
���������	
��
�

�����	��

�	�
�	��� � ���
����� � ��	�
�� � �
��� � ��
�
� � ���	���� � �� � �� � 
�� � �
���	�
� � �� �  !"!#$ � %�
�����
�	���	���
���
��
��	������	�&�����	�

��	��
�
��	����'	��� '�	���
�(���
�'
�
��������
�
�)�*
�+�,�	�
���
�

�����-+
�
�.�,�	����#!/� 0$��
!"!"��"!1234��5--��!#/36341"�

.���	��
���,����
�	�
��*
�+�,�	�
��7�	��

7�������+��88��	���&8#"�#"!38!"!"��"!1234�9���+��88��	���&8#"�#"!38!"!"��"!1234:

;�	� � �
��	�� � '
� � ��'���
�
� � )��� � ���������	
 � �
�

��� � �	���
���+�88�������������	
�
����8	�8
+�	��8</#0#8

���������	
�7�	�
��	�,��
���
�
��+
�����������	
��
�

�����	��� ���$����
�
��
���
��
�� � 
��
�� � ��
 �7�	�
��	�,=� � �
�

��� � ���+��� � ��+,�	&�� �>�
�� � ���
� � �	&��� �)�� � 	�
�� � ��
����
�
��
�
	�
���,���
�	��	�	��
��
����� �$�
��8������
����+,�	&����'�
�����-	�&�
���+	
�
�)�)����	�
����
���
��
+�����
��� �	�+�
,
�����+
�)���
���
���&	�
�������	���+
��	
��	��
�,
)���
������
�	���)���+
����
���
�

�����������,��
���
�	��
���������6)��6+��?��+��+��
�
'	����� � +�	�� � +
��	��	�� � �� � ��
�&
� � +���	�
� � ��
 � 
������� � �	��
 � 
�� � )��� � �	��	�&�
+�	�
�
�
	���
�
�&	�
���
��'
���
��
��,+
��	���
��8���7��������
���	&	�
���
�
�
�
�+
&
��;�

����
�������������
���
�&
��	��
�,�'
,��@����	�
�������������
����������
��	
��,�	��
�,
)���
������
�	���'	������)���
��+
��	��	����)���
���+,�	&�������
��� �;�
�)����+��	�,�	�

�
	�
��
����	�
�� ���+�88�������������	
�
����8+��	�	
������

;�	�������
����
,��	�
��)������
�?�
���+���	��
���
��	����)���
��
�

����
����
���

�
�
�
�
�
	�
��
����	�
�	��
�����
��
�'	���+���	��
��+��	�	
���;���

��
��8����	�
�)������

+���	��
� � �
��	�� � �) � ��
 � �
�

���� �+�

�
 � �	�	� � ��
 �+���	��
�=� � '
��	�
 �  
 � ������	+�	��
�
,��
��
A�	�
��$

������������������������

http://nrl.northumbria.ac.uk/policies.html


1.  Introduction

Whistler-mode waves play an important role in the dynamics of electrons in energy and pitch-angle space 
in the Earth's inner magnetosphere (e.g., see Artemyev et�al.,�2016; Horne et�al.,�2005; Thorne,�2010), as 
well as a variety of laboratory, solar, space and astrophysical plasmas (e.g., see Jeong et�al.,�2020; Kuzichev 
et�al.,�2019; Podesta & Gary,�2011; Riquelme & Spitkovsky,�2011; Stawicki et�al.,�2001; Stenzel,�1999; Tong 
et�al.,�2019; Verscharen & Chandran,�2013). System-scale modeling of energetic electrons in terrestrial and 
planetary radiation belts is usually achieved using Fokker-Planck diffusion codes (e.g., see Albert et�al.,�2009; 
Beutier & Boscher,�1995; Glauert et�al.,�2014; Su et�al.,�2010; Subbotin et�al.,�2010;), in which the radial and 
“local” (energy and pitch-angle) diffusion of particle distributions is mediated via resonant wave-particle 
interactions. The diffusion coefficients in these models are calculated using the long-established quasilinear 

Abstract   Radiation belt codes evolve electron dynamics due to resonant wave-particle interactions. 
It is not known how to best incorporate electron dynamics in the case of a wave power spectrum that 
varies considerably on a “sub-grid” timescale shorter than the computational time-step of the radiation 
belt model � tRBM, particularly if the wave amplitude reaches high values. Timescales associated with the 
growth rate of thermal instabilities are very short, and are typically much shorter than �tRBM. We use 
a kinetic code to study electron interactions with whistler-mode waves in the presence of a thermally 
anisotropic background. For “low” values of anisotropy, instabilities are not triggered and we observe 
similar results to those obtained in Allanson et�al. (2020, https://doi.org/10.1029/2020JA027949), for 
which the diffusion roughly matched the quasilinear theory over short timescales. For “high” levels of 
anisotropy, wave growth via instability is triggered. Dynamics are not well described by the quasilinear 
theory when calculated using the average wave power. Strong electron diffusion and advection occur 
during the growth phase (�|100�ms). These dynamics “saturate” as the wave power saturates at �| 1�nT, 
and the advective motions dominate over the diffusive processes. The growth phase facilitates significant 
advection in pitch angle space via successive resonant interactions with waves of different frequencies. 
We suggest that this rapid advective transport during the wave growth phase may have a role to play in 
the electron microburst mechanism. This motivates future work on macroscopic effects of short-timescale 
nonlinear processes in radiation belt modeling.

Plain Language Summary   Naturally and anthropogenically generated electromagnetic 
waves interact strongly with ambient charged particles in near-Earth space. These interactions can lead to 
rapid particle energization, and modern society is underpinned by the hundreds of radiation-vulnerable 
satellites that orbit within this hazardous radiation environment. It is therefore important to be able 
to model the evolution of these charged particles to mitigate risk as well as possible. Here, we study 
the response of electrons to electromagnetic “whistler-mode” waves using a fully physics-based code. 
The main advance is that we consider this interaction in the context of a realistically diverse plasma 
composition, including components that are unstable. This allows us to consider the competing effects of 
incident waves, and naturally generated waves arising from the unstable plasma background. We find that 
for “typical/low” values of unstable plasma, the electron dynamics can be well modeled by the standard 
theory. However, for a more highly unstable background, we observe very different dynamics. This study 
motivates future work on how to incorporate the effect of an unstable plasma background in the modeling 
of electron dynamics.
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theory (Drummond & Pines,�1962; Kennel & Engelmann,�1966; Lerche,�1968; Lyons,�1974; Summers,�2005; 
Vedenov et�al.,�1962). Two of the core assumptions of this theory are that: (i) the wave amplitude is a small 
perturbation to the background field; (ii) and that the wave spectrum is constant in time over the duration 
for which the diffusion coefficient is calculated — the so-called “limit of resonant diffusion” (Kennel & 
Engelmann,�1966) (i.e., electromagnetic waves have zero growth rate).

