whereby it catalyses the conversion of isocitrate to citrate (Halbrook et al., 2018). 

Additionally, aspartate aminotransferase (mitochondrial; AAT) was upregulated, and 

showed the greatest fold-change (4.14) within the present study. Furthermore, 

upregulated AAT gene expression has previously been observed in colon cancer cell lines 

(Otsuka et al., 2001). AAT catalyses the reverse transamination of glutamate and 

oxaloacetate to α-ketoglutarate and aspartate. Thus, AAT is potentially involved in the 

production of α-ketoglutarate for reductive carboxylation. Aspartate produced during 
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transamination can be shuttled out of mitochondria and converted to cytosolic OAA for 

MDH consumption (Lu et al., 2008).  

 

5.4.3.2 Ageing mouse DC and increased myelin sheath 

Fifteen of the 41 upregulated proteins in the aged mouse DC were classed as 

elements that make up the myelin sheath in functional clustering analysis. However, 

transcriptional profiling of enteric glia shows no evidence of myelination in the mouse ENS 

(Rao et al., 2015). Therefore, the presence of the myelin sheath is likely from external 

origin. Extrinsic neurons containing myelin may be partially derived from lumbosacral 

afferents, in which 5.2% of fibres, that project to the mouse colon, are myelinated (with the 

remainder being unmyelinated C-fibres) (Christianson et al., 2006). Additionally, the SPN 

is a potential source of myelinated fibres in the DC since they have been observed in 

small numbers to project to the colon in cats (de Groat and Krier, 1976). At the level of the 

DC, myelinated fibres have been observed in dogs, whereby there are roughly three times 

as many myelinated fibres in the myenteric plexus (1,382 per 40 μm2) compared to the 

submucous plexus (348 per 40 μm2), and the ratio of myelinated nerves was substantially 

diminished in the mucosa (14.66 per 40 μm2) versus the submucosa (333.66 per 40 μm2) 

(Lee, 1956). This further indicates that myelinated fibres arise externally since MPG fibres, 

the ganglion which carries SPN fibres, projects to the myenteric plexus in greater 

abundance compared to the submucous plexus (Brumovsky et al., 2014).  

The increased abundance of myelin sheath in the aged mouse DC may indicate a 

greater extrinsic afferent and / or efferent innervation. This may be a compensatory 

mechanism since enteric neurons are thought to be more susceptible to age-associated 

degeneration than other parts of the nervous system (Saffrey, 2013). Myenteric neurons in 

general have shown no age-associated decline in C57BL / 6J mice of up to 25 months, 

(Gamage et al., 2013), however cholinergic enteric neurons in the mouse colon are 

reduced from 20 months onwards (Sun et al., 2018) and cholinergic neurons in the GIT as 

a whole are more susceptible to age-associated decline than other enteric neuron types 
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(Saffrey, 2013). Cholinergic innervation plays a major role in colonic motility (Furness et 

al., 2014) and therefore, an age-associated increase in innervation from the cholinergic 

SPN may compensate for this acetylcholine loss potentially resulting in an increased 

distribution of myelinated fibres in the mouse DC.  

Regarding DRG afferents projecting to the DC, an age-associated attenuation in 

mechanosensitvity of high-threshold neurons was observed in 24-month in vitro mouse 

colon tissue (Keating et al., 2016). This likely impairs the relaying of colonic sensory, 

particularly nociceptive, information, to the spinal cord and brain. As myelin speeds up 

impulse propagation (Williamson and Lyons, 2018), this impairment of sensory signalling 

may result in an increase in myelin sheath formation as a compensatory mechanism. 

Thus, resulting in increased age-associated myelin density overall. Alternatively, myelin 

sheath aberration may be a contributing factor or a morphological change as a result of 

neuronal mechanosensory impairment. Indeed, degenerative changes in the morphology 

of ageing neurons can result in the formation of myelin splits (due to pockets of dense 

cytoplasm), or myelin balloons (due to excess fluid) (Peters, 2002). These age-associated 

aberrations may result in myelin debris accumulation as Schwann cell clearance of 

myelin, and macrophage accumulation, is impaired in aged (24-month-old) mouse sciatic 

nerve compared to young (2-month) (Painter et al., 2014).  

Myelin is an inhibitory substrate for axonal growth and thus myelin debris must be 

cleared before axonal growth or regeneration can occur (McKerracher et al., 1994). 

Therefore, unless the presently observed increase in myelin concentration indicates an 

increase in myelin-containing extrinsic fibres, it is likely that this myelin accumulation is 

detrimental to neuronal function. This may impact both afferent and efferent extrinsic 

fibres resulting in impaired conscious processing of DC stretch. Additionally, a reduction in 

function in efferent cholinergic SPN fibres would result in a further decrease in 

acetylcholine within the mouse DC (in addition to the age-associated loss of cholinergic 

ENS neurons) and this is likely associated with decreased DC contractility. Ultimately, the 
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reduction in function of efferent and / or afferent fibres may be a contributing factor to age-

associated constipation that is known to impact this strain of mouse (Patel et al., 2014).  

 

5.4.3.3 Ageing mouse DC and increased collagen-containing extracellular matrix 

Proteins that comprise collagen-containing ECM, including lumican, collagen α-

1(VI) chain and collagen α-2(VI) were upregulated with age in the mouse DC. Similar to 

present observations, colonic collagen content has been observed to increase with age in 

guineapigs (Gabella, 2001).  Collagen within the ECM is involved in maintenance of 

structural integrity. This may result in excessive amounts of collagen cross-linking which 

potentially contributes to colonic rigidity. Accumulation of advanced glycation end products 

have been observed in aged tissues, which cause an increase in collagen intra and 

intermolecular cross-linking (Haus et al., 2007; Zieman and Kass, 2004) and renders 

collagen less susceptible to degradation (DeGroot et al., 2001). Advanced glycation end 

products have been observed alongside increased stiffening of the tail tendon in aged 

mice (Stammers et al., 2020). Advanced glycation end products can form exogenously 

through the ingestion of processed foods, and these may accumulate over time in the 

aged DC (Aragno and Mastrocola, 2017). Alternatively, they can be generated in higher 

rates endogenously due to impaired glucose metabolism (such as that discussed in 

section 5.4.3.1) with altered glucose metabolism known to increase with age (Kalyani and 

Egan, 2013). The increased collagen presently observed in the aged mouse DC may be 

due to this phenomenon. This excess collagen would likely impact the lamina propria, 

submucosa and the adventitia since these layers are comprised of collagen fibres 

(Despotovic et al., 2017; Fu and Zhang, 1997; Lord et al., 1977). This likely increased 

stiffening of the colon may reduce colonic motility and potentially contributes to 

constipation that has been previously reported in aged C57BL / 6J male mice (Patel et al., 

2014). 

Furthermore, collagen cross-linking increases with age in humans suffering 

diverticulitis (Wess et al., 1995), which is a disease whose prevalence is increased with 
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age that is characterised by colonic inflammation and the formation of abnormal pouches 

(diverticula). (Soreide et al., 2016). Increased collagen content, cross-linking and intestinal 

stiffness occur in other colonic pathophysiologies including Crohn’s disease, and 

inflammatory bowel disease (Graham et al., 1988; Johnson et al., 2013; Stewart et al., 

2018), and these pathophysiologies often coincide with constipation and FI (Nobrega et 

al., 2018; Petryszyn and Paradowski, 2018). Therefore, collagen upregulation potentially 

impacts mammals both at rodent and human level and likely has a direct impact in 

decreased colonic motility that often coincides with increased age (Fleming and Wade, 

2010; Gallegos-Orozco et al., 2012).  

 

5.4.3.4 Ageing mouse DC and markers of oxidative stress 

Oxidative stress and the resulting damage to cellular proteins is a process 

associated with increased age (Gadecka and Bielak-Zmijewska, 2019). Markers of 

increased oxidative stress have presently been observed in functional clustering analysis 

of upregulated proteins in 30-month-old mouse DC, including peroxisomes and pigment 

granules. The upregulation in proteins associated with cellular respiration (discussed in 

section 5.4.3.1) may result in increased generation of free radicals, particularly as a result 

of dysfunctioning mitochondria which are more predisposed to O2
- leakage (Cadenas and 

Davies, 2000). Peroxodoxin, which was presently upregulated with age, is an enzyme 

located in peroxisomes which acts as a scavenger for the free radical hydrogen peroxide 

using cysteine as their primary oxidation site (Nyström et al., 2012). Its inactivation 

accelerates ageing in mice and causes an increase in reactive oxygen species (ROS) and 

oxidative DNA damage (Neumann et al., 2003). Therefore, its upregulation is potentially a 

protective mechanism against increased age-associated oxidative damage (Zhang et al., 

2015a).  

Increased formation of pigment granules is also associated with ageing. Pigments 

such as lipofuscin form as a result of residues of lysosomal digestion which is indicative of 

impaired lysosome function and cellular clearance of damaged / misfolded proteins 
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(Moreno-García et al., 2018). Increased lysosomal digestion is necessary in aged tissue 

due to the increased requirement for clearance of oxidatively damaged proteins. However, 

increased abundance of damaged proteins is likely to put strain on lysosomes and 

ultimately result in dysfunction (Harman, 1989; Moreno-García et al., 2018). Lipofuscin 

accumulation has been reported in enteric neurons in aged rats and guineapigs (Saffrey, 

2014). Therefore, the presently observed increases in pigment granules may occur in 

enteric neurons of the aged mouse DC. This potentially implies cellular oxidative damage 

that could lead to the loss of enteric neurons previously observed in aged C57BL / 6J 

mice (Sun et al., 2018). 

5.4.4 Study Limitations 

The majority of study limitations are documented in section 5.4.2, including 

unsuccessful measurement of protein concentration, SDS-PAGE gel smear formation, 

and lower protein identification yield in comparison to fresh mouse colon tissue. 

Additionally, without the use of LCMD, specific tissue regions e.g. MP, could not be 

isolated. Due to heterogeneity of mouse DC, cell types involved in age-associated change 

in protein regulation were speculative. Furthermore, only n=2 per age group was applied 

and thus results may have reduced reliability. 

 

5.5 Conclusion 

Methodology development for protein extraction of FFPE mouse DC tissue for 

downstream protein analysis showed some success. However, methodology had 

limitations including inability to: accurately quantify protein concentration in extract; isolate 

protein bands on SDS-gel (due to protein smearing); and qualitatively identify the same 

number of proteins previously observed from fresh mouse colon samples. Future attempts 

to resolve these limitations should include decreased sample to deparaffinization buffer / 

extraction buffer ratio; addition of a sample clean-up step; addition of glycosidases to 

remove oligosaccharides attached to proteins; and addition of more variable modifications 

during data processing. These method alterations would likely result in an overall increase 
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in sequence coverage and protein identification. Additionally, it would allow for knowledge 

of the minimum amount of MP sample to be micro-dissected from sections to yield enough 

protein for analysis. However, due to protein–protein cross-links that develop over storage 

time of FFPE tissue, it is unlikely that protein sample yield will match that of fresh tissue.  

Despite methodology limitations, significant age-associated changes in protein 

composition were observed between 3- and 30-month DC. Proteins in the aged mouse 

DC were largely upregulated reflecting a previous study in rats (Lee et al., 2001). This is 

likely indicative of various age-related cellular dysfunctions, which may be contributing 

factors to the age-associated constipation previously reported in this strain of mouse 

(Patel et al., 2014). Associated dysfunctions potentially include, but are likely not limited 

to, accumulation of oxidatively damaged proteins and impaired clearance, mitochondrial 

dysfunction and altered cellular respiration, decline in function of myelinated extrinsic 

afferent and / or efferent neurons, and increased collagen cross-linking in the ECM which 

is likely coupled with colonic rigidity.  
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6 OVERALL DISCUSSION 

6.1 SUMMARY OF MAIN FINDINGS 

In Chapters 3 and 4, application of immunohistochemistry allowed for the 

identification of age-associated changes in the C57BL / 6J male mouse CNS at a cellular 

level. In the lumbosacral spinal cord, there was a significant decrease (66.5 %) in ENK 

and VGAT (57.5 %) immunoreactivity in the aged (29–31 months) SPN compared with 

young (3–5 months). In the PVN of the hypothalamus, there was a significant age-

associated increase in the number of VGAT inputs onto OXY (up to 91.1%) and VP (up to 

81.5%) parvocellular soma of the PVNmpd. Additionally, there was a significant age-

associated increase in the density of VGLUT2 immunoreactivity of up to 85% in the 

PVNpv.  

In Chapter 5, application of protein analysis coupled with functional clustering 

analysis allowed for the identification of age-associated changes in the C57BL / 6J male 

mouse DC at a subcellular level. There was a significant upregulation in 41 proteins, with 

a large proportion of them involved in cellular respiration. Additionally, there was an 

increase in proteins that form the myelin sheath, the collagen-containing ECM, and the 

oxidative stress markers, peroxisomes and pigment granules. Additionally, there was a 

significant downregulation in proteins involved in cytoskeletal structure. Figure 6.1 

summarizes the main findings of this thesis.   
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Figure 6.1: Summary of main findings of this PhD thesis. (A) Depicts the age-associated 

changes that were noted with each technique (immunohistochemistry or protein analysis), 

and the location of each age-associated change. (B) Depicts the potential implications of 

each age-associated change. DC, Distal colon; DLN, Dorsolateral nucleus; ECM, 

Extracellular matrix; ENK, Enkephalin; LC, Locus coeruleus; LDTg, Laterodorsal tegmental 

nucleus; MPG, Major pelvic ganglion; OXY, Oxytocin; PMC, Pontine micturition centre; 

PVNmpd: Paraventricular nucleus, medial parvocellular, dorsal zone; PVNpv, 

Paraventricular nucleus, periventricular part; SNB, Spinal nucleus of the bulbospongiosus; 

SPN, Sacral parasympathetic nucleus; VGAT, Vesicular GABA transporter; VGLUT2, 

Vesicular glutamate transporter 2; VP, Vasopressin. 

 

6.2 COLLECTIVE IMPLICATIONS OF FINDINGS 

 Overall findings within this thesis indicate that age-associated changes occur 

at all levels of nervous and non-nervous structures that may contribute to age-related 

voiding dysfunctions. The structures analysed in Chapters 3–5 are all directly and 
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indirectly linked to one another and ultimately contribute to the function of the LUT and 

terminal bowel. Therefore, the age-related changes observed in each chapter may 

influence one another and likely collectively result in the age-associated functional 

changes that cause impaired voiding and defaecation. At each structural level, the age-

related changes observed, and their potential influence on one another are discussed in 

sections 6.2.1–6.2.3 beginning at the highest level (the PVN) and working down.  

 

6.2.1 Age-related changes in the PVN and its association with age-related changes 

presently reported in lower level structures 

The age-associated changes observed in the subnuclei of the PVN in Chapter 4 

are thought to result in decreased neuronal activity overall. The increase in inhibitory 

VGAT inputs onto OXY and VP parvocellular neurons of the PVNmpd would likely result in 

decreased neuronal firing and therefore a decrease in the release of OXY and VP at the 

various possible sites that these neurons project to. Additionally, an increase in VGLUT2 

in the PVNpv may result in neuronal excitotoxicity and therefore a decline in neuronal 

function overall (described in-depth in section 4.4.6). The specific neurons that potentially 

suffer from glutamate-induced cytotoxicity are unknown and therefore it is not possible to 

speculate the downstream effects of this event. However, the increase in VGAT inputs 

specially impacts VP and OXY neurons of the PVNmpd which allows for further 

speculation of the potential impact this has within the body. OXY and VP neurons within 

this region project to the pituitary for OXY and VP release into the bloodstream. 

Additionally, some of these neurons are project to regions within the CNS (Biag et al., 

2012).  

In terms of CNS-projecting neurons, some PVN OXY neurons are known to project 

to the SPN and result in non-voiding contrations of the bladder smooth muscle (Pandita et 

al., 1998; Puder and Papka, 2001b; Swanson and McKellar, 1979). Alongside a potential 

decrease in OXY inputs onto SPN neurons, there was a decrease in inhibitory ENK and 

VGAT as reported in Chapter 3. As both ENK and VGAT inputs onto the SPN are 
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associated with decreased bladder contraction (Dray and Metsch, 1984; Hisamitsu and de 

Groat, 1984; Kennedy and Krier, 1987; Sugaya et al., 2019; Vaidyanathan et al., 1989), a 

decrease in inhibitory input would likely be associated with an increase in bladder activity. 

Therefore, combined results from Chapter 3 and 4 would imply a decrease in OXY-

induced non-voiding contractions and an increase in voiding-related contractions. Non-

voiding contractions occur with increased bladder volume and are thought to be involved 

with communication of micturition urgency for increased awareness of bladder filling 

(Heppner et al., 2016). Whilst general contractions enable sufficient bladder emptying 

after initiation of micturition (Fowler et al., 2008). The potential combination of decreased 

non-voiding contractions and increased general contractions may be reflective of the 

weakened detrusor contractile and relaxant responses, respectively, that were reported in 

this in C57BL / 6J mice (Kamei et al., 2018). Additionally EUS tone may be reduced due 

to possible loss of VP DLN projections and circulatory release (Cechetto and Saper, 1988; 

Nadelhaft and Vera, 1996; Swanson and Kuypers, 1980; Swanson and McKellar, 1979), 

since VP results in EUS contraction at both these levels (Ito et al., 2018; Ueno et al., 

2011). As an age-related increase in voiding frequency is observed in this strain of mouse 

(Kamei et al., 2018), a decrease in VP-induced EUS tone may be a contributing factor.   

