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Abstract

Distribution networks are envisaged to host significant number of electric vehicles and potentially many

charging stations in the future to provide charging as well as vehicle-2-grid services to the electric vehicle

owners. The main goal of this study is to develop a comprehensive day-ahead scheduling framework to achieve

an economically rewarding operation for the ecosystem of electric vehicles, charging stations and retailers

using a comprehensive optimal charging/discharging strategy that accounts for the network constraints. To

do so, an equilibrium problem is solved using a three-layer iterative optimisation problem for all stakeholders

in the ecosystem. EV routing problem is solved based on a cost-benefit analysis rather than choosing the

shortest route. The proposed method can be implemented as a cloud scheduling system that is operated

by a non-profit entity, e.g., distribution system operators or distribution network service providers, whose

role is to collect required information from all agents, perform the day-ahead scheduling, and ultimately

communicate the results to relevant stakeholders. To evaluate the effectiveness of the proposed framework,

a simulation study, including three retailers, one aggregator, nine charging stations and 600 electric vehicles,

is designed based on real data from San Francisco, the USA. The simulation results show that the total cost

of electric vehicles decreased by 17.6%, and the total revenue of charging stations and retailers increased by

21.1% and 22.6%, respectively, in comparison with a base case strategy.

Keywords: Charging and discharging strategy, cloud scheduling system, electricity pricing, electric

vehicles, three-layer optimisation problem

1. Introduction1

A significant amount of private and public money has been invested in electric vehicles (EVs) in recent2

years in an attempt to reduce fossil fuel consumption and consequently lowering CO2 emission in transporta-3

tion sector [1–3]. While electrification of transportation sector has undeniable and significant environmental4

impacts, a large uptake of EVs introduces new challenges for the grid operation, the biggest of which is5

uncoordinated EV charging in grid-2-vehicle (G2V) mode. The system’s operation will become more chal-6
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lenging when EVs operate in vehicle-2-grid (V2G) mode supporting the upstream grid operation. It has7

been investigated in several studies [4–7] by showing that a proper coordinated operation of EVs in both8

G2V and V2G modes can be beneficial for the grid operation. Considering other entities/agents involved in9

the future electrified transportation sector, e.g., charging stations (CSs) and energy providers (retailers), we10

will be faced with an unprecedented level of operational complexity. As a result, optimal scheduling of CSs11

and EVs as well as determining V2G and G2V prices by accounting for EVs driving needs are deemed as12

one of the significant challenges to facilitate transportation electrification. Also, distribution network service13

providers are expected to face with extreme voltage violations, increased power losses and overload of trans-14

mission lines and transformers [8–10] due to significant increase in demand by uncoordinated EV charging15

[11–13]. Therefore, a comprehensive optimal day-ahead scheduling framework is needed to overcome the16

outstanding economic and technical challenges by minimizing the cost of EVs operation while fulfilling their17

requirements, and maximising the profit of CS operators and other entities/agents while respecting technical18

limitations of the network.19

Numerous studies partially investigated the different aspects of these challenges. Various EV’s charg-20

ing/discharging strategies have been proposed considering customers’ preferences. In [14], an EV charg-21

ing/discharging scheduling and control framework has been proposed to provide grid services considering22

EV drivers travel requirements. In [15], a charging algorithm has been proposed for allocating power to a23

large-scale plug-in hybrid EVs at a parking station. EV management and charging/discharging scheduling24

model have been developed for an intelligent parking lot in [16] considering economical and technical aspects25

of EV operation, simultaneously. In [17], a bi-level optimisation algorithm was developed based on multi-26

agent systems to optimise the performance of an EV aggregator and to generate optimal bids for participation27

in energy markets. The effects of EV’s V2G and G2V operation on the power system demand profile as well28

as the stability and reliability of the power system were investigated in [7]. Various power levels for V2G29

and G2V operation were considered to estimate its impact on the system reliability. In [18], a coordination30

algorithm for EVs’ V2G and G2V operation was proposed considering the impact of penetration of EV fleets31

into the power system. In [19], a multi-variant route optimisation model was presented for EVs operation32

incorporating G2V and V2G options in the travel path. A steady-state analysis of a distribution network33

was proposed in [20] to determine the nodal voltage variations considering different EVs’ charging strategies.34

A smart charging strategy of EVs at CSs has been introduced offering multiple charging options. In [21],35

a combination of EV routing and charging/discharging scheduling strategy was proposed to operate an EV36

fleet. A mixed-integer linear program (MILP) was formulated to maximise the revenue of EV owners subject37

to EV and distribution network constrains. In [22], a mathematical model is developed for integration of38

EVs and distributed generation units in energy market under a joint aggregator. Also, the performance39

of the EV aggregator under the uncertainty of electricity market prices was studied through an stochastic40

optimisation formulation. A two-stage scheduling framework at the distribution level was proposed in [23].41

In the first stage, the charging/discharging schedules of EVs were obtained. In the second stage, the resource42
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were scheduled, i.e., usage profiles of the distributed generation units, strategy of buying electricity from the43

market, and final charging/discharging patterns of the EVs were obtained. In [24], a framework was pre-44

sented to develop the network equilibrium traffic and charge patterns in an electric transportation network.45

In that study, the effects of individual CS on aggregate congestion and electricity costs were investigated. In46

[25], the optimal traffic-power flow model was reformulated as a mixed integer second-order cone program47

(MIQP) to optimise coordinated operation of transportation and electricity networks. A framework linking48

power network with transportation system was proposed in [26] to navigate EVs to CSs using a hierarchical49

game approach considering reliability of the distribution network and profit of CSs.50

Furthermore, numerous studies offered approaches based on a multi-objective optimisation. In [27], a51

multi-objective optimisation problem was developed for scheduling EV’s V2G and G2V operation. Simulta-52

neous optimisation of electricity cost, battery degradation, grid net exchange and CO2 emissions have been53

performed. Another multi-objective optimisation problem was developed in [6] to consider both power grid54

and EV drivers’ concerns. The stochastic modelling was proposed to take into account the inherent uncer-55

tainty of EV driving activities and renewable energy output power. In [28], a day-ahead co-optimisation56

problem was developed to minimise the negative impacts of plug-in EVs on the power system operation57

by minimizing the cost of energy losses and transformer operation cost while managing active and reactive58

powers. In [29], a multi-objective framework was proposed to schedule EVs’ charging and discharging in a59

smart distribution network, where total operation cost of the distribution network, including EVs and CO260

emission from distributed generation units and the main grid, was minimised. A multi-objective optimisation61

problem was proposed in [30] to find optimal charging schedule of a large EV fleet considering the operation62

of the transportation network, power network, and CSs where the nearest CS was selected as the best option63

regardless of the electricity prices. A two-stage multi-objective optimisation problem was offered in [31],64

where the driving needs of EV owners were considered in the first stage. In that study, total energy and65

emission costs were optimised in the second stage under the uncertainty of solar irradiation and wind speed.66

On a relevant subject, an EV charging management system was developed in [32] to guide EVs to a CS67

such that the negative impact of EVs on the grid is mitigated. The goal was to ensure a proper service to68

EVs regarding availability of chargers and minimum waiting time at the CS considering user preferences and69

needs. A CS selection method is proposed in [33] to minimise the travel time, waiting time, and charging70

cost for an EV.71

A review of the existing literature indicates several gaps in research related to G2V and V2G operation72

as well as CSs operation, which are outlined below:73

• The proposed strategies in [6, 7, 14–33] do not optimise the profit of all agents including retailers,74

CSs, and EVs participating in charging/discharging scheduling, whether collectively or individually. In75

other words, a comprehensive ecosystem has not been considered in these studies to address different76

aspects of the G2V and V2G operation considering the effects of optimal operation of CSs and retailers77

through an iterative process.78
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• V2G and G2V prices are considered as known parameters in [6, 21–23, 28–31] as opposed to calculating79

the equilibrium prices as a part of the optimisation problem;80

• In [21, 22, 30, 32], the nearest CSs were selected as the optimal option without considering the cost-81

benefit of the services offered by CS operators.82

The goal of this study is to develop a comprehensive day-ahead scheduling framework to guarantee economic83

and energy-efficient routing of EVs, where each EV finds the best CSs for V2G and G2V operation based84

on a cost-benefit analysis. It is done by proposing an ecosystem including three stakeholders (EVs, CSs85

and retailers) and a three-layer optimisation problem. It is formulated and optimised as an equilibrium86

problem such that the collective benefits of all three stakeholders are guaranteed simultaneously. The main87

contributions of this paper can be summarised as follows:88

• Proposing a comprehensive day-ahead scheduling strategy that represents an ecosystem including the89

interaction between EVs, CSs, and retailers during EVs’ V2G and G2V operation whilst optimising90

the collective welfare of all agents;91

• The coordinated EVs’ V2G and G2V operation is formulated and solved such that the effects of optimal92

operation of CSs and retailers are considered through an iterative process;93

• Obtaining optimal day-ahead electricity prices of all agents during V2G and G2V operations such that94

the collective benefit of all three stakeholders are achieved simultaneously by solving an equilibrium95

problem iteratively;96

• Combining cost/benefit and energy-efficient-routing problems (instead of choosing the shortest route)97

for each EV to select the best CS, which is integrated with the CSs operation in purchasing electricity98

from retailers.99

This paper is organized as follows. Section 2 describes the structure of the proposed EV charging and100

discharging strategy incorporating the three agents. Section 3 presents the proposed three-layer optimisation101

formulation. Salp swarm algorithm (SSA) is used in this study for solving optimisation problems (and102

compared with particle swarm optimisation (PSO) algorithm), which is explained in Section 4. The case103

study is introduced in Section 5. The simulation results are presented and discussed in Section 6. Finally,104

in Section 7, conclusion and recommendation of future work are given.105

2. The structure of the proposed ecosystem106

In this paper, a comprehensive ecosystem is envisaged for the future electrified transportation sector by107

considering all three agents, as shown in Figure 1. In this ecosystem, retailers purchase electricity from the108

wholesale market and sell it to CSs aiming to maximise their profit. The CSs are charging stations with109

known locations in a given area and operate at the distribution system level as the point of connection of110