It is now well known that large amplitude whistler-mode waves are not rare in the outer radiation belt 
(Breneman et�al.,�2011; Cattell et�al.,�2008; Cully et�al.,�2008; Kellogg et�al.,�2011; W. Li et�al.,�2011; Tyler 
et�al.,�2019; Watt et�al.,�2017,�2019; Wilson III et�al.,�2011). For example, up to 30% of long-duration chorus 
waves possess properties that indicate that the quasilinear treatment should fail (Zhang et�al.,�2018,�2019). 
These are termed “nonlinear wave-particle interactions.” Despite the fact that the waves evident from these 
observations appear to violate the above assumption, diffusion codes based on the quasilinear theory can 
yield very good results (e.g., see Glauert et�al.,�2018; W. Li et�al.,�2014; Thorne et�al.,�2013).

Electron dynamics due to nonlinear interactions with large-amplitude chorus waves (and other large am-
plitude electromagnetic waves) are in principle markedly different to those that are consistent with the qua-
silinear theory (Albert,�2002; Albert & Bortnik,�2009; Bell,�1986; Bortnik et�al.,�2008; Karpman et�al.,�1974; 
Mourenas et�al.,�2018; Nunn,�1971; Omura et�al.,�2007). One of the major unresolved problems in radiation 
belt physics is therefore to understand the relative importance of nonlinear wave-particle dynamics in sys-
tem-scale modeling of the radiation belts, and how to implement these effects. Theoretical and modeling 
studies indicate that a full treatment of the evolution of electron distributions during nonlinear interac-
tions may require the inclusion of extra “advective” terms in the Fokker-Planck equation in energy and 
pitch-angle space (Albert & Bortnik,�2009; Allanson et�al.,�2020; Artemyev et�al.,�2018; Gan et�al.,�2020; Lee 
et�al.,�2018; Liu et�al.,�2012; Vainchtein et�al.,�2018; Zheng et�al.,�2019), as well as the “diffusive” terms that 
are the mainstay of numerical models of the radiation belts (Glauert et�al.,�2014; Schulz & Lanzerotti,�1974).

Test particle and particle-in-cell simulations have indicated that electron dynamics closely follow the quasi-
linear result for low amplitude whistler-mode and electromagnetic ion cyclotron (EMIC) waves, but that the 
diffusion coefficient itself “saturates”/“falls-off” as the wave amplitude increases above a certain threshold 
(Allanson et�al.,�2020; Liu et�al.,�2010; Tao et�al.,�2011,�2012), i.e., above this wave amplitude threshold, the 
extracted diffusion coefficient is smaller than the quasilinear result. These numerical experiments were per-
formed in the context of a background cold plasma (either directly in the particle-in-cell case, or indirectly 
via the cold plasma dispersion relation in the test-particle case), such that there is no wave generation via 
thermal anisotropy instabilities. While this is often a good approximation since the inner magnetosphere is 
overwhelmingly composed of cold and thermally isotropic plasma, it is well known that “hot” and/or ther-
mally anisotropic electron populations are prevalent (L. Chen et�al.,�2012; Gao et�al.,�2014; W. Li et�al.,�2010) 
and play a key role in wave and particle dynamics within the inner magnetosphere.

Recent theoretical work has in fact demonstrated the significant effect of hot and anisotropic plasma pop-
ulations (via modifications to the dispersion relation) on the calculation of diffusion coefficients due to 
plasmaspheric hiss waves (Cao et�al.,�2020). Particle-in-cell experiments investigating electron dynamics 
in energy and pitch-angle space have also demonstrated the strong time-dependence of electron diffusion 
during the growth and saturation phase of self-consistently generated whistler-mode waves (Camporeale & 
Zimbardo,�2015). Intriguingly, it was shown that electron diffusion was strongest during the growth phase 
of the waves, proceeding at a rate that was more rapid than one might expect by naively applying the qua-
silinear results. Strictly speaking one should not apply the “resonant diffusion” version of the quasilinear 
theory result during a wave growth phase, but for reasons to be discussed in Section�4, it can be a useful 
comparison. The authors compared their particle-in-cell results to test-particle codes, since test-particle 
codes are expected to reproduce quasilinear theory in the low-amplitude case (Tao et�al.,�2011). Further-
more, the diffusion was weaker during saturation (when wave amplitude is nearly constant in time), and 
proceeding at a rate slower than that the comparison extracted from the test-particle codes. These results 
are interesting for two reasons: (i) diffusion was weakest during the wave saturation period, that is, the pe-
riod of strongest wave amplitude (quasilinear theory predicts diffusion that scales with the square of wave 
amplitude); (ii) the observed ‘saturation’ of the diffusion during wave saturation somewhat resembles the 
aforementioned results obtained by Liu et�al.�(2010) and Tao et�al.�(2012). To be specific, whilst the exper-
iments considered in Camporeale and Zimbardo�(2015) are quite different to those in Liu et�al.�(2010) and 
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Tao et�al.�(2012), the interesting resemblance regards the saturation of the diffusion as the wave amplitude 
increases/is increased.

Kinetic physics numerical codes are the only means available to study self-consistent particle dynamics 
during nonlinear wave growth and saturation. Here, we use a particle-in-cell code to study the effects of: (i) 
increasing background thermal anisotropy; (ii) and increasing wave amplitude on electron dynamics due to 
interactions with whistler-mode waves. In particular, we wish to discover: (i) whether or not the quasilinear 
theory comprehensively describes the electron dynamics; (ii) under what circumstances this breaks down; 
(iii) the nature of the dynamics if not quasilinear diffusion. The experiments here are designed to comple-
ment and build upon other recent studies, in particular, the test-particle experiments by Tao et�al.�(2011), 
and the particle-in-cell experiments by Camporeale and Zimbardo�(2015) and Allanson et�al.�(2020), that 
were briefly discussed above. We combine some features from each of these works and analyze the electron 
response to a combination of “driven” and self-consistently generated whistler-mode waves with a parti-
cle-in-cell code. In particular, we are interested to discover in which cases the wave-driving or the self-con-
sistent internally generated waves dominate.

This study is organized as follows. In Section�2, we outline the setup of the 10 numerical experiments 
and their wave properties. In Sections�3 and�4, we analyze the results from experiments with “lower” and 
“higher” thermal anisotropy respectively. Sections�5 and�6 conclude with a discussion, summary, and an 
indication of possible future work.

2.  Outline of the Numerical Experiments

We analyze electron dynamics in response to interactions with electromagnetic waves using the EPOCH 
particle-in-cell (PiC) code (Arber et�al.,�2015). We use the boundary-value-problem experimental method 
as introduced and benchmarked in Allanson et�al.�(2019). This method was developed to analyze the elec-
tron response to whistler-mode waves in the context of a kinetic plasma physics code, via the extraction of 
electron “tracer” particle dynamics in energy and pitch-angle space. In Allanson et�al.�(2020), this method 
was used to analyze the particular effect of increasing whistler-mode wave amplitude on electron dynamics, 
in the presence of a thermally isotropic background cold plasma and uniform background magnetic field. 
The nature (and justification) of the set-up of the numerical experiments to be used here almost exactly 
replicates those used in Allanson et�al.�(2020) (e.g., boundary conditions, number of particles per cell, total 
domain length, run-time, spatial and temporal resolution, wave-driving mechanism), and so we shall omit 
most of this discussion for the sake of brevity. The most important physical parameters for the wave-parti-
cle interaction are chosen as follows: electron and proton number density (ne�=� np�=�107 m�3 ), appropriate 
for L��|�6; equatorial approximation of the uniform background magnetic field ��� ( , , ) 140x y zB B B nT ��,0,0 ; 
ordinary electron gyrofrequency fce��|�3919�Hz; electron plasma to gyrofrequency ratio fpe/ fce��|�7.2 (note that 
these are the same as the parameters used in Tao et�al.�[2011]). We use a realistic proton-electron mass ratio 
mp/me�=�1, 836.2. Each run required approximately 20,000–30,000 cpu hours (depending on the number 
of nodes used), and these were performed either using the UK Research and Innovation (UKRI) Science 
and Technology Facilities Council “DiRAC” facility (www.dirac.ac.uk), or the UKRI Natural Environment 
Research Council “ARCHER” facility (www.archer.ac.uk).