A further impact of decreased firing of PVNmpd VP and OXY may be a decrease 

in the circulatory release of the two hormones at the neurohypophysis (Swanson and 

Kuypers, 1980). The decrease in concentrations of circulatory VP may result in a decline 

in EUS tone, as circulatory VP is known to cause EUS contraction (Ito et al., 2018). 

Additionally, a decrease in the circulation of both hormones may result in decreased DC 

contractility. This is because VP causes giant migratory contractions associated with mass 

faecal movement (Zhu et al., 1992) and OXY causes contractions at the level of the ENS 

(Xi et al., 2019). Age-related changes in DC protein structure (reported in Chapter 5) 

indicate that the DC is modified in a variety of ways at a subcellular level that are likely 

associated with impaired overall function. These changes include, but are not limited to, 

an increase in ECM collagen that is likely associated with increased stiffening of the DC 

wall (Stammers et al., 2020); and an increase in myelin sheath which is potentially 
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connected to impaired functioning of extrinsic afferent and / or efferent fibres that partially 

control DC contractility (McKerracher et al., 1994; Painter et al., 2014). Therefore, a 

decrease in contraction-inducing OXY and VP, coupled with a impaired spinal control of 

the DC, and collagen-induced stiffening of the DC wall are all likely contributing factors to 

the impaired colonic motility and increased faecal impaction reported in this strain of 

mouse (Patel et al., 2014). 

 

6.2.2 Age-related changes in the SPN and its association with age-related changes 

presently reported in other structures 

The age-associated changes observed in the lumbosacral SPN in Chapter 3 are 

thought to result in increased neuronal activity overall. This is because a decline in 

inhibitory GABA and ENK likely results in decreased inhibition of SPN neurons (Dray and 

Metsch, 1984; Hisamitsu and de Groat, 1984; Kennedy and Krier, 1987; Nakamori et al., 

2018; Sugaya et al., 2019). As stimulation of the SPN causes reflex bladder, colorectal 

and, IAS contractions (Dorofeeva and Panteleev, 2007; Ni et al., 2018; Tai et al., 2001), 

this potential increase in SPN activity may indicate increased contractility within these 

pelvic organs, and may reflect the decreased bladder relaxant response and more 

frequent urination reported in CB57BL / 6J mice (Kamei et al., 2018). However, a general 

decrease in motility in the CB57BL / 6J mouse colon is reported (Patel et al., 2014). In 

Chapter 5, protein analysis of the DC showed an increase in collagen-containing ECM, 

which likely contributes to rigidity of the DC wall (Stammers et al., 2020). Therefore, 

increased activity of extrinsic SPN fibres inputting onto the DC may be a compensatory 

mechanism to bolster contractions in a stiffened DC. Alternatively, an age-associated 

increase in proteins that comprise the myelin sheath may indicate dysfunction of extrinsic 

fibres in the DC (as described in-depth in section 5.4.3.2). Therefore, there may be a 

decline in the function of colon-projecting SPN neurons that further amplifies the effects of 

collagen-induced stiffening, which results in decreased faecal movement through the DC. 
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In terms of the SPN’s potential impact on PVN function, there is indirect afferent 

connections between the SPN and PVN. The SPN projects to the PMC, which then 

projects to the PVN via the LC (Ding et al., 1997; Yao et al., 2018). These connections 

likely form part of the pathway that induces awareness of bladder / rectal fullness. 

However, because pathways are indirect and the PVN is such a complex nucleus involved 

in a vast array autonomic and neuroendocrine processes, it is difficult to speculate 

whether the age-related change in SPN ENK / VGAT density has an association with the 

age-related changes in PVN VGAT / VGLUT2 density reported in Chapter 4.   

 

6.2.3 Age-related changes in the DC and its association with age-related changes 

presently reported in higher-level CNS structures 

Protein analysis of the mouse DC in Chapter 5 allowed for determination of sub-

cellular changes that occur with age in mice. After functional clustering analysis, the main 

changes reported with age were an increase in the following: proteins involved in various 

aspects of cellular respiration, myelin sheath, collagen-containing ECM, and markers of 

oxidative stress (peroxisomes and pigments granules). These changes may all contribute 

to the decreased colonic motility and faecal impaction that occurs with age in this strain of 

mouse (Patel et al., 2014). The exact cellular location of these changes in the wall of the 

mouse DC is unknown, and since the GIT wall is a vastly heterogenous structure, it is 

difficult to determine exactly what cellular structures these changes impact. However, the 

age-associated increase in myelin sheath can be attributable solely to extrinsic fibres, as 

myelination does not occur in the mouse ENS (Rao et al., 2015). This increase in myelin 

sheath may indicate an accumulation of myelin (as described in-depth in section 5.4.3.2). 

This may be associated with an impairment in extrinsic afferent communications from the 

ENS to the CNS. Indeed, an age-associated attenuation in mechanosensitivity of high-

threshold neurons was observed in 24-month mice (Keating et al., 2016). 

The SPN receives afferents from the DC wall (Harrington et al., 2019), and thus a 

deleterious change in fibre morphology at the level of the DC may impact the SPN. This 
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may result in a decrease in the number of inputs to the SPN from DC afferent neurons. 

Lumbosacral ENK and GABA inputs are thought to derive partially from afferent sources 

(Blok et al., 1997a; Polgar et al., 2003). More specifically, a retrograde tracing study has 

shown that DRG ENK afferents are mainly derived from the colon (Keast and de Groat, 

1992). As a result, a decline in DC afferent function may result in decreased SPN input 

from ENK and GABA (and potentially other neuroactive substances). This potential 

reduction in afferent feedback from the DC to the SPN may further exacerbate, or indeed 

be a precursor, to the decrease in colonic motility reported with age in mice (Patel et al., 

2014).  In terms of the PVN, the afferent connection pathway from the DC, and the 

structure of the PVN itself are both highly complex. Therefore, it is difficult to speculate 

whether the age-related changes in the DC have an association with the age-related 

changes in PVN VGAT / VGLUT2 density reported in Chapter 4.   

 

6.3 STUDY LIMITATIONS AND FUTURE WORK 

Further work is required to make proposed implications of results more robust and 

less speculative. A limitation in Chapter 3, was the use of only two age group for 

lumbosacral spinal work (based on sample availability). The work in the lumbosacral 

spinal cord would benefit from additional age groups such as the 12-14- and 24-25-month 

mice (applied in the brainstem and PVN work) to determine if ageing affects groups in 

between young (3-5 month) and aged (30-31 month) mice. Another limitation applies to 

IHC labelling techniques whereby there is no certainty which projection pathways are 

impacted by age-associated changes. In order to determine exactly which projection 

pathways were affected by age-related changes presently observed, the use of neuronal 

tracing techniques would be beneficial. For example, transneuronal retrograde tracer 

injected into the bladder and DC separately with the same counting techniques applied 

across age groups would have two beneficial effects at spinal level: (1) it would allow for 

better visualisation of SPN neurites and hence it would clarify whether age-associated 

decrease in GABA / ENK results in a decreased number of inputs onto neuritic structures; 



 

155 
 

and (2) it would help elucidate if the decrease in GABA / ENK density impacts bladder, 

DC-projecting neurons, or both, considering bladder and DC efferent SPN projections are 

independent of one another (Rouzade-Dominguez et al., 2003a).  

Neuronal tracing techniques would be particularly beneficial within the PVN, since 

the PVN is involved in multiple projection pathways that control various autonomic and 

neuroendocrine functions (Swanson and Sawchenko, 1980). In the case of the PVN, 

transneuronal retrograde tracer injected into the bladder / DC would label CNS pathways. 

Additionally, it would be necessary to inject tracer intravenously to label pituitary-

projecting neurons, such as that undertaken by Biag et al. (2012). Double labelling could 

be applied using OXY and VP to confirm which projection pathways are impacted by the 

the age-associated increase in GABAergic soma inputs. Furthermore, immunolabelling of 

CRH neurons would be advantageous since CRH functions in circulatory and CNS control 

of micturition / defaecation (Lechner et al., 1997; Maillot et al., 2000; Maillot et al., 2003; 

Million et al., 2000; Monnikes et al., 1994; Pavcovich and Valentino, 1995; Puder and 

Papka, 2001a; Valentino et al., 1999; Wood et al., 2013). The use of transneuronal tracing 

techniques would have the added benefit of improved neurite labelling. Therefore, it could 

aid determination of which neurons are impacted by the increase in VGLUT2. Additionally, 

clearly labelled neurites could be measured for age-related swelling or loss (as observed 

in rats) that may be indicative of glutamate-induced excitotoxity (Itzev et al., 2003). Further 

beneficial methodology, that should be applied to both the lumbosacral spinal cord and 

the PVN, is the use of ultrastructural analysis. This would confirm that presumed soma 

(and potentially neuritic) inputs are making synaptic contact with neurons.  

As extensively discussed in Chapter 5, there are a number of improvements that 

could be incorporated into the experimental design with regards to protein analyses of the 

mouse DC. These include reducing the sample to extraction buffer ratio to reduce any 

contaminants; the application of glycosidases to breakdown glycoproteins attached to 

proteins; the addition of variable modifications during MascotTM MS / MS ion search and 

ProgenesisTM LC-MS data analysis. These changes may result in successful application of 
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protein quantification assays (e.g. BCA assay). Additionally, there may be reduced gel 

‘smearing’ during SDS-PAGE which would allow for the identification and excision of gel 

bands to maximise sequence coverage and increase overall protein yield. This 

improvement in methodology must be achieved before attempting to excise MP via LCMD 

for downstream protein analysis. This is necessary since successful protein quantification 

assay will help determine if a high enough concentration of protein can be extracted from 

microscopic MP sections for downstream analysis. Furthermore, with smaller quantities of 

protein being extracted, protein analysis needs to be refined to detect age associated 

changes in protein expression.  

 

6.4 CONCLUSION 

In conclusion, age-associated changes were reported that occur at all levels of 

nervous and non-nervous structures, and these changes may contribute to age-related 

voiding dysfunctions. At the level of the lumbosacral spinal cord, there was a significant 

age-related decrease in inhibitory VGAT and ENK immunoreactivity. Within the PVN there 

was an age-related increase in inhibitory VGAT terminals inputting onto PVNmpd OXY 

and VP soma, and an increase in VGLUT2 density within the PVNpv. Lastly, at the level of 

the DC, there was an age-associated upregulation in 41 proteins and a downregulation in 

three. These changes likely, at least in-part, contribute to impairments in the LUT and 

terminal bowel that result in dysfunctions of micturition and defaecation that occur within 

the elderly population.  
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8 APPENDICES 

APPENDIX A 

Ethical approval letter 

 
 

Professor Kathleen McCourt, CBE FRCN 
 

This matter is being dealt with by: 
 

Dr R. N. Ranson 
Applied Sciences Ethics Lead 

Faculty of Health & Life Sciences 
Northumberland Building 

Newcastle upon Tyne  
NE1 8ST 

 

 
Date: 02/12/2015 
 
Project Ref: BMS36UNNEDRNR2015 
 
 
Period of Coverage: 3 year from date above unless the study has been significantly changed or completed 
which will require an amendment to be submitted. 
 
Dear Emily Doogan 
 
Faculty of Health and Life Sciences Research –Biomedical Ethics Review. 
 
Title: Investigation of effects of ageing on cells that mediate bladder, bowel and reproductive 
function    
 
Following independent peer review of the above proposal I am pleased to inform you that Departmental (and 
thus) Faculty approval has been granted for this proposal- subject to compliance with the University policies on 
ethics and consent and any other policies applicable to your individual research.  
   
NB. If your research involves working with children and/or vulnerable adults you should also have recent 
Disclosure & Barring Service (DBS) and occupational health clearance.  
 
The University’s Policies and Procedures are available from the following web link: 
http://www.northumbria.ac.uk/researchandconsultancy/sa/ethgov/policies/?view=Standard  
 
All researchers must give notice of the following: 

• Any significant changes to the study design; 

• Any incidents which have an adverse effect on participants, researchers or study outcomes; 

• Any suspension or abandonment of the study; 
 
Please keep this letter with your application as proof of ethical clearance and for any future auditing 
requirements. 
 
Yours sincerely 
 

 
 
Dr R. N. Ranson 
 
Applied Science and Biomedical Ethics Faculty Representative. 
  

  

http://www.northumbria.ac.uk/researchandconsultancy/sa/ethgov/policies/?view=Standard
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APPENDIX B 

Control images from Chapter 3. 

 

Figure 8.1: Control DLN- and SNB-containing LS spinal sections with primary antibodies 

omitted. A-B show the unlabelled DLN of 3-month-old mouse taken under both the CY3 

(red) and 488 (green) filters. C-D show the unlabelled SNB of 30-month-old mouse taken 

under both the CY3 (red) and 488 (green) filters. A and C depict lack of terminal labelling 

with secondary D-anti-Rb CY3 and D-anti-GP CY3 antibodies, respectively. B and D depict 

lack of neuronal labelling with secondary D-anti-Ch 488 antibodies. Scale bars = 50 µm. D-

anti-Ch 488, Donkey-anti-chicken 488; D-anti-GP CY3, Donkey-anti-guineapig CY3; D-anti-

Rb CY3, Donkey-anti-rabbit CY3; DLN, Dorsolateral nucleus; LS, Lumbosacral; M, Months; 

SNB, Spinal nucleus of the bulbospongiosus.  
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Figure 8.2: Control SPN-containing LS spinal sections with primary antibodies omitted. A-B 

show the SPN of 3-month-old mouse taken under both the CY3 (red) and 488 (green) filters. 

C-D show the SPN of 30-month-old mouse taken under both the CY3 (red) and 488 (green) 

filters. A and C depict lack of neuronal labelling with secondary D-anti-Gt CY3 antibodies. 

B and D depict lack of terminal labelling with secondary D-anti-Rb 488 and D-anti-GP 488 

antibodies, respectively. Scale bars = 50 µm. D-anti-GP 488, Donkey-anti-guineapig 488; 

D-anti-Gt CY3, Donkey-anti-Gt CY3; D-anti-Rb 488, Donkey-anti-rabbit 488; LS, 

Lumbosacral; M, Months; SPN, Sacral parasympathetic nucleus. 
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Figure 8.3: Control LDTg- and LC-containing brainstem sections with primary antibodies 

omitted. A-B show the unlabelled LDTg of 3-month-old mouse taken under both the CY3 

(red) and 488 (green) filters. C-D show the unlabelled LC of 30-month-old mouse taken 

under both the CY3 (red) and 488 (green) filters. A and C depict lack of neuronal labelling 

with secondary D-anti-Gt CY3 and D-anti-Sh 555 antibodies, respectively. B and D depict 

lack of terminal labelling with secondary D-anti-Rb 488 antibodies. Scale bars = 100 µm. 

4V, Fourth ventricle; D-anti-Gt CY3, Donkey-anti-goat CY3; D-anti-Rb 488, Donkey-anti-

rabbit 488; D-anti-Sh 555, Donkey-anti-sheep 555; LC, Locus coeruleus; LDTg, 

Laterodorsal tegmental nucleus; M, Months. 
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APPENDIX C 

Control images from Chapter 4.  

 

Figure 8.4: Control PVN-containing LS spinal sections with primary antibodies omitted. A-

D show the unlabelled PVN of 4-month-old mouse taken under both the CY3 (red) and 488 

(green) filters. C-D show the unlabelled PVN of 30-month-old mouse taken under both the 

CY3 (red) and 488 (green) filters. A and C depict lack of terminal labelling with secondary 

D-anti-GP CY3 antibodies. B and D depict lack of neuronal labelling with secondary D-anti-

Rb 488 antibodies. Scale bars = 100 µm. 3V, Third ventricle; D-anti-GP CY3, Donkey-anti-

guineapig CY3; D-anti-Rb 488, Donkey-anti-rabbit 488; M, Months; PVN, Paraventricular 

nucleus. 
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APPENDIX D  

Qualitative protein analysis from Chapter 5: proteins identified from 3-month-old mouse DC when analysed with LC / MS / MS and tagged on MascotTM 

database. 