EVs to the main grid in G2V and V2G modes. Similar to retailers, CS operators are looking to maximise111

their profit in this framework. Both CSs and EVs are entitled to choose their energy providers based on112

their economic benefits. For the sake of completeness, the CSs are assumed to have onsite conventional113
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generation unit (CGU), photovoltaic (PV), and energy storage system (ESS), which might be used to supply114

electricity to EVs. An CGU could be a small gas turbine-generator. In this study, conventional retailers115

are assumed; thus they are not able to sell energy back to the wholesale market by purchasing it from CS116

operators. Therefore, V2G service is purchased from EVs by CS operators and sold in the wholesale market117

through an aggregator. Please note that the aggregator optimal operation has not been considered in this118

study to avoid further complexity and will be considered in our future work.119

EVs are the end-users, as shown in Figure 1. During a typical day, EVs might have multiple trips with120

different waiting times between each trip. EVs with known location and initial state of charge (SOC) plan121

their charging/discharging depending on the shortest driving route and a cost/benefit analysis based on the122

CSs prices. Please note that each EV can only be charged or discharged during each trip if there is an123

economic benefit to do so while respecting the EV’s constraints. In this case, EVs require an algorithm to124

select proper CSs for G2V and V2G operation to minimise their cost.125

In order to satisfy the objectives of different agents, a top-to-bottom coordinated method is proposed126

that solves a day-ahead scheduling problem for all agents. The formulated problem is an equilibrium one127

that is solved in three layers sequentially and iteratively, where the leader is the retailer agent. The solution128

to the equilibrium problem is inspired by Walrasian tâtonnement, which leaves the price invariant if and only129

if it is an equilibrium price [34, 35]. Through the iterative three-layer optimization problem, the operation130

of each player in the framework is changed by receiving new information from other players to reach the131

equilibrium point. The proposed solution can be offered to the agents as a cloud scheduling system, which is132

operated by a non-profit entity (aka price-setter). Its role is to collect required information from all agents,133

as shown in Figure 2, run the top-to-bottom coordinated scheduling method, and ultimately dispatch the134

results to relevant agents. Since power system topology is needed to ensure the feasibility of the solutions135

against network constraints, distribution system operators or distribution network service providers could136

be the best candidates to take on this role. Since the scheduling system operator does not seek any profit137

in the proposed framework, accessing to the information of the three stakeholders does not compromise fair138

operation of the scheduling system. It is assumed that all agents have communication links with the cloud139

scheduling system. All information exchanged between the stakeholders and the scheduling operator can be140

end-to-end encrypted, so that it becomes more difficult to compromise the information. The information141

exchanged between three agents and the cloud scheduling system are detailed in Figure 2. The following142

assumptions are made in developing the proposed strategy:143

• All agents are economically rational within their personal preferences and limitations, which means144

that they change their behaviour in response to economic incentives;145

• It is assumed that each EV can only be charged or discharged during each trip if there is an economic146

benefit to do so while respecting the EV’s constraints. Therefore, there is an implicit constraint in the147

optimisation formulation that is limiting the number of charge/discharge events, which is based on the148

EV owner’s preferences (as in their day-ahead plan);149
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Wholesale Electricity Market

EVs

CSs

Retailers

Aggregator

RetailerRetailerRetailer

...

...

...

Figure 1: Conceptual structure of the proposed ecosystem including interactions between wholesale electricity market, retailers,

aggregator, CSs, and EVs.

• In order to consider EV owners’ preferences, a minimum SOC level is specified by the EV owner as150

the minimum battery SOC at the end of the day;151

• All CSs have fast DC charger (22kW and 50kW). This is to ensure that the scheduled G2V or V2G152

operation will be fulfilled within an hour for any type of EVs;153

• In each hour, the number of EVs assigned to a CS is smaller or equal to the number of EV chargers in154

that station. Therefore, no queuing is required.155

There are four steps to implement the proposed strategy, as depicted in Figure 3, that should be followed:156

Step 1: At the beginning of the scheduling period, the cloud scheduling system collects required pa-157

rameters and data from each agent for every hour of the next day. The input parameters that should be158

communicated to the cloud scheduling system from each agent and decision variables of each agent are sum-159

marized in Table 1. It is worth mentioning that some of the parameters do not change on a daily basis; they160

will be updated when needed by the agent, e.g., number and capacity of available EV chargers in each CS.161

This way, the amount of required communication bandwidth can be reduced significantly.162

6



Cloud Scheduling 
System

EV k CS i

Retailers

ݎ,݇,݄ ‐
ܴܱܸܧ  

ݎ,݇,݄  ‐
ܴܱܸܧ  

ݎ,݇,݄ ‐
ܧܦܸܧ  

ܧܦܸܧݎ,݇,݄ ‐  
‐ ݄,݇,1

݅݊  

ݎ,݇,݄ ‐
ܧܦܸܧ  

ݎ,݇,݄ ‐  

 

‐  ݄ܲ ݎ,݇,݅,
ܵܥ,൅ܸܧ  

‐  ݄ܲ ݎ,݇,݅,
ܵܥ,െܸܧ  

݅,݄ߩ  ‐
ܵܥ,െܸܧ  

݅,݄ߩ  ‐
ܵܥ,൅ܸܧ  

‐ ܵ  ܵܥ	݀݁ݐ݈ܿ݁݁
 

 

‐ 	 ݅ܺ
ܵܥ  

ܵܥܻ݅	 ‐  
‐ 	 ݄ܰ ,݅

ܪܥ,ܸܣ  

݆,݅,݄݌ܥ	 ‐
ܪܥ,ܸܣ

‐ ܲ ݎ,݇,݅,݄
ܸܧ,െܵܥ  

‐ ܵ  ܵܥ	݀݁ݐ݈ܿ݁݁
‐ ܵ  ݎ݈݁݅ܽݐ݁ݎ	݀݁ݐ݈ܿ݁݁

ݏ,݄ߩ ‐
ܴ݁െ,ܵܥ  

‐ ܲ ݅,ݏ,݄
ܴ݁െ,ܵܥ  

‐ ܲ ݏ,݄
ܴ݁൅,ܹܯ  

‐ ܵ  ݎ݈݁݅ܽݐ݁ݎ	݀݁ݐ݈ܿ݁݁

(1)

(2)

(2):(1): (3): (4):

(3)

(4)

(5) (6)

݅,݄ߩ ‐
ܸܧ,െܵܥ  

݅,݄ߩ ‐
ܸܧ,൅ܵܥ  

ݏ,݄ߩ ‐
ܴ݁,൅ܵܥ  

݅,݄ߩ ‐
ܩܣ,െܵܥ  

‐ ܲ ܷܩ݅,݄  
‐ ܲ ݄,݅

ܩܣ,െܵܥ  

‐ ܲ ݅,ݏ,݄
ܴ݁,൅ܵܥ  

‐ ܲ ݎ,݇,݅,݄
ܸܧ,൅ܵܥ  

(5): (6):

Wholesale 
market

݄ܲ ݏ,
ܴ݁൅,ܹܯ

ݏ,݄ߩ
ܴ݁൅,ܹܯ Aggregator

݅,݄ߩ
ܩܣ,െܵܥ ݄ܲ ,݅

ܩܣ,െܵܥ

݄ߩ
ܴ݁൅,ܹܯ  

Figure 2: The cloud scheduling system and the required communication links with other agents.

Table 1: Input parameters and decision variables for each agent

Agent Input Parameters Decision Variables

Retailers ρRe+,WM
h,s ρRe−,CS

h,s

CSs XCS
i , Y CS

i NAV,CH
h,i , CpAV,CH

h,i,j PGU
h,i , PCS+,Re

h,s,i , PCS−,AG
h,i

EVs
XEV OR

h,k,r , Y EV OR

h,k,r , XEV DE

h,k,r , Y EV DE

h,k,r PEV −,CS
h,i,k,r , PEV +,CS

h,i,k,r

SOCin
h,k,1, WTh,k,r, SOCEV DE

h,k,r

Step 2: Let’s assume that each EV is allowed to plan T trips per day where each trip r ∈ {1, . . . , r, r +163

1, . . . , T}. The shortest driving route for each trip is determined by a network analyst toolbox called ArcGIS164