As is a very common approach in such numerical experiments (e.g., see Allanson et�al.,�2019,�2020; Campo-
reale,�2015; Camporeale & Zimbardo,�2015; H. Chen et�al.,�2017,�2018; Gao et�al.,�2017; Kuzichev et�al.,�2019; 
Liu et�al.,�2010,�2012; Tao et�al.,�2011,�2017), we consider one field-aligned dimension (x), which is a rea-
sonable approximation near the magnetic equator (i.e., uniform fields and field-aligned wave propagation) 
(Tsurutani & Smith,�1977), i.e., the region that is most important for whistler-mode wave generation (Gao 
et�al.,�2014; W. Li et�al.,�2010,�2012; Teng et�al.,�2018). We therefore use the one-dimensional version of the 
EPOCH code, such that all quantities have spatial gradients in the x-direction only. This is often referred 
to as a “3V1D” configuration (i.e., three dimensions in velocity space and one dimension in real space). We 
note that on the one hand, the limitations imposed by our uniform magnetic field idealization mean that 
we can’t realistically simulate the generation and subsequent development of nonlinear rising-/falling-tone 
chorus waves in an inhomogeneous field appropriately. Nonlinear chorus generation is usually (Hikishima 
et�al.,�2020; Omura et�al.,�2008), but not always (Wu et�al.,�2020), considered to require background field 
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inhomogeneities. However, the idealized nature of our numerical experiments does allow us to more accu-
rately compare the experiment results to the original fundamental quasilinear theory (e.g., Kennel & Engel-
mann,�1966), developed under the uniform magnetic field assumption. We hope that any lessons learned 
from these experiments will guide us in future works that may include background gradients, and therefore 
electron bounce motion.

Whilst the cold plasma approximation is often a good first-order treatment in the radiation belt context, 
plasma within the Earth's inner magnetosphere is known not to be exclusively composed of cold and ther-
mally isotropic components. A better approximation to reality would be to consider the addition of some 
higher temperature and thermally anisotropic electron components (e.g., see L. Chen et� al.,�2012; Gao 
et�al.,�2014; W. Li et�al.,�2010), which can be thermally unstable and susceptible to self-consistent generation 
of whistler-mode waves (Gary,�1993). The main difference between this study and that presented in Allan-
son et�al.�(2020) is that we consider the effect of allowing the electron component of the background plasma 
to have minority populations characterized by higher temperatures and thermal anisotropy. This approach 
allows us to analyze the changing nature of the electron response in different experiments for different val-
ues of both: (a) the background anisotropy; (b) the driving wave-amplitude. This scheme builds upon and 
blends the approaches used in Camporeale and Zimbardo�(2015) and Allanson et�al.�(2020), to give an even 
more detailed understanding of nonlinear electron dynamics.

The exact initial conditions for the electron species used in the experiments are fully detailed in Table�1. 
All distribution functions are initialized in our experiments as relativistic bi-Maxwellians if anisotropic, 
and as relativistic Maxwellians if isotropic. Parallel and perpendicular temperatures are defined using the 
second-order moments of the distribution (e.g., see Xiao et�al.,�1998 for a discussion). The parameter that 
describes the temperature anisotropy is defined by AT�=�T � /T � � 1 such that a thermally isotropic species 

has AT�=�0. The electron cold, “cool,” “warm,” and “hot” species have 
densities according to 0.9778np, 0.02np, 0.002np, and 0.0002np respectively 
(these sum up to np to ensure quasineutrality). These density parameters 
and the temperatures shown in Table�1 are chosen to resemble “typical” 
(Runs I–V) and “higher” (Runs VI–X) levels of thermal anisotropy, re-
spectively. The parameters in Runs I–V were chosen to resemble typical 
values that are consistent with the findings of W. Li et�al.�(2010), L. Chen 
et�al.�(2012), and the parameters for Runs VI–X were chosen to represent 
correspondingly “high” values (i.e., two times the value of T� /T �  of Runs 
I–V). The ion component is initialized as a cold and isotropic Maxwellian 
species in every run with AT�=�0 and T� �=�T � �=�1�eV.

In the same manner as described in Allanson et�al.�(2019) and utilized 
in Allanson et�al.�(2020), we excite incoherent right-hand polarized and 
field-aligned whistler-mode waves within the computational domain by 
perturbing the left-hand boundary with electromagnetic field oscillations 
with frequencies uniformly distributed in the range 0.2fce�<� f�<�0.4fce. Ta-
ble�2 presents the rms amplitude of the magnetic component of these 
waves: (a) at the left-hand boundary source; (b) spatially and temporally 
averaged over the entire spatial domain and run time. This choice of fre-
quency spectrum is intended to be a generic example of “broadband and 
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Runs

Cold component 
n�=�0.9778np

“Cool” component 
n�=�0.02np

“Warm” component 
n�=�0.002np

“Hot” component 
n�=�0.0002np

(T� , T� , AT) (T� , T� , AT) (T� , T� , AT) (T� , T� , AT)

I–V (1�eV, 1�eV, 0) (2.7�keV, 2�keV, 0.35) (25�keV, 20�keV, 0.25) (115�keV, 100�keV, 0.15)

VI–X (1�eV, 1�eV, 0) (5.4�keV, 2�keV, 1.7) (50�keV, 20�keV, 1.5) (230�keV, 100�keV, 1.3)

Table 1 
Initial Conditions for Electron Species in the Numerical Experiments

Run

rms amplitude of 
magnetic component 
of EM wave source at 
boundary (constant in 

time)

Bw: rms amplitude of 
magnetic component 
of EM waves within 

domain (averaged over 
all run time)

2
w 0( / )B B

I 1 pT �| 1.79pT �| 1.63 � 10�10

II �| 3.16 pT �| 5.83pT �| 1.73 � 10�9

III 10 pT �| 18.6pT �| 1.77 � 10�8

IV �| 31.6 pT �| 58.1pT �| 1.72 � 10�7

V 100 pT �| 194pT �| 1.92 � 10�6

VI 1 pT �| 1.54�nT �| 1.21 � 10�4

VII �| 3.16 pT �| 1.56�nT �| 1.24 � 10�4

VIII 10 pT �| 1.61�nT �| 1.32 � 10�4

IX �| 31.6 pT �| 1.67�nT �| 1.42 � 10�4

X 100 pT �| 1.76�nT �| 1.58 � 10�4

Table 2 
Some Key Wave Properties for the Numerical Experiments
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incoherent waves,” and is the same as chosen in the test-particle study by 
Tao et�al.�(2011) and�Allanson et�al.�(2019,�2020).

