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Abstract  

Due to lockdown measures taken by the UK government during the Coronavirus disease 2019 pandemic, the national 

electricity demand profile presented a notably different performance. The Coronavirus disease 2019 crisis has provided a unique 

opportunity to investigate how such a landscape-scale lockdown can influence the national electricity system. However, the 

impacts of social and economic restrictions on daily electricity demands are still poorly understood. This paper investigated 

how the UK-wide electricity demand was influenced during the Coronavirus disease 2019 crisis based on multivariate time 

series forecasting with Bidirectional Long Short Term Memory, to comprehend its correlations with containment measures, 

weather conditions, and renewable energy supplies. A deep-learning-based predictive model was established for daily 

electricity demand time series forecasting, which was trained by multiple features, including the number of coronavirus tests 

(smoothed), wind speed, ambient temperature, biomass, solar & wind power supplies, and historical electricity demand. Besides, 

the effects of Coronavirus disease 2019 pandemic on the Net-Zero target of 2050 were also studied through an interlinked 

approach.  
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Nomenclature:  

Latin symbols 

(𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑗    Measured value of the 𝑗𝑡ℎ value from the met mast records 

(𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑗   Predicted value of the 𝑗𝑡ℎ value from the deep learning model 

ℎ      Cell state vector  

𝑈      Assigned weights  
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𝑊      Assigned weights 

𝑏     Bias 

𝑐     Cell state 

 𝑓     Forget gate activation vectors 

 𝑖     Input gate activation vectors 

𝑛     Number of tests 

 𝑜     Output gate activation vectors 

𝑡     Time step 

𝑥     Input of neuron 

Greek symbols 

𝜎      Activation function 

ABBREVIATION:  

Adam     Adaptive moment estimation  

Bi-LSTM    Bidirectional Long Short Term Memory 

CECs     Constant Error Carousels 

COVID-19    Coronavirus disease 2019 

GDP     Gross Domestic Product  

LSTM     Long Short Term Memory 

MSE     Mean Square Error  

MSLE     Mean Squared Logarithmic Error 

RMSE     Root Mean Square Error 

RNN     Recurrent Neural Network  

1. Introduction 

The nationwide lockdown taken by the UK government not only controlled the spread of Coronavirus disease 2019 

(COVID-19) but also significantly reduced the day-to-day social behaviours and economic activities, which are having an 

irreversible influence on the UK’s electricity demand. Before COVID-19 pandemic, the electricity demand in the UK has kept 

declining for several years. As presented in Fig. 1, the net demand is only 324 TWh in 2019, which is 80% of its peak value in 

2005. This occurred notwithstanding the UK population has increased by near 7.6 million during the past 14 years [1]. The 
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continuous reduction of electricity demand in the UK was extensively impacted by a combination of energy efficiency 

enhancement, economic restructuring, consumer behaviours, and de-industrialisation [2].  

 
Fig. 1 – Variations of annual electricity demand from 2005 to 2019 in the UK [3].  

It is expected that, due to the influence of lockdown and other restrictions of COVID-19, the national electricity demand 

will keep dropping in the future. A falling of such a scale will be unprecedented and give a significant long-term influence on 

the UK electricity industry. To control the spread of COVID-19, the UK government has taken various measures at different 

stages of the lockdown, which critically reduced daily social/economic activities and triggered disorder of day-to-day routines. 

As presented in Fig. 2 (timeline in 2020), on 16th March, the government encouraged the public to keep social distancing, stop 

non-essential contacts, work from home, and avoid pubs, restaurants and travelling [4]. Then, more rigorous measures were 

taken in the evening of 23rd March, when the UK wide lockdown was announced by the Prime Minister, following the routes 

of Italy and Spain [5]. On 16th April, the national lockdown was further extended for three more weeks  [6]. After that, the full 

lockdown was eased on 10th May across the UK [7]. Then, on 31st October, the Prime Minister has announced a second national 

lockdown for England due to the uprising of the second wave of COVID-19 [8].  