[36] as a navigation platform in the cloud scheduling system. For each hour, the longitude and latitude of165

each CS, origin and destination of each EV for each trip are used to determine the shortest route considering166

the traffic pattern in each hour. Five potential shortest driving routes will be identified in step 2: Route#1:167

the shortest driving route between the origin and destination of EV k for trip r; Route#2: the shortest168

driving route between the origin of EV k and the location of CS i for trip r/trip r + 1; Route#3: the169

shortest driving route between the destinations/origin of EV k for trip r/trip r + 1 and destination of EV k170

for trip r + 1; Route#4: the shortest driving route between the location of CS i and destination of EV k171

for trip r; Route#5: the shortest driving route between the location of CS i and the destination of EV k172
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for trip r + 1. As shown in Figure 3, the driving distances corresponding to the five possible driving routes173

will be used in Step 3.174

Step 3: Required energy (in terms of battery SOC changes) to drive each set of the five routes will be175

calculated in this step for each EV.176

Step 4: The framework of the three-layer optimisation problem for EVs, CSs, and retailers is imple-177

mented in this step, as shown in Figure 3. Three layers in the framework correspond to the optimisation178

problem that should be solved for each of the three agents. As shown in Figure 2, parameters are received by179

the cloud scheduling system, as explained in Table 1. The three optimisation problems are solved iteratively180

for 24 hours ahead, which is summarised in Algorithm 1. The optimisation problems formulation and the181

optimisation technique are explained in Section 3 and 4, respectively. Through the iterative three-layer182

optimization problem, the profit of all agents are optimised as an equilibrium problem. It essentially leads to183

collective optimisation which can be called social welfare optimisation of the ecosystem. In the equilibrium184

problem, the iterative algorithm is used to solve, and consequently, update the position of each player in the185

framework by receiving new information (e.g., new prices) from other players to find the equilibrium point186

in which the prices do not change. This way, we are able to obtain the prices of V2G and G2V at different187

level of the system. Since the scheduling system is operated in day-ahead, wholesale market price estimation188

is needed for the entire next day.189

In the first iteration, retailers generate the prices that they would like to offer to CSs based on their profit190

margin. Then, the prices will be passed on to CS layer in this iteration. The prices increase in CS layer191

considering their profit margin. Then, CSs communicate the prices to EV layer where the first optimisation192

problem, i.e., (1)-(2c) with the constraints in (9a)-(14), will be solved for the first time. The optimisation193

solutions, i.e., energy sold/purchased to/from CSs in each trip, will be sent to the CSs layer, where the194

operation of CSs will be scheduled by solving the optimisation problem in (4)-(6c) with the constraints given195

in (15a)-(19c). Ultimately, the optimisation solutions including energy produced by CGUs as well as the196

electricity traded with retailers and aggregators will be used in Retailer layer to obtain optimal operation197

of the retailers using the optimisation problem in (7)-(8b) and the constraints in (20a)-(26). As a result,198

the optimal day-ahead electricity prices sold to CSs by retailers is determined in Retailer layer. The newly199

generated prices will then be used in the second iteration to repeat the optimisation problems of the EV200

and CS layers. This iterative process will go on until a certain convergence criterion is met. In this study,201

the convergence criterion is defined as the change in the objective function in the two consecutive iterations,202

which should be less than 10−3 for all three optimisation problems.203
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Algorithm 1 Three-layer optimisation problem for EVs, CSs, and Retailers

▷ Retailer layer
1 itRe

= 1

2 while itRe
≤ it

Re
do

34 Initialize the decision variables in Retailer layer.
▷ CS layer

5 itCS
= 1

6 while itCS
≤ it

CS
do

itCS
= 1

7 Initialize the decision variables in CS layer.
▷ EV layer

8 itEV
= 1

9 while itEV
≤ it

EV
do

10 if itEV
= 1 then

11 Initialize the decision variables in EV layer.
12 Calculate the objective function in EV layer (Eq. (1))

else
13 Determine the best value of decision variables in EV layer
14 Solving optimisation problem of EV layer
15 itEV

= itEV
+ 1

16 Import the optimal value of decision variables from EV layer.
17 Calculate the objective function in CS layer (Eq. (4)).
18 Determine the best value of decision variables in CS layer
19 Solving optimisation problem of CS layer
20 itCS

= itCS
+ 1

21 Import the optimal value of decision variables from CS layer
22 Calculate the objective function in Retailer layer (Eq. (7)) for each salp
23 Determine the best value of decision variables in Retailer layer
24 Solving optimisation problem of Retailer layer
25 itRe

= itRe
+ 1

204

The cloud scheduling system finds the charging/discharging schedules of all EVs at once, which depends205

on the V2G and G2V prices in each trip throughout a day and the minimum expected SOC level of EVs by206

the owners. To identify V2G and G2V mode of each EV during a day, a rule-based approach is developed207

in this study as follows:208

• If G2V prices in trip r is less than V2G prices in trip r+1, EV k will be charged in trip r and discharged209

in trip r + 1 with regards to the minimum expected SOC level of EV k throughout a day;210

• If V2G prices in trip r is more than G2V prices in trip r + 1, EV k will be discharged in trip r and211

charged in trip r + 1 with regards to the minimum SOC level of EV k at the end of the trip.212

3. Mathematical modeling213

In this section, objective functions and technical constraints for each layer in Step 4 of Figure 3, namely214

EVs, CSs, and retailers, are presented and explained. For the sake of clarity, objective functions and215

constraints are presented in separate sub-sections for the three agents.216

3.1. Objective function of EV layer217

The net cost of EV operation must be minimised in this layer, which is the difference between the cost of218

EVs (including electricity purchased from CSs, CEV+,CS, and battery degradation cost during V2G operation,219

CDEG,EV) and the revenue from selling electricity to CSs, REV−,CS, as per below equation:220221

CEV = CEV+,CS +CDEG,EV −REV−,CS (1)

The individual cost and revenue terms can be computed as follows:222

CEV+,CS =
24

∑
h=1

NEV

∑
k=1

NT

∑
r=1

1

2
×Mh,k,r × (Mh,k,r + 1) × PEV+,CS

h,i,k,r × ρ
EV+,CS
h,i (2a)
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223

CDEG,EV =
24

∑
h=1

NEV

∑
k=1

NCYC

∑
c=1

NT

∑
r=1

1

2
×Mh,k,r × (Mh,k,r − 1) × cBAT

p.u ×Cpnomk ×
DEV

h,k,r(TCYC)
Cpnomk −Cprek

(2b)

224

REV−,CS =
24

∑
h=1

NCS

∑
i=1

NEV

∑
k=1

NT

∑
r=1

1

2
×Mh,k,r × (Mh,k,r − 1) × PEV−,CS

h,i,k,r × ρ
EV −,CS
h,i (2c)

To avoid uneconomical V2G operation, battery degradation should be quantified and its cost should be225

included in the objective function. As a result, EV owners will be remunerated for V2G services only if they226

can recover the cost of battery degradation and make some profit. In (2b), the battery degradation cost is227

considered for EVs during discharging period, which is obtained from the cycling degradation for a given228

discharge profile using the following equations [37]. The cost considers cycle number, depth of discharge,229

and discharge rates in optimal scheduling:230

Cprek = 0.8 ×Cpnomk (3a)
231

DEV
h,k,r(TCYC

c ) =(σ1 × [DODEV
h,k,r(TCYC

c )]2 + σ2 ×DODEV
h,k,r(TCYC

c ) + σ3)

× (φ1 × [DREV
h,k(TCYC

c )]3 + φ2 × [DREV
h,k(TCYC

c )]2 + φ3 ×DREV(TCYC
c ) + φ4)

(3b)

3.2. Objective function of CS layer232

As it was explained in Section 2, it is assumed that CS operators purchase electricity from retailers only233

if the onsite generation and storage is not sufficient to meet EVs charging demand, or the onsite generation234

is more expensive compared to the electricity supplied from retailers. In addition, to provide services to235

the upper grid for added revenue, CS operators are allowed to purchase electricity from EVs and sell to236

the wholesale market through aggregators. Therefore, the objective function in this layer is defined as the237

net revenue of CS operators, which has to be maximised. The net revenue (profit) of CS operators can be238

calculated by subtracting revenues of selling energy to the aggregators, RCS−,AG, and EVs, RCS−,EV, from239

the expenses including onsite operational costs, COp,CS, cost of energy purchased from retailers, CCS+,Re,240

and EVs, CCS+,EV, expressed by:241242

RCS = RCS−,AG +RCS−,EV −COp,CS −CCS+,Re −CCS+,EV (4)

The revenue terms in (4) can be calculated as follows:243

RCS−,AG =
24

∑
h=1

NCS

∑
i=1

NRe

∑
s=1

PCS−,AG
h,i × ρCS−,AG

h,i (5a)

244

RCS−,EV =
24

∑
h=1

NCS

∑
i=1

NEV

∑
k=1

NT

∑
r=1

1

2
×Mh,k,r × (Mh,k,r + 1) × PCS−,EV

h,i,k,r × ρ
CS−,EV
h,i (5b)

Various cost terms are calculated by:245

COp,CS =
24

∑
h=1

NCS

∑
i=1

PGU
h,i × ρ

gas
h

ηGU
h,i ×HV

+
NCS

∑
i=1

cPQ
p.u,i × λi × κi

NCH
i

∑
j=1

βi,j × αi,j ×
PCH
i,j

ηCH
i,j × PFCH

i,j

(6a)
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246

CCS+,Re =
24

∑
h=1

NCS

∑
i=1

PCS+,Re
h,i,s × ρCS+,Re

h,s (6b)

247

CCS+,EV =
24

∑
h=1

NCS

∑
i=1

NEV

∑
k=1

NT

∑
r=1

1

2
×Mh,k,r × (Mh,k,r − 1) × PCS+,EV

h,i,k,r × ρ
CS+,EV
h,i (6c)

The operation cost of each CS in (6a) includes the operation costs of the CGU and chargers related to248

active power filtering and reactive power compensation cost, as given in [25, 38, 39]. Charger efficiency is249

considered because of the internal conversion losses, where input power to the charger is more than the power250

sold to EVs. For the other terms, the cost is simply the product of the traded energy by the prices obtained251

from previous optimisation layer.252

3.3. Objective function of Retailer layer253

The net revenue of retailers in this layer must be maximised, which is defined as the difference between254

the revenue obtained by selling electricity to CSs and the cost of electricity purchased from the wholesale255

market, as given by:256257

RRe = RRe−,CS −CRe+,WM (7)

The collective daily revenue and cost of retailers are expressed in the following equations:258

RRe−,CS =
24

∑
h=1

NRe

∑
s=1

NCS

∑
i=1

PRe−,CS
h,s,i × ρRe−,CS

h,s (8a)

259

CRe+,WM =
24

∑
h=1

NRe

∑
s=1

PRe+,WM
h,s × ρRe+,WM

h (8b)