Figure� 1 presents the time-dependent wave power normalised to the 
background magnetic field (with � ��2 2 2

w y zB B B ) for each run. The blue 
lines depict Runs I–V, and the pink-red lines show the power for Runs 
VI–X. The vertical black line at t� �|� 0.03s represents the time at which 
the traveling waves excited within the domain first reach the right-hand 
boundary. A clear separation in resultant wave power is evident in Runs 
I–V (which have the lower anisotropy). These runs are therefore dominat-
ed by the value of the incident wave amplitude, and no significant ther-
mal instability is triggered. The situation is quite different for Runs VI–X. 
Despite the fact that these runs are driven with the same incident wave 
amplitudes as Runs I–V, respectively, they exhibit much higher wave am-
plitudes within the domain. These runs exhibit clear linear and nonlinear 
wave growth, and subsequent saturation (reached by t��|�0.11s in the “lat-
est” case). Runs VI–X are therefore dominated by the thermal instability. 
Interestingly, wave growth and saturation occur most quickly for Run X, 
which is the case with the highest driving wave amplitude. These results 

demonstrate the well-known fact that for an instability to promote the growth of waves quickly to high 
amplitudes and nonlinear saturation, one requires a “sufficient” supply of free energy, as determined by the 
number density and value of AT for the minority anisotropic components (e.g., see Tang & Summers,�2019).

Figure�2 presents various spectral information regarding the By component of the electromagnetic waves 
within the domain, for different runs. Since we have a one-dimensional domain, we only have field-aligned 
wave propagation. Therefore the whistler-mode waves are right-hand polarised, and the spectral informa-
tion regarding the By component is qualitatively the same as for the Bz component. We use By (or we could 
equivalently use Bz) for the Fourier analysis, because this quantity is readily available from the experiment 
output and contains all information required for field-aligned waves, that is, a field-aligned whistler-mode 
wave with frequency f that propagates in the x-direction is a sum of two linearly (y and z) polarised sinusoi-
dal waves (that themselves propagate in the x-direction) with the appropriate phase difference. Note that the 
“Fourier amplitude” that we shall refer to for By at a given frequency in Figures�2a and�2d is the amplitude 
A of one linearly polarized wave mode �  A sin(kx���2 �ft ). The Fourier amplitude values at each individual 
frequency f are (as should be expected) significantly lower than the value of Bw, since Bw is formally calcu-
lated by integrating wave power (in By and Bz) over all relevant frequencies. The Fourier amplitude at a given 
frequency in our experiments is observed to be about one order of magnitude lower than the value of Bw, 
corroborating with previous experiments conducted with similar broadband spectra (e.g., see discussions 
in Tao et�al. [2011,�2012]).

Figures�2a and�2d show the temporally and spatially averaged Fourier amplitude of the By component for 
all runs. The horizontal black lines in Figure�2a show the average power in the 0.2fce�<� f�<�0.4fce range. 
Runs I–V once again demonstrate clear separation in wave power, as determined by the amplitude of the 
wave-driving mechanism. Furthermore, we see that wave power within the domain is well-localized to the 
0.2fce�<� f�<�0.4fce region, matching the frequency range of the driver. However, we see from Figure�2d that 
the wave power for Runs VI–X: (i) do not exhibit significant separation; (ii) do display significant wave pow-
er over a much wider frequency band than for Runs I–V. The thermal instability in Runs VI–X has clearly 
triggered wave power over the majority of the whistler frequency domain. Figures�2b and�2e show time-fre-
quency contour plots of the power in the By component for Runs III and VIII, respectively, as examples. 
Figure�2b further confirms the localization of power to the 0.2fce�<� f�<�0.4fce band, whereas Figure�2e shows 
that the wave power spectra rapidly “spreads” over wider regions of frequency space over a time period that 
roughly matches that of the instability.

Whistler-mode waves in the magnetosphere frequently (but not always, e.g., see Teng et�al.,�2019) have a 
“power gap” at 0.5fce, separating the “lower-band” (flh�<� f�<�0.5fce, for flh the lower-hybrid frequency) and 
“upper-band” (0.5fce�<� f�<�f ce) (Burtis & Helliwell,� 1969; Tsurutani & Smith,�1974). However, we do not see 
that phenomenon in our experiment. This is not unexpected for the following reasons. It is now accepted 
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Figure 1.   Time-dependent wave power normalised to the background 
magnetic field (with � ��2 2 2

w y zB B B ) for each run. The blue lines depict 

Runs I–V, and the pink-red lines show the power for Runs VI–X. The 
vertical black line at t��|�0.03s represents the time at which the traveling 
waves excited within the domain first reach the right-hand boundary.
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that Landau damping by whistler-mode waves plays an important role in establishing the power gap (e.g., 
see H. Chen et�al.,�2021; J. Li et�al.,�2019; Ratcliffe & Watt,�2017). Landau damping by whistler-mode waves 
in this context requires a parallel component of the whistler-mode wave field perturbation vector, and this 
can only exist if the wave normal angle is non-zero (i.e., obliquely propagating modes with k  × B0 �z 0). We 
note that, whilst this Landau damping mechanism necessarily requires the existence of obliquely propa-
gating whistler-mode waves to occur, the power-gap effect can be observed in both the field-aligned and 
oblique modes (e.g., see Taubenschuss et�al.,�2014). However, we only have electromagnetic wave modes 
that propagate (anti-)parallel to the field-aligned direction in our experiments (k  × B0�=�0). Therefore there 
is no Landau damping by whistler-mode waves in our experiments.

Once the thermal instability saturates (at roughly t��|�0.08s for Run VIII), we see that the wave spectrum 
stops widening in frequency space, and slowly begins to become more narrow (in a manner somewhat 
similar to that in Tao et�al.�[2017], H. Chen et�al. [2017,�2018], and Kuzichev et�al.�[2019]). This narrowing 
occurs as the instability saturates and the anisotropy decreases, reducing the maximum frequency with 
positive growth rate (i.e., the condition on marginal instability is satisfied in a smaller ranger of frequencies) 
(Kennel & Petschek,�1966; Ossakow et�al.,�1972; Tao et�al.,�2017). Figures�2c and�2f show the “dispersion 
relation” for the By component of the wave for Runs III and VIII, with the cold-plasma whistler-mode 
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Figure 2.   Spectral information regarding the By component of the electromagnetic waves within the domain, for different runs. (a) Fourier amplitude of By 
component over entire run time for Runs I–V (each curve represents a different run such that the amplitude increases with increasing run number, and the 
horizontal lines plot the average of each curve in the 0.2fce�<� f�<�0.4fce range); (b) and (e) normalised power of By component as a function of frequency and 
time for Runs III and VIII, respectively; (c) and (f) “dispersion relation” for By component over entire run time for Runs III and VIII, respectively; (d) Fourier 
amplitude of By component over entire run time for Runs VI–X (VI: blue, VII: green, VIII: orange, IX: red, X: black). The vertical black and green lines in (a) and 
(d) show 0.2fce, 0.4fce, and fce, respectively. The horizontal black lines in (b) and (e) show 0.2fce, 0.4fce.
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dispersion relation (Stix,�1992) overplotted in cyan. We see that wave power is localized to the whistler band 
in both cases. These are presented as examples, and this result is common for the other runs. As is now to 
be expected, wave power is once again localized to the 0.2fce�<� f�<�0.4fce band of the whistler-curve for Run 
III, but exhibits a wider spread in frequency space for Run VIII.