 

Fig. 2 – Timeline of the UK-wide COVID-19 pandemic in 2020 [9].  
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In reality, the total primary energy consumption in the second quarter of 2020 is 29% less than in the same period of 2019 

[10], which was directly caused by the Covid-19 lockdown measures that took effect from 23rd March (see Fig. 2), resulting in 

a considerable reduction in electricity demand for the main transport and other commercial business. The Department for 

Business Energy & Industrial Strategy often categorizes electricity end-users in the UK into domestic, services, industry, and 

transport sectors, as presented in Fig. 3. Until the second quarter of 2020, energy consumptions of the domestic sector have 

dropped by 4.5%, even more professionals started to work at home. Energy consumptions of the service and the industrial 

sectors have also decreased by 13% and 19%, respectively, as factories, shops, and schools were closed during the lockdown. 

Furthermore, the energy consumptions of the transport sector have significantly reduced by 52% because of strict restrictions 

on both domestic and international travelling. [11] 

 

Fig. 3 – Statistics of final energy consumption by end-users in the UK from 2017 to 2020 [11].  

Meanwhile, the UK has become the first major economy in the world to pass the Net-Zero law, ending its greenhouse gas 

emissions by 2050 [12]. Even the carbon emission reduction target has become harder and more complicated under COVID-

19 pandemic, the Net-Zero 2050 program is still one of the key priorities for the UK government, where the renewable infeeds 

are playing an irreplaceable role. The COVID-19 pandemic has impact nearly every aspect of the Net-Zero 2050 program in 

the UK. For instance, the COP26 UN climate change conference, which is one of the flagship UN climate-related events, has 

been postponed to 2021 due to COVID-19 despite it was originally scheduled in Glasgow in November 2020 [13]. Even so, 

the UK government has announced a new transport decarbonisation plan during the COVID-19 outbreak [14]. 

As stated above, different factors have various influences on national electricity demand, including the COVID-19 

measures. However, these impacts are difficult to be quantified. Many studies have investigated the correlations between 
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electricity demand and its corresponding impact factors. For instance, Sinden [15] investigated the relationships between wind 

power generation and electricity demand levels through analysing 66 onshore weather measuring sites in the UK. The authors 

concluded that the growth of wind power supply can be observed during high electricity demand periods. Cassarino et al. [15] 

studied the European historical electricity demand to evaluate how social (such as human activities) and weather drivers (such 

as temperature, wind, humidity index solar irradiation, and temperature) can impact energy consumptions’ variation. Rosenberg 

et al. [16] presented a long-term projection of Norwegian energy demand through energy system modelling, suggesting that if 

energy demand is decreasing, a higher renewable fraction will be triggered. Norouzi et al. [17] explored the influences of 

COVID-19 on electricity demand in China through a neural network model, where the authors released that the historical trends 

of electricity demand may become blurred during the global COVID-19 crisis. Bedi et al. [18] proposed a deep-learning-based 

approach through Long Short Term Memory (LSTM) to forecast electricity demand through the time interval defined by the 

user, which outperformed the algorithms of Recurrent Neural Network (RNN), Support Vector Machines (SVM) and Artificial 

Neural Network (ANN). Klemeš et al. [19] studied the additional demands of energy and resources in COVID-19 fighting 

measures during the pandemic. Most recently, Lu et al. [20] introduced a hybrid system for daily electricity demand prediction, 

considering the impacts from the pandemic, where both the accuracy and the stability of the proposed models were tested 

through an example based in US.  However, based on the authors’ knowledge, there have been no existing studies regarding 

how lockdown restrictions quantitatively influence the national electricity system, although this is vital for maintaining safe 

and normal application purposes. On this account, the present study introduces a deep-learning-Bidirectional-LSTM (Bi-

LSTM) based multivariate time series forecasting model to investigate the correlations among containment measures, weather 

conditions, renewable energy supplies and the national electricity demand. This was realized in several phases defined by the 

adopted methodology (see Fig. 4), which involved identifying input features for electricity demand time series forecasting, 

designing Bi-LSTM neural networks, and tuning hyperparameters through grid and manual search. To the end, the levels of 

significance of each feature in the time series predictive model, especially for COVID-19 measures, were also identified by the 

proposed predictive model.  
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Fig. 4 – Diagram of applied methodology.   