3.4. Constraints of EV layer260

The SOC evolution after each charge and discharge and each trip for hour h can be determined by (9a),261

while (9b) ensures that the battery SOC level is maintained within a lower and upper bound for EV k for262

the safety and longevity of the battery:263

SOCEV
h,k,r = SOCEV

h−1,k,r +
PEV+,CS
h,k,r × ηBAT+ ×∆t

CpEV
k

−
PEV−,CS
h,k,r ×∆t

CpEV
k × ηBAT− (9a)

264

SOCEV
k ≤ SOCEV

h,k,r ≤ SOC
EV

k (9b)

Charging and discharging power of the chargers at each CS are limited, which is enforced by (10a) and265

(10b). At each hour h, an EV can only adopt one of the charging or discharging mode, which is achieved by266

(10c).267

0 ≤ PEV+,CS
h,k,r ≤ CpCH

h,i,j (10a)
268

0 ≤ PEV−,CS
h,k,r ≤ CpCH

h,i,j (10b)
269

PEV+,CS
h,k,r × PEV−,CS

h,k,r = 0 (10c)
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During charging period, the required energy (in terms of battery SOC) is calculated by (11) in a way to270

guarantee the minimum SOC level, SOCEV DE

h,k,r , at the next destination, which is specified by the EV owner.271

The required SOC of EV is determined by the minimum driving distance obtained in Step 2 of Section 2.272273

SOCR,EV+
h,k,r = SOCR,EVOR→CSSE

h,k,r + SOCR,CSSE→EV DE

h,k,r + SOCR,EV OR→EV DE

h,k,r

+ SOCEV DE

h,k,r − SOCin
h,k,r

=
(DEVOR→CSSE

h,k,r +DCSSE→EVDE

h,k,r +DEVOR→EVDE

h,k,r ) × γk
CpEV

k

+ SOCEV DE

h,k,r − SOC in
h,k,r

(11)

Similarly, the maximum available energy of an EV that can be sold to a CS, depends on the EV’s travel274

plan and the distance of the routes, which is calculated in (12).275276

SOCR,EV−
h,k,r = SOC in

h,k,r − SOCR,EVOR→CSSE

h,k,r − SOCR,CSSE→EV DE

h,k,r

− SOCR,EVOR→EV DE

h,k,r − SOCEVDE

h,k,r

= SOCin
h,k,r −

(DEVOR→CSSE

h,k,r +DCSSE→EVDE

h,k,r +DEVOR→EVDE

h,k,r ) × γk
CpEV

k

− SOCEV DE

h,k,r

(12)

For EV k in both charging or discharging mode, the SOC at the departure time from selected CS must277

be higher than the required SOC of the EV to reach the next destination, as expressed in (13):278279

SOCDP,EV
h,k,r ≥ SOCR,EV±

h,k,r (13)

At the final destination, the SOC of EV k must be more than the final SOC level that is specified by the280

EV owner, which is achieved by:281282

SOCEV DE

h,k,r ≥ SOCEV DE

h,k,r (14)

3.5. Constraints of CS layer283

Balance between supply and demand within a CS should be maintained at all times during charging and284

discharging, which is achieved by (15a). Charger efficiency is considered for the sake of accuracy. Equation285

(15b) ensures that the number of operational chargers in a CS does not exceed the number of existing286

chargers in that station.287

PPV
h,i + PGU

h,i ± PESS±
h,i +

NEV

∑
k=1

PCS+,EV
h,i,k,r +

NRe

∑
s=1

PCS+,Re
h,s,i =

PCS−,AG
h,i

ηCH
i

+
NEV

∑
k=1

PCS−,EV
h,i,k,r

ηCH
i

(15a)

NAV,CH
h,i ≤ NCH

i (15b)

The onsite PV generation is estimated by (16a) from meteorological data and PV panel specifications.288

Equation (16b) ensures that the PV dispatch at time h is lower than or equal to the maximum available PV289

at the same time. Therefore, PV curtailment is allowed in the CS operation.290

PPV
h,i = ηPV

i ×APV
i ×Rah × (1 − 0.005 × (Tmam

h − 25)) (16a)
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291

PPV
h,i ≤ PPV,nom

i (16b)

In (17a), onsite stationary ESS operation and its SOC evolution is characterised. The SOC upper and292

lower limits are enforced by (17b). Moreover, simultaneous operation of the ESS in the two modes (i.e.,293

charge and discharge) is prohibited by (17c).294

SOCESS
h,i = SOCESS

h−1,i +
PESS+
h,i × ηESS+ ×∆t

CpESS
i

−
PESS−
h,i ×∆t

CpESS
i × ηESS− (17a)

295

SOCESS
i ≤ SOCESS

h,i ≤ SOCESS

i (17b)
296

PESS+
h,i × PESS−

h,i = 0 (17c)

Equation (18a) ensures that electricity produced by a CGU at time h does not exceed its nominal capacity297

[40]. Moreover, based on (18b), it is not reasonable to operate the CGU below 30% of its rated power due298

to low efficiency and high greenhouse gas emission at the lower operating ranges. Therefore, the CGU will299

be turned off, as in [40].300

PGU
h,i ≤ CpGU

i (18a)
301

PGU
h,i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

PGU
h,i PGU

h,i ≥ 0.3 ×CpGU
i

0 PGU
h,i < 0.3 ×CpGU

i

(18b)

Total charge/discharge capacity of CS i is calculated by (19a) [33]. Electricity purchased from retailers302

by CS i at the point of common coupling is limited by (19b). Based on (19c), CS i is not allowed to sell303

CGU power to the aggregator. In other words, the power sold to the aggregator should be equal or lower304

than the power purchased from EVs. This is because of the existing regulations in many electricity markets305

and the desire to limit emissions from CGU.306

CpCS
i = λi ×

NCH

∑
j=1

PCH
i,j

ηCH
i,j × PF

CH
i,j

(19a)

307

PCS+,Re
h,s,i ≤ CpCS

i (19b)
308

PCS−,AG
h,i ≤

NEV

∑
k=1

PCS+,EV
h,i,k,r × η

CH
i (19c)

3.6. Constraints of Retailer layer309

Active and reactive power should be balanced at all times. Therefore, sum of the electricity purchased310

from the wholesale electricity market through retailers must be equal to the sum of the electricity purchased311

by CSs from retailers, load demand and power losses of the distribution network for active and reactive312

power at hour h:313

NRe

∑
s=1

PRe+,WM
h,s =

NRe

∑
s=1

NCS

∑
i=1

PRe−,CS
h,s,i +

Nb

∑
b=1

PDb,h + PL
DN
h (20a)
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314

NRe

∑
s=1

QRe+,WM
h,s =

NRe

∑
s=1

NCS

∑
i=1

QRe−,CS
h,s,i +

Nb

∑
b=1

QDb,h +QL
DN
h (20b)

Active and reactive power demands at bus b and hour h are determined by:315

316

PDb
,h =

SD0 ,b
Nb

∑
b=1

SD0 ,b

× PD0 ,h (21a)

317

QDb,h = tan(cos−1(PFh,b)) × PDb,h (21b)

Power losses are given by:318319

PDN
Lh

=
NM

∑
m=1

∣ Ih,m ∣2 ×Rm (22)

Total electricity purchased from the wholesale electricity market must not exceed substation transforma-320

tion capacity [41]:321322

NRe

∑
s=1

PRe+,WM
h,s ≤ CpTR (23)

Bus voltages must be within permissible range in order to guarantee a secure operation of the distribution323

network while maintaining power quality at a standard level:324325

Vb ≤ ∣ Vh,b ∣ ≤ Vb (24)

Active and reactive power balance are maintained for bus b at hour h by [42]:326

PGb,h − PDb,h = Vb,h
Nb

∑
a=1

Va,h(Gbacos(θb,h − θa,h) +Bbasin(θb,h − θa,h)) (25a)

327

QGb,h −QDb,h = Vb,h
Nb

∑
a=1

Va,h(Gbasin(θb,h − θa,h) +Bbacos(θb,h − θa,h)) (25b)

The electricity price offered by retailers to CSs is limited by minimum and maximum bounds for the328

optimisation problem at this layer.329330

ρRe−,CS ≤ ρRe−,CS
h,s ≤ ρRe−,CS (26)

4. Optimisation Model331

Despite the fact that evolutionary algorithms might not be able to guarantee global optimal solutions332

and that they might only reach near-optimal solutions, an evolutionary algorithm, called SSA, is preferred333

in this study because of the non-linear nature of the three optimisation problems. SSA is an evolutionary334

computation technique that is inspired by swarming behaviour of salps when they navigate in deep oceans335

within chains of salp searching for a food source as the swarm’s target. In literature, the most popular336

swarm-inspired algorithms are Particle Swarm Optimisation (PSO) and Ant Colony Optimisation (ACO)337

[33, 43–45]. However, it was discovered in a few studies. e.g., [46, 47], that the SSA is able to explore338

the search space more effectively, and that the optimisation technique benefits from high exploration and339
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convergence speed to obtain the true global solutions [46]. In order to obtain a mathematical model of salp340

chains, the population of salps is divided into two groups: the first group is the leader where the salp at341

the front of the chain guides the swarm and the second group includes the followers, as the rest of salps,342

chasing the leader. In every iteration, the leader changes its position around the food source and the followers343

chase the leader. The position of salps is defined as an n-dimensional search space, where n is the number344

of decision variables of the optimisation problem at hand. The position of all salps are stored in a two-345

dimensional matrix, xn,it. The position of the first salp as the leader is updated with respect to the food346

source, Fn,it, based on [46, 48]:347
348

xLn,it =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Fn,it + c1,it ((ubn − lbn) c2,it + lbn) c3,it ≥ 0

Fn,it − c1,it ((ubn − lbn) c2,it + lbn) c3,it < 0

(27)

where c1,it is a variable that will exponentially decrease throughout the iterations, as obtained by (28); and349

c2,it and c3,it are random numbers uniformly distributed on the interval of [0,1] at iteration it.350
351

c1,it = 2e
−⎛⎝

4 × it
it

⎞
⎠

2

(28)