 

Sequence coverageFamily Member Database Accession Score Mass Num. of matchesNum. of significant matchesNum. of sequencesNum. of significant sequencesemPAI Description

0.63 4 1 SwissProt TAGL_MOUSE 668 22618 36 30 13 13 26.33 Transgelin OS=Mus musculus OX=10090 GN=Tagln PE=1 SV=3

0.48 18 1 SwissProt MYL6_MOUSE 311 17090 10 9 7 6 4.14 Myosin light polypeptide 6 OS=Mus musculus OX=10090 GN=Myl6 PE=1 SV=3

0.46 1 1 SwissProt ACTA_MOUSE 2281 42381 106 88 17 16 7.25 Actin, aortic smooth muscle OS=Mus musculus OX=10090 GN=Acta2 PE=1 SV=1

0.42 3 1 SwissProt DESM_MOUSE 1109 53522 40 33 20 18 4.34 Desmin OS=Mus musculus OX=10090 GN=Des PE=1 SV=3

0.42 45 1 SwissProt HBA_MOUSE 143 15133 7 5 5 3 1.52 Hemoglobin subunit alpha OS=Mus musculus OX=10090 GN=Hba PE=1 SV=2

0.4 5 2 SwissProt K1C19_MOUSE 408 44515 29 24 17 14 3.4 Keratin, type I cytoskeletal 19 OS=Mus musculus OX=10090 GN=Krt19 PE=1 SV=1

0.39 24 1 SwissProt H4_MOUSE 234 11360 8 7 4 3 2.41 Histone H4 OS=Mus musculus OX=10090 GN=Hist1h4a PE=1 SV=2

0.36 1 2 SwissProt ACTB_MOUSE 1674 42052 81 67 14 13 4.99 Actin, cytoplasmic 1 OS=Mus musculus OX=10090 GN=Actb PE=1 SV=1

0.35 20 1 SwissProt CNN1_MOUSE 264 33506 10 10 8 8 2.07 Calponin-1 OS=Mus musculus OX=10090 GN=Cnn1 PE=1 SV=1

0.34 23 1 SwissProt CSRP1_MOUSE 256 21425 8 7 5 5 1.98 Cysteine and glycine-rich protein 1 OS=Mus musculus OX=10090 GN=Csrp1 PE=1 SV=3

0.33 3 2 SwissProt VIME_MOUSE 426 53712 19 14 15 12 1.87 Vimentin OS=Mus musculus OX=10090 GN=Vim PE=1 SV=3

0.33 29 1 SwissProt HSPB1_MOUSE 202 23057 9 7 7 7 3.14 Heat shock protein beta-1 OS=Mus musculus OX=10090 GN=Hspb1 PE=1 SV=3

0.31 14 2 SwissProt TBB4B_MOUSE 354 50255 13 11 10 9 1.32 Tubulin beta-4B chain OS=Mus musculus OX=10090 GN=Tubb4b PE=1 SV=1

0.3 16 1 SwissProt TBA1B_MOUSE 343 50804 12 10 10 9 1.3 Tubulin alpha-1B chain OS=Mus musculus OX=10090 GN=Tuba1b PE=1 SV=2

0.3 32 1 SwissProt MYL9_MOUSE 182 19898 6 6 5 5 2.24 Myosin regulatory light polypeptide 9 OS=Mus musculus OX=10090 GN=Myl9 PE=1 SV=3

0.29 204 1 SwissProt RLA2_MOUSE 40 11644 1 1 1 1 0.49 60S acidic ribosomal protein P2 OS=Mus musculus OX=10090 GN=Rplp2 PE=1 SV=3

0.28 8 1 SwissProt LMNA_MOUSE 427 74478 21 16 18 16 1.76 Prelamin-A/C OS=Mus musculus OX=10090 GN=Lmna PE=1 SV=2

0.28 30 1 SwissProt PRDX6_MOUSE 201 24969 6 6 6 6 2.08 Peroxiredoxin-6 OS=Mus musculus OX=10090 GN=Prdx6 PE=1 SV=3

0.27 35 1 SwissProt H2A1B_MOUSE 171 14127 10 8 3 3 1.69 Histone H2A type 1-B OS=Mus musculus OX=10090 GN=Hist1h2ab PE=1 SV=1

0.27 38 1 SwissProt 1433Z_MOUSE 160 27925 7 5 7 5 1.31 14-3-3 protein zeta/delta OS=Mus musculus OX=10090 GN=Ywhaz PE=1 SV=1

0.27 51 1 SwissProt RS3_MOUSE 127 26828 6 5 6 5 1.39 40S ribosomal protein S3 OS=Mus musculus OX=10090 GN=Rps3 PE=1 SV=1

0.27 74 1 SwissProt GSTM1_MOUSE 99 26067 7 6 7 6 1.94 Glutathione S-transferase Mu 1 OS=Mus musculus OX=10090 GN=Gstm1 PE=1 SV=2

0.26 224 1 SwissProt QCR8_MOUSE 37 9762 2 2 2 2 1.57 Cytochrome b-c1 complex subunit 8 OS=Mus musculus OX=10090 GN=Uqcrq PE=1 SV=3

0.25 14 1 SwissProt TBB5_MOUSE 371 50095 12 10 9 8 1.12 Tubulin beta-5 chain OS=Mus musculus OX=10090 GN=Tubb5 PE=1 SV=1

0.25 19 1 SwissProt G3P_MOUSE 285 36072 9 9 7 7 1.49 Glyceraldehyde-3-phosphate dehydrogenase OS=Mus musculus OX=10090 GN=Gapdh PE=1 SV=2

0.25 31 1 SwissProt EF1A1_MOUSE 197 50424 10 9 9 8 1.11 Elongation factor 1-alpha 1 OS=Mus musculus OX=10090 GN=Eef1a1 PE=1 SV=3

0.25 54 1 SwissProt RS4X_MOUSE 121 29807 8 6 8 6 1.57 40S ribosomal protein S4, X isoform OS=Mus musculus OX=10090 GN=Rps4x PE=1 SV=2

0.25 184 1 SwissProt CYB5_MOUSE 45 15232 2 2 2 2 0.84 Cytochrome b5 OS=Mus musculus OX=10090 GN=Cyb5a PE=1 SV=2

0.24 2 1 SwissProt FLNA_MOUSE 1202 283897 55 45 48 38 0.88 Filamin-A OS=Mus musculus OX=10090 GN=Flna PE=1 SV=5

0.24 25 1 SwissProt PDLI3_MOUSE 233 34734 6 4 5 3 0.5 PDZ and LIM domain protein 3 OS=Mus musculus OX=10090 GN=Pdlim3 PE=1 SV=1

0.24 32 2 SwissProt ML12B_MOUSE 145 19824 5 5 4 4 1.56 Myosin regulatory light chain 12B OS=Mus musculus OX=10090 GN=Myl12b PE=1 SV=2

0.24 77 1 SwissProt RL12_MOUSE 95 17965 3 3 3 3 1.18 60S ribosomal protein L12 OS=Mus musculus OX=10090 GN=Rpl12 PE=1 SV=2

0.23 22 1 SwissProt ENOA_MOUSE 259 47453 10 8 8 7 1 Alpha-enolase OS=Mus musculus OX=10090 GN=Eno1 PE=1 SV=3

0.22 28 1 SwissProt ANXA2_MOUSE 204 38937 7 5 7 5 0.83 Annexin A2 OS=Mus musculus OX=10090 GN=Anxa2 PE=1 SV=2
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0.21 21 1 SwissProt SBP1_MOUSE 260 53051 10 9 9 8 1.04 Methanethiol oxidase OS=Mus musculus OX=10090 GN=Selenbp1 PE=1 SV=2

0.21 3 7 SwissProt K2C8_MOUSE 244 54531 12 10 12 10 1.38 Keratin, type II cytoskeletal 8 OS=Mus musculus OX=10090 GN=Krt8 PE=1 SV=4

0.21 104 1 SwissProt RL27A_MOUSE 71 16709 3 2 3 2 0.74 60S ribosomal protein L27a OS=Mus musculus OX=10090 GN=Rpl27a PE=1 SV=5

0.21 143 1 SwissProt COX6C_MOUSE 56 8464 3 3 3 3 4.11 Cytochrome c oxidase subunit 6C OS=Mus musculus OX=10090 GN=Cox6c PE=1 SV=3

0.2 9 1 SwissProt ATPA_MOUSE 425 59830 13 12 9 9 1.03 ATP synthase subunit alpha, mitochondrial OS=Mus musculus OX=10090 GN=Atp5f1a PE=1 SV=1

0.2 12 1 SwissProt KCRB_MOUSE 389 42971 9 9 6 6 0.93 Creatine kinase B-type OS=Mus musculus OX=10090 GN=Ckb PE=1 SV=1

0.2 14 3 SwissProt TBB2A_MOUSE 235 50274 10 8 7 6 0.75 Tubulin beta-2A chain OS=Mus musculus OX=10090 GN=Tubb2a PE=1 SV=1

0.2 60 1 SwissProt RS13_MOUSE 113 17212 4 2 4 2 0.72 40S ribosomal protein S13 OS=Mus musculus OX=10090 GN=Rps13 PE=1 SV=2

0.2 100 1 SwissProt AT1B1_MOUSE 72 35571 5 3 5 3 0.49 Sodium/potassium-transporting ATPase subunit beta-1 OS=Mus musculus OX=10090 GN=Atp1b1 PE=1 SV=1

0.2 133 1 SwissProt DEST_MOUSE 58 18852 3 2 3 2 0.64 Destrin OS=Mus musculus OX=10090 GN=Dstn PE=1 SV=3

0.2 333 1 SwissProt RS29_MOUSE 21 6900 1 1 1 1 0.94 40S ribosomal protein S29 OS=Mus musculus OX=10090 GN=Rps29 PE=1 SV=2

0.19 11 1 SwissProt VINC_MOUSE 402 117215 19 16 19 16 0.91 Vinculin OS=Mus musculus OX=10090 GN=Vcl PE=1 SV=4

0.19 5 4 SwissProt K1C42_MOUSE 332 50444 18 13 9 7 0.92 Keratin, type I cytoskeletal 42 OS=Mus musculus OX=10090 GN=Krt42 PE=1 SV=1

0.19 67 1 SwissProt H3C_MOUSE 106 15363 5 5 4 4 2.37 Histone H3.3C OS=Mus musculus OX=10090 GN=H3f3c PE=3 SV=3

0.19 127 1 SwissProt RS20_MOUSE 61 13478 2 2 2 2 1 40S ribosomal protein S20 OS=Mus musculus OX=10090 GN=Rps20 PE=1 SV=1

0.18 3 3 SwissProt K2C6A_MOUSE 368 59641 18 14 13 11 1.39 Keratin, type II cytoskeletal 6A OS=Mus musculus OX=10090 GN=Krt6a PE=1 SV=3

0.18 3 4 SwissProt K2C5_MOUSE 358 61957 17 15 13 12 1.49 Keratin, type II cytoskeletal 5 OS=Mus musculus OX=10090 GN=Krt5 PE=1 SV=1

0.18 5 5 SwissProt K1C17_MOUSE 279 48417 19 16 9 8 1.18 Keratin, type I cytoskeletal 17 OS=Mus musculus OX=10090 GN=Krt17 PE=1 SV=3

0.18 39 1 SwissProt ALDOA_MOUSE 157 39787 8 6 7 6 1.04 Fructose-bisphosphate aldolase A OS=Mus musculus OX=10090 GN=Aldoa PE=1 SV=2

0.18 49 1 SwissProt ANXA4_MOUSE 135 36178 5 4 5 4 0.68 Annexin A4 OS=Mus musculus OX=10090 GN=Anxa4 PE=1 SV=4

0.18 72 1 SwissProt RS18_MOUSE 100 17708 3 3 3 3 1.2 40S ribosomal protein S18 OS=Mus musculus OX=10090 GN=Rps18 PE=1 SV=3

0.18 137 1 SwissProt CYC_MOUSE 58 11712 2 2 2 2 1.2 Cytochrome c, somatic OS=Mus musculus OX=10090 GN=Cycs PE=1 SV=2

0.17 6 1 SwissProt TPM1_MOUSE 509 32718 16 13 8 7 2.15 Tropomyosin alpha-1 chain OS=Mus musculus OX=10090 GN=Tpm1 PE=1 SV=1

0.17 26 1 SwissProt ATPB_MOUSE 221 56265 10 7 8 6 0.65 ATP synthase subunit beta, mitochondrial OS=Mus musculus OX=10090 GN=Atp5f1b PE=1 SV=2

0.17 38 2 SwissProt 1433T_MOUSE 100 28046 4 4 4 4 0.95 14-3-3 protein theta OS=Mus musculus OX=10090 GN=Ywhaq PE=1 SV=1

0.17 74 2 SwissProt GSTM2_MOUSE 64 25871 4 3 4 3 0.72 Glutathione S-transferase Mu 2 OS=Mus musculus OX=10090 GN=Gstm2 PE=1 SV=2

0.17 120 1 SwissProt HINT1_MOUSE 63 13882 2 2 2 2 0.95 Histidine triad nucleotide-binding protein 1 OS=Mus musculus OX=10090 GN=Hint1 PE=1 SV=3

0.17 168 1 SwissProt KCY_MOUSE 48 22379 3 3 3 3 0.87 UMP-CMP kinase OS=Mus musculus OX=10090 GN=Cmpk1 PE=1 SV=1

0.17 227 1 SwissProt FHL1_MOUSE 36 33806 4 3 4 3 0.52 Four and a half LIM domains protein 1 OS=Mus musculus OX=10090 GN=Fhl1 PE=1 SV=3

0.17 289 1 SwissProt ATP5I_MOUSE 27 8230 1 1 1 1 0.75 ATP synthase subunit e, mitochondrial OS=Mus musculus OX=10090 GN=Atp5me PE=1 SV=2

0.17 306 1 SwissProt BLVRB_MOUSE 24 22297 3 2 3 2 0.52 Flavin reductase (NADPH) OS=Mus musculus OX=10090 GN=Blvrb PE=1 SV=3

0.17 324 1 SwissProt LEG1_MOUSE 22 15198 2 2 2 2 0.84 Galectin-1 OS=Mus musculus OX=10090 GN=Lgals1 PE=1 SV=3

0.16 13 1 SwissProt KCRU_MOUSE 379 47373 7 7 6 6 0.82 Creatine kinase U-type, mitochondrial OS=Mus musculus OX=10090 GN=Ckmt1 PE=1 SV=1

0.16 33 2 SwissProt AL1B1_MOUSE 166 58087 9 8 7 7 0.77 Aldehyde dehydrogenase X, mitochondrial OS=Mus musculus OX=10090 GN=Aldh1b1 PE=1 SV=1

0.16 46 1 SwissProt ETFB_MOUSE 142 27834 3 3 3 3 0.66 Electron transfer flavoprotein subunit beta OS=Mus musculus OX=10090 GN=Etfb PE=1 SV=3

0.16 47 1 SwissProt CBR3_MOUSE 142 31333 4 4 4 4 0.82 Carbonyl reductase [NADPH] 3 OS=Mus musculus OX=10090 GN=Cbr3 PE=1 SV=1

0.16 48 1 SwissProt ADT2_MOUSE 142 33138 7 5 5 5 1.03 ADP/ATP translocase 2 OS=Mus musculus OX=10090 GN=Slc25a5 PE=1 SV=3

0.16 56 1 SwissProt TPIS_MOUSE 118 32684 4 4 4 4 0.78 Triosephosphate isomerase OS=Mus musculus OX=10090 GN=Tpi1 PE=1 SV=4

0.16 89 1 SwissProt RS27A_MOUSE 82 18282 3 2 2 2 0.66 Ubiquitin-40S ribosomal protein S27a OS=Mus musculus OX=10090 GN=Rps27a PE=1 SV=2

0.16 90 1 SwissProt CAH1_MOUSE 82 28370 4 4 4 4 0.94 Carbonic anhydrase 1 OS=Mus musculus OX=10090 GN=Ca1 PE=1 SV=4
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0.16 119 1 SwissProt PPIA_MOUSE 64 18131 3 2 3 2 0.68 Peptidyl-prolyl cis-trans isomerase A OS=Mus musculus OX=10090 GN=Ppia PE=1 SV=2

0.16 136 1 SwissProt RS14_MOUSE 58 16434 2 2 2 2 0.76 40S ribosomal protein S14 OS=Mus musculus OX=10090 GN=Rps14 PE=1 SV=3

0.16 162 1 SwissProt PRDX1_MOUSE 50 22390 4 3 4 3 0.87 Peroxiredoxin-1 OS=Mus musculus OX=10090 GN=Prdx1 PE=1 SV=1

0.16 192 1 SwissProt SODC_MOUSE 43 16104 2 1 2 1 0.34 Superoxide dismutase [Cu-Zn] OS=Mus musculus OX=10090 GN=Sod1 PE=1 SV=2

0.16 232 1 SwissProt GSTO1_MOUSE 36 27708 5 3 4 2 0.4 Glutathione S-transferase omega-1 OS=Mus musculus OX=10090 GN=Gsto1 PE=1 SV=2

0.16 240 1 SwissProt RL17_MOUSE 34 21637 2 1 2 1 0.24 60S ribosomal protein L17 OS=Mus musculus OX=10090 GN=Rpl17 PE=1 SV=3

0.16 279 1 SwissProt FRIH_MOUSE 28 21224 3 2 3 2 0.55 Ferritin heavy chain OS=Mus musculus OX=10090 GN=Fth1 PE=1 SV=2

0.15 34 1 SwissProt LDHA_MOUSE 175 36817 5 4 5 4 0.67 L-lactate dehydrogenase A chain OS=Mus musculus OX=10090 GN=Ldha PE=1 SV=3

0.15 116 1 SwissProt HBB1_MOUSE 65 15944 2 2 2 2 0.79 Hemoglobin subunit beta-1 OS=Mus musculus OX=10090 GN=Hbb-b1 PE=1 SV=2

0.15 124 1 SwissProt H2B1B_MOUSE 62 13944 4 3 3 3 1.71 Histone H2B type 1-B OS=Mus musculus OX=10090 GN=Hist1h2bb PE=1 SV=3