The remnants of this paper are introduced as follows: Section 2 described how features were selected in this investigation, 

covering social and economic activities (focusing on impacts from COVID-19 lockdown), renewable energy supplies 

(including biomass, wind, and solar power), and environmental conditions (represented by ambient temperature and wind 

speed). Section 3 depicted the methodologies of Bi-LSTM time series forecasting, which were used to build deep-learning-

based neural networks. After that, the Bi-LSTM predictive model was trained and validated for daily electricity demand 

prediction in section 4. Besides, in this section, the feature importance was quantitatively identified between inputs and the 

target output by ranking the level of significance of each feature. To summarize, section 5 described a series of key conclusions 

in this paper. 

2. Feature identification 

A country’s electricity demand can be impacted by various factors, including population, Gross Domestic Product (GDP), 

social behaviours, economic activities, and environmental conditions [21]. All those features regulate daily electricity 

consumption in the UK. Currently, as the COVID-19 pandemic is still in the time scale of months, the factor of the population 

and GDP can be roughly treated as constants. Besides, historical renewable power supplies (such as wind, biomass, and solar) 

were also involved in the electricity demand time series forecasting. In the UK, the National Grid balanced electricity demand 

and supply by matching them in real-time, indicating when national electricity is over-supplied, certain power plants in some 
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supply sectors would be turned off. Currently, near half of the UK’s electricity generation comes from the renewable energy 

sector [22], performing a strong correlation between historical electricity demand and historical renewable power supply. In 

addition, some authors have concluded that a higher renewable proportion would be observed while the overall electricity 

demand is declining [16], which is the case in the global COVID-19 crisis [11]. Therefore, in this study, four groups of features 

were used as inputs to develop a multivariate time series forecasting model for the UK-wide electricity demand, including 

historical electricity demand (represented by the daily electricity consumption in the UK), social/economic activities 

(represented by lockdown measures, see section 2.1), environmental conditions (represented by ambience temperature and 

wind speed, see section 2.2), and renewable supplies (represented by wind, biomass, and solar power; see section 2.3). Notice 

that, as this investigation used multivariate time series modelling for forecasting, all input features mentioned above will only 

be employed in the training phase while creating the predictive model. In the validation phase, where actual predictions are 

carried out, only time index is required as arguments. 

2.1 Social and economic activities  

Social behaviours and economic activities have been considered as fundamental drivers in energy consumptions [23]. 

Under normal circumstances, social activities were strongly influenced by cultural customs, which are often repeatedly 

presented in specific patterns during a certain period. However, because of COVID-19 measures, human activities have been 

dramatically changed and extremely limited at home, at work and elsewhere for holidays, schooling, shopping, etc. The 

decreasing of social and economic activities can be treated as the pre-indicator of electricity demand reductions, which can be 

used for forecasting purpose. This fact can be further proved through a comparison of daily electricity demand profiles under 

the conditions with and without lockdown restrictions in the same period of a year. In Fig. 5, the electricity demand profile of 

the fifth week during the lockdown (13th ~ 19th April 2020) was compared with the corresponding demand variations in the 

same week of 2019 (15th ~ 21st April 2019). It can be observed that the electricity load of every single day in 2019 is higher 

than that in the following year, when all pubs, restaurants, factories, and shops were closed in public. More specifically, in 

2020, the weekly electricity demand was reduced by near 15% during the corresponding week of lockdown. This phenomenon 

occurred more obviously during the working days (Monday ~ Friday) than the weekends (Saturday and Sunday) as greater 

demand gaps were developed. The public, who were forced to stay at home, couldn’t attend schools, commute, go to offices, 

or do any routines during a working day, flat out the daily electricity demand and make it closer to a weekend day. As displayed 

in Fig. 5, even the demand gaps still existed on Saturday and Sunday, the power usage on the weekend of 2020 performed 

similarly to that of 2019.  
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Fig. 5 – Comparison of electricity demand profiles in the third week of April between 2019 and 2020. 