Coherent chirping (rising-tone or falling-tone) chorus waves (Meredith et�al.,�2020) are the whistler-mode 
wave modes that are most usually considered (and modeled) to reach high amplitudes and be responsible 
for nonlinear wave-particle interactions (see discussion in Section 1). A background magnetic field inhomo-
geneity is considered to be fundamentally important to promote rising-tone and falling-tone chorus waves 
to high amplitudes (Omura et�al.,�2008) (however note recent experiments that demonstrate rising-tone and 
falling-tone chorus in a uniform magnetic field; Wu et�al.,�2020). However, less structured whistler-mode 
waves have been observed by a number of studies to be prevalent in the equatorial/near-equatorial re-
gions outside of the plasmasphere (Gao et�al.,�2014; W. Li et�al.,�2012; Shumko et�al.,�2018; Tsurutani & 
Smith,�1974; Tsurutani et� al.,�2013). These wave modes have been termed “hiss-like” or even “hiss-like 
chorus” (hereafter we use the term “hiss-like”). They can reach high amplitudes, and they have frequencies 
in the lower-band chorus range, that is, above the range of plasmaspheric hiss.

For example, W. Li et�al.� (2012) conducted a survey of whistler-mode waves using near-equatorial Time 
History of Events and Macroscale Interactions during Substorms (THEMIS, Angelopoulos,�2008) data, and 
found many instances of quasi-field aligned broadband hiss-like whistler-mode waves with 0.1–0.5fce low-
er-band frequencies outside the plasmasphere. They found that the hiss-like bands predominantly in the 
regions of higher fpe/f ce, including high-amplitude waves (magnetic component�>�300pT). Furthermore, 
Gao et�al.�(2014) similarly considered THEMIS whistler-mode wave data outside the plasmapause, and cor-
related occurrence statistics of hiss-like waves with the relative proportion of “hot” plasma (“Nh”) to total 
plasma (“Nt”). They found that hiss-like waves were more common than rising tones or falling tones. They 
also found that �| 0.5�1�nT hiss-like waves could be observed, and quoting: “With the increase of Nh/N t, the 
occurrence rate of hiss-like emissions generally increases, and the corresponding wave amplitudes become 
larger”. We also highlight the work of Katoh and Omura�(2013), using hybrid numerical experiments of 
whistler-mode wave generation (both chorus and “broadband hiss-like” emissions). They found that the 
excitation of broadband hiss-like emission with amplitudes comparable to discrete chorus elements was 
found in the experiment with lowest field-line inhomogeneity. Similarly, unstructured lower-band whis-
tler-mode spectra have been observed in kinetic physics (spatially one-dimensional) numerical experiments 
that studied whistler-mode wave generation via anisotropic instability (H. Chen et�al.,�2017,�2018; Kuzichev 
et�al.,�2019; Tao et�al.,�2017).

3.  Lower Anisotropy: Dynamics Dominated by Incident Waves

Theoretical radiation belt quasilinear diffusion coefficients are derived using complicated formulae that 
depend on the background plasma, number density, and electromagnetic wave spectral properties (Glauert 
& Horne,�2005; Kennel & Engelmann,�1966; Lerche,�1968; Lyons,�1974; Summers,�2005). Radiation belt nu-
merical models then solve diffusion equations that utilize these diffusion coefficients. These Fokker-Planck 
equations describe the statistical evolution of the particle distribution functions, in a manner that is consist-
ent with Markovian stochastic dynamics (Wang & Uhlenbeck,�1945). For a given ensemble of particles that 
are initially localized at t�=� t0 to some initial value of energy and pitch angle (E0, � 0), the formal (Markovian) 
definition of the pitch-angle diffusion coefficient (for example) at the point (E0, � 0) in energy pitch-angle 
space is given by

� (1)

where � …�  is the ensemble average (i.e., the mean) (Allanson et�al.,�2020; Liu et�al.,�2010; Zheng et�al.,�2019). 
Note that this definition does not diverge as �t �  0, since the numerator is itself of order (�t)1 (Reif,�2009; 
Wang & Uhlenbeck,�1945; Zheng et�al.,�2019). This equation defines the diffusion coefficient as being pro-
portional to the rate of increase of the ensemble mean of the “squared pitch-angle change” (the change is 
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with respect to the initial value, that is, � 0�=� � �( t�=� t0)� . This formula is slightly different to the one that is 
actually more commonly used and discussed, which is given by

� (2)

where � � �  is the mean of the pitch angle values at t�=� t0�+�� t. This equation defines the diffusion coefficient 
as being proportional to the rate of increase of the variance of the ensemble of values. We can observe that 
the expression in Equation�2 is different to that in Equation�1, by virtue of the fact that

� (3)

and therefore D��,formal � �t�D��,approx , since the final term on the RHS of Equation�3 is non-negative. As ex-
plained in Zheng et�al.�(2019) and references therein, for a system with well-defined small stochastic chang-
es, D��,formal  �  D��,approx  as � t �  0, since  as �t  �  0.

In Figure�3, we present the evolution of the quantities  (Figure�3a) and � (�  � � � � )2�  (Figure�3b), 
for ensembles of particles that are initially localized to bins in energy and pitch-angle space that are resonant 
with whistler-mode waves at f�=�0.3fce. Each ensemble of electrons has 17,777 members. We start tracking 
the electron data from the time (t��|�0.03s) at which the whistler-mode waves first reach the right-hand side 
of the physical domain (as discussed in Section�2). The plots are labeled and color-coded for electrons with 
initial values of pitch angle � 0�=�5°, 15°, 25°, 35°, 45°, 55°, 65°, 75°, 85°, and 89°. The asterisks show data 
from the numerical experiment, and the straight lines are those that are consistent with the D��  as predicted 
using the PADIE software (Glauert & Horne,�2005) for a Gaussian fit to the average of the wave spectrum. 
We see that the two figures show near-identical results to each other (despite the different measures used), 
and very good agreement with the PADIE results. This indicates that treatment with a “standard” quasilin-
ear Fokker-Planck diffusion code (i.e., one with only diffusive terms, e.g., see Schulz & Lanzerotti,�1974) 
would be expected to yield good results (at least for values of �t roughly of the order of that used in this 
experiment, but possibly longer). We have performed similar comparisons with the results from PADIE for 
all Runs I–V, and find qualitatively similar results to those obtained for the 5 runs conducted with a cold and 
isotropic plasma background in Allanson et�al.�(2020) (e.g., see Figure�6 in that paper). Therefore we do not 
repeat that presentation for the sake of brevity.