The position of the follower f in the dimension n is updated by:352353

xfn,it =
1

2
(xfn,it + xf−1n,it) (29)

To determine optimal day-ahead electricity prices sold to CS operators by retailers, we have NRe × 24354

decision variables to optimise in Retailer layer. The number of decision variables in the CS layer is 3×NCS×24355

considering three sets of variables that correspond to the power produced by CGU, power purchased from356

retailers, and power sold to the aggregator for 24 hours ahead. In the EV layer, the optimisation problem357

includes 2 × 24 ×NEV decision variables that correspond to the power sold/purchased to/from EVs.358

5. Simulation Study359

In order to examine the performance of the proposed method, a comprehensive simulation study is carried360

out, as shown in Figure 4, using a selected area of San Francisco [49]. The IEEE 37-bus distribution test361

system [50] is mapped over the area to represent the CSs connection to the upper grid. It is assumed that362

there are three retailers to provide electricity to CSs and one aggregator is considered to sell energy back363

to the wholesale market by purchasing it from CSs. The nominal voltage of the network is 480 V and the364

minimum and maximum voltage limits are 0.95 and 1.05 p.u., respectively. Node 1 is connected to the365

distribution transformer as the slack bus. Total active and reactive power demand (without EV) at the peak366

hour are equal to 8.7 MW and 4.3 MVAr, respectively. As depicted in Figure 4, the CSs are randomly placed367

at nodes 2, 8, 10, 11, 16, 22, 29, 32, and 35. The origin and destination of EVs in each trip is assumed to be368

contained in this area. 600 EVs are randomly situated over the area, each of which is assumed to complete369

two trips per day with different waiting times between each trip, without loss of generality. Furthermore,370

four types of EVs with battery capacity of 14.5kWh, 16kWh, 28kWh, and 40kWh are considered. In this371
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study, the base case is defined in such a way that no optimisation is carried out for scheduling and every372

EV selects the closest CS without considering prices. Also, V2G and G2V prices in the base case strategy373

are equal to the initial prices in the first iteration of the proposed three-layer optimisation problem for each374

agent.375

Input parameters and their corresponding values for the distribution network, CSs, and EVs are given in376

Table 2. Due to lack of daily load profile at each node in the IEEE 37-bus distribution test system, the daily377

hourly load profile of California ISO [51] is used by re-scaling the values in proportion to the test network378

load demand using (21a) and (21b). Also, day-ahead electricity prices of the wholesale electricity market for379

a typical day are extracted from California ISO [51], which are used in the simulation studies.380

Figure 4: IEEE 37-bus distribution test network and location of some of the EVs and all CSs in San Francisco, the USA [49]

and [50].

In order to take into account ancillary services costs, network maintenance costs, taxes, and etc. (which381
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Table 2: Input parameters of distribution network, CSs, and EVs [39, 52, 53]

Parameter Value Parameter Value

Mh,k,r ± 1(+1: G2V, -1: V2G) CpEV 14.5, 16, 28, 40 (kWh)

∆t 1 hr V b/V b 0.95/1.05

cPQ
p.u 10.16 ($/kVA) HV 0.7 (kWh/m3)

ηCH 0.9 ηPV 0.157

PFCH 0.95 APV 800 (m2)

CpGU 65 (kW) CpESS 50 (kWh)

N
CH

i 5 ρgas 13.07 (cents/m3)

α 0.03 β 1.05

κ 0.61 λ 1

SOCESS/ SOC
ESS

0.1/0.9 γ 0.2 (kWh/km)

are normally included in the retail electricity tariffs), the day-ahead electricity prices of the wholesale market382

is multiplied by 4.5 homogeneously. The new prices will serve as the electricity prices that is paid by CS383

operators to the retailers. The electricity prices sold to EVs by CSs and electricity prices purchased from384

EVs by CSs are obtained by:385

ρCS−,EV
h,i = rand(1.1,1.5) × ρRe−,CS

h,i (30)

In (30), it is assumed that CSs’ asking prices are 10–50% more than what they pay to the retailers in386

order to make profit. In addition, CS operators offer prices to EVs for V2G services that will be sold to the387

wholesale market through aggregators. The performance of a CS in this case depends on the prices offered388

to the EVs. Therefore, a sensitivity analysis is carried out using the following three scenarios:389

Scenario I (Low-price scenario): ρCS+,EV
h,i = 1

4.5
× ρRe−,CS

h,i × rand(0.1,0.9)

Scenario II (Medium-price scenario): ρCS+,EV
h,i = ρRe−,CS

h,i × rand(0.6,0.85)

Scenario III (High-price scenario): ρCS+,EV
h,i = ρRe−,CS

h,i × rand(1.05,1.3)

It can be seen that the optimal day-ahead electricity prices for discharging EVs increase from scenario I390

to scenario III. In fact, in scenario I to scenario III, V2G prices are getting closer to G2V prices to encourage391

more EVs in V2G operation, and consequently, determine the range of V2G prices in which the collective392

benefit of all agents is maximised. In all scenarios, ρCS−,AG
h,i = 1.1 × ρCS+,EV

h,i where the aggregator expects393

maximum of 10% profit based on the price offered by CSs.394
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It is assumed that different retailers are looking for up to 30% profit. As a result, the minimum and395

maximum value of the day-ahead electricity prices sold to CSs by retailers are expressed as:396

1.05 × 4.5 × ρRe+,WM
h ≤ ρRe-,CS

h,s ≤ 1.3 × 4.5 × ρRe+,WM
h (31)

The cloud scheduling system specifies the charging/discharging plan of all EVs at once. Four plans can397

be expected for EV charging and discharging with two trips. The flowchart for choosing a proper plan for398

EVs is shown in Figure 5, which are explained below:399

• Plan 1: The initial SOC of EV k at the beginning of trip 1 is not sufficient to complete this trip.400

Therefore, EV k must be charged in trip 1. If it is profitable, it will be discharged in trip 2.401

• Plan 2: The initial SOC of EV k at the start of trip 1 is more than the total energy needed to finish402

trip 1 and the minimum SOC of the EV at the end of the trip. If charging prices in trip 1 are less than403

discharging prices in trip 2, EV k will be charged in trip 1 and discharged in trip 2.404

• Plan 3: The initial SOC of EV k at the beginning of trip 1 is more than the total energy required for405

the trip and the minimum SOC of EV at the end of the trip. If discharging prices in trip 1 are more406

than charging prices in trip 2, EV k will be discharged in trip 1 and charged in trip 2.407

• Plan 4: The initial SOC of EV k at the beginning of trip 1 is more than the required energy to408

complete the trip and minimum SOC of EV at the end of the trip. However, charging prices in trip 1409

are more than discharging prices in trip 2. In addition, discharging price in trip 1 is less than charging410

price in trip 2. In this case, EV k will not be charged nor discharged. However, if the initial SOC of EV411

k at the beginning of trip 2 is not more than the required energy to complete the trip and minimum412

SOC of EV at the end of the trip, the EV k must be charged in trip 2.413

6. Simulation Results and Discussion414

In this section, simulation results for a typical day will be presented and explained for the case study415

introduced in Section 5.416

6.1. V2G and G2V operation and prices417

The optimal day-ahead electricity prices offered by the most and least profitable CS are shown in Figure 6.418

It can be seen that the most profitable CS is CS#8 in scenario II and the the least profitable CS is CS#1419

in scenario I. The number of EVs charged and discharged in each scenario for each hour is depicted in420

Figure 7. No EVs is planned for V2G service in Scenario I due to the extremely low prices offered by the421

CSs. However, by increasing the V2G prices (assuming that the cost of ancillary services, taxes, etc. are422

reduced or we experience high prices in the wholesale market), the number of EVs participating in V2G423

increases and reaches its maximum in Scenario III. Also, it can be seen from Figure 7 that the number of424

EVs in charging mode has increased substantially because it is economically beneficial for the EVs to charge425

in one trip and discharge in the next one (i.e., energy arbitrage).426
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The number of EVs in each charge and discharge mode in each scenario for Plan 1, 2, and 3 is depicted427

in Figure 8. For Plan 1, the number of EVs planned for V2G service in the second trip is raised by increasing428

V2G prices because it is economically rewarding for EVs to make profit from the high SOC level of batteries429

in the second trip. For Plan 2, the results show that by increasing V2G prices, when G2V prices in the first430

trip is lower than V2G prices in the second trip, the number of EVs that prefer to charge in the first trip431

and discharge in the second trip increases because they can make more profit. As explained in Section 5, for432

Plan 1, EVs must be charged in trip 1, and if it is profitable, they will be discharged in trip 2. However, for433

Plan 2, EVs are charged in trip 1 and discharged in trip 2 to make profit if the prices are right. Furthermore,434

in Plan 3, more EVs discharged in the first trip with higher prices and charge in the second trip with lower435

prices.436

Figure 9 depicts the routes for an EV that is specified by ArcGIS in the base case and the proposed437

strategy in this study. In this example, EV k selects the nearest CSs (CS#8 and CS#3) in the base case438

without running a cost-benefit analysis, which leads to $4 extra cost for EV k in comparison with the439

proposed three-layer optimal strategy.440

 

 

 

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24O
pt

im
al

 d
ay

-a
he

ad
 e

le
ct

ri
ci

ty
 p

ri
ce

 (
ce

nt
s/

kW
h)

Time (Hour)

Price purchased from CS#8 by EVs in Scenario II

Price purchased from CS#1 by EVs in Scenario I

Price sold to CS#8 by EVs in Scenario II

Price sold to CS#1 by EVs in Scenario I
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(a)

(b)

Figure 7: Number of EVs planned to participate in (a) G2V and (b) V2G in each scenario.
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Origin of EV k in trip 1

EVCS#5

Destination/origin 
of EV k in trip 1/2

EVCS#6EVCS#3

Destination of EV k in trip 2

EVCS#8

Base case

Proposed method

Figure 9: Scheduling results for a sample EV in the base case (red line) and the proposed strategy (green line).