To obtain a more detailed insight, the daily electricity demand profile of a normal working day (04/05/2020, Monday) 

during the COVID-19 crisis was directly compared with the corresponding working day (06/05/2019, Monday) from 2019 and 

its contiguous weekend day (05/05/2019, Sunday) in Fig. 6. As can be seen, for most of the day, the national electricity demand 

in the UK remained at a relatively low level during the global pandemic, even when compared a Sunday in 2019. More 

specifically, the morning peak in a weekday of 2020 is nearly overlapped with that in a Sunday of 2019 as most of the 

professionals are now working at home with no need for commuting along with their children who couldn’t go to school, which 

dramatically reduced the normal morning electricity peak. Similar patterns can also be observed in other countries in Europe 

(see Fig. 7, using electricity demands in Spain as an example). Based on the facts above, the daily smoothed number of COVID-

19 tests across the UK is used as the feature to represent the impact of lockdown measures. The number of newly confirmed 

cases per day is not considered because this parameter only becomes meaningful when the country is testing enough cases [24].  

 

 

Fig. 6 – Comparisons of daily electricity demand profiles before and after the COVID-19 pandemic in the UK. 
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Fig. 7 – Comparisons of daily electricity demand profiles before and after the COVID-19 pandemic in Spain. 

2.2 Renewable energy supplies 

In the UK, renewable energy is continuously accounting for a larger share of the market [25], leading to a less carbon-

intensive grid mix. As displayed in Fig. 8, of total electricity generation in the second quarter of 2020, renewables (wind, solar 

and bioenergy) accounted for 44.6%, which is near half of this season’s electricity generation in the UK, whilst conventional 

coal only accounted for 0.5%, driving fossil fuels to a record low share of the mix. On the other hand, compared with the 

electricity generation on a year earlier (the second quarter of 2019), a 9% increase of low carbon generation was observed due 

to the sizable growth in the renewable generation [10]. Due to the continuous recession of national electricity demand, the 

renewables may play a more significant role in the energy market in the post-epidemic era of the UK.  

  
Fig. 8 – Variations of generated electricity shares in the UK between the second quarters of 2019 and 2020 [22].  
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Several studies have suggested that shrank energy demand can give rise to a higher renewable proportion [16]. Under 

COVID-19 measures, this phenomenon becomes more pronounced because of the declining of total energy consumption and 

the increasing of renewable generations. In the countries’ future energy system, it can be expected that the UK’s electricity 

demand will be filled by more renewable sources because of the stated Net-Zero 2050 target. It is important to consider the 

historical correlations between renewable energy supplies and national electricity demand during the COVID-19 pandemic. In 

the UK, the top three renewable contributions came from biomass, wind, and solar energy. For instance, around 40% of 

electricity was generated from renewables in the third quarter of 2019, which consists of 20% wind, 12% biomass and 6% solar 

[26]. Therefore, in this paper, the daily renewable supplies from biomass, wind, and solar are selected as input features in the 

designed time series forecasting model.  

2.3 Environmental conditions 

Electricity demands are also intensely impacted by the state of the weather, such as ambient temperature and wind speed. 

It can be observed that the energy consumptions of space heating rise while ambient temperature drops, and vice versa. 

Similarly, hot water demand from boilers upsurges as supply temperatures of water reduces, which were correlated with ground 

temperature. Besides, the rapid developments of both wind farms and solar PV across the UK have shaped the power supply 

system more dependent on weather conditions. In this study, meteorological parameters of ambient temperature and wind speed 

were considered as input features in the developed electricity demand time series predictive model.  

2.4 Dataset description  

The statistical description of count, mean, percentile and standard deviation of the used features were presented in Table 

1. As the smoothed numbers of COVID-19 tests were announced daily since 08/04/2020 [27], the historical datasets between 

08/04/2020 ~ 26/09/2020 (one hundred and seventy-two days) were extracted to be used in the designed time series predictive 

model, including electricity demand, number of new tests (smoothed), ambient temperature, wind speed, and wind, biomass & 

solar power supplies. Note that, in Table 1, electricity demand and renewable power supplies were recorded in gigawatts (GW), 

representing the rate of energy transfer. The meteorological parameters were collected from the records in London city airport 

station [28]. The standard deviation of the number of new tests (smoothed) was 57654, which presented the variability of this 

set of data, indicating the testing capability of COVID-19 has raised considerably during the target period. On the other hand, 

the standard deviations of other features were relatively small, suggesting the dispersions of those values are relatively low 

from their mean and median.  

