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Abstract: Based on the data collected from smart meters, electricity pricing models can be 

developed to balance power supply and demand in each time slot and obtain the optimal 

consumption loads and prices. However, in real life, users’ reserved consumption requirement loads 

sometimes deviate significantly from the optimal consumption loads obtained from models, which 

results in overloaded power systems or even power cuts. To address this issue, an Engineering 

Process Control monitoring strategy has been proposed in this paper to minimize the difference 

between the optimal and the users’ reserved consumption requirement loads. We proposed an 

exponential weighted moving average model to predict the load difference in future time slots, and 

also developed a novel quadratic function based demand response mechanism to adjust the power 

price for power providers. The demand response mechanism can be used to adjust the price in the 

future time slots when the predicted demand exceeds the upper or lower boundary. Simulation 

results indicate that the quadratic function adjustment strategy has excellent performance in a 

practical power market in Singapore. Compared with the linear function based adjustment method, 

the proposed quadratic function based adjustment method decreases the adjustment times and 

standard errors of residuals, and increases the social welfare and power suppliers’ profits under the 

same boundary conditions. In addition, the performance of the proposed strategy demonstrated its 

competency in peak-cutting and valley-filling and balancing energy provision with demands.  

Keywords: Smart grid; power load monitoring; engineering process control; exponential weighted 

moving average  

1. Introduction 

The development of urbanization has improved life quality dramatically, although some issues 

arose as a result, including environmental pollution. Currently, around 50% of the global population 

live in modern cities. Although cities only account for 2% land surface, their inhabitants are 

responsible for 75% of total energy consumption and 80% of CO2 emission”[1]. This has caught 

more and more attention in the research community, where urban transformation and energy 

sustainability have been brought to the forefront. When it comes to energy consumption, a growing 

number of people recommend using renewable and clean energy, such as electricity, to replace 

traditional coal fossil energy. There is no doubt that electricity is convenient. However, it is 

important to note the limitations of the rigid architecture of the traditional power grid , for instance 

the lack of flexibility to connect with new energy, the delay of information transmission caused by 

the drawbacks of communication network, and so on. 

With the development of artificial intelligence (AI), IBM in the USA proposed a smart grid 

(SG) in 2006 which is known as “the future energy grid” [2].  Comparing to the previous generation 

of grids, its safety, reliability, clean, high efficiency and sustainability have been significantly 

improved. America, the European Union and China have chosen pilot cities where SGs[3] are trailed. 
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Different from the traditional grid, the SG can induce more suitable uses of the electrical facilities, 

ensure a stable and reliable energy load and a supply-demand balance. As a part of an SG system, 

smart meters with implemented novel sensor technology make it possible to exchange data between 

users and energy providers in real time. 

Owing to the advancing communication technology, the development of smart meters is rapid. 

Many countries are installing smart meters on distribution networks in large numbers, such as in the 

U.S., the European Union, Netherlands and Asia-Pacific region [4]. Apart from having the 

measurement function of a traditional meter, the smart meter also comprises of a data transmission 

function - it is able to monitor, analyze, predict and manage the consumption load. This leads to the 

development trend of real-time pricing (RTP) in real life[5]. Yu et al. presented a Stackelberg game 

and proposed a RTP demand-response (DR) algorithm to induce less consumption during high 

electricity price[6]. In contrast to conventional pricing structures, such as fixed pricing, critical peak 

load pricing and time of use pricing, an appropriate RTP can balance energy provision and maximize 

the suppliers’ and the demanders’ satisfaction level with its flexibility and intelligence[7].  

The main target of the worldwide scholars on RTP research is to maximize social welfare. In 

order to achieve this, Samadi et al. proposed a real-time pricing model and Lagrange dual algorithm 

to make the RTP strategy satisfying for the energy providers and users [8]. Wang et al. considered a 

social welfare maximization model based on demand-response, described a complementarity 

problem based on the Karush-Kuhn-Tuker condition, and determined the basic electricity price with 

Lagrange multiplier in the dual method [9]. Samadi et al. developed a Vickrey-Clarke-Groves 

mechanism for Demand Side Management which aims to maximize the social welfare in the future 

smart grid [10]. Samadi et al. researched a pricing algorithm to minimize the peak-to-average ratio in 

aggregate load demand with an iterative stochastic approximation approach [11]. Zhu et al. proposed 

an expectation social welfare maximization model, considering the classification of the smart home 

appliances and the correlation of power consumption of multi-time slots[12]. 

 Lately, RTP models have been prosperously developed and widely applied in model 

establishment and algorithm improvement. Under a hierarchical market framework between the 

power supplier and multi-microgrids, Yuan et al. came up with a real-time pricing model, and they 

solved the model with a hybrid algorithm combining the particle swarm optimization (PSO) and the 

branch and bound algorithm (BBA) [13]. Chiu et al. put forward an energy sale and redemption 

pricing framework that exploits a time-dependent pricing strategy [14]. Tao et al. took the effect of 

the random fluctuation of electricity consumption into consideration when establishing a distributed 

genetic RTP scheme for smart grid with multiple utility companies and users based on expectation 

bilevel programming. Then they solved the problem with a distributed genetic algorithm[15].  

Although RTP offers the optimal pricing policy and the corresponding theoretical consumption 

load with stable and reliable features, it ignores the practical application. The RTP model aims to 

balance the consumption load by adjusting the real-time price. However, the fact is that most users 

will be apathetic about the pricing changes if they have to continuously adjust the consumption load 

to achieve the changed price[3]. As a result, the actual consumption load becomes out of control 

again, which may cause the SG to lose its stability and reliability or even result in blackouts.  