0.15 144 1 SwissProt NDKB_MOUSE 56 17466 3 2 2 2 0.71 Nucleoside diphosphate kinase B OS=Mus musculus OX=10090 GN=Nme2 PE=1 SV=1

0.15 307 1 SwissProt RS11_MOUSE 24 18590 3 2 3 2 0.65 40S ribosomal protein S11 OS=Mus musculus OX=10090 GN=Rps11 PE=1 SV=3

0.15 328 1 SwissProt QCR7_MOUSE 21 13519 2 1 2 1 0.41 Cytochrome b-c1 complex subunit 7 OS=Mus musculus OX=10090 GN=Uqcrb PE=1 SV=3

0.14 5 1 SwissProt K1C10_MOUSE 526 57906 28 20 10 9 1.26 Keratin, type I cytoskeletal 10 OS=Mus musculus OX=10090 GN=Krt10 PE=1 SV=3

0.14 17 1 SwissProt CO6A1_MOUSE 315 109562 16 13 13 11 0.61 Collagen alpha-1(VI) chain OS=Mus musculus OX=10090 GN=Col6a1 PE=1 SV=1

0.14 55 1 SwissProt H12_MOUSE 120 21254 4 3 3 2 0.55 Histone H1.2 OS=Mus musculus OX=10090 GN=Hist1h1c PE=1 SV=2

0.14 58 1 SwissProt ROA2_MOUSE 114 37437 5 5 5 5 0.88 Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Mus musculus OX=10090 GN=Hnrnpa2b1 PE=1 SV=2

0.14 110 1 SwissProt ATPD_MOUSE 69 17589 2 2 2 2 0.7 ATP synthase subunit delta, mitochondrial OS=Mus musculus OX=10090 GN=Atp5f1d PE=1 SV=1

0.14 146 1 SwissProt UBE2N_MOUSE 55 17184 2 2 2 2 0.72 Ubiquitin-conjugating enzyme E2 N OS=Mus musculus OX=10090 GN=Ube2n PE=1 SV=1

0.14 150 1 SwissProt ATPK_MOUSE 54 10394 1 1 1 1 0.56 ATP synthase subunit f, mitochondrial OS=Mus musculus OX=10090 GN=Atp5mf PE=1 SV=3

0.14 153 1 SwissProt PHB_MOUSE 54 29859 4 3 4 3 0.6 Prohibitin OS=Mus musculus OX=10090 GN=Phb PE=1 SV=1

0.13 5 3 SwissProt K1C13_MOUSE 334 48066 19 16 8 7 0.99 Keratin, type I cytoskeletal 13 OS=Mus musculus OX=10090 GN=Krt13 PE=1 SV=2

0.13 37 1 SwissProt RSSA_MOUSE 167 32931 3 3 3 3 0.53 40S ribosomal protein SA OS=Mus musculus OX=10090 GN=Rpsa PE=1 SV=4

0.13 22 2 SwissProt ENOB_MOUSE 133 47337 4 3 4 3 0.35 Beta-enolase OS=Mus musculus OX=10090 GN=Eno3 PE=1 SV=3

0.13 53 1 SwissProt LEG4_MOUSE 123 36405 6 5 4 4 0.68 Galectin-4 OS=Mus musculus OX=10090 GN=Lgals4 PE=1 SV=2

0.13 59 1 SwissProt MDHC_MOUSE 113 36659 5 4 5 4 0.67 Malate dehydrogenase, cytoplasmic OS=Mus musculus OX=10090 GN=Mdh1 PE=1 SV=3

0.13 63 1 SwissProt ANXA5_MOUSE 112 35787 5 5 5 5 0.93 Annexin A5 OS=Mus musculus OX=10090 GN=Anxa5 PE=1 SV=1

0.13 48 2 SwissProt ADT1_MOUSE 105 33111 6 4 4 4 0.77 ADP/ATP translocase 1 OS=Mus musculus OX=10090 GN=Slc25a4 PE=1 SV=4

0.13 84 1 SwissProt CISY_MOUSE 85 51988 6 5 6 5 0.57 Citrate synthase, mitochondrial OS=Mus musculus OX=10090 GN=Cs PE=1 SV=1

0.13 92 1 SwissProt ETFA_MOUSE 81 35330 3 2 3 2 0.31 Electron transfer flavoprotein subunit alpha, mitochondrial OS=Mus musculus OX=10090 GN=Etfa PE=1 SV=2

0.13 101 1 SwissProt MXRA7_MOUSE 72 19502 2 1 2 1 0.27 Matrix-remodeling-associated protein 7 OS=Mus musculus OX=10090 GN=Mxra7 PE=1 SV=2

0.13 131 1 SwissProt GDIR1_MOUSE 59 23450 2 2 2 2 0.49 Rho GDP-dissociation inhibitor 1 OS=Mus musculus OX=10090 GN=Arhgdia PE=1 SV=3

0.13 181 1 SwissProt RS8_MOUSE 46 24475 3 2 3 2 0.47 40S ribosomal protein S8 OS=Mus musculus OX=10090 GN=Rps8 PE=1 SV=2

0.13 199 1 SwissProt RL27_MOUSE 41 15788 2 1 2 1 0.34 60S ribosomal protein L27 OS=Mus musculus OX=10090 GN=Rpl27 PE=1 SV=2

0.13 223 1 SwissProt RL7_MOUSE 37 31457 3 1 3 1 0.16 60S ribosomal protein L7 OS=Mus musculus OX=10090 GN=Rpl7 PE=1 SV=2

0.13 248 1 SwissProt RL34_MOUSE 33 13513 2 1 2 1 0.41 60S ribosomal protein L34 OS=Mus musculus OX=10090 GN=Rpl34 PE=1 SV=2

0.13 381 1 SwissProt UB2V1_MOUSE 14 16458 2 1 2 1 0.33 Ubiquitin-conjugating enzyme E2 variant 1 OS=Mus musculus OX=10090 GN=Ube2v1 PE=1 SV=1

0.12 6 2 SwissProt TPM2_MOUSE 390 32931 11 10 5 5 1.04 Tropomyosin beta chain OS=Mus musculus OX=10090 GN=Tpm2 PE=1 SV=1

0.12 40 1 SwissProt ACON_MOUSE 155 86151 8 6 8 6 0.39 Aconitate hydratase, mitochondrial OS=Mus musculus OX=10090 GN=Aco2 PE=1 SV=1

0.12 44 1 SwissProt ACTN1_MOUSE 145 103631 10 9 10 9 0.51 Alpha-actinin-1 OS=Mus musculus OX=10090 GN=Actn1 PE=1 SV=1
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0.12 75 1 SwissProt MDHM_MOUSE 98 36045 5 5 4 4 0.68 Malate dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Mdh2 PE=1 SV=3

0.12 38 3 SwissProt 1433G_MOUSE 95 28456 3 3 3 3 0.64 14-3-3 protein gamma OS=Mus musculus OX=10090 GN=Ywhag PE=1 SV=2

0.12 79 1 SwissProt ETHE1_MOUSE 89 28234 2 2 2 2 0.4 Persulfide dioxygenase ETHE1, mitochondrial OS=Mus musculus OX=10090 GN=Ethe1 PE=1 SV=2

0.12 85 1 SwissProt PGK1_MOUSE 85 44921 4 2 4 2 0.23 Phosphoglycerate kinase 1 OS=Mus musculus OX=10090 GN=Pgk1 PE=1 SV=4

0.12 135 1 SwissProt ATPO_MOUSE 58 23406 2 2 2 2 0.49 ATP synthase subunit O, mitochondrial OS=Mus musculus OX=10090 GN=Atp5po PE=1 SV=1

0.12 152 1 SwissProt THIO_MOUSE 54 12010 1 1 1 1 0.47 Thioredoxin OS=Mus musculus OX=10090 GN=Txn PE=1 SV=3

0.12 201 1 SwissProt ILEUA_MOUSE 40 42719 5 2 4 2 0.25 Leukocyte elastase inhibitor A OS=Mus musculus OX=10090 GN=Serpinb1a PE=1 SV=1

0.12 221 1 SwissProt CAH2_MOUSE 37 29129 3 2 3 2 0.38 Carbonic anhydrase 2 OS=Mus musculus OX=10090 GN=Ca2 PE=1 SV=4

0.11 5 6 SwissProt K1C16_MOUSE 275 51973 17 12 6 5 0.72 Keratin, type I cytoskeletal 16 OS=Mus musculus OX=10090 GN=Krt16 PE=1 SV=3

0.11 33 1 SwissProt ALDH2_MOUSE 179 57015 8 7 6 5 0.51 Aldehyde dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Aldh2 PE=1 SV=1

0.11 50 1 SwissProt TKT_MOUSE 134 68272 6 4 6 4 0.32 Transketolase OS=Mus musculus OX=10090 GN=Tkt PE=1 SV=1

0.11 62 1 SwissProt ALBU_MOUSE 112 70700 6 5 6 5 0.4 Serum albumin OS=Mus musculus OX=10090 GN=Alb PE=1 SV=3

0.11 70 1 SwissProt YBOX1_MOUSE 102 35709 2 2 2 2 0.3 Nuclease-sensitive element-binding protein 1 OS=Mus musculus OX=10090 GN=Ybx1 PE=1 SV=3

0.11 38 4 SwissProt 1433E_MOUSE 75 29326 3 3 3 3 0.62 14-3-3 protein epsilon OS=Mus musculus OX=10090 GN=Ywhae PE=1 SV=1

0.11 103 1 SwissProt TAGL2_MOUSE 71 22552 2 2 2 2 0.52 Transgelin-2 OS=Mus musculus OX=10090 GN=Tagln2 PE=1 SV=4

0.11 105 1 SwissProt THIM_MOUSE 70 42260 3 2 3 2 0.25 3-ketoacyl-CoA thiolase, mitochondrial OS=Mus musculus OX=10090 GN=Acaa2 PE=1 SV=3

0.11 114 1 SwissProt IDHP_MOUSE 65 51330 5 4 5 4 0.44 Isocitrate dehydrogenase [NADP], mitochondrial OS=Mus musculus OX=10090 GN=Idh2 PE=1 SV=3

0.11 195 1 SwissProt ZG16_MOUSE 42 18369 1 1 1 1 0.29 Zymogen granule membrane protein 16 OS=Mus musculus OX=10090 GN=Zg16 PE=1 SV=1

0.11 308 1 SwissProt ATP5H_MOUSE 23 18795 2 1 2 1 0.28 ATP synthase subunit d, mitochondrial OS=Mus musculus OX=10090 GN=Atp5pd PE=1 SV=3

0.11 359 1 SwissProt RS25_MOUSE 17 13791 2 1 2 1 0.4 40S ribosomal protein S25 OS=Mus musculus OX=10090 GN=Rps25 PE=1 SV=1

0.1 10 1 SwissProt MYH11_MOUSE 410 227743 19 13 19 13 0.31 Myosin-11 OS=Mus musculus OX=10090 GN=Myh11 PE=1 SV=1

0.1 61 1 SwissProt KPYM_MOUSE 112 58378 5 4 4 4 0.38 Pyruvate kinase PKM OS=Mus musculus OX=10090 GN=Pkm PE=1 SV=4

0.1 64 1 SwissProt RL4_MOUSE 110 47409 3 3 3 3 0.35 60S ribosomal protein L4 OS=Mus musculus OX=10090 GN=Rpl4 PE=1 SV=3

0.1 68 1 SwissProt HSP7C_MOUSE 104 71055 6 4 6 4 0.3 Heat shock cognate 71 kDa protein OS=Mus musculus OX=10090 GN=Hspa8 PE=1 SV=1

0.1 71 1 SwissProt BASI_MOUSE 101 42874 4 3 4 3 0.39 Basigin OS=Mus musculus OX=10090 GN=Bsg PE=1 SV=2

0.1 96 1 SwissProt PGM5_MOUSE 77 62751 7 6 6 5 0.46 Phosphoglucomutase-like protein 5 OS=Mus musculus OX=10090 GN=Pgm5 PE=1 SV=2

0.1 129 1 SwissProt RS5_MOUSE 60 23046 2 1 2 1 0.22 40S ribosomal protein S5 OS=Mus musculus OX=10090 GN=Rps5 PE=1 SV=3

0.1 185 1 SwissProt PGS2_MOUSE 45 40126 3 1 3 1 0.12 Decorin OS=Mus musculus OX=10090 GN=Dcn PE=1 SV=1

0.1 252 1 SwissProt RS27L_MOUSE 32 9813 1 1 1 1 0.6 40S ribosomal protein S27-like OS=Mus musculus OX=10090 GN=Rps27l PE=1 SV=3

0.1 265 1 SwissProt ALRF2_MOUSE 30 23773 2 1 2 1 0.22 Aly/REF export factor 2 OS=Mus musculus OX=10090 GN=Alyref2 PE=1 SV=1

0.1 274 1 SwissProt PGAM1_MOUSE 29 28928 2 2 2 2 0.38 Phosphoglycerate mutase 1 OS=Mus musculus OX=10090 GN=Pgam1 PE=1 SV=3

0.1 277 1 SwissProt CX6B1_MOUSE 28 10293 1 1 1 1 0.56 Cytochrome c oxidase subunit 6B1 OS=Mus musculus OX=10090 GN=Cox6b1 PE=1 SV=2

0.1 325 1 SwissProt RL7A_MOUSE 22 30129 3 2 3 2 0.37 60S ribosomal protein L7a OS=Mus musculus OX=10090 GN=Rpl7a PE=1 SV=2

0.09 2 2 SwissProt FLNC_MOUSE 419 293560 21 12 21 12 0.21 Filamin-C OS=Mus musculus OX=10090 GN=Flnc PE=1 SV=3

0.09 3 6 SwissProt K2C73_MOUSE 248 59502 13 13 6 6 0.61 Keratin, type II cytoskeletal 73 OS=Mus musculus OX=10090 GN=Krt73 PE=1 SV=1

0.09 3 10 SwissProt K2C4_MOUSE 150 56590 8 7 7 6 0.65 Keratin, type II cytoskeletal 4 OS=Mus musculus OX=10090 GN=Krt4 PE=1 SV=2

0.09 52 1 SwissProt CO6A2_MOUSE 125 111406 10 8 9 8 0.4 Collagen alpha-2(VI) chain OS=Mus musculus OX=10090 GN=Col6a2 PE=1 SV=3

0.09 3 12 SwissProt K2C79_MOUSE 93 57802 6 5 5 4 0.39 Keratin, type II cytoskeletal 79 OS=Mus musculus OX=10090 GN=Krt79 PE=1 SV=2

0.09 83 1 SwissProt GELS_MOUSE 86 86287 8 5 8 5 0.32 Gelsolin OS=Mus musculus OX=10090 GN=Gsn PE=1 SV=3

0.09 108 1 SwissProt ARF4_MOUSE 69 20498 2 2 2 2 0.58 ADP-ribosylation factor 4 OS=Mus musculus OX=10090 GN=Arf4 PE=1 SV=2
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0.09 121 1 SwissProt ECHA_MOUSE 62 83302 5 3 5 3 0.19 Trifunctional enzyme subunit alpha, mitochondrial OS=Mus musculus OX=10090 GN=Hadha PE=1 SV=1

0.09 139 1 SwissProt SRSF5_MOUSE 57 30987 2 2 2 2 0.35 Serine/arginine-rich splicing factor 5 OS=Mus musculus OX=10090 GN=Srsf5 PE=1 SV=2

0.09 141 1 SwissProt RL13_MOUSE 57 24348 3 1 2 1 0.21 60S ribosomal protein L13 OS=Mus musculus OX=10090 GN=Rpl13 PE=1 SV=3

0.09 148 1 SwissProt COR1C_MOUSE 55 53771 4 2 4 2 0.19 Coronin-1C OS=Mus musculus OX=10090 GN=Coro1c PE=1 SV=2

0.09 218 1 SwissProt S10A6_MOUSE 38 10101 1 1 1 1 0.58 Protein S100-A6 OS=Mus musculus OX=10090 GN=S100a6 PE=1 SV=3

0.09 239 1 SwissProt STUM_MOUSE 34 15223 1 1 1 1 0.36 Protein stum homolog OS=Mus musculus OX=10090 GN=Stum PE=1 SV=1

0.09 250 1 SwissProt LEG3_MOUSE 32 27612 3 2 2 1 0.19 Galectin-3 OS=Mus musculus OX=10090 GN=Lgals3 PE=1 SV=3

0.09 255 1 SwissProt FRIL1_MOUSE 31 20847 1 1 1 1 0.25 Ferritin light chain 1 OS=Mus musculus OX=10090 GN=Ftl1 PE=1 SV=2

0.09 267 1 SwissProt RL6_MOUSE 30 33546 4 2 4 2 0.32 60S ribosomal protein L6 OS=Mus musculus OX=10090 GN=Rpl6 PE=1 SV=3

0.09 292 1 SwissProt RRAS2_MOUSE 26 23613 3 1 2 1 0.22 Ras-related protein R-Ras2 OS=Mus musculus OX=10090 GN=Rras2 PE=1 SV=1

0.09 321 1 SwissProt CRIP1_MOUSE 22 8943 1 1 1 1 0.71 Cysteine-rich protein 1 OS=Mus musculus OX=10090 GN=Crip1 PE=1 SV=2