Table 1 – Statistical descriptions of the used datasets. 

 Count Mean 
Standard 

deviation 
Minimum 25% Median 75% Maximum 
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Number of new tests 

(smoothed) 
172 111228 57654 15713 77983 94953 155665 231257 

Electricity demand, GW 172 24.63 2.30 19.52 22.97 24.42 26.60 29.91 

Ambient temperature, °C 172 17.17 3.90 8.20 14.45 17.45 19.23 26.70 

Wind speed, m/s 172 14.76 5.31 5.30 11.00 13.95 17.93 33.00 

Wind power supply, GW 172 4.61 2.71 0.28 2.57 4.10 6.79 11.04 

Biomass power supply, GW 172 1.98 0.72 0.42 1.31 1.93 2.66 3.14 

Solar power supply, GW 172 1.92 0.63 0.56 1.44 1.98 2.36 3.19 

 

3. Methodology 

As described in section 2.4, the electricity demand is varying in a relatively small range over time horizons, but the 

magnitudes of new tests (smoothed) are changing notably. Therefore, the long-established RNN and LSTM may not have their 

best performance on this occasion. In this paper, a deep-learning-based Bi-LSTM time series predictive model was proposed 

to forecast the daily electricity demand in the UK, which can better handle long-term dependencies and safer solved the 

vanishing gradient problem compared with RNN and LSTM. 

3.1 Bidirectional Long Short Term Memory (Bi-LSTM) 

Bi-LSTM admits cells to learn the sequence data both forward and backward with two individual hidden layers that serve 

the same output layer. A classic architecture of the Bi-LSTM cell is displayed in Fig. 9.  

 

Fig. 9 – Architecture of a Bi-LSTM unit.  

The corresponding forward hidden layer functions were identified in Eqs. (1) ~ (6) (note that the → is representing the 

forward process). In Eqs. (1) ~ (3), input, forget and output gate activation vectors of 𝑖 𝑡, 𝑓  𝑡
 and �⃗� 𝑡 were calculated through 

the assigned weights of �⃗⃗⃗⃗� and �⃗⃗⃗�, and the bias �⃗⃗� along with corresponding activation functions 𝜎. �⃗�  𝑡 is the input of neuron at 

time step 𝑡 and ℎ⃗⃗𝑡−1 is the cell state vector for time step 𝑡 − 1.  
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𝑖 𝑡 =  𝜎 (�⃗⃗⃗⃗�  𝑖  �⃗�  𝑡 +  �⃗⃗⃗�𝑖  ℎ⃗⃗𝑡−1 +  �⃗⃗�𝑖) (1) 

𝑓  𝑡 =  𝜎 (�⃗⃗⃗⃗�𝑓 �⃗�  𝑡 +  �⃗⃗⃗�𝑓 ℎ⃗⃗𝑡−1 +  �⃗⃗�𝑓) (2) 

�⃗� 𝑡 =  𝜎 (�⃗⃗⃗⃗�  𝑜 �⃗�  𝑡 +  �⃗⃗⃗�𝑜 ℎ⃗⃗𝑡−1 +  �⃗⃗�𝑜) (3) 

In Eq. (4), the newly assessed value of state �̃⃗� 𝑡 is calculated in a similar mothed along with corresponding activation 

functions 𝑡𝑎𝑛ℎ.  

𝑐̃⃗  𝑡 = 𝑡𝑎𝑛ℎ(�⃗⃗⃗⃗�𝑐  �⃗�  𝑡 +  �⃗⃗⃗�𝑐  ℎ⃗⃗𝑡−1 +  �⃗⃗�𝑐) (4) 

In Eq. (5), the cell state 𝑐 𝑡is obtained from the previous cell state 𝑐 𝑡−1 and the newly assessed value of state �̃⃗� 𝑡.  