In order to maintain the safety, stability and reliability of the SG, we should work out a strategy 

to monitor the users’ electricity consumption load before the abnormal consumption load occurs 

based on the users’ demand response. It can make users’ actual consumption load as close as possible 

to the theoretical one achieved by inducing changes in the users’ electricity-usage behavior. The 
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users can have a reasonable power usage plan with the help of smart appliances’ reserving function. 

What’s more, for this plan, they can also use the intelligent terminal equipment such as escalators, 

which link the smart appliances with the intelligent terminal equipment through the network. In fact, 

there have been quite a few experts who are doing research on how to monitor and control the 

consumption load in SG, but they rarely consider reducing the number of price adjustments.  

He et al. proposed a bounded linear adjustment strategy to monitor users’ reserved consumption 

requirements with an EWMA model to forecast the load differences in the next time slots. They 

took the number of adjustments into consideration, but the number of adjustments is not small 

enough, and the social welfare and profit are not discussed [16]. Leite et al. used a multivariate control 

chart to monitor the measured variance to detect nontechnical losses and applied a path finding 

procedure to locate the consumption point with the non-technical loss[17]. Mortaji et al. proposed a 

load shedding autoregressive integrated moving average time-series prediction model to reduce 

customers' power outage[18]. Wan et al. constructed an integration process of abnormal electricity 

based on statistical process control and fuzzy diagnosis technologies to find the reason of the 

abnormal of electricity[19]. Xie et al. designed a wide-area monitoring and early-warning 

subsynchronous oscillation system to keep the system stability and equipment safety[20]. Liu et al. 

solved the simultaneous action problems under real time non-intrusive load monitoring framework 

applying a robust real time monitoring approach[21].  

To summarise, the Engineering Process Control (EPC) strategy can avoid the frequent price 

adjustment and obtain a stable consumption load in SG by monitoring the difference between the 

theoretical consumption load and the reserved one in future time slots. Box used the EPC strategy 

to monitor the product measurement. Adjustment will take place only when the monitored process 

exceeds the given upper or lower boundaries [22]. In another words, the adjustment is a “trend” rather 

than a “point”. This ensure the number of the adjustment was decreased and the product 

measurement value sit within a certain range. Li et al. took advantage of the EPC strategy to adjust 

the number of staff when monitoring the service level in call center. Their purpose was to acquire a 

better service level [23]. Govind et al. proposed a multi-variable process adjustment state-space model 

when the adjustment cost is fixed [24]. To detect a range of shifts in the location parameter, Liu et al. 

provided a sequential rank-based adaptive nonparametric cumulative sum control chart, the chart 

efficiently detected various magnitudes of shifts[25]. Wang et al. designed a control chart to improve 

the efficiency of detecting dependence shifts in mixed type data in industrial engineering[26]. 

Wohlers et al. explored the KPI concepts and monitored them in the mechatronic system to evaluate 

them for a manufacturing process[27]. While EPC strategy is a widely studied topic in products, 

manufacture and service fields, few research could be found in the SG. 

   In this paper, we propose an EPC monitoring and quadratic function adjustment strategy to 

balance the consumption load by adjusting the real-time price less frequently rather than the linear 

function adjustment strategy proposed in Ref. [16] in the SG system. In the SG system, the users 

can reserve power in advance for one and more days through smart meters after getting the real-

time price from the energy providers. Then the energy providers monitor the reserved consumption 

load of users and calculate the difference between the theoretical consumption load and the reserved 

one. This paper predicts the difference between the theoretical consumption load and the reserved 

one resulting from the smart meters with the exponential weighted moving average (EWMA) in the 

next time slots. Energy providers monitor the power consumption process by observing the change 

of the EWMA values. When the EWMA value exceeds the upper or lower boundaries in any time 



 

slots, the energy providers will adjust the electricity price using the quadratic function adjustment 

strategy to induce the users to consume electricity reasonably. This can lead to less frequent 

adjustments and a more stable power consumption load than those by applying the linear one as 

stated in Ref. [16]. The EWMA has been studied by the scholars for many years. Zaman et al. 

proposed an EWMA scheme for adapting CUSUM accumulation error from monitoring the process 

location [28]. Many experts put forward an EWMA control chart catering to different statistical 

characteristics. Jiang et al. researched abnormal distributed EWMA control chart to monitor and 

detect the abnormal quality[29]. Malela et al. developed an EWMA control chart based on the 

Wilcoxon rank-sumstatistic using repetitive sampling to improve the sensitivity of the EWMA 

control chart to process mean shifts [30]. To monitor both the small and the large shifts simultaneously, 

Zaman et al. designed an adaptive EWMA for dispersion parameter in connection with Huber and 

Tukey's bisquare functions[31].   

   The main contributions of this paper are as follows. 

1) A novel quadratic function bounded adjustment strategy has been proposed in this paper to 

monitor the difference between the users’ optimal and reserved consumption requirement 

loads in power system. 

2) The price is adjusted by the power providers in the next time slots only when the predicted 

load difference value exceeds the upper or lower boundary by using a demand response 

mechanism for the power price. The price demand response mechanism can induce the 

users to adjust their consumption requirement. 

3) Our proposed quadratic function adjustment method outperforms the linear function 

adjustment method in terms of price adjustment times, standard error, social welfare and 

suppliers’ profit. The less frequently the price changes, the more feasible the application is. 

4) The proposed strategy has good performance in cutting peak and filling valley, balancing 

energy provision and preventing of power system blackouts. 