0.09 352 1 SwissProt SORCN_MOUSE 17 21898 2 1 2 1 0.24 Sorcin OS=Mus musculus OX=10090 GN=Sri PE=1 SV=1

0.08 3 8 SwissProt K22O_MOUSE 195 63319 10 9 7 6 0.56 Keratin, type II cytoskeletal 2 oral OS=Mus musculus OX=10090 GN=Krt76 PE=1 SV=1

0.08 3 9 SwissProt K22E_MOUSE 191 71336 12 11 8 7 0.7 Keratin, type II cytoskeletal 2 epidermal OS=Mus musculus OX=10090 GN=Krt2 PE=1 SV=1

0.08 70 2 SwissProt YBOX3_MOUSE 91 38790 2 2 2 2 0.28 Y-box-binding protein 3 OS=Mus musculus OX=10090 GN=Ybx3 PE=1 SV=2

0.08 82 1 SwissProt ANXA6_MOUSE 87 76294 6 4 6 4 0.28 Annexin A6 OS=Mus musculus OX=10090 GN=Anxa6 PE=1 SV=3

0.08 93 1 SwissProt LYZ1_MOUSE 78 17240 2 2 1 1 0.31 Lysozyme C-1 OS=Mus musculus OX=10090 GN=Lyz1 PE=1 SV=1

0.08 109 1 SwissProt RS6_MOUSE 69 28834 2 2 2 2 0.38 40S ribosomal protein S6 OS=Mus musculus OX=10090 GN=Rps6 PE=1 SV=1

0.08 130 1 SwissProt CAPZB_MOUSE 60 31611 2 1 2 1 0.16 F-actin-capping protein subunit beta OS=Mus musculus OX=10090 GN=Capzb PE=1 SV=3

0.08 156 1 SwissProt ALDR_MOUSE 52 36052 3 2 3 2 0.3 Aldo-keto reductase family 1 member B1 OS=Mus musculus OX=10090 GN=Akr1b1 PE=1 SV=3

0.08 165 1 SwissProt RS3A_MOUSE 50 30094 2 1 2 1 0.17 40S ribosomal protein S3a OS=Mus musculus OX=10090 GN=Rps3a PE=1 SV=3

0.08 191 1 SwissProt LUM_MOUSE 43 38640 3 2 3 2 0.28 Lumican OS=Mus musculus OX=10090 GN=Lum PE=1 SV=2

0.08 200 1 SwissProt MIME_MOUSE 41 34333 3 2 3 2 0.32 Mimecan OS=Mus musculus OX=10090 GN=Ogn PE=1 SV=1

0.08 216 1 SwissProt H2AY_MOUSE 38 39882 2 2 2 2 0.27 Core histone macro-H2A.1 OS=Mus musculus OX=10090 GN=H2afy PE=1 SV=3

0.08 187 2 SwissProt ROAA_MOUSE 38 30926 2 2 2 2 0.35 Heterogeneous nuclear ribonucleoprotein A/B OS=Mus musculus OX=10090 GN=Hnrnpab PE=1 SV=1

0.08 228 1 SwissProt CAV1_MOUSE 36 20697 1 1 1 1 0.25 Caveolin-1 OS=Mus musculus OX=10090 GN=Cav1 PE=1 SV=1

0.08 241 1 SwissProt RL15_MOUSE 34 24245 2 2 2 2 0.47 60S ribosomal protein L15 OS=Mus musculus OX=10090 GN=Rpl15 PE=1 SV=4

0.08 263 1 SwissProt PSA1_MOUSE 31 29813 2 2 2 2 0.37 Proteasome subunit alpha type-1 OS=Mus musculus OX=10090 GN=Psma1 PE=1 SV=1

0.08 268 1 SwissProt PGRC1_MOUSE 30 21795 2 1 2 1 0.24 Membrane-associated progesterone receptor component 1 OS=Mus musculus OX=10090 GN=Pgrmc1 PE=1 SV=4

0.08 290 1 SwissProt RS26_MOUSE 26 13292 1 1 1 1 0.42 40S ribosomal protein S26 OS=Mus musculus OX=10090 GN=Rps26 PE=1 SV=3

0.08 314 1 SwissProt RL10L_MOUSE 23 24998 2 1 2 1 0.21 60S ribosomal protein L10-like OS=Mus musculus OX=10090 GN=Rpl10l PE=2 SV=1

0.08 345 1 SwissProt RS19_MOUSE 18 16076 1 1 1 1 0.34 40S ribosomal protein S19 OS=Mus musculus OX=10090 GN=Rps19 PE=1 SV=3

0.08 378 1 SwissProt SET_MOUSE 14 33358 2 1 2 1 0.15 Protein SET OS=Mus musculus OX=10090 GN=Set PE=1 SV=1

0.07 7 1 SwissProt FBN1_MOUSE 485 332668 19 17 17 16 0.26 Fibrillin-1 OS=Mus musculus OX=10090 GN=Fbn1 PE=1 SV=2

0.07 36 1 SwissProt AOC3_MOUSE 171 85108 6 6 5 5 0.32 Membrane primary amine oxidase OS=Mus musculus OX=10090 GN=Aoc3 PE=1 SV=3

0.07 41 1 SwissProt AT1A1_MOUSE 148 114221 5 4 5 4 0.18 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Mus musculus OX=10090 GN=Atp1a1 PE=1 SV=1

0.07 76 1 SwissProt NB5R3_MOUSE 98 34334 2 2 2 2 0.32 NADH-cytochrome b5 reductase 3 OS=Mus musculus OX=10090 GN=Cyb5r3 PE=1 SV=3

0.07 86 1 SwissProt PRELP_MOUSE 84 43607 3 2 3 2 0.24 Prolargin OS=Mus musculus OX=10090 GN=Prelp PE=1 SV=2

0.07 91 1 SwissProt SMTN_MOUSE 81 100798 6 3 6 3 0.15 Smoothelin OS=Mus musculus OX=10090 GN=Smtn PE=1 SV=2

0.07 94 1 SwissProt SAHH_MOUSE 77 48170 3 3 3 3 0.34 Adenosylhomocysteinase OS=Mus musculus OX=10090 GN=Ahcy PE=1 SV=3
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0.07 111 1 SwissProt NACA_MOUSE 66 23370 1 1 1 1 0.22 Nascent polypeptide-associated complex subunit alpha OS=Mus musculus OX=10090 GN=Naca PE=1 SV=1

0.07 117 1 SwissProt RL10A_MOUSE 64 25072 3 2 2 2 0.45 60S ribosomal protein L10a OS=Mus musculus OX=10090 GN=Rpl10a PE=1 SV=3

0.07 118 1 SwissProt QCR1_MOUSE 64 53446 3 3 3 3 0.3 Cytochrome b-c1 complex subunit 1, mitochondrial OS=Mus musculus OX=10090 GN=Uqcrc1 PE=1 SV=2

0.07 122 1 SwissProt PDIA3_MOUSE 62 57099 3 2 3 2 0.18 Protein disulfide-isomerase A3 OS=Mus musculus OX=10090 GN=Pdia3 PE=1 SV=2

0.07 126 1 SwissProt GNAI2_MOUSE 61 41033 3 2 2 2 0.26 Guanine nucleotide-binding protein G(i) subunit alpha-2 OS=Mus musculus OX=10090 GN=Gnai2 PE=1 SV=5

0.07 173 1 SwissProt VDAC2_MOUSE 47 32340 2 2 2 2 0.34 Voltage-dependent anion-selective channel protein 2 OS=Mus musculus OX=10090 GN=Vdac2 PE=1 SV=2

0.07 178 1 SwissProt RL23A_MOUSE 46 17684 2 1 1 1 0.3 60S ribosomal protein L23a OS=Mus musculus OX=10090 GN=Rpl23a PE=1 SV=1

0.07 179 1 SwissProt FABP5_MOUSE 46 15470 1 1 1 1 0.35 Fatty acid-binding protein 5 OS=Mus musculus OX=10090 GN=Fabp5 PE=1 SV=3

0.07 187 1 SwissProt HNRPD_MOUSE 44 38501 2 2 2 2 0.28 Heterogeneous nuclear ribonucleoprotein D0 OS=Mus musculus OX=10090 GN=Hnrnpd PE=1 SV=2

0.07 207 1 SwissProt RL3_MOUSE 39 46366 3 1 3 1 0.11 60S ribosomal protein L3 OS=Mus musculus OX=10090 GN=Rpl3 PE=1 SV=3

0.07 249 1 SwissProt HMGB1_MOUSE 32 25049 1 1 1 1 0.21 High mobility group protein B1 OS=Mus musculus OX=10090 GN=Hmgb1 PE=1 SV=2

0.07 262 1 SwissProt CATA_MOUSE 31 60043 3 2 3 2 0.17 Catalase OS=Mus musculus OX=10090 GN=Cat PE=1 SV=4

0.07 264 1 SwissProt RL31_MOUSE 31 14454 1 1 1 1 0.38 60S ribosomal protein L31 OS=Mus musculus OX=10090 GN=Rpl31 PE=1 SV=1

0.07 315 1 SwissProt NDUAD_MOUSE 23 16849 1 1 1 1 0.32 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 OS=Mus musculus OX=10090 GN=Ndufa13 PE=1 SV=3

0.07 316 1 SwissProt RL23_MOUSE 23 14970 1 1 1 1 0.36 60S ribosomal protein L23 OS=Mus musculus OX=10090 GN=Rpl23 PE=1 SV=1

0.07 323 1 SwissProt RAC1_MOUSE 22 21835 1 1 1 1 0.24 Ras-related C3 botulinum toxin substrate 1 OS=Mus musculus OX=10090 GN=Rac1 PE=1 SV=1

0.07 340 1 SwissProt ANXA1_MOUSE 19 38995 2 1 2 1 0.13 Annexin A1 OS=Mus musculus OX=10090 GN=Anxa1 PE=1 SV=2

0.07 360 1 SwissProt CH10_MOUSE 17 10956 1 1 1 1 0.5 10 kDa heat shock protein, mitochondrial OS=Mus musculus OX=10090 GN=Hspe1 PE=1 SV=2

0.06 15 1 SwissProt SYNEM_MOUSE 363 173276 9 7 9 7 0.21 Synemin OS=Mus musculus OX=10090 GN=Synm PE=1 SV=2

0.06 3 5 SwissProt K2C1_MOUSE 262 66079 11 11 5 5 0.43 Keratin, type II cytoskeletal 1 OS=Mus musculus OX=10090 GN=Krt1 PE=1 SV=4

0.06 27 1 SwissProt PGBM_MOUSE 207 407847 18 13 18 13 0.16 Basement membrane-specific heparan sulfate proteoglycan core protein OS=Mus musculus OX=10090 GN=Hspg2 PE=1 SV=1

0.06 42 1 SwissProt PCBP1_MOUSE 148 37987 2 2 2 2 0.28 Poly(rC)-binding protein 1 OS=Mus musculus OX=10090 GN=Pcbp1 PE=1 SV=1

0.06 65 1 SwissProt ARP3_MOUSE 109 47783 2 2 2 2 0.22 Actin-related protein 3 OS=Mus musculus OX=10090 GN=Actr3 PE=1 SV=3

0.06 66 1 SwissProt HS90B_MOUSE 108 83571 4 4 4 4 0.25 Heat shock protein HSP 90-beta OS=Mus musculus OX=10090 GN=Hsp90ab1 PE=1 SV=3

0.06 47 2 SwissProt CBR1_MOUSE 70 30907 2 2 2 2 0.36 Carbonyl reductase [NADPH] 1 OS=Mus musculus OX=10090 GN=Cbr1 PE=1 SV=3

0.06 112 1 SwissProt ADH1_MOUSE 66 40601 3 2 3 2 0.26 Alcohol dehydrogenase 1 OS=Mus musculus OX=10090 GN=Adh1 PE=1 SV=2

0.06 113 1 SwissProt IF4A1_MOUSE 66 46353 2 1 2 1 0.11 Eukaryotic initiation factor 4A-I OS=Mus musculus OX=10090 GN=Eif4a1 PE=1 SV=1

0.06 68 2 SwissProt HS71A_MOUSE 63 70321 3 3 3 3 0.22 Heat shock 70 kDa protein 1A OS=Mus musculus OX=10090 GN=Hspa1a PE=1 SV=2

0.06 147 1 SwissProt MPCP_MOUSE 55 40063 2 1 2 1 0.12 Phosphate carrier protein, mitochondrial OS=Mus musculus OX=10090 GN=Slc25a3 PE=1 SV=1

0.06 154 1 SwissProt GBB1_MOUSE 53 38151 2 2 2 2 0.28 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 OS=Mus musculus OX=10090 GN=Gnb1 PE=1 SV=3

0.06 159 1 SwissProt THIL_MOUSE 51 45129 3 2 3 2 0.23 Acetyl-CoA acetyltransferase, mitochondrial OS=Mus musculus OX=10090 GN=Acat1 PE=1 SV=1

0.06 167 1 SwissProt ROA3_MOUSE 49 39856 2 2 2 2 0.27 Heterogeneous nuclear ribonucleoprotein A3 OS=Mus musculus OX=10090 GN=Hnrnpa3 PE=1 SV=1

0.06 177 1 SwissProt THY1_MOUSE 46 18297 1 1 1 1 0.29 Thy-1 membrane glycoprotein OS=Mus musculus OX=10090 GN=Thy1 PE=1 SV=1

0.06 186 1 SwissProt PRDX2_MOUSE 44 21936 1 1 1 1 0.24 Peroxiredoxin-2 OS=Mus musculus OX=10090 GN=Prdx2 PE=1 SV=3

0.06 226 1 SwissProt RL26_MOUSE 37 17248 1 1 1 1 0.31 60S ribosomal protein L26 OS=Mus musculus OX=10090 GN=Rpl26 PE=1 SV=1

0.06 253 1 SwissProt CAP1_MOUSE 31 51875 2 1 2 1 0.1 Adenylyl cyclase-associated protein 1 OS=Mus musculus OX=10090 GN=Cap1 PE=1 SV=4

0.06 271 1 SwissProt PIGR_MOUSE 29 86257 2 1 2 1 0.06 Polymeric immunoglobulin receptor OS=Mus musculus OX=10090 GN=Pigr PE=1 SV=1

0.06 272 1 SwissProt AGR2_MOUSE 29 19965 1 1 1 1 0.26 Anterior gradient protein 2 homolog OS=Mus musculus OX=10090 GN=Agr2 PE=1 SV=1

0.06 287 1 SwissProt VASP_MOUSE 27 39813 2 1 2 1 0.13 Vasodilator-stimulated phosphoprotein OS=Mus musculus OX=10090 GN=Vasp PE=1 SV=4

0.06 300 1 SwissProt GOLM1_MOUSE 25 44470 3 1 3 1 0.11 Golgi membrane protein 1 OS=Mus musculus OX=10090 GN=Golm1 PE=1 SV=2
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0.06 309 1 SwissProt RAP1A_MOUSE 23 21316 1 1 1 1 0.25 Ras-related protein Rap-1A OS=Mus musculus OX=10090 GN=Rap1a PE=1 SV=1

0.06 311 1 SwissProt RAB5A_MOUSE 23 23812 1 1 1 1 0.22 Ras-related protein Rab-5A OS=Mus musculus OX=10090 GN=Rab5a PE=1 SV=1

0.06 337 1 SwissProt RL8_MOUSE 20 28235 2 1 2 1 0.18 60S ribosomal protein L8 OS=Mus musculus OX=10090 GN=Rpl8 PE=1 SV=2

0.06 383 1 SwissProt VAPA_MOUSE 14 28065 2 1 1 1 0.18 Vesicle-associated membrane protein-associated protein A OS=Mus musculus OX=10090 GN=Vapa PE=1 SV=2

0.05 57 1 SwissProt POSTN_MOUSE 114 93769 4 2 4 2 0.11 Periostin OS=Mus musculus OX=10090 GN=Postn PE=1 SV=2

0.05 69 1 SwissProt VILI_MOUSE 104 93230 4 3 4 3 0.16 Villin-1 OS=Mus musculus OX=10090 GN=Vil1 PE=1 SV=3

0.05 106 1 SwissProt SIAS_MOUSE 69 40455 1 1 1 1 0.12 Sialic acid synthase OS=Mus musculus OX=10090 GN=Nans PE=1 SV=1

0.05 123 1 SwissProt TGM2_MOUSE 62 78153 3 2 3 2 0.13 Protein-glutamine gamma-glutamyltransferase 2 OS=Mus musculus OX=10090 GN=Tgm2 PE=1 SV=4

0.05 132 1 SwissProt EZRI_MOUSE 59 69478 3 2 3 2 0.15 Ezrin OS=Mus musculus OX=10090 GN=Ezr PE=1 SV=3

0.05 140 1 SwissProt PDLI7_MOUSE 57 51170 2 2 2 2 0.2 PDZ and LIM domain protein 7 OS=Mus musculus OX=10090 GN=Pdlim7 PE=1 SV=1

0.05 157 1 SwissProt ROA1_MOUSE 52 34289 1 1 1 1 0.15 Heterogeneous nuclear ribonucleoprotein A1 OS=Mus musculus OX=10090 GN=Hnrnpa1 PE=1 SV=2