𝑐  𝑡 = 𝑓  𝑡 ∘ 𝑐 𝑡−1 + 𝑖 𝑡 ∘ �̃⃗� 𝑡 (5) 

In Eq. (6), the forward output ℎ⃗⃗ 𝑡 is generated from the Hadamard product (∘) of the output gate control signal �⃗� 𝑡 and the 

cell state 𝑐 𝑡 of the unit across the activation function 𝑡𝑎𝑛ℎ.  

ℎ⃗⃗ 𝑡 = �⃗� 𝑡 ∘ 𝑡𝑎𝑛ℎ(𝑐 𝑡) (6) 

Similarly, Eqs. (7) ~ (12) defined the corresponding backward hidden layer functions (note that, the → is representing the 

backward process).  

�⃖� 𝑡 =  𝜎 (�⃗⃗⃖�  𝑖 �⃖�  𝑡 +  �⃖⃗� 𝑖 ℎ⃖⃗ 𝑡+1 +  �⃖⃗� 𝑖 ) (7) 

𝑓  𝑡 =  𝜎 (�⃗⃗⃖�  𝑓 �⃖�  𝑡 +  �⃖⃗�𝑓 ℎ⃖⃗ 𝑡+1 +  �⃖⃗� 𝑓 ) (8) 

�⃖� 𝑡 =  𝜎 (�⃗⃗⃖�  𝑜 �⃖�  𝑡 +  �⃖⃗� 𝑜 ℎ⃖⃗ 𝑡+1 +  �⃖⃗�𝑜 ) (9) 

𝑐̃⃖  𝑡 = 𝑡𝑎𝑛ℎ(�⃗⃗⃖�  𝑐 �⃖�  𝑡 +  �⃖⃗� 𝑐  ℎ⃖⃗ 𝑡+1 +  �⃖⃗�𝑐) (10) 

𝑐  𝑡 = 𝑓  𝑡 ∘ 𝑐 𝑡+1 + �⃖� 𝑡 ∘ �̃⃗� 𝑡 (11) 

ℎ⃖⃗ 𝑡 = �⃖� 𝑡 ∘ tanh(𝑐 𝑡) (12) 

Finally, the hidden element representation ℎ𝑡 can be expressed in Eq. (13) as the concatenated vector of the outputs of 

forwards and backwards processes [29]: 

ℎ𝑡 = ℎ𝑡⃗⃗ ⃗⃗ ⊕ ℎ𝑡⃖⃗ ⃗⃗   (13) 

3.2 Model configuration 

To further explain the details of the neural network configuration, a visualised process of the proposed deep-learning-based 

Bi-LSTM structure is described in Fig.10. For any newly proposed neural network configuration, it is essential to maintain a 

high degree of forecasting accuracy through manual and grid search. In this study, this is realised through assessing a variety 

of neural network structures, adjusting the trials with various layer numbers and different neuron numbers in each layer. The 



13 

 

evaluation results have suggested a deep learning neural network consists of a three-layer structure ( see Fig. 10, Hidden layers), 

creating a strong relationship between inputs (number of new coronavirus tests, wind speed, ambient temperature, biomass, 

solar & wind power supplies, and historical electricity demand; see Fig. 10 Input layer) and the output (future electricity 

demand, see Fig. 10, Output layer). Besides, the first and the third hidden layers consist of 10 neurons, while the remaining 

layer has 20 neurons.  

 

 

Fig. 10 – Visualization of the deep-learning-based Bi-LSTM configuration.  

 Before entering into the deep learning model, input data were transformed into a matrix with three dimensions of batch, 

input, and shape, where batch is the number of independent observations in the time series; input is the sequence length of the 

given observation; shape is the number of features at the observation time. More specifically, in the current deep learning neural 

networks, the used multivariate sequences were converted into multiple samples. Each sample contains only one-time step that 

is used to output a single future step. Similar to other machine learning models, Bi-LSTM models can only work well whereas 

the involved time series data are on the scale of a certain range. In this study, all inputs were scaled between 0 and 1 before 

feeding into the deep learning layers. Besides, the Bi-LSTM deep learning neural networks were also validated through the 

walk-forward rolling prediction, indicating each time step in electricity demand forecasting will be rolled at a time. After the 

time series predictive model developed a prediction for one-time step, the recorded electricity demand will be grasped and 

further used in predictions for the next time step. 