 The rest of this paper is organized as follows. Section 2 introduces the real-time pricing model. 

In Section 3, we offer the detailed EPC strategy monitoring change of the differences between the 

theoretical consumption load and the reserved one within different time slots. Section 4 includes the 

model simulation and result analysis. In Section 5, we not only discuss the effects of the different 

boundaries, targets and adjustment methods for the monitoring and adjustment process, but also 

compare the performance between the proposed strategy and the liner one. Besides, the practical 

case study is discussed. Section 6 is the conclusion and observation.    

2. Real-time pricing model  

2.1 Model assumption 
This paper regards some class of users as the object of research. We consider an SG system 

consisting of an electricity company, a few users installing smart meters and a regulatory authority. 

The electricity company collects the minimum and maximum consumption requirement load from 

every user in future time slots through smart meters. The electricity company and the users can 

exchange real-time price information in the current and next time slots. After receiving the price 

information shown by the smart meters, the users can use electricity more reasonably. In the system, 

there are N users ( N defines the number of the users), where N = N , ={1,2, , }NN , is the set of 

the users. The time period operating the users’ electricity consumption load is divided into T  time 

slots (T defines the number of time slots), where T T ,  1,2, ,T=T , T is the set of all time slots. 

For each user i , let tx
i denote the amount of power consumed by the user i  in time slot tT . 

Based on the data provided by the smart meters, the electricity company obtains the minimum and 



 

maximum power requirements of every user i in every time slot tT  respectively, namely 
tm
i and tM

i . The consumed power tx
i  has to satisfy t t tm x M

i i i
  . 

2.2 Utility function of some class of users  

From the microeconomics point of view, we adopt Von Neumann-Morgenstern’s utility function 

for decreasing risk aversion ( ),U x   to show the satisfactory level of the users’ power consumption. 

x  is the consumption load, and the parameter ( )1,4   shows the users’ power consumption 

intention, which varies in different time slots and for different users. Assume that there is no 

satisfaction when the users do not consume power, which means there is no utility. The utility 

function has three main properties: I. Utility function is non-decreasing, which means that the users 

will not stop increasing the consumption load until it reaches the maximum. II. The marginal benefit 

of the users is a non-increasing function. That shows that the utility will not increase any more if 

the maximum consumption level, i.e. the saturation phenomenon appears. This indicates that the 

utility function is a convex function. III. The monotonic increases in the parameter . In other words, 

the utility increases with the increase of parameter [8].  

We choose logarithmic functions for some class of users as follows[32]:  
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The first partial derivative of (1) to consumption load x  is shown as follows:  
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It is in accordance with Property I.  

The marginal benefit of the users is (2), and we have: 
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It is a non-increasing function and meets Property II.  

The first partial derivative of (1) to the parameter   is demonstrated as follows:  

 ( )ln 1 0
U

x
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.  (4) 

When the consumption load 0x , it satisfies Property III. 

In order to research the users’ consumption load, apart from establishing the utility function, we  

also consider the consumption cost. Suppose the electricity providers offer the directing electricity 

price through the smart meters as p dollars/kWh, the consumption cost is px dollars. The users’ 

welfare function is as follows[8]: 

  = −( , ) ( , ) tt

t

t t t

i i i i i
W x xU p x   (5) 

where ( , )
t t

i i
W x  is the user i ’s welfare function in time slot t . Assume that  all users aim to get 

the maximum welfare, i.e., they try to achieve the maximum utility and the minimum cost.  

2.3 Cost function of the electricity company 

We denote tL  as the generation capacity of the electricity company in t time slot and assume 

the maximum and the minimum generation capacity as respectively 
max

tL and
min

tL . The maximum 

generation capacity from electricity company is the sum of the users’ maximum consumption loads, 

and the minimum generation capacity from electricity company is the sum of the users’ minimum 

consumption loads in t time slot, i.e., 
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If the users reserve the consumption load before a week and the electricity company supplies 

them in accordance with the reservation, the blackout will not happen resulting from insufficient 

power supply in SG.  

We define the energy supply cost ( )tC L of the electricity company in time slot t  as follows[8]:  

 ( ) = + +2

t t t
C L aL bL c ，  (8) 

where  0, , 0a b c  are pre-determined cost parameters. The revenue function of the electricity 

company is t tp L . Then the profit function of the electricity company in time slot t is  

 = −( ) ( )P L p L C Lt t tt .  (9) 

2.4 The real-time pricing model  

In the SG system, we formulate the optimization problem. We pursue the maximum utility of 

the users and the minimum cost of electricity providers. Meanwhile, the total consumed power cannot 

exceed the available capacity to avoid the blackout caused by the insufficient electricity supply . Thus 

the RTP model is as follows[8]: 
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where 
t

i
x refers to user i ’s consumption load in time slot t and tL refers to the generation capacity 

in time slot t .  

Because the objective function (10) of the model is a concave function, and its constraint 

condition (11) is a linear function, the problem (10)-(13) is a convex optimization problem. Thus, 

some convex programming methods, such as interior point algorithm, can be employed to obtain 

the consumption load and generation capacity. But these methods cannot obtain the real-time price, 

which is an important basis for monitoring and adjusting the consumption load in this paper. 

Therefore, this paper transforms the problem into a Lagrange dual problem with the Lagrange dual 

method in each time slot tT . Then we can obtain the optimal Lagrange multiplier and theoretical 

power consumption load of the users. The optimal Lagrange multiplier is exactly the electricity 

price in that time slot. The detailed derivation process is available in Appendix A.  