0.05 170 1 SwissProt RACK1_MOUSE 48 35511 2 2 2 2 0.3 Receptor of activated protein C kinase 1 OS=Mus musculus OX=10090 GN=Rack1 PE=1 SV=3

0.05 171 1 SwissProt LAMB2_MOUSE 48 203579 6 3 6 3 0.07 Laminin subunit beta-2 OS=Mus musculus OX=10090 GN=Lamb2 PE=1 SV=2

0.05 183 1 SwissProt H15_MOUSE 45 22562 1 1 1 1 0.23 Histone H1.5 OS=Mus musculus OX=10090 GN=Hist1h1b PE=1 SV=2

0.05 189 1 SwissProt IPYR_MOUSE 44 33102 1 1 1 1 0.15 Inorganic pyrophosphatase OS=Mus musculus OX=10090 GN=Ppa1 PE=1 SV=1

0.05 197 1 SwissProt KAD2_MOUSE 42 26737 1 1 1 1 0.19 Adenylate kinase 2, mitochondrial OS=Mus musculus OX=10090 GN=Ak2 PE=1 SV=5

0.05 214 1 SwissProt DERM_MOUSE 38 24549 1 1 1 1 0.21 Dermatopontin OS=Mus musculus OX=10090 GN=Dpt PE=1 SV=1

0.05 217 1 SwissProt PSB6_MOUSE 38 25591 1 1 1 1 0.2 Proteasome subunit beta type-6 OS=Mus musculus OX=10090 GN=Psmb6 PE=1 SV=3

0.05 231 1 SwissProt IF5A1_MOUSE 36 17049 1 1 1 1 0.31 Eukaryotic translation initiation factor 5A-1 OS=Mus musculus OX=10090 GN=Eif5a PE=1 SV=2

0.05 235 1 SwissProt RL11_MOUSE 35 20468 1 1 1 1 0.26 60S ribosomal protein L11 OS=Mus musculus OX=10090 GN=Rpl11 PE=1 SV=4

0.05 237 1 SwissProt AMYP_MOUSE 34 57966 4 1 2 1 0.08 Pancreatic alpha-amylase OS=Mus musculus OX=10090 GN=Amy2 PE=1 SV=2

0.05 238 1 SwissProt SRSF3_MOUSE 34 19546 1 1 1 1 0.27 Serine/arginine-rich splicing factor 3 OS=Mus musculus OX=10090 GN=Srsf3 PE=1 SV=1

0.05 247 1 SwissProt PLAK_MOUSE 33 82490 3 2 3 2 0.12 Junction plakoglobin OS=Mus musculus OX=10090 GN=Jup PE=1 SV=3

0.05 275 1 SwissProt UCRI_MOUSE 29 29634 2 2 2 2 0.37 Cytochrome b-c1 complex subunit Rieske, mitochondrial OS=Mus musculus OX=10090 GN=Uqcrfs1 PE=1 SV=1

0.05 295 1 SwissProt SCMC1_MOUSE 25 53096 2 1 2 1 0.09 Calcium-binding mitochondrial carrier protein SCaMC-1 OS=Mus musculus OX=10090 GN=Slc25a24 PE=1 SV=1

0.05 297 1 SwissProt CY1_MOUSE 25 35533 1 1 1 1 0.14 Cytochrome c1, heme protein, mitochondrial OS=Mus musculus OX=10090 GN=Cyc1 PE=1 SV=1

0.05 303 1 SwissProt DBNL_MOUSE 24 48955 2 1 2 1 0.1 Drebrin-like protein OS=Mus musculus OX=10090 GN=Dbnl PE=1 SV=2

0.05 310 1 SwissProt CALM1_MOUSE 23 16827 1 1 1 1 0.32 Calmodulin-1 OS=Mus musculus OX=10090 GN=Calm1 PE=1 SV=1

0.05 313 1 SwissProt PARK7_MOUSE 23 20236 1 1 1 1 0.26 Protein/nucleic acid deglycase DJ-1 OS=Mus musculus OX=10090 GN=Park7 PE=1 SV=1

0.05 322 1 SwissProt LSM4_MOUSE 22 15238 1 1 1 1 0.36 U6 snRNA-associated Sm-like protein LSm4 OS=Mus musculus OX=10090 GN=Lsm4 PE=1 SV=1

0.05 326 1 SwissProt COX5A_MOUSE 21 16319 1 1 1 1 0.33 Cytochrome c oxidase subunit 5A, mitochondrial OS=Mus musculus OX=10090 GN=Cox5a PE=1 SV=2

0.05 327 1 SwissProt GDIB_MOUSE 21 51018 2 1 2 1 0.1 Rab GDP dissociation inhibitor beta OS=Mus musculus OX=10090 GN=Gdi2 PE=1 SV=1

0.05 363 1 SwissProt RS7_MOUSE 16 22113 1 1 1 1 0.24 40S ribosomal protein S7 OS=Mus musculus OX=10090 GN=Rps7 PE=2 SV=1

0.05 372 1 SwissProt MIC19_MOUSE 15 26546 1 1 1 1 0.19 MICOS complex subunit Mic19 OS=Mus musculus OX=10090 GN=Chchd3 PE=1 SV=1

0.05 373 1 SwissProt NUD12_MOUSE 15 52162 2 1 2 1 0.09 Peroxisomal NADH pyrophosphatase NUDT12 OS=Mus musculus OX=10090 GN=Nudt12 PE=1 SV=1

0.04 43 1 SwissProt FINC_MOUSE 148 276017 9 6 7 5 0.09 Fibronectin OS=Mus musculus OX=10090 GN=Fn1 PE=1 SV=4

0.04 3 11 SwissProt KRT85_MOUSE 134 57377 3 3 2 2 0.18 Keratin, type II cuticular Hb5 OS=Mus musculus OX=10090 GN=Krt85 PE=1 SV=2

0.04 73 1 SwissProt TLN1_MOUSE 99 271820 11 4 10 4 0.07 Talin-1 OS=Mus musculus OX=10090 GN=Tln1 PE=1 SV=2

0.04 33 3 SwissProt AL1A1_MOUSE 71 55060 3 3 2 2 0.19 Retinal dehydrogenase 1 OS=Mus musculus OX=10090 GN=Aldh1a1 PE=1 SV=5

0.04 128 1 SwissProt GRP75_MOUSE 60 73701 2 2 2 2 0.14 Stress-70 protein, mitochondrial OS=Mus musculus OX=10090 GN=Hspa9 PE=1 SV=3
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0.04 142 1 SwissProt IF2A_MOUSE 56 36371 1 1 1 1 0.14 Eukaryotic translation initiation factor 2 subunit 1 OS=Mus musculus OX=10090 GN=Eif2s1 PE=1 SV=3

0.04 151 1 SwissProt PA1B3_MOUSE 54 25951 1 1 1 1 0.2 Platelet-activating factor acetylhydrolase IB subunit gamma OS=Mus musculus OX=10090 GN=Pafah1b3 PE=1 SV=1

0.04 68 3 SwissProt BIP_MOUSE 53 72492 3 2 3 2 0.14 Endoplasmic reticulum chaperone BiP OS=Mus musculus OX=10090 GN=Hspa5 PE=1 SV=3

0.04 172 1 SwissProt PDIA6_MOUSE 48 48469 1 1 1 1 0.1 Protein disulfide-isomerase A6 OS=Mus musculus OX=10090 GN=Pdia6 PE=1 SV=3

0.04 175 1 SwissProt ACADM_MOUSE 46 46908 1 1 1 1 0.11 Medium-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Acadm PE=1 SV=1

0.04 114 2 SwissProt IDHC_MOUSE 44 47044 2 2 2 2 0.22 Isocitrate dehydrogenase [NADP] cytoplasmic OS=Mus musculus OX=10090 GN=Idh1 PE=1 SV=2

0.04 198 1 SwissProt PRDX5_MOUSE 42 22226 1 1 1 1 0.23 Peroxiredoxin-5, mitochondrial OS=Mus musculus OX=10090 GN=Prdx5 PE=1 SV=2

0.04 202 1 SwissProt KCRM_MOUSE 40 43246 2 2 2 2 0.24 Creatine kinase M-type OS=Mus musculus OX=10090 GN=Ckm PE=1 SV=1

0.04 205 1 SwissProt MK03_MOUSE 40 43381 2 1 2 1 0.11 Mitogen-activated protein kinase 3 OS=Mus musculus OX=10090 GN=Mapk3 PE=1 SV=5

0.04 215 1 SwissProt LASP1_MOUSE 38 30374 1 1 1 1 0.17 LIM and SH3 domain protein 1 OS=Mus musculus OX=10090 GN=Lasp1 PE=1 SV=1

0.04 219 1 SwissProt EMIL1_MOUSE 38 108830 4 1 4 1 0.04 EMILIN-1 OS=Mus musculus OX=10090 GN=Emilin1 PE=1 SV=1

0.04 225 1 SwissProt CAVN1_MOUSE 37 43927 1 1 1 1 0.11 Caveolae-associated protein 1 OS=Mus musculus OX=10090 GN=Cavin1 PE=1 SV=1

0.04 242 1 SwissProt PEBP1_MOUSE 34 20988 1 1 1 1 0.25 Phosphatidylethanolamine-binding protein 1 OS=Mus musculus OX=10090 GN=Pebp1 PE=1 SV=3

0.04 245 1 SwissProt FAM3A_MOUSE 33 25605 1 1 1 1 0.2 Protein FAM3A OS=Mus musculus OX=10090 GN=Fam3a PE=2 SV=1

0.04 254 1 SwissProt AATM_MOUSE 31 47780 2 1 2 1 0.1 Aspartate aminotransferase, mitochondrial OS=Mus musculus OX=10090 GN=Got2 PE=1 SV=1

0.04 266 1 SwissProt QCR2_MOUSE 30 48262 1 1 1 1 0.1 Cytochrome b-c1 complex subunit 2, mitochondrial OS=Mus musculus OX=10090 GN=Uqcrc2 PE=1 SV=1

0.04 269 1 SwissProt 6PGD_MOUSE 29 53726 2 1 2 1 0.09 6-phosphogluconate dehydrogenase, decarboxylating OS=Mus musculus OX=10090 GN=Pgd PE=1 SV=3

0.04 282 1 SwissProt ODPA_MOUSE 28 43888 2 1 2 1 0.11 Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial OS=Mus musculus OX=10090 GN=Pdha1 PE=1 SV=1

0.04 283 1 SwissProt EF2_MOUSE 27 96222 5 3 5 3 0.16 Elongation factor 2 OS=Mus musculus OX=10090 GN=Eef2 PE=1 SV=2

0.04 285 1 SwissProt MVP_MOUSE 27 96150 3 2 3 2 0.1 Major vault protein OS=Mus musculus OX=10090 GN=Mvp PE=1 SV=4

0.04 286 1 SwissProt CH60_MOUSE 27 61088 2 1 2 1 0.08 60 kDa heat shock protein, mitochondrial OS=Mus musculus OX=10090 GN=Hspd1 PE=1 SV=1

0.04 288 1 SwissProt PARVA_MOUSE 27 42361 2 2 2 2 0.25 Alpha-parvin OS=Mus musculus OX=10090 GN=Parva PE=1 SV=1

0.04 298 1 SwissProt GSTA1_MOUSE 25 25706 2 2 1 1 0.2 Glutathione S-transferase A1 OS=Mus musculus OX=10090 GN=Gsta1 PE=1 SV=2

0.04 312 1 SwissProt SDHB_MOUSE 23 32591 1 1 1 1 0.15 Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial OS=Mus musculus OX=10090 GN=Sdhb PE=1 SV=1

0.04 346 1 SwissProt NHRF1_MOUSE 18 38862 1 1 1 1 0.13 Na(+)/H(+) exchange regulatory cofactor NHE-RF1 OS=Mus musculus OX=10090 GN=Slc9a3r1 PE=1 SV=3

0.04 348 1 SwissProt PLCA_MOUSE 18 32031 2 1 1 1 0.16 1-acyl-sn-glycerol-3-phosphate acyltransferase alpha OS=Mus musculus OX=10090 GN=Agpat1 PE=1 SV=1

0.04 356 1 SwissProt TES_MOUSE 17 49605 2 1 2 1 0.1 Testin OS=Mus musculus OX=10090 GN=Tes PE=1 SV=1

0.04 368 1 SwissProt AL4A1_MOUSE 16 62258 2 1 2 1 0.08 Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Aldh4a1 PE=1 SV=3

0.04 380 1 SwissProt CLCB_MOUSE 14 25270 1 1 1 1 0.2 Clathrin light chain B OS=Mus musculus OX=10090 GN=Cltb PE=1 SV=1

0.03 5 7 SwissProt KRT35_MOUSE 103 51809 6 5 2 2 0.21 Keratin, type I cuticular Ha5 OS=Mus musculus OX=10090 GN=Krt35 PE=1 SV=1

0.03 80 1 SwissProt DPYL2_MOUSE 88 62638 1 1 1 1 0.08 Dihydropyrimidinase-related protein 2 OS=Mus musculus OX=10090 GN=Dpysl2 PE=1 SV=2

0.03 87 1 SwissProt MYLK_MOUSE 83 215415 5 4 5 4 0.09 Myosin light chain kinase, smooth muscle OS=Mus musculus OX=10090 GN=Mylk PE=1 SV=3

0.03 88 1 SwissProt ODO1_MOUSE 83 117572 3 3 3 3 0.13 2-oxoglutarate dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Ogdh PE=1 SV=3

0.03 99 1 SwissProt NPTN_MOUSE 75 44688 1 1 1 1 0.11 Neuroplastin OS=Mus musculus OX=10090 GN=Nptn PE=1 SV=3

0.03 102 1 SwissProt HNRPM_MOUSE 71 77940 2 2 2 2 0.13 Heterogeneous nuclear ribonucleoprotein M OS=Mus musculus OX=10090 GN=Hnrnpm PE=1 SV=3

0.03 107 1 SwissProt NIPS1_MOUSE 69 33570 1 1 1 1 0.15 Protein NipSnap homolog 1 OS=Mus musculus OX=10090 GN=Nipsnap1 PE=1 SV=1

0.03 134 1 SwissProt CAD17_MOUSE 58 92045 2 2 2 2 0.11 Cadherin-17 OS=Mus musculus OX=10090 GN=Cdh17 PE=1 SV=1

0.03 138 1 SwissProt NDUS1_MOUSE 58 80752 2 2 2 2 0.12 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial OS=Mus musculus OX=10090 GN=Ndufs1 PE=1 SV=2

0.03 161 1 SwissProt UD12_MOUSE 51 60987 2 1 2 1 0.08 UDP-glucuronosyltransferase 1-2 OS=Mus musculus OX=10090 GN=Ugt1a2 PE=1 SV=1

0.03 164 1 SwissProt NID1_MOUSE 50 139302 4 2 4 2 0.07 Nidogen-1 OS=Mus musculus OX=10090 GN=Nid1 PE=1 SV=2
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0.03 169 1 SwissProt HEM2_MOUSE 48 36456 1 1 1 1 0.14 Delta-aminolevulinic acid dehydratase OS=Mus musculus OX=10090 GN=Alad PE=1 SV=1

0.03 174 1 SwissProt PDXD1_MOUSE 47 88136 2 1 2 1 0.06 Pyridoxal-dependent decarboxylase domain-containing protein 1 OS=Mus musculus OX=10090 GN=Pdxdc1 PE=1 SV=2

0.03 180 1 SwissProt MYPT2_MOUSE 46 109326 2 1 2 1 0.04 Protein phosphatase 1 regulatory subunit 12B OS=Mus musculus OX=10090 GN=Ppp1r12b PE=1 SV=2

0.03 188 1 SwissProt SQOR_MOUSE 44 50706 1 1 1 1 0.1 Sulfide:quinone oxidoreductase, mitochondrial OS=Mus musculus OX=10090 GN=Sqor PE=1 SV=3

0.03 190 1 SwissProt HOOK2_MOUSE 43 83885 5 2 3 2 0.13 Protein Hook homolog 2 OS=Mus musculus OX=10090 GN=Hook2 PE=1 SV=3

0.03 203 1 SwissProt WDR1_MOUSE 40 67049 2 1 2 1 0.07 WD repeat-containing protein 1 OS=Mus musculus OX=10090 GN=Wdr1 PE=1 SV=3

0.03 206 1 SwissProt ACADS_MOUSE 40 45146 1 1 1 1 0.11 Short-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Acads PE=1 SV=2

0.03 211 1 SwissProt RBMX_MOUSE 39 42275 1 1 1 1 0.12 RNA-binding motif protein, X chromosome OS=Mus musculus OX=10090 GN=Rbmx PE=1 SV=1

0.03 213 1 SwissProt COX2_MOUSE 39 26130 1 1 1 1 0.2 Cytochrome c oxidase subunit 2 OS=Mus musculus OX=10090 GN=Mtco2 PE=1 SV=1

0.03 229 1 SwissProt TGM3_MOUSE 36 77717 3 3 3 3 0.2 Protein-glutamine gamma-glutamyltransferase E OS=Mus musculus OX=10090 GN=Tgm3 PE=1 SV=2

0.03 233 1 SwissProt ANXA3_MOUSE 35 36533 1 1 1 1 0.14 Annexin A3 OS=Mus musculus OX=10090 GN=Anxa3 PE=1 SV=4