To gain further insight into the nature of the particle dynamics, we present scatter plots that track the move-
ment of ensembles of particles in (E, � ) space for Runs I and V. Figures�4a–4d each present the trajectories 
of 17,777 electrons scattering from a given initial (E, � ) bin at four snapshots in time from Run I. In each 
case, the blue rectangle outlines the domain (i.e., the bin) in (E, � ) space of the electrons at beginning of the 
tracking period t��|�0.03s (this is labeled as “t�=�0” in this Figure, and subsequent such Figures). The final 
snapshot represents the end of the numerical experiment (“t�=�T”). The overplotted curve is the line that 
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Figure 3.   Diffusive measures of electron dynamics in pitch angle space for Run I according to: (a) ; (b) � (� 
� � � � )2�  for electrons with initial values of pitch angle � 0�=�5°, 15°, 25°, 35°, 45°, 55°, 65°, 75°, 85°, and 89°, and energies 
that correspond to particles resonant with f�=�0.3fce. The asterisks show data from the numerical experiment, and the 
straight lines are those that are consistent with the D��  as predicted using the PADIE software for a Gaussian fit to the 
average of the wave spectrum. Each ensemble of electrons has 17,777 members. We start tracking the electron data 
from the time (t��|�0.03s) at which the whistler-mode waves first reach the right-hand side of the physical domain (as 
discussed in Section�2).
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defines resonant energies and pitch angles with f�=�0.3fce waves. Underneath each scattering plot, we pres-
ent a histogram of those particles in pitch-angle space. Each bin represents electrons with energies initially 
resonant with f�=�0.3fce waves, for pitch angles according to (a) 15°; (b) 35°; (c) 55°; (d) 75°. The vertical 
black/blue line marks the mean value of the distribution at the initial/current time. The scatter plots show 
that diffusion is very weak in this case, since particles barely move outside of their initial bin. Likewise, the 
histograms do not demonstrate significant changes in the individual pitch-angle distributions.

Figures�5a–5d present the same information but for Run V. The overplotted curves are the lines that define 
resonant energies and pitch angles with waves at frequency f�=�0.2fce, 0.3fce, 0.4fce (such that lower energy 
particles, at a fixed pitch angle, resonate with higher frequency waves). The vertical red line in Figures�5a 
and�5b are drawn at � �=�3°, which is the approximate value of the equatorial loss cone at L�=�6. Of course, 
our experiments are performed in the context of a uniform background magnetic field and we have no par-
ticle loss, and so this line is drawn purely to provide an indication of possible dynamics into/out of the equa-
torial loss cone. In contrast to the results from Run I, we see much more significant diffusion. Within the 
total run-time, we see that significant proportions of electrons are able to move in (E, � ) space so that they 
are in resonance with waves of a frequency�±�0.1fce different to that with which they were initially resonant. 
The histograms show the clear development of initially narrow distributions into broader distributions, as 
is generally expected in the diffusive paradigm. Furthermore, Figures�5a and�5b (the ensembles initially 
located at 15°, 35°) do show some transport to pitch angle values within the loss cone.

In Figure�6, we plot the trajectories of 30 randomly chosen electron trajectories for particles with energies 
and pitch angles initially resonant with waves of frequency f�=�0.3fce for Runs I ((a) and (b), 35° and 75°, re-
spectively) and V((c) and (d), 35° and 75°, respectively). The thin “central” overplotted black line represents 
the mean value of the 30 electrons, and the thicker black lines represent the mean�±1 standard deviation, 
which is a proxy measure for diffusion according to Equation�2. The results from Run I further demonstrate 
the minimal diffusion present over the timescale considered. Furthermore, the mean value of the electrons 
effectively stays constant. For Run V, we see that an efficient diffusive process is taking place. The electron 
ensemble initially localized to 75° demonstrates some small level of advection in the mean value, but the 
diffusive process still appears to dominate.

It is helpful to construct a proxy quantity that compares the “rate of diffusion” with the “rate of advection.” 
We use dimensionless quantities that were also used by Gan et�al.�(2020) when analyzing nonlinear elec-
tron-whistler interactions, namely

� (4)

in energy space and

� (5)

in pitch-angle space, for (E0, � 0) the initial value that defines a given ensemble. Both the absolute value and 
the time-derivative of these quantities can yield useful information. Figure�7 plots these quantities to indi-
cate the ratio of advection to diffusion for Run V in energy space (a) and pitch angle space (b). We do not 
show the results for Run I since the ratios are essentially nil in that case, corroborating with the previous 
results to show that advective processes are negligible for that case, on this timescale. The color-coded plots 
show data for electrons with initial values of pitch angle � 0�=�5°, 15°, 25°, 35°, 45°, 55°, 65°, 75°, 85°, and 
89°, and energies that correspond to particles resonant with f�=�0.3fce. The results from Run V show that: 
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Figure 4.   Tracking the particle scattering from a given initial (E, � ) bin at four snapshots in time from Run I In each case the blue rectangle outlines the 
domain (i.e., the bin) in (E, � ) space of the particles at t�=�0. The overplotted curve is the line that defines resonant energies and pitch angles with f�=�0.3fce 
waves. Underneath each scattering plot, we present a histogram of those particles in �  space. The vertical black/blue line represents the mean value of the 
distribution at the initial/current time. Each bin represents electrons with energies initially resonant with f�=�0.3fce waves, for pitch angles according to (a) 15°; 
(b) 35°; (c) 55°; (d) 75°. Each ensemble of electrons has 17,777 members. “t�=�0” in these plots refers to the time (t��|�0.03s) at which the whistler-mode waves 
first reach the right-hand side of the physical domain (as discussed in Section�2), and “t�=�T” refers to the end of the experiment.
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(i) advective processes are present; (ii) pitch-angle advection appears to be stronger than energy advection 
(as might be expected for a plasma with fpe� � � fce in which pitch-angle dynamics are dominant, e.g., see 
Summers,�2005); (iii) in all cases the results are bounded by�±�1, thus indicating that diffusive dynamics are 
the dominant process. Interestingly, it seems that electrons with pitch-angle values�<�45° experience net 
positive advection, and that electrons with pitch-angles > 45° experience net negative advection. As a phe-
nomenological interpretation, these results make sense when we observe the evolution of the mean of the 
histograms in Figure�5, as the ensemble pitch-angle distributions rapidly spread across pitch-angle space. 
We note that similar results were found in the test-particle studies by Liu et�al.�(2012) and Lee et�al.�(2018) 
for the case of electron interactions with EMIC waves in a uniform background field.

4.  Higher Anisotropy: Dynamics Dominated by Instability

In this section, we consider the results from Runs VI–X which have the higher levels of background aniso-
tropy (see Table�1 for all details). The wave power and spectral profiles are all qualitatively similar for each 
Runs VI–X since they are dominated by the instability and saturate at roughly the same amplitude. There-
fore we only analyze Run VIII in detail as a representative example.

Figure�8 presents diffusive measures of electron dynamics in pitch angle space for Run VIII according to 
the two definitions from Equations�1 and�2, that is,: (a) ; (b) � (�  � � � � )2� . These are shown for 
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Figure 5.   Tracking the particle scattering from a given initial (E, � ) bin at four snapshots in time from Run V. In each case the blue rectangle outlines the 
domain (i.e., the bin) in (E, � ) space of the particles at t�=�0. The overplotted curves are the lines that define resonant energies and pitch angles with f�=�0.2fce, 
0.3fce, 0.4fce waves (such that higher frequency waves resonate with lower energies, for a given pitch angle). Underneath each scattering plot, we present a 
histogram of those particles in �  space. The vertical black/blue line represents the mean value of the distribution at the initial/current time, and the vertical red 
line indicates the equatorial loss cone value � ��|�3°. Each bin represents electrons with energies initially resonant with f�=�0.3fce waves, for pitch angles according 
to (a) 15°; (b) 35°; (c) 55°; (d) 75°. Each ensemble of electrons has 17,777 members. “t�=�0” in these plots refers to the time (t��|�0.03s) at which the whistler-mode 
waves first reach the right-hand side of the physical domain (as discussed in Section�2), and “t�=�T” refers to the end of the experiment.