3. EPC adjustment strategy 

Solving the problem (A4) (in Appendix A), we can get the optimal price
*

tp in t time slot and 

theoretical optimal consumption load
*

tx  . The energy provider can get a stable and reliable 

consumption load according to
*

tx . The users consume reasonably electricity with the optimal price
*

tp . But it only happens under an ideal condition. In most cases, the reserved consumption load, on 

which the feedback to energy provider through the smart meters, is far different from the optimal 

consumption load
*

tx . Even in extreme cases, the reserved consumption to the users offered by the 

energy provider may cause the overload or blackout at peak time. To solve the overload, the energy 

provider has to increase the generation capacity which will make the energy costfar bigger than the 

profits. Therefore,the energy provider always try to keep away from this scenario. The best way to 

avoid this is to induce the users to consume power properly.  

The EPC strategy can help the energy provider obtain stable consumption load in real life. 

Considering the demand response mechanism for the power price to the users, we calculate the 



 

difference between the theoretical consumption loads with the RTP model and the reserved one. 

After that, we adjust the difference when it exceeds the upper or lower boundaries with the EPC 

adjustment strategy. The energy provider makes users adjust their actual consumption loads by 

changing the price. As a result, the reserved consumption load is close to the theoretical consumption 

load. What’s more, we obtain the least adjustments with the EPC strategy. Because the fluctuation 

range of consumption load difference is limited, this paper predicts the next consumption load 

difference with the EWMA estimation model. 

3.1 EWMA estimation model 

The users reserved the consumption load of the next time slot (one day or even one week) via 

smart meters, and the reservation has an important reference value for exactly adjusting the 

consumption requirement load and making a reasonable price.  

For exactly getting the degree of difference between the reserved consumption load tx of users 

in time slot t and the theoretical one
*

tx , we define the difference as ty [16]:    

 *

t t ty x x= −   ( 14) 

We predict the difference value 1ty +  in the next time slot +1t with the EWMA value of past adjusted 

difference values. The detailed operational process is as follows. 

The time series of original difference value is set as , , 1, ,1ly l t t= − , and the time series of the 

adjusted one is , , 1, ,1ly l t t = −  . Then the EWMA estimate value 1ty +   for the difference value 

1ty +  in the next time slot 1t + is[16]: 

    
− −

  = +  （ + + ）, 0 1
2

+ 1 1 2t t t t
y y y y   (15) 

where the parameter = 1 − is the instability parameter, and is the smoothing constant. Simplifying 

(15), we get  

  = +
+ 1t t t

y y y .  (16) 

3.2 EPC adjustment strategy  

Now we consider how to make the EPC strategy to let the deviation from a target load 

difference S  become minimal. We will not adjust the price until EWMA value 1ty +  exceeds the 

boundary, i.e., 

 ,+1 1 +1 2 1 20 0  ,t tB B B Boy yr    ， (17)   

where 1B and 2B are the preset regulated upper and lower boundaries. During the monitoring, if 1ty +

satisfies (17), it means that the EWMA value 1ty + exceeds the boundary and needs to adjust to
 
a 

target S  . The simulation results show that it is worth discussing to achieve a stable adjustment 

system by finding a way to set the target parameter 1 0E    and 2 0E   properly. Section 5 will 

discuss this issue in detail.  

If 1ty + satisfies (17), it expresses that the reserved consumption load of the users has exceeded 

the stable boundary. In order to avoid the users’ unreasonable consumption, the energy provider 

takes actions based on a demand response mechanism for the power price. It induces the users to 

change their electricity consumption to achieve a stable and reliable consumption load. When 

monitoring the reserved consumption load of the users, we get a time series 
1

T

t t
y

=
 of EWMA 

estimation. On the one hand, if the estimated value 1ty +  exceeds the upper boundary 1B , it indicates 

that the reserved consumption load is too high. At this moment, the power provider needs to raise 



 

the electricity price to guide the users to reduce the reserved consumption load reasonably. On the 

other hand, if 1ty + is under the lower boundary 2B , it shows that the reserved consumption load is 

too low and there is enough electricity left to use. The provider then encourages the users to increase 

the reserved consumption load by decreasing the electricity price. The users can even be encouraged 

to store the power in a user-owned battery, which can save the consumption load when the electricity 

price rises. By applying this adjustment method, the users are induced to consume reasonably. 

Consequently, it ensures a stable and reliable generation capacity from the power providers.   

The above adjustment strategy needs to quantitatively analyze the relationship between the price 

changes and the users’ consumption load. To illustrate the adjustment process of this strategy, the 

following theorem provides a price adjustment strategy formulated by the demand response 

mechanism for the power price. The behavior of the demand response mechanism for the power 

price can also be accurately modeled by certain demand functions. In this paper, we consider 

quadratic demand functions.  