6.2. CS and retailers operation441

In Table 3, optimal day-ahead electricity prices offered by three retailers to CSs are reported. The442

cheapest retailer is selected in each hour, which are specified in the Table. Off-peak and peak periods with443

minimum and maximum electricity prices occur in hours 10 and 19, respectively, and Retailer#1 is selected444

by CSs in both off-peak and peak periods.445

As reported in Table 4, by increasing the number of EVs participating in V2G program from scenario I446

to III, the net cost of EVs decreases and the net revenue of CS operators and retailers increases. However, in447

Scenario III, while more EVs participated in the V2G program, the net revenue of retailers and CS operators448

as well as the net cost of EVs decreased compared to Scenario II. The main reason is that the cost of449

electricity purchased by CS operators from EVs participating in V2G services increased while the electricity450

purchased from retailers by CS operators decreased. Based on the results presented in Table 4, the most451
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Table 3: Optimal day-ahead electricity prices offered by retailers and the selected retailer in each hour (cents/kWh)

Time (Hour) Retailer#1 Retailer#2 Retailer#3 Selected retailer

t=1 18.74 19.35 21.12 Retailer#1

t=2 18.66 17.48 19.96 Retailer#2

t=3 16.74 17.46 16.43 Retailer#3

t=4 16.73 17.39 16.33 Retailer#3

t=5 17.73 18.24 18.13 Retailer#1

t=6 20.62 18.75 19.25 Retailer#2

t=7 24.34 24.42 22.51 Retailer#3

t=8 20.03 19.49 22.31 Retailer#2

t=9 16.58 15.16 16.72 Retailer#2

t=10 14.25 15.11 16.03 Retailer#1

t=11 16.52 15.55 16.12 Retailer#2

t=12 16.60 18.53 16.20 Retailer#3

t=13 18.06 18.62 17.38 Retailer#3

t=14 18.78 21.16 19.68 Retailer#1

t=15 19.93 21.16 19.96 Retailer#1

t=16 21.56 22.1 21.00 Retailer#3

t=17 22.73 22.19 21.94 Retailer#3

t=18 25.16 27.39 27.81 Retailer#1

t=19 35.64 38.03 39.52 Retailer#1

t=20 32.75 35.15 33.59 Retailer#1

t=21 28.69 29.07 25.67 Retailer#3

t=22 25.22 22.96 25.27 Retailer#2

t=23 22.48 21.57 21.51 Retailer#3

t=24 21.74 19.45 19.00 Retailer#3

Table 4: Objective function values in three layers and the number of EVs discharged in all scenarios

Scenario Total net cost of

EVs ($)

Total net revenue of

CSs ($)

Total net revenue of

retailers ($)

No. of EVs

discharged

Scenario I 1835.1 291.7 643.9 0

Scenario II 1800.4 453 654.7 25

Scenario III 1219.3 378.1 639.7 261
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profitable operation is achieved in Scenario II for all three agents, i.e., EV, CS, and retailer.452

6.3. The proposed algorithm performance and convergence453

To verify the simulation results obtained by SSA, the three-layer optimisation problem is also solved by454

PSO approach. The optimisation algorithms convergence rates of prices for both optimisation techniques455

are shown in Figure 10 for each scenario in the three layers, where optimal results are reached after about456

70 and 75 iterations in most cases using SSA and PSO, respectively. The optimal values are obtained by457

SSA and PSO in 1683 and 1829 seconds, respectively. Therefore, it shows that SSA is outperforming PSO458

in terms of computational time. All computations are executed on a laptop with Intel Core i7 CPU with459

1.80GHz processor and 8GB RAM.460
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Figure 10: Convergence of the optimisation problems in (a-c) EV layer, (d-f) CS layer, and (g-i) Retailer layer for all scenarios.

In Table 5, the cost/revenue of EVs, CS operators, and retailers are reported for the base case and the461

proposed three-layer optimisation problem in scenario II , obtained by SSA and PSO. It can be seen that462
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the cost of EVs decreased by 17.6%, and the revenue of CS operators and retailers raised by 21.1% and463

22.6%, respectively, in the proposed method solved by SSA in comparison with the base case. The results464

obtained by SSA and PSO are quite close, with SSA performing slightly better in most instances. It shows465

the effectiveness of SSA in solving these complex optimisation problems in a reasonable time. To better466

show the effectiveness of the proposed method, another simulation study is performed, called “Individual467

optimisation problem”, in which the optimisation problem of each stakeholder is solved individually without468

iterative process. It can be seen from Table 5 that if the our proposed method yields 10.2% reduction in469

EVs operation cost and 18.4% and 19% increase in revenue of CSs and retailers, respectively, compared to470

“Individual optimisation problem” in scenario II.471

Table 5: Comparing the simulation results for the base case, the proposed three-layer optimisation problem and the individual

optimisation problems in Scenario II

Optimal Value
Parameters

SSA PSO

CEV ($) Three-layer optimisation problem 1800.4 1801.3

Base case 2185.7 2185.7

Individual optimisation problem 2005.7 2006.2

RCS ($) Three-layer optimisation problem 453 453.7

Base case 374.1 374.1

Individual optimisation problem 382.6 382.9

RRe ($) Three-layer optimisation problem 654.7 655.2

Base case 534.1 534.1

Individual optimisation problem 550.2 550.8

7. Conclusions and Recommendations472

In this study, a day-ahead scheduling framework is presented to guarantee economic and energy-efficient473

routing of electric vehicles. Based on the proposed strategy, each electric vehicle and charging station finds474

optimal charging stations and retailers, respectively, for vehicle-2-grid and grid-2-vehicle services by solving475

an equilibrium problem. The proposed method can be offered as a cloud service to all stakeholders, which476

facilitates day-ahead electric vehicle scheduling considering objectives and preferences of all stakeholders.477

In this method, electric vehicles independently plan their charging/discharging depending on the minimum478

driving routes and cost/benefit analysis based on the prices offered by charging stations. Also, charging479

stations select optimal retailers to purchase energy while utilising onsite generation and stationary storage480

in the most economic way. In addition, charging stations are able to facilitate vehicle-2-grid operation481

by purchasing energy from electric vehicles and selling back to the wholesale market through aggregators.482
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Comprehensive simulations are conducted on a real test system. Simulation results confirm that the cost-483

effective operation is achieved for all agents, and it is highly dependant on the level of participation of484

electric vehicles in the vehicle-2-grid program and the cost of energy in the wholesale market. The optimal485

solutions are obtained for all stakeholders by respecting physical limits of the network, avoiding queuing at486

the charging stations, and preserving electric vehicle owners comfort and preferences during the scheduling.487

In our future works, we are planning to improve the proposed model by incorporating electric vehi-488

cle owners’ preferences, and unpredictable and economically-irrational behavior. Also, various sources of489

uncertainty will be added to the model and stochastic/robust optimisation will be used to deal with the490

uncertainties. Furthermore, it is recommended to study the cooperative and non-cooperative game theory491

in order to model the interaction between different agents.492

26



Pl
an

 2
:

ܱܵ
ܥ ݄

,݇
,1

in
൐
ܱܵ
ܥ ݄

,݇
,1

ܴ
ܧ,
ܸ
൅
ܱܵ
ܥ ݄

,݇
,1

ܸܧ
D
E
 

h=
1

k=
1

N
o

Se
le

ct
in

g 
th

e 
C

S 
i f

or
 c

ha
rg

in
g 

EV
 k

 a
nd

 th
en

 
EV

 k
 tr

av
el

s t
o 

de
st

in
at

io
n 

of
 tr

ip
 r

r=
2 Y

es

Pl
an

 1
:

ߩ ݄
2,
݅

ܵܥ
൅
ܧ,
ܸ
൐
ߩ ݄

ܵܥ݅,
െ
ܧ,
ܸ
 

Y
es

Y
es

Se
le

ct
in

g 
th

e 
be

st
 C

S 
i f

or
 d

is
ch

ar
gi

ng
 E

V
 k

 a
nd

 
th

en
 E

V
 k

 tr
av

el
s t

o 
de

st
in

at
io

n 
of

 tr
av

el
 r

r=
2 Y

es

Y
es

݇
൐
ܰ
ܸܧ

 

N
o

ߩ ݄
ܵܥ݅,
൅
ܧ,
ܸ
൐
ߩ ݄

2,
݅

ܵܥ
െ
ܧ,
ܸ
 

Y
es Y

es

N
o

k=
k+

1

݄
൐
24

 

Y
es

h=
h+

1

En
dY

es

St
ar

t

r=
1

݄ 2
ൌ
݄
൅
W
T݄

,݇
ݎ,
 

ܯ
݄,
݇,
ݐ
ൌ
݄ܥ
ݎܽ
݃݁

 

ԧ ݄
,݅,
݇

ܸܧ
ൌ
ܱܵ
ܥ ݄

,݅,
݇

ܸܧ
൅
ൈ
݌ܥ

݄,
݇
ൈ
ߩ ݄

ܵܥ݅,
െ
ܧ,
ܸ
 

Y
es

N
o

D
et

er
m

in
e 

M
in

im
um

 ԧ
݄,
݅,݇

ܸܧ
  

i=
1

݅ൌ
݅൅

1 

݅൑
ܰ
ܵܥ
 

Y
es

D
et

er
m

in
e 

M
ax

im
um

 ൫
Թ
݄,
݅,݇

ܸܧ
െ
ԧ ݄

,݅,
݇

ܦ
ܩܧ

ܧ,
ܸ
൯ 

 

N
o

N
o

݅ൌ
݅൅

1 

i=
1

N
o

Y
es

N
o

݄ܰ,
ܸܣ݅
ܥ,
ܪ
൑
ܰ
ܪܥ݅

 