Figure 6.   30 randomly chosen electron trajectories for particles with energies initially resonant with waves of 
frequency f�=�0.3fce with pitch angle 35° ((a) and (c)) and 75° ((b) and (d)), for Runs I ((a) and (b)) and V((c) and (d)). 
The thin “central” overplotted black line represents the mean value of the 30 electrons, and the thicker black lines 
represent the mean��r�1 standard deviation. We start tracking the electron data from the time (t��|�0.03s) at which the 
whistler-mode waves first reach the right-hand side of the physical domain (as discussed in Section�2).
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electrons with the same color coding as for Figure�3, and also resonant with waves of frequency f�=�0.3fce. 
The asterisks show data from the numerical experiment, and the straight lines are once again those that are 
consistent with the D��  as predicted using the PADIE software for a Gaussian fit to the average of the wave 
spectrum. In contrast to the results from Runs I–V, we see that the quasilinear diffusion prediction does not 
effectively describe the dynamics over the timescale considered, since they overestimate the amount of dif-
fusion in both cases. We note here that, formally speaking, the variety of quasilinear theory that we compare 
to (the limit of “resonant diffusion;” Kennel & Engelmann,�1966) should only be applied to time-invariant 
wave spectra. This is clearly not the case for Runs VI–X, as demonstrated in Section�2, and so it would 
seem that we should not compare our experimental data in this manner. However, the total run-time of 
the dynamics considered is��|�0.26s, and this is much shorter than the typical timesteps used in radiation 
belt diffusion codes, which are usually of the order of tens of seconds, minutes, or even longer. Numerical 
diffusion codes therefore do not model rapid variations in the wave power spectral densities such as those 
presented here. Instead, they consider the wave power averaged over longer timescales. We are therefore 
comparing the results from our numerical experiments with the predictions made using the averaged wave 
power in the quasilinear theory, to more effectively compare with the philosophy and approach that is used 
in current diffusion codes.

We can immediately make three main observations from considering Figures�8a and�8b. First, the two dif-
ferent measures of diffusive dynamics (Equations�1 and�2) give very different results. This is unlike the case 
presented in Figure�3 for which they gave nearly identical results. As discussed in Section�3, this difference 
must be determined by the following quantity

� (6)
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Figure 7.   Ratio of advection to diffusion for Run I in energy space (a) and pitch angle space (b); and also for Run V in 
energy space (c) and pitch angle space (d). The plots show data for electrons with initial values of pitch angle � 0�=�5°, 
15°, 25°, 35°, 45°, 55°, 65°, 75°, 85°, and 89°, and energies that correspond to particles resonant with f�=�0.3fce. We start 
tracking the electron data from the time (t��|�0.03s) at which the whistler-mode waves first reach the right-hand side of 
the physical domain (as discussed in Section�2).

Figure 8.   Diffusive measures of electron dynamics in pitch angle space for Run VIII according to: (a) ; (b) 
� (� � � � � )2�  for electrons with initial values of pitch angle � 0�=�5°, 15°, 25°, 35°, 45°, 55°, 65°, 75°, 85°, and 89°, and 
energies that correspond to particles resonant with f�=�0.3fce. The asterisks show data from the numerical experiment, 
and the straight lines are those that are consistent with the D��  as predicted using the PADIE software for a Gaussian fit 
to the average of the wave spectrum. We start tracking the electron data from the time (t��|�0.03s) at which the whistler-
mode waves first reach the right-hand side of the physical domain (as discussed in Section�2).
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Therefore we can deduce that the mean value of electron ensembles change significantly over the timescale 
considered in pitch-angle space. The difference between these two measures strongly suggests that one 
needs to be careful when extracting diffusion data from numerical experiments, interpreting diffusion coef-
ficients, and when considering the results in the context of the standard diffusion equation used in radiation 
belt modeling (Schulz & Lanzerotti,�1974). In particular, with the experiment timescale that we consider 
(�|0.26s), and also therefore the typical time-step values (�tRBM�� �0.26s) of the magnitude commonly used 
in radiation belt diffusion models, we cannot appropriately construct a diffusion coefficient. This timescale/
time-step size is too large (with respect to the rapid diffusion and advection) to be used in a numerical ap-
proximation of the mean square limit in the definition of the diffusion coefficient in Equation�1 or�2.

Second, and despite the fact that the two plots present very different results, we observe that the nature 
of the diffusion follows a similar pattern in both cases (in all but the two highest presented pitch angle 
samples). Namely, a growth period and subsequent saturation period that roughly correlates with the ob-
served wave growth and saturation timescales. As described in Section 1, this feature bears an interesting 
resemblance to results obtained in Liu et�al.�(2010), Tao et�al.�(2012), and Camporeale and Zimbardo�(2015). 
Note that each of those three papers treated different problems in a different context (see Section 1 for a full 
description), but they all observed a “saturation” in the diffusion due to wave-particle interactions, either 
for: (i) the case of individual experiments with a constant, but high wave amplitude (Liu et�al.�[2010] in the 
case of EMIC waves and Tao et�al.�[2012] in the case of whistler-mode waves); (ii) or for an experiment in 
which a whistler wave instability driven by thermal anisotropy underwent growth and saturation phases, in 
a manner somewhat similar to the experiments that we present (Camporeale & Zimbardo,�2015).

Third, most of the particle ensembles considered in Figure�8b seem to saturate/asymptote toward similar 
values within the range �| 400�460deg2. This feature was also noted in the case of the experiment run by 
Camporeale and Zimbardo�(2015), and can correspond to the pitch-angle variance of a 90°-peaked pitch-an-
gle distribution f(� ) �   sin � .

In Figure�9, we track particle scattering for Run VIII, in the same manner as presented in Figures�4 and�5. 
Each bin once again represents electrons with energies initially resonant with f�=�0.3fce waves, for pitch an-
gles according to (a) 15°; (b) 35°; (c) 55°; (d) 75°. The overplotted curves are the lines that define resonant en-
ergies and pitch angles with waves at frequency f�=�0.1fce, 0.2fce, 0.3fce, 0.4fce, 0.5fce, 0.6fce, 0.7fce, 0.8fce, 0.9fce 
(such that lower energy particles, at a fixed pitch angle, resonate with higher frequency waves). As before, 
the vertical black, blue and red lines in the histograms depict the mean value at the initial and current times, 
and the loss cone respectively. In all cases, we see that electrons travel a much greater distance in pitch-an-
gle space, as compared to Runs I and V. This rapid transport (diffusion and advection) allows electrons to 
cover regions of energy and pitch-angle space that are resonant with waves throughout the majority of the 
whistler-mode wave frequency range, as demonstrated by the overplotted resonance curves for different 
frequencies. These dynamics are facilitated by the wideband frequency range observed in the numerical 
experiment (see Figure�2). Furthermore, all cases demonstrate electron transport within the loss cone.