Theorem 3.1 Assume that the users are sensitive to the electricity price changes and that the demand 

function is a quadratic function. That is to say, EWMA estimating difference value 1ty +  is quadratic 

to the corresponding EWMA price with the form
2

1 1t ty kp+ += −  , 0k    is a constant. Then, if

1+1   0t By   , 1ty + is adjusted to 1 1[0, )E B , and the price adjustment is shown in (18), 
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If 2+1 0 t By   , 1ty + is adjusted to 2 2( ,0]E B , and the price adjustment is shown in (19), 
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Proof. According to the assumption, in time slot 1t + , if 1+1  t By  , 1ty +  need to be adjusted to

1 1[0, )E B . At this point, the EWMA price shifts from 1tp + to 1tp +
 , where 1= (1 )t t tp p p +

 + −  is the 

EWMA predict value for the reserved electricity price +1tp in 1t + time slot, tp is the electricity price 

adjustment value of the current price tp in time slot 1t + , and 1tp +
 is the adjusted value of 1tp +  in 

time slot 1t + [16]. Hence, 
 

 ( )1= 1t t tp p p +
 + − .  ( 20) 

where the price tpmeans that if the EWMA value of the price 1tp +
  is taken and the price must 

be adjusted to tp in time slot t . Under the assumed condition
2

1 1tE kp +
= − , we have that  

 ( )2 2
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− = − − ，  (21) 

Substitute 1tp + and 1tp +
 into (21), we have that 
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Suppose the price adjustment as 1 :t t tg p p+
 = − , we have that 12 2t t t t t t tp p p p p g p+

     + = − + = + . 

Hence,  
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Then the effect 1tg + of price adjustment is
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，  (25) 

We decrease the EWMA estimate value 1ty +  by increasing the price, and achieve the positive root 

of the price adjustment  
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y E
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Similarly, if 2  +1t By  , 1ty +  is adjusted to 2 2( ,0]E B , the formula (19) holds.  

The proof is completed.                                                                   

□
 

3.3 Consumption load monitoring and price adjustment algorithm  

Given the basic principle of EPC, we can assume that in the continuous monitoring consumption 

load process, once the price is adjusted in a certain time slot, the price in subsequent time slots will 

also undergo the same adjustment. Therefore, in the actual adjustment process, the cumulative price 

adjustment 1tv +  is as follows[16]: 
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= + .  (27) 

Under the demand response mechanism for the power price, according to the assumption of 

theorem 3.1, the adjustment value of consumption load is quadratic with the cumulative price 

adjustment value. This means that when the EWMA estimate difference value 1ty +  satisfies Eqs. 

(17), the real-time price is adjusted to change the users’ reserved consumption load 1tx +
 to achieve 

the balanced state. On the one hand, when the rising price appears in cumulative price adjustment 

quantity,  i.e. +1  0tv  , the reserved consumption load of users will decrease. On the other hand, 

when the decreasing price appears in cumulative price adjustment quantity, i.e. +1  0tv  , the reserved 

consumption load of users will increase. Then we have 
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The adjusted value of the difference value 1ty +
  between the adjusted reserved consumption load 

1tx +
 and the theoretical load

*

1tx +  is  

 *

1 1 1t t ty x x+ + +
 = − .   (29) 

Then, 
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.  (30) 

Based on the EPC strategy, the algorithm of consumption load monitoring and price adjustment 

is as follows. 

Initialization: By solving the RTP model (A4) (in Appendix A), we can get the optimal price 

time series  *

1

T

t t
p

=
and theoretical consumption load time series *

1

T

t t
x

=
. According to the feedback 

data of the smart meters, we can gain the reserved consumption load time series 
1

T

t t
x

=
of the users. 

According to Eqs. (14), we can get the time series 
1

T

t t
y

=
of difference between original reserved 

consumption load tx and the theoretical one
*

tx . Let the adjustment value of the initial consumption 

load difference be 1 1y y = , and the initial adjusted electricity price be 1 1*p p = . Set the initial EWMA 

value 1 0y S= = , 1 1p = , and hence the initial predicted error is 1 1 1 1e y y y = − = . Given the initial 

price adjustment effect 1 0g = , and hence the cumulative price adjustment effect is 1 0 = . Suppose 

the parameters 0k  , 1 10 E B  , 2 2 0B E  ,  0,1  . In time slot , 1, , 1t t T= − , we adjust the 

price with Algorithm 1 to change the consumption load difference.   

Algorithm 1 (EPC Adjustment Strategy) 

Step 0: Initialization. Set 1=t . 

Step 1: Set 1= (1 )t t ty y y +
 + − , 1= (1 )t t tp p p +

 + − . 

If Eqs. (17) is not satisfied, 1 0tg + = , return Step 2. Otherwise, return Step 4. 

Step 2: Set 1 1+t t tv v g+ += , 1 1 1+t t tp p v+ + += . If 1 0tv +  ,set 
2

1 1 1t t tkx x v+ + += − ,  

if 1 0tv +  , set
2

1 1 1t t tkx x v+ + += + ,
*

1 1 1t t ty x x+ + +
 = − , 1 1 1t t te y y+ + +

= − . 

Step 3: Replace t by t + 1 and go back to Step 1. 

Step 4: If 1 1  ty B+  , set
11

1 1 1

1 2
: =

t
t t t

y E
g p p

k

+
+ + +

−
+ −

 
 
 

; 

If 1 2  ty B+  , set 
21

1 1 1

1 2
: =

t
t t t

y E
g p p

k

+
+ + +

−
+ −

 
 
 

, then return Step 2 . 

 

3.4 Flowchart of the wholesale method 

Fig.1 shows the flowchart of the wholesale method. According to Fig.1, we first solve the RTP 

model. Secondly, we monitor the difference between the reserved consumption load and the 

theoretical one. Finally, we  adjust the price with the quadratic function adjustment strategy if 

EWMA values exceed the preset upper and lower boundaries. 
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4. Result analysis  

In this section, we analyze the performance of EPC monitoring and adjustment strategy through 

the simulation results. 

 In the RTP model, we suppose that there are 50 users ( 50N = ) and the time cycle (3 days) 

from Thursday to Saturday is divided into 72 time slots 72T = . The power demand parameter of the 

users ( )  1,4 in utility function Eqs. (1) is selected randomly and remains unchanged during the 

monitoring. We assume the parameters , ,a b c in cost function are respectively assumed as 0.01,0,0 . 