Y
es

N
o

i=
1

Y
es

݅ൌ
݅൅

1 

Y
es

N
o

N
o

Se
le

ct
in

g 
th

e 
C

S 
i f

or
 c

ha
rg

in
g 

EV
 k

 a
nd

 
th

en
 E

V
 k

 tr
av

el
s t

o 
de

st
in

at
io

n 
of

 tr
ip

 r

N
o

D
et

er
m

in
e 

M
in

im
um

 ԧ
݄,
݅,݇

ܸܧ
  

Y
es

i=
1 Y

es

Y
es

݅ൌ
݅൅

1 

Y
es

N
o

N
o

Se
le

ct
in

g 
th

e 
be

st
 C

S 
i f

or
 d

is
ch

ar
gi

ng
 E

V
 k

 a
nd

 
th

en
 E

V
 k

 tr
av

el
s t

o 
de

st
in

at
io

n 
of

 tr
av

el
 r

N
o

N
o

i=
1

݄ܰ,
ܸܣ݅
ܥ,
ܪ
൑
ܰ
ܪܥ݅

 

Y
es

݅ൌ
݅൅

1 

Y
es

N
o

N
o

Y
es

Y
es

݅ൌ
݅൅

1 

Y
es

N
o

N
o

Y
es

Se
le

ct
in

g 
th

e 
C

S 
i f

or
 d

is
ch

ar
gi

ng
 E

V
 k

 a
nd

 
th

en
 E

V
 k

 tr
av

el
s t

o 
de

st
in

at
io

n 
of

 tr
ip

 r

N
o

i=
1

r=
2

Se
le

ct
in

g 
th

e 
C

S 
i f

or
 c

ha
rg

in
g 

EV
 k

 a
nd

 
th

en
 E

V
 k

 tr
av

el
s t

o 
de

st
in

at
io

n 
of

 tr
ip

 r

N
o

N
o

Pl
an

 3
:

Pl
an

 4
:

ܯ
݄,
݇,
ݎ
ൌ
݀ܫ
݈݁
 

ܯ
݄,
݇,
ݐ
ൌ
݄ܥ
ݎܽ
݃݁

 

ܯ
݄,
݇,
ݎ
ൌ
ܦ
ݏ݅
݄ܿ
ݎܽ
݃݁

 
ܯ
݄,
݇,
ݎ
ൌ
݀ܫ
݈݁
 

ܯ
݄,
݇,
ݎ
ൌ
ܦ
ݏ݅
݄ܽ
݃ݎ
݁ 

ܯ
݄,
݇,
ݎ
ൌ
݄ܥ
ݎܽ
݃݁

 

ܯ
݄,
݇,
ݎ
ൌ
݀ܫ
݈݁
 

C
al

cu
la

te
 d

eg
ra

da
tio

n 
co

st
 (E

qu
at

io
n 

(2
b)

)

Թ
݄,
݅,݇

ܸܧ
ൌ
ܱܵ
ܥ ݄

,݅,
݇

ܸܧ
െ
ൈ
݌ܥ

݄,
݇
ൈ
ߩ ݄

ܵܥ݅,
െ
ܧ,
ܸ
 

C
al

cu
la

te
 d

eg
ra

da
tio

n 
co

st
 (E

qu
at

io
n 

(2
b)

)

D
et

er
m

in
e 

M
ax

im
um

 ൫
Թ
݄,
݅,݇

ܸܧ
െ
ԧ ݄

,݅,
݇

ܦ
ܩܧ

ܧ,
ܸ
൯ 

 

Թ
݄,
݅,݇

ܸܧ
ൌ
ܱܵ
ܥ ݄

,݅,
݅

ܸܧ
െ
ൈ
݌ܥ

݄,
݇
ൈ
ߩ ݄

ܵܥ݅,
െ
ܧ,
ܸ
 

C
al

cu
la

te
 d

eg
ra

da
tio

n 
co

st
 (E

qu
at

io
n 

(2
b)

)

D
et

er
m

in
e 

M
ax

im
um

 ൫
Թ
݄,
݅,݇

ܸܧ
െ
ԧ ݄

,݅,
݇

ܦ
ܩܧ

ܧ,
ܸ
൯ 

 

N
o

ܱܵ
ܥ ݄

,݇
ݎ,

ܴ
ܧ,
ܸ
ܱ
ܴ

	 →
ܵܥ

݅
൐
ܱܵ
ܥ ݄

,݇
ݎ,

݅݊
 

ܱܵ
ܥ ݄

,݇
ݎ,

݅݊
൐
	ܵ
ܱ
ܥ ݄

,݇
ݎ,

ܴ
ܧ,
ܸ
ܱ
ܴ

	 →
ܸܧ

ܱ
ܴ
൅
ܱܵ
ܥ ݄

,݇
ݎ,

ܸܧ
ܦ
ܧ
 

ܱܵ
ܥ ݄

,݇
ݎ,

ܴ
ܧ,
ܸ
ܱ
ܴ

	 →
ܵܥ

݅
൐
	ܵ
ܱ
ܥ ݄

,݇
ݎ,

݅݊
 

ܱܵ
ܥ ݄

,݇
ݎ,

ܴ
ܧ,
ܸ
ܱ
ܴ

	 →
ܵܥ

݅
൐
ܱܵ
ܥ ݄

,݇
ݎ,

݅݊
 

ܱܵ
ܥ ݄

,݇
ݎ,

݅݊
൐
	ܵ
ܱ
ܥ ݄

,݇
ݎ,

ܴ
ܧ,
ܸ
ܱ
ܴ

	 →
ܸܧ

ܱ
ܴ
൅
ܱܵ
ܥ ݄

,݇
ݎ,

ܸܧ
ܦ
ܧ
 

ܱܵ
ܥ ݄

,݇
ݎ,

ܴ
ܧ,
ܸ
ܱ
ܴ

	 →
ܵܥ

݅
൐
	ܵ
ܱ
ܥ ݄

,݇
ݎ,

݅݊
 

ܱܵ
ܥ ݄

,݇
ݎ,

ܴ
ܧ,
ܸ
ܱ
ܴ

	 →
ܵܥ

݅
൐
	ܵ
ܱ
ܥ ݄

,݇
ݎ,

݅݊
 

r=
2

ܱܵ
ܥ ݄

,݇
ݎ,

݅݊
൐
	ܵ
ܱ
ܥ ݄

,݇
ݎ,

ܴ
ܧ,
ܸ
ܱ
ܴ

	 →
ܸܧ

ܱ
ܴ
൅
ܱܵ
ܥ ݄

,݇
ݎ,

ܸܧ
ܦ
ܧ
 

Y
es

ܯ
݄,
݇,
ݎ
ൌ
݀ܫ
݈݁
 

ܯ
݄,
݇,
ݐ
ൌ
݄ܥ
ݎܽ
݃݁

 

N
o

i=
1

ԧ ݄
,݅,
݇

ܸܧ
ൌ
ܱܵ
ܥ ݄

,݅,
݇

ܸܧ
൅
ൈ
݌ܥ

݄,
݇
ൈ
ߩ ݄

ܵܥ݅,
െ
ܧ,
ܸ
 

݅ൌ
݅൅

1 

Se
le

ct
in

g 
th

e 
C

S 
i f

or
 c

ha
rg

in
g 

EV
 k

 a
nd

 
th

en
 E

V
 k

 tr
av

el
s t

o 
de

st
in

at
io

n 
of

 tr
ip

 r

D
et

er
m

in
e 

M
in

im
um

 ԧ
݄,
݅,݇

ܸܧ
  

ܱܵ
ܥ ݄

,݇
ݎ,

ܴ
ܧ,
ܸ
ܱ
ܴ

	 →
ܵܥ

݅
൐
ܱܵ
ܥ ݄

,݇
ݎ,

݅݊
 

Y
es

Y
es

N
o

N
o

Y
es

N
o

݄ܰ,
ܸܣ݅
ܥ,
ܪ
൑
ܰ
ܪܥ݅

 

݅൑
ܰ
ܵܥ
 

ܯ
݄,
݇,
ݎ
ൌ
ܦ
ݏ݅
݄ܿ
ݎܽ
݃݁

 

Թ
݄,
݇,
݅

ܸܧ
ൌ
ܱܵ
ܥ ݄

,݅,
݇

ܸܧ
െ
ൈ
݌ܥ

݄,
݇
ൈ
ߩ ݄

ܵܥ݅,
െ
ܧ,
ܸ
 

݄ܰ,
ܸܣ݅
ܥ,
ܪ
൑
ܰ
ܪܥ݅

 

ԧ ݄
,݅,
݇

ܸܧ
ൌ
ܱܵ
ܥ ݄

,݅,
݇

ܸܧ
൅
ൈ
݌ܥ

݄,
݇
ൈ
ߩ ݄

ܵܥ݅,
െ
ܧ,
ܸ
 

݅൑
ܰ
ܵܥ
 

݄ܰ,
ܸܣ݅
ܥ,
ܪ
൑
ܰ
ܪܥ݅

 

ܱܵ
ܥ ݄

,݇
ݎ,

݅݊
൐
	ܵ
ܱ
ܥ ݄

,݇
ݎ,

ܴ
ܧ,
ܸ
ܱ
ܴ

	 →
ܸܧ

ܱ
ܴ
൅
ܱܵ
ܥ ݄

,݇
ݎ,

ܸܧ
ܦ
ܧ
 

݅൑
ܰ
ܵܥ
 

ܱܵ
ܥ ݄

,݇
ݎ,

ܴ
ܧ,
ܸ
ܱ
ܴ

	 →
ܵܥ

݅
൐
ܱܵ
ܥ ݄

,݇
ݎ,

݅݊
 

ԧ ݄
,݅,
݇

ܸܧ
ൌ
ܱܵ
ܥ ݄

,݅,
݇

ܸܧ
൅
ൈ
݌ܥ

݄,
݇
ൈ
ߩ ݄

ܵܥ݅,
െ
ܧ,
ܸ
 

݄ܰ,
ܸܣ݅
ܥ,
ܪ
൑
ܰ
ܪܥ݅

 

݅൑
ܰ
ܵܥ
 

݅൑
ܰ
ܵܥ
 

D
et

er
m

in
e 

M
in

im
um

 ԧ
݄,
݅,݇

ܸܧ
  

N
o

݄ܰ,
ܸܣ݅
ܥ,
ܪ
൑
ܰ
ܪܥ݅

 

݅൑
ܰ
ܵܥ
 

F
ig

u
re

5
:

F
lo

w
ch

a
rt

o
f

th
e

ru
le

-b
a
se

d
p

ro
ce

ss
to

d
et

er
m

in
e

th
e

ch
a
rg

in
g
/
d

is
ch

a
rg

in
g

m
o
d

es
a
t

th
e

en
d

o
f

ea
ch

tr
ip

.