0.03 234 1 SwissProt LIMA1_MOUSE 35 84635 2 1 2 1 0.06 LIM domain and actin-binding protein 1 OS=Mus musculus OX=10090 GN=Lima1 PE=1 SV=3

0.03 236 1 SwissProt TALDO_MOUSE 35 37534 1 1 1 1 0.13 Transaldolase OS=Mus musculus OX=10090 GN=Taldo1 PE=1 SV=2

0.03 259 1 SwissProt FUBP2_MOUSE 31 77184 2 1 2 1 0.06 Far upstream element-binding protein 2 OS=Mus musculus OX=10090 GN=Khsrp PE=1 SV=2

0.03 261 1 SwissProt MUC13_MOUSE 31 59805 1 1 1 1 0.08 Mucin-13 OS=Mus musculus OX=10090 GN=Muc13 PE=2 SV=1

0.03 270 1 SwissProt CLIC1_MOUSE 29 27338 1 1 1 1 0.19 Chloride intracellular channel protein 1 OS=Mus musculus OX=10090 GN=Clic1 PE=1 SV=3

0.03 276 1 SwissProt ANX11_MOUSE 28 54387 1 1 1 1 0.09 Annexin A11 OS=Mus musculus OX=10090 GN=Anxa11 PE=1 SV=2

0.03 280 1 SwissProt CALX_MOUSE 28 67635 2 1 2 1 0.07 Calnexin OS=Mus musculus OX=10090 GN=Canx PE=1 SV=1

0.03 284 1 SwissProt SRBS2_MOUSE 27 133464 3 1 3 1 0.04 Sorbin and SH3 domain-containing protein 2 OS=Mus musculus OX=10090 GN=Sorbs2 PE=1 SV=2

0.03 318 1 SwissProt G3BP1_MOUSE 22 51854 1 1 1 1 0.1 Ras GTPase-activating protein-binding protein 1 OS=Mus musculus OX=10090 GN=G3bp1 PE=1 SV=1

0.03 320 1 SwissProt DNPEP_MOUSE 22 52744 1 1 1 1 0.09 Aspartyl aminopeptidase OS=Mus musculus OX=10090 GN=Dnpep PE=1 SV=2

0.03 329 1 SwissProt HNRPU_MOUSE 21 88661 3 1 3 1 0.05 Heterogeneous nuclear ribonucleoprotein U OS=Mus musculus OX=10090 GN=Hnrnpu PE=1 SV=1

0.03 330 1 SwissProt EPCAM_MOUSE 21 35681 1 1 1 1 0.14 Epithelial cell adhesion molecule OS=Mus musculus OX=10090 GN=Epcam PE=1 SV=1

0.03 336 1 SwissProt GPD1L_MOUSE 20 38828 1 1 1 1 0.13 Glycerol-3-phosphate dehydrogenase 1-like protein OS=Mus musculus OX=10090 GN=Gpd1l PE=1 SV=2

0.03 341 1 SwissProt UGDH_MOUSE 19 55482 1 1 1 1 0.09 UDP-glucose 6-dehydrogenase OS=Mus musculus OX=10090 GN=Ugdh PE=1 SV=1

0.03 342 1 SwissProt ZYX_MOUSE 19 61818 1 1 1 1 0.08 Zyxin OS=Mus musculus OX=10090 GN=Zyx PE=1 SV=2

0.03 344 1 SwissProt GSTT1_MOUSE 18 27641 2 1 1 1 0.19 Glutathione S-transferase theta-1 OS=Mus musculus OX=10090 GN=Gstt1 PE=1 SV=4

0.03 349 1 SwissProt ECHM_MOUSE 18 31853 1 1 1 1 0.16 Enoyl-CoA hydratase, mitochondrial OS=Mus musculus OX=10090 GN=Echs1 PE=1 SV=1

0.03 354 1 SwissProt PSA7_MOUSE 17 28009 1 1 1 1 0.19 Proteasome subunit alpha type-7 OS=Mus musculus OX=10090 GN=Psma7 PE=1 SV=1

0.03 355 1 SwissProt 5HT1F_MOUSE 17 42520 1 1 1 1 0.12 5-hydroxytryptamine receptor 1F OS=Mus musculus OX=10090 GN=Htr1f PE=2 SV=1

0.03 365 1 SwissProt ENTP2_MOUSE 16 54912 1 1 1 1 0.09 Ectonucleoside triphosphate diphosphohydrolase 2 OS=Mus musculus OX=10090 GN=Entpd2 PE=1 SV=2

0.03 366 1 SwissProt RNH1_MOUSE 16 32070 1 1 1 1 0.16 Ribonuclease H1 OS=Mus musculus OX=10090 GN=Rnaseh1 PE=2 SV=1

0.03 369 1 SwissProt DLDH_MOUSE 16 54751 1 1 1 1 0.09 Dihydrolipoyl dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Dld PE=1 SV=2

0.03 375 1 SwissProt ADCL3_MOUSE 15 47051 3 1 1 1 0.11 Arylacetamide deacetylase-like 3 OS=Mus musculus OX=10090 GN=Aadacl3 PE=3 SV=1

0.03 377 1 SwissProt NONO_MOUSE 14 54620 1 1 1 1 0.09 Non-POU domain-containing octamer-binding protein OS=Mus musculus OX=10090 GN=Nono PE=1 SV=3

0.03 382 1 SwissProt LKHA4_MOUSE 14 69634 2 1 2 1 0.07 Leukotriene A-4 hydrolase OS=Mus musculus OX=10090 GN=Lta4h PE=1 SV=4

0.03 384 1 SwissProt NOA1_MOUSE 14 78128 2 1 2 1 0.06 Nitric oxide-associated protein 1 OS=Mus musculus OX=10090 GN=Noa1 PE=1 SV=1

0.03 385 1 SwissProt TCPZ_MOUSE 14 58424 2 1 2 1 0.08 T-complex protein 1 subunit zeta OS=Mus musculus OX=10090 GN=Cct6a PE=1 SV=3

0.03 386 1 SwissProt COR1A_MOUSE 13 51641 1 1 1 1 0.1 Coronin-1A OS=Mus musculus OX=10090 GN=Coro1a PE=1 SV=5

0.02 78 1 SwissProt CO1A1_MOUSE 92 138974 2 2 2 2 0.07 Collagen alpha-1(I) chain OS=Mus musculus OX=10090 GN=Col1a1 PE=1 SV=4
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0.02 81 1 SwissProt LAMC1_MOUSE 88 182830 2 1 2 1 0.03 Laminin subunit gamma-1 OS=Mus musculus OX=10090 GN=Lamc1 PE=1 SV=2

0.02 95 1 SwissProt ITA5_MOUSE 77 116111 2 2 2 2 0.08 Integrin alpha-5 OS=Mus musculus OX=10090 GN=Itga5 PE=1 SV=3

0.02 97 1 SwissProt ITB1_MOUSE 76 91424 2 2 2 2 0.11 Integrin beta-1 OS=Mus musculus OX=10090 GN=Itgb1 PE=1 SV=1

0.02 98 1 SwissProt HNRPK_MOUSE 76 51230 1 1 1 1 0.1 Heterogeneous nuclear ribonucleoprotein K OS=Mus musculus OX=10090 GN=Hnrnpk PE=1 SV=1

0.02 115 1 SwissProt CO4A2_MOUSE 65 168417 3 2 3 2 0.06 Collagen alpha-2(IV) chain OS=Mus musculus OX=10090 GN=Col4a2 PE=1 SV=4

0.02 145 1 SwissProt ECHB_MOUSE 56 51639 1 1 1 1 0.1 Trifunctional enzyme subunit beta, mitochondrial OS=Mus musculus OX=10090 GN=Hadhb PE=1 SV=1

0.02 149 1 SwissProt GMDS_MOUSE 54 42300 1 1 1 1 0.12 GDP-mannose 4,6 dehydratase OS=Mus musculus OX=10090 GN=Gmds PE=1 SV=1

0.02 158 1 SwissProt ACADL_MOUSE 51 48277 1 1 1 1 0.1 Long-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Acadl PE=1 SV=2

0.02 166 1 SwissProt IDH3A_MOUSE 49 40069 1 1 1 1 0.12 Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial OS=Mus musculus OX=10090 GN=Idh3a PE=1 SV=1

0.02 132 2 SwissProt CROCC_MOUSE 43 227379 7 2 4 2 0.04 Rootletin OS=Mus musculus OX=10090 GN=Crocc PE=1 SV=2

0.02 193 1 SwissProt SND1_MOUSE 42 102709 2 1 2 1 0.05 Staphylococcal nuclease domain-containing protein 1 OS=Mus musculus OX=10090 GN=Snd1 PE=1 SV=1

0.02 196 1 SwissProt MECR_MOUSE 42 40545 1 1 1 1 0.12 Enoyl-[acyl-carrier-protein] reductase, mitochondrial OS=Mus musculus OX=10090 GN=Mecr PE=1 SV=2

0.02 209 1 SwissProt MOCS3_MOUSE 39 50313 5 2 1 1 0.1 Adenylyltransferase and sulfurtransferase MOCS3 OS=Mus musculus OX=10090 GN=Mocs3 PE=1 SV=1

0.02 212 1 SwissProt BGH3_MOUSE 39 75177 2 2 2 2 0.13 Transforming growth factor-beta-induced protein ig-h3 OS=Mus musculus OX=10090 GN=Tgfbi PE=1 SV=1

0.02 220 1 SwissProt EFTU_MOUSE 37 49876 1 1 1 1 0.1 Elongation factor Tu, mitochondrial OS=Mus musculus OX=10090 GN=Tufm PE=1 SV=1

0.02 230 1 SwissProt CALU_MOUSE 36 37155 1 1 1 1 0.14 Calumenin OS=Mus musculus OX=10090 GN=Calu PE=1 SV=1

0.02 243 1 SwissProt AIFM1_MOUSE 33 66952 1 1 1 1 0.07 Apoptosis-inducing factor 1, mitochondrial OS=Mus musculus OX=10090 GN=Aifm1 PE=1 SV=1

0.02 244 1 SwissProt K1C12_MOUSE 33 52774 1 1 1 1 0.09 Keratin, type I cytoskeletal 12 OS=Mus musculus OX=10090 GN=Krt12 PE=1 SV=2

0.02 258 1 SwissProt PYGB_MOUSE 31 97353 2 1 2 1 0.05 Glycogen phosphorylase, brain form OS=Mus musculus OX=10090 GN=Pygb PE=1 SV=3

0.02 251 1 SwissProt GFPT1_MOUSE 31 79287 2 2 2 2 0.13 Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 OS=Mus musculus OX=10090 GN=Gfpt1 PE=1 SV=3

0.02 273 1 SwissProt IVD_MOUSE 29 46695 1 1 1 1 0.11 Isovaleryl-CoA dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Ivd PE=1 SV=1

0.02 278 1 SwissProt DX39A_MOUSE 28 49549 1 1 1 1 0.1 ATP-dependent RNA helicase DDX39A OS=Mus musculus OX=10090 GN=Ddx39a PE=1 SV=1

0.02 291 1 SwissProt SLMAP_MOUSE 26 97729 2 1 2 1 0.05 Sarcolemmal membrane-associated protein OS=Mus musculus OX=10090 GN=Slmap PE=1 SV=2

0.02 302 1 SwissProt TM11E_MOUSE 24 48776 2 1 1 1 0.11 Transmembrane protease serine 11E OS=Mus musculus OX=10090 GN=Tmprss11e PE=1 SV=2

0.02 304 1 SwissProt AL1L1_MOUSE 24 99502 2 1 2 1 0.05 Cytosolic 10-formyltetrahydrofolate dehydrogenase OS=Mus musculus OX=10090 GN=Aldh1l1 PE=1 SV=1

0.02 305 1 SwissProt SYSC_MOUSE 24 58865 1 1 1 1 0.08 Serine--tRNA ligase, cytoplasmic OS=Mus musculus OX=10090 GN=Sars PE=1 SV=3

0.02 331 1 SwissProt SPAT7_MOUSE 21 66184 2 1 1 1 0.07 Spermatogenesis-associated protein 7 homolog OS=Mus musculus OX=10090 GN=Spata7 PE=1 SV=1

0.02 332 1 SwissProt RINI_MOUSE 21 51495 1 1 1 1 0.1 Ribonuclease inhibitor OS=Mus musculus OX=10090 GN=Rnh1 PE=1 SV=1

0.02 338 1 SwissProt PHB2_MOUSE 20 33276 1 1 1 1 0.15 Prohibitin-2 OS=Mus musculus OX=10090 GN=Phb2 PE=1 SV=1

0.02 343 1 SwissProt TERA_MOUSE 19 89950 2 1 2 1 0.05 Transitional endoplasmic reticulum ATPase OS=Mus musculus OX=10090 GN=Vcp PE=1 SV=4

0.02 347 1 SwissProt TCPA_MOUSE 18 60867 1 1 1 1 0.08 T-complex protein 1 subunit alpha OS=Mus musculus OX=10090 GN=Tcp1 PE=1 SV=3

0.02 353 1 SwissProt PP1R7_MOUSE 17 41380 1 1 1 1 0.12 Protein phosphatase 1 regulatory subunit 7 OS=Mus musculus OX=10090 GN=Ppp1r7 PE=1 SV=2

0.02 364 1 SwissProt CAVN2_MOUSE 16 46792 1 1 1 1 0.11 Caveolae-associated protein 2 OS=Mus musculus OX=10090 GN=Cavin2 PE=1 SV=3

0.02 367 1 SwissProt SIAT2_MOUSE 16 60496 2 2 1 1 0.08 Beta-galactoside alpha-2,6-sialyltransferase 2 OS=Mus musculus OX=10090 GN=St6gal2 PE=2 SV=2

0.02 371 1 SwissProt ATPG_MOUSE 16 32979 1 1 1 1 0.15 ATP synthase subunit gamma, mitochondrial OS=Mus musculus OX=10090 GN=Atp5f1c PE=1 SV=1

0.02 374 1 SwissProt PLSL_MOUSE 15 70732 1 1 1 1 0.07 Plastin-2 OS=Mus musculus OX=10090 GN=Lcp1 PE=1 SV=4

0.02 376 1 SwissProt AT2A2_MOUSE 14 116437 2 1 2 1 0.04 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 OS=Mus musculus OX=10090 GN=Atp2a2 PE=1 SV=2

0.01 125 1 SwissProt UBA1_MOUSE 62 118931 1 1 1 1 0.04 Ubiquitin-like modifier-activating enzyme 1 OS=Mus musculus OX=10090 GN=Uba1 PE=1 SV=1

0.01 155 1 SwissProt DSG1A_MOUSE 52 115551 1 1 1 1 0.04 Desmoglein-1-alpha OS=Mus musculus OX=10090 GN=Dsg1a PE=2 SV=2

0.01 160 1 SwissProt CAN2_MOUSE 51 80677 1 1 1 1 0.06 Calpain-2 catalytic subunit OS=Mus musculus OX=10090 GN=Capn2 PE=1 SV=4
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Figure 8.5: Protein composition of 3-month-old mouse DC identified by proteomic analysis with LC / MS / MS and MascotTM database.  