4.1 The optimal consumption load of the RTP Model  

Based on the data provided by the smart meters, we obtain the reserved electricity consumption 

requirement load series  
1

T
t

i t
x

=
 and the minimum and maximum power requirements  

1

T
t

i t
m

=

 and 

 
1

T
t

i t
M

=

of every user i . Hence, we gain the total reserved power consumption 
1

N
t

t i

i

x x
=

=  and 

the aggregated minimum and maximum power requirements 
1

N
t

t i

i

m m
=

=  and 
1

N
t

t i

i

M M
=

= in each 

time slot tT . With tm , tM  and the parameters given above, we get the theoretical consumption 

load of the users 
*

tx  and optimal price 
*

tp  by solving the RTP model (A4) (in Appendix A). It is 

assumed that original reserved price tp  is the optimal price
*

tp  , tT  . The simulation results are 

Fig.1. Flowchart of the proposed monitoring and adjustment strategy 



 

shown in Fig. 2. As illustrated in Fig. 2, the theoretical power consumption load is stable and the 

reserved power consumption load of the users fluctuates greatly. In order to make the users consume 

power reasonably, it is necessary to adopt the EPC adjustment strategy to adjust the price by the 

energy provider. Then this action can cause the adjustment of the actual consumption load of the 

users.  

 

4.2. Process of EPC monitoring and price adjustment  

In order to shift  peak load and save energy, we can achieve the stable consumption load of the 

users by implementing the EPC adjustment strategy. We monitor the EWMA estimate value  
1

T

t t
y

=
 

for the adjusted difference time series 
1

T

t t
y

=
 , the difference time series 

1

T

t t
y

=
is generated from the 

reserved consumption load tx and the theoretical consumption load 
*

tx . The optimal price time 

series  *

1

T

t t
p

=
is the original reserved price. Once a certain 1ty + is greater than the upper limit 1B or 

less than the lower limit 2B , it demonstrates that the time series  
1

T

t t
y

=
  becomes abnormal again in 

time slot 1t + . Thus, according to the Theorem 3.1 and the demand response mechanism for the 

power price of users, the energy provider adjusts the price to change the time series  '
1

T

j j t
y

= +
or the 

time series of the adjusted consumption load  '
1

T

j j t
x

= +
 to a normal range. The  '

1

T

j j t
y

= +
above is the 

adjusted time series of the consumption load difference of the users in the subsequent period. The 

adjusted price sequence '
1

T

j j t
p

= +
 is the actual price of energy providers. 

In Algorithm 1, the parameters are supposed as follows, 50k = ,  = 0.2 , = − =
1 2

4.2B B , =
1

0E ,

=
2

0E . On the one hand, when 1ty +  is greater than the upper limit 1B , the energy providers will 

adjust the price to make 1ty + go down to 1E . On the other hand, if 1ty + is less than the lower limit 

2B , the energy providers will change the price to make 1ty + increase to 2E . The simulation results 

of the monitoring and adjustment are shown in Fig. 3 and Fig. 4. In Fig. 5, the social welfare and 

the profits of the electricity company among the EPC adjusted pricing, the original reserved pricing 

and the fixed-pricing strategies are compared, and the parameter ( )  1,4 in utility function Eqs. 

Fig. 2. Comparison of theoretically optimal and actually reserved power consumption. 



 

(1) is selected randomly.  

We can draw a conclusion from Fig.3 that after seven minor changes, the difference between 

consumption loads is stable and this is distinct from the initial unstable scenario. This is the expected 

adjustment effect. The empirical average adjustment interval (AAI) is  AAI=71/8=8.9, the standard 

error σ (SD(σ)) of residuals is calculated by[16] 

  

 ( )
=

= −
T

t
t

e T2

1

/ 1   ( 31) 

=

= =
72

2

1

/ 71 8.22
t

t

e . 

There are no points above the boundary 3 , which means adjustments will not cause abnormal 

phenomena. 

 

Fig. 3. Process of EPC monitoring and adjustment. 

Fig. 4. Accumulated effect of price adjustment. 



 

Fig.4 shows the accumulated effect of the price adjustment. It can be seen from Fig. 4 that the 

price in 16-25 (4 p.m. of Thursday to 1 a.m. of Friday) is decreasing. Meanwhile, the price has risen 

with the increase of reserved consumption load on Friday and Saturday, where the maximum price 

adjustment is $0.79/kWh according to Eqs. (27). This induces the users to buy more power after 

work from Thursday to Friday morning, and to store the purchased power in the battery for future 

when the prices rise in the coming two days. 

 

4.3. Social welfare and the profit of the electricity company 

From Fig. 5, we can see that by applying the EPC price adjustment strategy, the social welfare 

and the profit of the electricity company achieved the highest figures comparing to those obtained 

under the other two scenarios. Therefore, it can be concluded that the EPC price adjustment 

strategy not only helps with peak shaving and valley filling, but also contributes to improving the 

whole social welfare and profit of the electricity company.  

5. Discussion 

5.1 Performance analysis of different adjustment targets  

Fig. 5. Social welfare and profit in different pricing strategies. 



 

In order to keep the stable consumption load difference during monitoring and adjusting the 

system, we should consider the expected values of 1
E and 2

E .  