4. Results and Discussions 

In this section, the developed deep-learning-based Bi-LSTM time series predictive model was used to explore the intensity 

of key features in electricity demand forecasting and to identify the quantitative impacts of COVID-19 measures. The obtained 
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datasets were divided into two groups – the training group (08/04/2020 ~ 05/09/2020) and the validation group (06/09/2020 ~ 

26/09/2020). The built Bi-LSTM neural network follows the train-validation framework. More specifically, in the training 

phase, both input and output features were presented to the forecasting model while Bi-LSTM learns the patterns to produce 

accurate electricity demand forecasting. After that, the independent validation dataset was used to validate its forecasting 

ability. 

4.1 Training phase 

The selected features were trained in the designed Bi-LSTM deep learning configuration, where the activation function of 

“sigmoid” was used to engage all the neuron units for learning the patterns between input features and the targeted electricity 

demand. Also, the loss function of Mean Square Error (MSE) was applied to maximise the performance of the predictive model 

concerning its desired accuracy. Additionally, the effective optimizer of adaptive moment estimation (adam) was directed to 

support the loss function to achieve its convergence with minimum delay. During the training phase, the MSE profile has 

dropped rapidly once the first one-hundred of epochs were achieved, showing convergency after around 150 iterations (see Fig. 

11).  

  

Fig. 11 – Variations of MSE profile in the Bi-LSTM time series forecasting model during the training phase.  

4.2 Validation phase 

The daily electricity demand predicted in the validation loop was compared with the recorded observations in Fig. 12, 

where a good agreement was achieved for a duration of 20 days (06/09/2020 ~ 20/09/2020). During the validation phase, the 

accuracy of the designed Bi-LSTM neural network was quantified through Root Mean Square Error (RMSE) [30] and Mean 

Squared Logarithmic Error (MSLE) [31], which were stated in Eqs. (14) and (15), respectively. In the validation loop, the final 

values of RMSE and MSLE were 1815.22 and 0.003616, respectively (see Fig. 12).  
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 RMSE is one of the most widely used metrics for measuring the discrepancy between forecasting values and actual 

observations. Generally, the lower the RMSE value is, the more accurate the forecasting models are. Its definition can be 

expressed as:  

𝑅𝑀𝑆𝐸 =√
∑ [(𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑗 − (𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑗]

2𝑛
𝑗=1

𝑛
 

(14) 

The metric of MSLE is corresponding to the assessed value of squared logarithmic errors, which can be stated as:  

𝑀𝑆𝐿𝐸 =
1

𝑛
∑(log

𝑒
(1 + (𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑗

) − log
𝑒
(1 + (𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑗

))
2

𝑛−1

𝑗=0

 
(15) 

Logarithms give MSLE unique properties of its own. The major difference between RMSE and MSLE is their sensitivities 

to outliers in the datasets. In the case of MSLE, the impacts from the outliers can be scaled down, because MSLE reflects 

relative errors between the forecasted and the actual values, where influences from the absolute scale of error terms were 

considerably reduced. On the other hand, RMSE is more sensitive for exceptional data points. Therefore, MSLE is more robust 

when outliers were contained in the assessed datasets.  

 

 

 

Fig. 12 – Comparisons of daily electricity demands between the designed forecasting model (prediction) and the actual 

records (measurement).  

4.3 Feature significance 

In the built multivariate Bi-LSTM time series predictive model, level of significance of each feature to the predicted daily 

electricity demand was put forward through a ranking of the six features. The top-ranked feature was determined using the 
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variations of the final accuracy in the validation loop of the forecasting model. At each validation loop, one feature was swapped 

by its average value, while other parameters/structures remained the same in the deep-learning-based configuration. As only 

one feature is displaced at one time, this appraisal will be reiterated on all the six inputs one by one, including the number of 

new coronavirus tests (smoothed), wind speed, ambient temperature, and biomass, solar & wind power supplies. 