27



Nomenclature493

Indices

a, b Index of buses in the distribution network

h Index of number of cycles of EV’s battery

h Index of hours of a day

i Index of CS

it Number of iterations

j Index of chargers

k Index of EV

m Branch of the distribution network

n Dimension of search space

r Index of trip

s Index of retailer

Parameters

APV
i Area of PV in CS i (m2)

Bba Susceptance of overhead line between bus b and a (mho)

cBAT
p.u Per-unit capacity cost of battery

cPQ
p.u,i Per-unit capacity cost of the active power filtering and reactive power

compensation in CS i

CpAV,CH
h,i,j Capacity of available charger j in CS i (kWh)

CpCH
h,i,j Capacity of charger j in CS i at time h (kWh)

CpESS
i Capacity of ESS of CS i (kWh)

CpEV
k Capacity of EV’s battery k (kWh)

CpGU
i Capacity of CGU of CS i (kWh)

Cpnomk Nominal capacity of EV k (kWh)

Cprek Real capacity of EV k (kWh)

CpTR Substation transformer capacity (kWh)
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DEVOR→CSSE

h,k,r Shortest driving distance of EV k between its origin and the selected CS

in trip r at time h (km)

DCSSE→EVDE

h,k,r Shortest driving distance of EV k between the selected CS and its des-

tination in trip r at time h (km)

DEVOR→EVDE

h,k,r Shortest driving distance of EV k between its origin and destination in

trip r at time h (km)

Gba Conductance of overhead line between bus b and a (mho)

HV Heat value fuel on the operation of gas turbine-generator (kWh/m3)

it Maximum number of iterations

N b Number of distribution network nodes

NCS Number of charging stations

NCY C Number of cycles of EV’s battery

NEV Number of electric vehicles

NRe Number of retailers

NT Number of trips

PPV,nom
i Nominal power of PV system of CS i

PFCH
i,j Power factor of charger j in CS i

Rm Resistance of overhead line (Ω)

Rah Solar radiation at time h (W/m2)

SD0 ,b Nominal apparent electrical load of the distribution network (kVA)

SOCin
h,k,1 Initial SOC of EV k at the beginning of first trip (%)

SOC
ESS

i /SOCESS
i Maximum/Minimum SOC of ESS in CS i (%)

SOC
EV

k / SOCEV
k Maximum/ Minimum SOC of EV k (%)

SOCEV DE

h,k,r Minimum SOC of EV k at the destination of trip r (%)

Tmam
h Ambient temperature at time h (○C)

∆t Time step (s)

ubn/lbn Upper/Lower bound of variables in SSA
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V b/V b Minimum/Maximum nodal voltage of the distribution network (V)

WTh,k,r Waiting time of EV k for trip r at time h (s)

XCS
i Longitude of CS i

XEV DE

h,k,r Longitude of destination of EV k in trip r at time h

XEVOR

h,k,r Longitude of origin of EV k in trip r at time h

Y CS
i Latitude of CS i

Y EVOR

h,k,r Latitude of origin of EV k in trip r at time h

αi,j Harmonic current containing rate in the AC power input terminal of the

charger j of CS i

βi,j Reliability coefficient of the charger j of CS i

γk Power consumed by EV k per km (kWh/km)

ηPV
i Efficiency of PV system of CS i at time h

ηCH
i,j Efficiency of charger j of CS i

ηGU
h,i Efficiency of CGU of CS i at time h

ηESS+ Efficiency of ESS in charging period

ηESS− Efficiency of ESS in discharging period

ηBat+ Efficiency of EV’s battery in G2V operation

ηBat− Efficiency of EV’s battery in V2G operation

κi Overall correction coefficient of CS i

λi Simultaneity coefficient of the chargers of CS i

ρgash Natural gas price at time h

ρRe+,WM
h,s Electricity price purchased from wholesale market by retailer s at time

h ($/kWh)

ρRe−,CS/ρRe−,CS Maximum/Minimum electricity price sold to CSs by retailers ($/kWh)

σ1,σ2,σ3 Fitting parameters for cycling degradation related to DOD

φ1,φ2,φ3, φ4 Fitting parameters for cycling degradation related to discharge rate
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Variables

c1,it Coefficient for balancing exploration in SSA for iteration it

c2,it, c3,it Random number generated uniformly between 0 and 1 in SSA for itera-

tion it

CCS+,EV Cost of energy purchased from EVs ($)

CCS+,Re Cost of energy purchased from retailers ($)

CD Battery degradation cost ($)

CEV The net cost of EVs operation ($)

CEV+,CS The cost of electricity purchased from CSs by EVs ($)

COp,CS Operation cost of CSs ($)

CRe+,WM Cost of electricity purchased from the wholesale market by retailers ($)

DEV
h,k,r Battery degradation of EV k in trip r at time h

DODEV
h,k,r(T ) Depth of charge of EV’s battery k in trip r

DREV
h,k(T ) Discharging rate of EV’s battery k in trip r

Fn,it Position of food source in SSA for iteration it

Ih,m Current of overhead line m at time h (A)

it Number of iterations

itEV/itCS/itRe Number of iterations in EV/CS/Retailer layer

Mh,k,r Mode of electric vehicle k in trip r at time h

NAV,CH
h,i The number of available chargers in CS i

PCS+,EV
h,i,k,r Power purchased from EV k by CS i in trip r at time h (kW)

PCS−,EV
h,i,k,r Power sold to EV k by CS i in trip r at time h (kW)

PDb,h Calculated active electrical load at bus b of the distribution network at

time h (kW)

PDN
Lh

Power loss of distribution network at time h (kW)

PESS+
h,i Charging power of ESS of CS i at time h (kW)

PESS−
h,i discharging power of ESS of CS i at time h (kW)

PGb,h Power generation at bus b of the distribution network at time h (kW)
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PPV
h,i PV generation of CS i at time h (kW)

PCS−,AG
h,i Power sold to the aggregator by CS i at time h (kW)

PCS+,Re
h,s,i Power purchased from retailer s by CS i at time h (kW)

PEV+,CS
h,i,k,r Power purchased from CS i by EV k in trip r in trip r at time h (kW)

PEV−,CS
h,i,k,r Power sold to CS i by EV k in trip r at time h (kW)

PGU
h,i Power produced by CGU of CS i at time h (kW)

PRe−,CS
h,s,i Power sold to CS i by retailer s at time h

PRe+,WM
h,s Power purchased from wholesale market by retailer s at time h (kW)

PFh,b Power factor at bus b and time h

QDb,h Calculated reactive electrical load at bus b of the distribution network

at time h (kVar)

QDN
Lh

Reactive power loss of distribution network at time h (kVar)

RCS Net revenue of CS operators ($)

RCS−,AG Revenues of CSs from selling energy to the aggregators ($)

RCS−,EV Revenues CSs from selling energy to EVs ($)

REV−,CS Revenue of EVs from selling electricity to CSs ($)

RRe Net revenue of retailers ($)

RRe−,CS Revenue of retailers obtained by selling electricity to CSs ($)

SDb,h Calculated apparent electrical load at bus b of the distribution network

at time h (kVA)

SOCDP,EV
h,k,r SOC of EV k in trip r at time h (%)

SOCESS
h,i SOC of ESS of CS i at time h (%)

SOCEV
h,k,r SOC of EV k in trip r at time h (%)

SOCEVDE

h,k,r SOC of EV k at its destination in trip r at time h (%)

SOC in
h,k,r Initial SOC of EV k at the beginning of trip r and time h (%)

SOCR,EV+
h,k,r Required SOC of EV k in trip r at time h during charging period (%)
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SOCR,EVOR→CSSE

h,k,r Required SOC of EV k in order to reach the selected CS from its origin

in trip r at time h (%)

SOCR,EV OR→EV DE

h,k,r Required SOC of EV k in order to reach its destination from its origin

in trip r at time h (%)

SOCR,CSSE→EV DE

h,k,r Required SOC of EV k in order to reach its destination from the selected

CS in trip r at time h (%)

TCYC Period of cycle

Vh,b Voltage at bus b and time h (V)

xfn,it Position of the follower f in the dimension n in SSA

θb,h Voltage angle of the bus b at time h

ρCS−,AG
h,i Electricity price sold to the aggregator by CS i at time h ($/kWh)

ρCS+,EV
h,i Electricity price purchased from EVs by CS i at time h ($/kWh)

ρRe−,CS
h,s Electricity price sold to CSs by retailer s at time h ($/kWh)

ρCS−,EV
h,i Electricity price sold to EVs by CS i at time h ($/kWh)

ρCS+,Re
h,s Electricity price purchased from retailer s by CS i at time h ($/kWh)

ρEV+,CS
h,i Electricity price purchased from CS i by EVs at time h ($/kWh)

ρEV−,CS
h,i Electricity price sold to charging station i by EVs at time h ($/kWh)
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