When 1
E  and 2

E   have different parameter values, three indicators are adopted in our 

simulations: number of adjustments, the standard error  (SD ( )) of residuals and the maximum 

price adjustment. Since there is no theoretical optimal formula for the parameters 1
E and 2

E  up to 

now, we have to adjust them by experiments from Algorithm 1 instead of the optimal 1
E and 2

E . 

If the reserved users’ consumption load is consistent with the theoretical load, it would be the 

optimal one. At this moment, the value (EWMA value after adjustment) should be theoretically set 

to 0 when we apply the EPC adjustment strategy. Thus, we will discuss the situation of adjusted 

target values 1
E  and 2

E  as 0. Meanwhile, we consider

to adjust 1
E  and 2

E  to 1
/ 2B  and 2

/ 2B   with 

different parameters  0.2,0.3,0.4   and various boundaries  = −  ， ，， ，， ，,
1 2

1 1.5 2 2.5 3 3.5 4 4.5B B

respectively. The simulation results from the implement of Algorithm 1 over 72 time slots are 

illustrated in Fig. 6.  

We can learn that in Fig. 6, (a,b,c) depict the number of adjustments, (d,e,f) illustrate the standard 

error of residuals and (g,h,i) show the maximum price adjustments. It is shown that when adjustment 

boundaries are set appropriately, not only a small number of adjustments can be obtained, 

but the 

standard errors of residuals are also controlled within a certain range[8.15 8.45]， . It is  

not hard to see that as the EPC adjustment boundaries ( = −
1 2

B B ) increase, the numbers of  

adjustments gradually decrease and tend to be stable after the boundary = − =
1 2

4B B . Furthermore, 

the maximum adjustments of price are mostly under the adjustment target

= = = −
1 1 2 2 1 2

/ 2, / 2( )E B E B B B  when the adjustment targets = =
1 2

0E E  appear. For example, when 

the adjustment targets are set as = =
1 2

0E E , the model obtained a smaller number of adjustments (9 

adjustments) and the maximum adjustment of price ($0.80/kWh) from Eqs. (27)than those of the 

Fig. 6. Various indicators comparision with varing parameters.

 



 

adjustment target = = = −
1 1 2 2 1 2

/ 2, / 2( )E B E B B B  , which had 13 adjustments and maximum 

adjustment of price ($0.82/kWh) from Eqs. (27) with =0.2  , 1=4B  , 2 4B = −  . According to the 

observations, we conclude that we can choose proper  ,
1 2
,E E  by weighing the three indicators. 

 

5.2 Comparison with the application of the linear function adjustment strategy 

To further illustrate the rationality of the proposed quadratic function adjustment strategy 

in Algorithm 1, we compare the operating results of the proposed strategy with that of the 

linear function adjustment strategy provided in [16]. Simulation assumptions are the same in 

Section 4 and the parameters are set as 50k = , = 0.2 , 1 2
4.5B B= − = , =

1
0E , =

2
0E .  

 

Table 1 

Comparison results with two scenarios 

 Quadratic function 

adjustment 

Linear function 

adjustment 

Number of adjustments 7 15 

Standard error 8.32 11.70 

Social welfare 5626.9 3860.4 

Profit 3877.3 2776.9 

The simulation results over 72 time slots are shown in Table 1, Fig.7, Fig.8 and Fig.9. As 

indicated by Table 1 and Fig. 7 ,  the number of adjustments and the standard error in the 

scenario where the linear demand function is applied are greater than those in the scenario 

where the quadratic adjustment strategy is applied. 

 

Table 1 and Fig. 8 also show that the social welfare and the profit of the electricity company 

is higher when the quadratic demand function is applied than when the linear one is applied.  

 

 

Fig. 7. Comparison of EPC monitoring and adjustment in different adjustment strategy. 



 

 

 

 

 

 

Fig. 9 portrays the accumulated effect of the different price adjustment. The effect of 

quadratic demand function price adjustment is less than the linear one.  

 

5.3 Performance analysis on different demand function adjustment  

To verify the proposed quadratic function adjustment is more reasonable to users than the linear 

one, the comparison between the quadratic function and the linear function adjustment method is 

Fig. 9. Comparison of accumulated effect in different adjustment strategy. 

Fig. 8. Comparison of Social welfare and profit in different adjustment strategy. 



 

conducted and the results are shown in Fig. 10 and Fig. 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 shows the adjustment target = =
1 2

0E E , and Fig. 11 depicts the adjustment target the . 

We observe that when EPC adjustment boundaries ( = −
1 2

B B ) are set as 4 and 4.5, the number of 

adjustments of the quadratic demand function adjustment, which is between 7 and 20, is less than 

that of the linear demand function adjustment, which is between 13 and 23 (Fig. 10. a,b, Fig. 11. 

a,c). What’s more, the standard errors of residuals of the quadratic demand function adjustment, 

which is between 8.15 and 8.39, are mostly smaller than those of the linear demand function 

adjustments which is between 8.07 and 11.69, and the trend is more stable (Fig. 10. d, e, f, Fig. 11. 

d, e). It is worth mentioning that even the number of adjustments and the  

standard errors of residuals with the quadratic function adjustment are a 

little  higher than the linear function adjustment (Fig. 10.c, Fig. 11. b, f) ， it does 

Fig.11. Indicators of different demand function adjustment with . 

Fig.10. Indicators of different demand function adjustment with . 



 

not change the whole trend. From the observations, we can conclude that in the whole, the number 

of adjustments and the standard errors of residuals with the linear function adjustment are greater 

than those with the quadratic function adjustment. 

5.4 Case study  

Singapore's power market data [33] is used to validate the proposed EPC quadratic function 

adjustment strategy in this paper.  