   

0.01 163 1 SwissProt TRFE_MOUSE 50 78841 1 1 1 1 0.06 Serotransferrin OS=Mus musculus OX=10090 GN=Tf PE=1 SV=1

0.01 176 1 SwissProt PALLD_MOUSE 46 153576 1 1 1 1 0.03 Palladin OS=Mus musculus OX=10090 GN=Palld PE=1 SV=2

0.01 182 1 SwissProt CO4A1_MOUSE 46 161719 1 1 1 1 0.03 Collagen alpha-1(IV) chain OS=Mus musculus OX=10090 GN=Col4a1 PE=1 SV=4

0.01 194 1 SwissProt SFPQ_MOUSE 42 75508 1 1 1 1 0.06 Splicing factor, proline- and glutamine-rich OS=Mus musculus OX=10090 GN=Sfpq PE=1 SV=1

0.01 208 1 SwissProt ODP2_MOUSE 39 68469 1 1 1 1 0.07 Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial OS=Mus musculus OX=10090 GN=Dlat PE=1 SV=2

0.01 210 1 SwissProt TENA_MOUSE 39 237304 3 1 2 1 0.02 Tenascin OS=Mus musculus OX=10090 GN=Tnc PE=1 SV=1

0.01 222 1 SwissProt ACSF2_MOUSE 37 68591 1 1 1 1 0.07 Acyl-CoA synthetase family member 2, mitochondrial OS=Mus musculus OX=10090 GN=Acsf2 PE=1 SV=1

0.01 246 1 SwissProt RASL2_MOUSE 33 91087 1 1 1 1 0.05 Ras GTPase-activating protein 4 OS=Mus musculus OX=10090 GN=Rasa4 PE=1 SV=1

0.01 256 1 SwissProt DHE3_MOUSE 31 61640 1 1 1 1 0.08 Glutamate dehydrogenase 1, mitochondrial OS=Mus musculus OX=10090 GN=Glud1 PE=1 SV=1

0.01 260 1 SwissProt ACLY_MOUSE 31 120564 1 1 1 1 0.04 ATP-citrate synthase OS=Mus musculus OX=10090 GN=Acly PE=1 SV=1

0.01 281 1 SwissProt PLEC_MOUSE 28 535800 4 1 3 1 0.01 Plectin OS=Mus musculus OX=10090 GN=Plec PE=1 SV=3

0.01 293 1 SwissProt MTA70_MOUSE 25 65260 1 1 1 1 0.07 N6-adenosine-methyltransferase subunit METTL3 OS=Mus musculus OX=10090 GN=Mettl3 PE=1 SV=2

0.01 294 1 SwissProt TBC15_MOUSE 25 77447 1 1 1 1 0.06 TBC1 domain family member 15 OS=Mus musculus OX=10090 GN=Tbc1d15 PE=1 SV=1

0.01 296 1 SwissProt NID2_MOUSE 25 156610 1 1 1 1 0.03 Nidogen-2 OS=Mus musculus OX=10090 GN=Nid2 PE=1 SV=2

0.01 299 1 SwissProt MUC2_MOUSE 25 305502 2 1 2 1 0.02 Mucin-2 (Fragments) OS=Mus musculus OX=10090 GN=Muc2 PE=1 SV=2

0.01 301 1 SwissProt TYW4_MOUSE 24 75989 3 2 1 1 0.06 tRNA wybutosine-synthesizing protein 4 OS=Mus musculus OX=10090 GN=Lcmt2 PE=2 SV=4

0.01 317 1 SwissProt FERM2_MOUSE 23 78435 1 1 1 1 0.06 Fermitin family homolog 2 OS=Mus musculus OX=10090 GN=Fermt2 PE=1 SV=1

0.01 319 1 SwissProt RTN4_MOUSE 22 127048 1 1 1 1 0.04 Reticulon-4 OS=Mus musculus OX=10090 GN=Rtn4 PE=1 SV=2

0.01 334 1 SwissProt DESP_MOUSE 21 335158 3 1 3 1 0.01 Desmoplakin OS=Mus musculus OX=10090 GN=Dsp PE=1 SV=1

0.01 335 1 SwissProt TRFL_MOUSE 21 79670 1 1 1 1 0.06 Lactotransferrin OS=Mus musculus OX=10090 GN=Ltf PE=1 SV=4

0.01 350 1 SwissProt MTM1_MOUSE 18 70028 1 1 1 1 0.07 Myotubularin OS=Mus musculus OX=10090 GN=Mtm1 PE=1 SV=2

0.01 357 1 SwissProt LAMA4_MOUSE 17 204372 1 1 1 1 0.02 Laminin subunit alpha-4 OS=Mus musculus OX=10090 GN=Lama4 PE=1 SV=2

0.01 361 1 SwissProt SBNO2_MOUSE 16 150455 1 1 1 1 0.03 Protein strawberry notch homolog 2 OS=Mus musculus OX=10090 GN=Sbno2 PE=1 SV=1

0.01 362 1 SwissProt GANAB_MOUSE 16 107300 1 1 1 1 0.05 Neutral alpha-glucosidase AB OS=Mus musculus OX=10090 GN=Ganab PE=1 SV=1

0.01 370 1 SwissProt CO1A2_MOUSE 16 129992 1 1 1 1 0.04 Collagen alpha-2(I) chain OS=Mus musculus OX=10090 GN=Col1a2 PE=1 SV=2

0.01 379 1 SwissProt GUF1_MOUSE 14 72760 208 1 1 1 0.07 Translation factor Guf1, mitochondrial OS=Mus musculus OX=10090 GN=Guf1 PE=1 SV=1

0 257 1 SwissProt KIF1B_MOUSE 31 205322 1 1 1 1 0.02 Kinesin-like protein KIF1B OS=Mus musculus OX=10090 GN=Kif1b PE=1 SV=2

0 339 1 SwissProt KI67_MOUSE 19 352247 1 1 1 1 0.01 Proliferation marker protein Ki-67 OS=Mus musculus OX=10090 GN=Mki67 PE=1 SV=1

0 351 1 SwissProt MAST4_MOUSE 18 286338 1 1 1 1 0.02 Microtubule-associated serine/threonine-protein kinase 4 OS=Mus musculus OX=10090 GN=Mast4 PE=1 SV=3

0 358 1 SwissProt IF140_MOUSE 17 167479 1 1 1 1 0.03 Intraflagellar transport protein 140 homolog OS=Mus musculus OX=10090 GN=Ift140 PE=1 SV=1
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APPENDIX E 

Quantitative protein analysis from Chapter 5: Protein change in regulation between 3-month and 30-month mouse DC when analysed with LC / MS / MS and 

subsequently analysed using ProgenesisTM LC-MS data analysis software. 

 

Accession Peptides Score Anova (p)* Fold Description Average normalised abundance

Young Aged

FLNA_MOUSE 6 480.66 3.56E-03 2.42 Filamin-A OS=Mus musculus OX=10090 GN=Flna PE=1 SV=5 2.27E+05 5.49E+05

CO6A2_MOUSE 6 351.59 1.74E-03 2.4 Collagen alpha-2(VI) chain OS=Mus musculus OX=10090 GN=Col6a2 PE=1 SV=3 1.99E+05 4.77E+05

CO6A1_MOUSE 5 317 2.04E-03 2.46 Collagen alpha-1(VI) chain OS=Mus musculus OX=10090 GN=Col6a1 PE=1 SV=1 1.58E+05 3.88E+05

ALBU_MOUSE 5 274.24 7.31E-05 3.58 Serum albumin OS=Mus musculus OX=10090 GN=Alb PE=1 SV=3 1.58E+05 5.66E+05

K2C5_MOUSE 4 (3) 268.63 0.03 2.12 Keratin, type II cytoskeletal 5 OS=Mus musculus OX=10090 GN=Krt5 PE=1 SV=1 5.90E+05 2.79E+05

TAGL_MOUSE 4 252.97 6.68E-03 2.47 Transgelin OS=Mus musculus OX=10090 GN=Tagln PE=1 SV=3 3.34E+05 8.24E+05

ETFB_MOUSE 4 251.06 1.13E-03 2.67 Electron transfer flavoprotein subunit beta OS=Mus musculus OX=10090 GN=Etfb PE=1 SV=3 8.32E+04 2.23E+05

CNN1_MOUSE 3 231.89 2.02E-03 3.01 Calponin-1 OS=Mus musculus OX=10090 GN=Cnn1 PE=1 SV=1 8.49E+04 2.56E+05

TKT_MOUSE 3 214.26 1.34E-03 2.28 Transketolase OS=Mus musculus OX=10090 GN=Tkt PE=1 SV=1 8.73E+04 2.00E+05

K2C1_MOUSE 2 (1) 204.18 0.03 3.04 Keratin, type II cytoskeletal 1 OS=Mus musculus OX=10090 GN=Krt1 PE=1 SV=4 2.21E+06 7.29E+05

VIME_MOUSE 3 178.21 0.01 2.13 Vimentin OS=Mus musculus OX=10090 GN=Vim PE=1 SV=3 3.57E+05 7.63E+05

PDIA3_MOUSE 3 174.16 0.01 2.69 Protein disulfide-isomerase A3 OS=Mus musculus OX=10090 GN=Pdia3 PE=1 SV=2 6.67E+04 1.80E+05

ANXA4_MOUSE 2 172.96 0.02 2.39 Annexin A4 OS=Mus musculus OX=10090 GN=Anxa4 PE=1 SV=4 1.69E+04 4.03E+04

RL18_MOUSE 2 171.76 6.95E-03 2.46 60S ribosomal protein L18 OS=Mus musculus OX=10090 GN=Rpl18 PE=1 SV=3 4.06E+04 9.98E+04

LMNA_MOUSE 2 169.06 0.02 2.59 Prelamin-A/C OS=Mus musculus OX=10090 GN=Lmna PE=1 SV=2 4.61E+04 1.19E+05

HSP7C_MOUSE 2 166.19 0.03 2.15 Heat shock cognate 71 kDa protein OS=Mus musculus OX=10090 GN=Hspa8 PE=1 SV=1 1.15E+05 2.49E+05

DESM_MOUSE 2 165.09 1.99E-04 2.15 Desmin OS=Mus musculus OX=10090 GN=Des PE=1 SV=3 1.03E+06 2.21E+06

ACON_MOUSE 3 164.03 0.02 2.47 Aconitate hydratase, mitochondrial OS=Mus musculus OX=10090 GN=Aco2 PE=1 SV=1 3.26E+04 8.04E+04

HS90B_MOUSE 3 162.1 0.01 3.22 Heat shock protein HSP 90-beta OS=Mus musculus OX=10090 GN=Hsp90ab1 PE=1 SV=3 5.39E+04 1.74E+05

ETFA_MOUSE 2 160.53 2.82E-03 3.4 Electron transfer flavoprotein subunit alpha, mitochondrial OS=Mus musculus OX=10090 GN=Etfa PE=1 SV=2 2.62E+04 8.90E+04

AATM_MOUSE 2 156.91 2.33E-03 4.14 Aspartate aminotransferase, mitochondrial OS=Mus musculus OX=10090 GN=Got2 PE=1 SV=1 3.00E+04 1.24E+05

TBA1A_MOUSE 2 155.35 0.02 2.27 Tubulin alpha-1A chain OS=Mus musculus OX=10090 GN=Tuba1a PE=1 SV=1 1.11E+05 2.53E+05

ATPA_MOUSE 2 153.5 6.49E-03 2.62 ATP synthase subunit alpha, mitochondrial OS=Mus musculus OX=10090 GN=Atp5f1a PE=1 SV=1 2.49E+04 6.52E+04

ALDR_MOUSE 2 153.13 0.01 2.58 Aldo-keto reductase family 1 member B1 OS=Mus musculus OX=10090 GN=Akr1b1 PE=1 SV=3 2.24E+04 5.79E+04

ANX11_MOUSE 3 144.94 6.77E-03 3.27 Annexin A11 OS=Mus musculus OX=10090 GN=Anxa11 PE=1 SV=2 2.35E+04 7.70E+04

PRDX1_MOUSE 3 140.85 3.10E-03 2.1 Peroxiredoxin-1 OS=Mus musculus OX=10090 GN=Prdx1 PE=1 SV=1 2.33E+05 4.88E+05

VINC_MOUSE 2 131.62 0.03 2.76 Vinculin OS=Mus musculus OX=10090 GN=Vcl PE=1 SV=4 3.54E+04 9.80E+04

ALDH2_MOUSE 2 125.36 0.02 2.17 Aldehyde dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Aldh2 PE=1 SV=1 2.90E+05 6.29E+05
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Figure 8.6: Change in protein regulation in 3-month versus 30-month mouse DC identified by proteomic analysis with LC / MS / MS and ProgenesisTM LC-MS 

data analysis software. 

 

 

 

IDH3A_MOUSE 2 123.7 3.63E-03 2.91 Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial OS=Mus musculus OX=10090 GN=Idh3a PE=1 SV=1 4.17E+04 1.22E+05

PROF1_MOUSE 2 122.03 0.03 3.11 Profilin-1 OS=Mus musculus OX=10090 GN=Pfn1 PE=1 SV=2 1.15E+04 3.59E+04

MDHM_MOUSE 2 117.37 1.09E-03 2.39 Malate dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Mdh2 PE=1 SV=3 1.07E+05 2.55E+05

H12_MOUSE 2 114.25 9.10E-04 2.57 Histone H1.2 OS=Mus musculus OX=10090 GN=Hist1h1c PE=1 SV=2 3.03E+05 7.80E+05

MDHC_MOUSE 2 101.11 5.72E-04 2.74 Malate dehydrogenase, cytoplasmic OS=Mus musculus OX=10090 GN=Mdh1 PE=1 SV=3 3.58E+04 9.83E+04

K2C79_MOUSE 2 (1) 100.32 0.05 2.38 Keratin, type II cytoskeletal 79 OS=Mus musculus OX=10090 GN=Krt79 PE=1 SV=2 6.32E+04 2.65E+04

UGDH_MOUSE 2 98.89 0.02 2.12 UDP-glucose 6-dehydrogenase OS=Mus musculus OX=10090 GN=Ugdh PE=1 SV=1 2.18E+04 4.62E+04

TAGL2_MOUSE 2 97.45 1.33E-03 2.43 Transgelin-2 OS=Mus musculus OX=10090 GN=Tagln2 PE=1 SV=4 4.09E+04 9.94E+04

GSTM1_MOUSE 2 96.81 1.42E-03 2.43 Glutathione S-transferase Mu 1 OS=Mus musculus OX=10090 GN=Gstm1 PE=1 SV=2 3.08E+04 7.50E+04

H3C_MOUSE 2 96.39 9.36E-03 2.07 Histone H3.3C OS=Mus musculus OX=10090 GN=H3f3c PE=3 SV=3 7.34E+05 1.52E+06

IF5A1_MOUSE 2 95.63 2.13E-03 2.39 Eukaryotic translation initiation factor 5A-1 OS=Mus musculus OX=10090 GN=Eif5a PE=1 SV=2 4.87E+04 1.16E+05

KPYM_MOUSE 2 92.9 4.44E-04 2.15 Pyruvate kinase PKM OS=Mus musculus OX=10090 GN=Pkm PE=1 SV=4 4.93E+04 1.06E+05

ODO2_MOUSE 2 89.16 6.55E-04 3.79 Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial OS=Mus musculus OX=10090 GN=Dlst PE=1 SV=1 1.42E+04 5.39E+04

IDHC_MOUSE 2 87.73 8.08E-03 2.41 Isocitrate dehydrogenase [NADP] cytoplasmic OS=Mus musculus OX=10090 GN=Idh1 PE=1 SV=2 6.48E+04 1.56E+05

TGM2_MOUSE 2 86.03 9.44E-03 2.46 Protein-glutamine gamma-glutamyltransferase 2 OS=Mus musculus OX=10090 GN=Tgm2 PE=1 SV=4 3.34E+04 8.21E+04

LUM_MOUSE 2 84.91 5.25E-03 3.18 Lumican OS=Mus musculus OX=10090 GN=Lum PE=1 SV=2 2.87E+04 9.14E+04
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APPENDIX F 

Chapter 5 functional clustering of the 41 proteins that were upregulated with age in the 

mouse distal colon. 

Figure 8.7 to Figure 8.14 display proteins upregulated with age that were functionally 

clustered by each database. Gene nomenclature is used to label proteins. Proteins that 

were functionally enriched have a coloured box under gene nomenclature tag. P-values 

and functionally enriched proteins are colour coded as displayed in Figure 8.7.  
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Figure 8.7: Functionally clustered proteins identified in GO:MF database. Colour coding of p-values and functionally enriched proteins is described above 

results. GO:MF, Gene Ontology: Molecular Function. 
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Figure 8.8: Functionally clustered proteins identified in GO:BP database. GO:BP, Gene Ontology: Biological Process. 
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Figure 8.9: Functionally clustered proteins identified in GO:CC database. GO:CC, Gene Ontology: Cellular Component. 

Figure 8.10: Functionally clustered proteins identified in KEGG database. KEGG, Kyoto Encyclopaedia of Genes and Genomes. 
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Figure 8.11: Functionally clustered proteins identified in REAC database. REAC, Reactome Pathways. 

 

Figure 8.12: Functionally clustered proteins identified in WP database. WP, WikiPathways. 

 

Figure 8.13: Functionally clustered proteins identified in TF database. TF, Transcription Factor. 



 

246 
 

 

Figure 8.14: Functionally clustered proteins identified in CORUM Protein Complexes database.  
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APPENDIX G 

Chapter 5 functional clustering of the three proteins that were downregulated with age in the mouse distal colon. 

Figure 8.15 and Figure 8.16 display proteins downregulated with age that were functionally clustered by each database. Gene nomenclature is used to label 

proteins. Proteins that are functionally enriched have a coloured box under gene nomenclature tag.  P-values and functionally enriched proteins are colour 

coded as displayed in Figure 8.7. 

 

Figure 8.15: Functionally clustered proteins identified in GO:CC database. GO:CC, Gene Ontology: Cellular Component. 
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Figure 8.16: Functionally clustered proteins identified in REAC database. REAC, Reactome Pathways. 
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APPENDIX H 

Conference contributions and awards  

July 2016: British society for research in Ageing (BSRA) poster submission 

‘The effects of ageing on the distribution of inhibitory inputs to neurons modulating bladder 

activity in C57BL / 6J male mice’ (poster prize awarded) 

Emily Doogan, Emily Slack, Hayley Tsang, Gary Black, Jill Saffrey, Rachel Ranson 

 

May 2017: Three Minute Thesis (Northumbria University) 

‘Ageing effects on central nervous control of the bladder and continence in male C57BL / 6J 

mice’ (presentation prize awarded) 

Emily Doogan 

 

May 2017: Three Minute Thesis (Sunderland University) 

‘Ageing effects on central nervous control of the bladder and continence in male C57BL / 6J 

mice’ 

Emily Doogan 

 

May 2017: Northumbria Research Conference  

‘Ageing effects on central nervous control of the bladder and continence in male C57BL / 6J 

mice’ 

Emily Doogan 

 

July 2017: BSRA poster submission 

‘Ageing effects on the distribution of glutamate / GABA inputs to paraventricular neurons’ 

Emily Doogan, Gary Black, Jill Saffrey, Rachel Ranson 

 

 

 