Variations of RMSEs and MSLEs along validation loops over each feature are presented in Fig. 13. Comparing with the 

initial case, the values of the final RMSEs kept decreasing in a certain order. Therefore, the level of importance of features in 

electricity demand forecasting can be ranked in the order of new tests (smoothed) (RMSE = 1861.71), solar power supply 

(RMSE = 1858.63), wind power supply (RMSE = 1851.52), biomass power supply (RMSE = 1849.57), temperature (RMSE = 

1846.33), and wind speed (RMSE = 1843.02). Similar to RMSE, the values of the final MSLE kept growing in the identical 

order, which indicated that the same correlations were observed between input features and electricity demand.  

 

Fig. 13 – Variations of RMSE and MSLE scores in the deep-learning-based Bi-LSTM time series forecasting model under 

varying input features.  

The influence of new coronavirus tests (smoothed) tops the bill in terms of feature significance, indicating that they are 

playing an essential role in the variations of daily electricity demand in the UK. While most companies, schools and 

supermarkets were forced to be closed, the nationwide electricity demand of transmission system has been significantly 

impacted by the lockdown measures, where the overall electricity demand in the UK was dramatically reduced due to the 

economic downturn of commercial and industrial businesses. It can be concluded that COVID-19 measures have a strong 

negative impact on daily electricity demand. On the other hand, solar, wind, and biomass power supplies took the 2nd, the 3rd, 
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and the 4th places of all the features, indicating renewable powers also present a strong effect on the accuracy of the designed 

predictive model. Lower electricity demand indicates that a larger proportion of the UK transmission system can be occupied 

by renewable generators, such as solar and wind when meteorological conditions are advantageous, while less fossil fuel 

generators are required, such as gas and coal. The impact of ambient temperature on electricity demand is ranked as the 5th as 

the temperature has an integrated influence on electricity demand because it is a function of electricity in heating and cooling. 

Wind speed took the last place in the rank, representing that it provided the lowest impact on the daily electricity demand.  

5. Conclusions 

This work contributed to the knowledge gaps in electricity demand forecasting by considering the impacts of COVID-19 

measures. A deep-learning-based multivariate time series Bi-LSTM model was trained and validated through a set of selected 

features. The key conclusions from this study were summarised as follows: 

▪ This research has demonstrated and quantified, for the first time, the level of significance of various features to evaluate 

their impacts on electricity demand via a deep-learning-based Bi-LSTM model, including the number of new coronavirus 

tests (smoothed), ambient temperature, wind speed, and renewable power supplies (wind, biomass and solar). This 

approach facilitates our understanding of how COVID-19 measures will determine the reduction of electricity demand 

through a multivariate neural network configuration, showing quantifiable results. Compared to other common impact 

factors, the COVID-19 measures (represented by the number of new coronavirus tests) have a strong influence on the 

electricity system in the UK, which was ranked as the top among the involved features.  

▪ The annual electricity demand in the UK has kept reducing long before the COVID-19 pandemic. The strict lockdown 

restrictions taken by the government make this phenomenon much severer, as most of the national population have been 

subjected to lockdowns since the 23rd March, following a sharp drop in social and economic activities. The falling in 

demand made the everyday electricity profile looks like a Sunday’s. The recovery of nationwide electricity demand will 

be very gentle as the lockdown was lifted in stages. Besides, the second wave of the pandemic has come in the winter, 

representing a management challenge for grid network operators.  

▪ Based on the deep-learning-based Bi-LSTM model, historical renewable power supplies of solar, wind, and biomass were 

ranked as the 2nd, the 3rd, and the 4th significant features, indicating their crucial correlations with electricity demand during 

the pandemic. One of the reasons could be the demand decreasing during the COVID-19 crisis, which raised the proportion 

of low-carbon energy. This may be one of the very few positive influences that COVID-19 has brought to the target of 

Net-Zero 2050. It can be expected that renewable supplies will keep growing in electricity generations of the UK, due to 

lower energy demands in future.   
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