We use the real-time price data from June 2, 2017 to June 4, 2017 and power load data from 

May 30, 2017 to June 4, 2017 as the test data. The real-time price sequences are set as the original 

reserved price series  *

1

T

t t
p

=
 in Algorithm 1, and the power load data sequences are set as the 

reserved consumption power load 
1

T

t t
x

=
 in Eqs. (14). The historical load sequences (power load 

data at the same hour of 3 days from May 30, 2017 to June 1, 2017) are set as the theoretical 

consumption power load  *

1

T

t t
x

=
in Eqs. (14). Set the initial EWMA value 1 75p = , and the other 

initial values are the same in Section 3.3. In Algorithm 1, the parameters are supposed as follows, 

50k = , 0.3 = , 1 2
500 -400B B= =， , =

1
0E , =

2
0E . The parameters , ,a b c in cost function Eqs. (8) are 

respectively assumed as 0.01,0,0 . The test results of the monitoring and adjustment are shown in 

Fig. 12, Fig. 13, Fig. 14 and Fig. 15. 

Fig. 12 shows that after 13 minor changes, the load differences series are more stable than that 

of the original load differences. The empirical average adjustment interval (AAI) 

is  AAI=71/13=5.5, the standard error of residuals calculated by Eqs.(13) is = 672.9s . No points 

outside the 3s limits show that there is also no evidence for special reasons. From Fig. 13, we can 

learn about the fact that the adjusted power load is more close to the optimal one than the original 

load, which can reach the desired effect. It is shown in Fig. 14 that the electricity price has decreased 

with the decreasing power load in 13 time slots. The maximum adjustment of price is 
3$2.953 10- ´ /kWh. The users are encouraged to buy more power load and store. The whole social 

Fig. 12. Process of EPC monitoring and adjustment with realistic data 



 

welfare calculated by Eqs.(5) is 87.945 10´  and the profit calculated by Eqs.(9) is 76.159 10´ . Fig. 

15 shows that by running the EPC adjustment strategy, the smart grid system can get higher social 

welfare and profit than what can be obtained in the compared one.  

It is easy to see that our EPC adjustment strategy not only improves the profit of the electricity 

company and the whole social welfare, but also contributes to balancing energy provision and 

preventing of power system blackouts. 

 

Fig. 14. Accumulated effect of price adjustment with realistic data. 

Fig. 13. Comparison of Power loads with realistic 



 

 

6. Conclusion  

An Engineering Process Control monitoring and quadratic function adjustment strategy is 

introduced to monitor the users’ consumption load and adjust the price to encourage the users to 

consume electricity appropriately. The electricity company monitors the exponential weighted 

moving average predict values of the difference between the theoretical consumption load given by 

the real-time pricing model and the users’ real-time reservation consumption load by presetting the 

upper or lower boundaries for them.  The price adjustment is used to induce the users to change 

their consumption requirement loads under the demand response mechanism for the power price. 

The price will be adjusted only if the predicted exponential weighted moving average value exceeds 

the boundaries 

The numerical results show that the proposed strategy is superior to the linear function 

adjustment in the performance indices: Number of adjustments, Standard error, Social welfare and 

Profit. It is more reasonable and realistic than the linear one. In general, the proposed Engineering 

Process Control adjustment strategy not only has good performance in obtaining balanced power 

provision and consumption requirement load, but also can improve supplier’s profit and social 

welfare.  
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Appendix A. Lagrange Dual Method 

Regarding the problem (10)-(13) as the primal problems, the Lagrangian is defined as[8] 
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= =

 
 = − − −
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1 1
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Fig. 15. Comparison of social welfare and profit with realistic data. 



 

where t is a Lagrange multiplier for a fixed tT . 

(A1) is rewritten as  

 ( )  
=

−
 

= + 
 

−t

N
t t t
i i i

i

t

i t t t t
L U x x

t
x L L C L

1
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Then, the maximum Lagrange function is expressed as 

 
 =

t

i t
g L

t ttx Lti

x L( ) max ( , , )

,
  (A3) 

Thus, the Lagrange dual problem is as follows, 

  


=( ) min ( )D g
t t

t
  (A4) 

Because of the strong duality property, the primal problem (10-13) is not different from dual 

problem (A4). Meantime, we can also get the optimal Lagrange multiplier by solving the dual 

problem (A4). Due to the independence of the users, we reformulated (A4) as  

 ( ) ( )    
=

= +
1

( )
N

i

g i t tt
  (A5) 

where  

 ( )   −



 
=  

 


)max ( ,t t

t t t
i i i

t t t
i i i

U x x
i

m x M
  (A6) 

 ( ) ( )( )  = −
 min max
max

tL L
t t

L C Lt t t t
L   (A7) 

The first term of (A5) is about the users, which can be resolved into N  independent problems 

shown in (A6). The second term is about the electricity company with (A7). Obviously, if we set 

the price value tp  equal to the optimal Lagrange multiplier
*

t in time slot t , (A6) is the maximal 

welfare function (5) of the users, and (A7) is profit function (9) of electricity company. By solving 

the dual problem (A4), we can get the optimal Lagrange multiplier
*

t , which is the theoretically 

optimal price
*

tp
 

in time slot tT , and the optimal consumption load is 
*

1

N
t

t i

i

x x
=

= , the sum of 

N  users’ consumption loads. The optimal price
*

tp  is often called Shadow Price, the pricing basis 

of electricity. At the same time, it also reflects the scarcity degree of consumption loads. That is, the 

price is higher with large consumption loads, and lower with small consumption loads. 
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