The pitch-angle distributions presented in Figure�9 of the individual ensembles demonstrate not only that 
each initial localized ensemble rapidly spreads to cover all pitch-angle space, but that the distribution is 
90°-peaked. This is in stark contrast to Runs I–V, in which electron ensembles only spread locally and 
with a broad distribution. This 90°-peaked feature is common to all four presented cases in Figures�9a–9d. 
This corroborates with the results presented in Figure�8b (i.e., the asymptotic of the variance toward �| 
400�460deg2), and those results in Camporeale and Zimbardo�(2015).

In Figure�10, we plot the trajectories of 30 randomly chosen electron trajectories from Run VIII for parti-
cles with energies initially resonant with waves of frequency f�=�0.3fce with pitch angle 15° (a); 35° (b); 55° 
(c); 75° (d). Once again the thin “central” black line represents the mean value, and the thicker black lines 
represent the mean�±�1 standard deviation. For the 15°, 35°, 75° cases we see a significant advective motion 
of the mean value. We also observe the expected diffusive spreading (i.e., the expansion of the standard 
deviation “width”) in all cases. These diffusive and advective dynamics are seen to be strongest during the 
wave growth-phase, and slow down during the saturation phase.

Finally, in Figure�11, we present the ratios of energy (Figure�11a) and pitch-angle (Figure�11b) advective and 
diffusive dynamics for Run VIII, as was done for Runs I and V in Figure�7, and using the formulas given by 
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Equations�4 and�5. This is done for electrons with initial values of pitch angle � 0�=�5°, 15°, 25°, 35°, 45°, 55°, 
65°, 75°, 85°, and 89°, and energies that correspond to particles resonant with f�=�0.3fce. The plots show sim-
ilar results as discussed for Run V in Figures�7c and�7d), namely that: (i) advective processes are present; (ii) 
pitch-angle advection is larger than energy advection; (iii) and electrons with smaller pitch-angle values ex-
perience net positive advection, while electrons with larger pitch-angles experience net negative advection. 
However, in contrast to Run V, we see that: (i) the significant dynamics occur during the wave-growth phase 

and saturate thereafter; (ii) the values reached are significantly larger, with  
bounded by 3 for Run VIII, as opposed to 1 for Run V. This indicates that the wave-growth phase has facili-
tated significant advective dynamics to occur and to dominate on short timescales.

5.  Discussion

Analysis of the electromagnetic wave properties has demonstrated the well-known and crucial role that the 
thermal composition of a background plasma can have on the resultant wave power and its evolution. In 
particular, our experiments demonstrate/confirm that for “high” levels of anisotropy: (i) the wave power 
can reach “high” amplitudes��|�1�nT such that Bw � �O(B0/100); (ii) the high amplitude of the final satura-
tion state is essentially unaffected by the lower amplitude incident wave power; (iii) but that saturation is 
reached more quickly for a higher amplitude of incident wave; (iv) wave power can rapidly spread over 
wider regions of frequency space over the wave-growth period, but then stop spreading as the wave power 
saturates (in a manner that is similar to other recent 1D PiC experiments that study whistler-wave growth 
via anisotropic instabilities (H. Chen et�al.,�2017,�2018; Kuzichev et�al.,�2019; Tao et�al.,�2017).

However, for the lower/“typical” levels of anisotropy, we see that wave propagation and spectral properties 
are relatively unaffected by the background thermal conditions, and thermal instabilities need not occur. 
When considering the electron dynamics in these low anisotropy cases (Runs I–V), we observe that the 
quasilinear approach seems appropriate over the short timescales considered. To be precise, the diffusive 
dynamics are observed to dominate over advective dynamics, and the extracted diffusion coefficients agree 
well with the predictions of the quasilinear theory obtained using PADIE software, when considered over 
“appropriately short timescales” (as discussed in much more detail in Allanson et�al.�[2020]). Similar results 
are found in other numerical (test-particle) experiments that are consistent with a cold and isotropic plasma 
background (e.g., Tao et�al.�[2011] for whistler-mode waves and Liu et�al. [2010,�2012] for EMIC waves).

In the cases with higher anisotropy, we observe markedly different dynamics. Significant diffusive and ad-
vective responses are observed, and these correlate with the wave-growth phase. As the rms wave-ampli-
tude rapidly grows in time, we observe that the spectral width (bandwidth) also increases. By tracking the 
individual electron dynamics during this time we can see that this allows rapid transport to regions of 
energy and pitch-angle space that are resonant with very different frequencies to those with which they 
were initially resonant.

Interestingly, these rapid dynamics contribute to the emergence of 90°-peaked pitch-angle distributions 
for individual ensembles of electrons. Ensembles that are initially localized to a given pitch-angle, scatter 
across all 0° < � �<�90° pitch-angle space, to give “wedge-shaped” 90°-peaked distributions: (i) that have a 
functional profile and variance roughly equivalent to that of a sinn� distribution (Camporeale & Zimbar-
do,�2015); (ii) and such as are known occur in the radiation belt plasma environment (Gannon et�al.,�2007; 
Wrenn et�al.,�1979; Zhao et�al.,�2020). Note that the distributions that we present describe a given ensemble, 
and do not necessarily resemble the pitch angle distribution across all energy space.
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Figure 9.   Tracking the particle scattering from a given initial (E, � ) bin at four snapshots in time from Run VIII. In each case, the blue rectangle outlines the 
domain (i.e., the bin) in (E, � ) space of the particles at t�=�0. The overplotted curves are the lines that define resonant energies and pitch angles with f�=�0.1fce, 
0.2fce, 0.3fce, 0.4fce, 0.5fce, 0.6fce, 0.7fce, 0.8fce, 0.9fce waves (such that higher frequency waves resonate with lower energies, for a given pitch angle). Underneath 
each scattering plot, we present a histogram of those particles in �  space. The vertical black/blue line represents the mean value of the distribution at the initial/
current time, and the vertical red line indicates the equatorial loss cone value � ��|�3°. Each bin represents electrons with energies initially resonant with f�=�0.3fce 
waves, for pitch angles according to (a) 15°; (b) 35°; (c) 55°; (d) 75°. Each ensemble of electrons has 17,777 members. “t�=�0” in these plots refers to the time 
(t��|�0.03s) at which the whistler-mode waves first reach the right-hand side of the physical domain (as discussed in Section�2), and “t�=�T” refers to the end of 
the experiment.
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Electron microbursts (Anderson & Milton,�1964) are localized and short 
timescale (of the order of 100�ms) electron precipitation events, with en-
ergy spectra from a few keV and up to the MeV range. Microburst events 
have been shown to correlate with equatorial and near-equatorial whis-
tler-mode waves activity in a general sense, that is, both: (i) coherent ris-
ing-tone chorus elements (Breneman et�al.,�2017; Lorentzen et�al.,�2001; 
Mozer et�al.,�2018); (ii) and also less structured lower-band whistler-mode 
spectra, including hiss-like spectra (Shumko et� al.,�2018; Tsurutani & 
Smith,�1974; Tsurutani et�al.,�2013). It has also been demonstrated that 
whilst quasilinear theory results can sometimes happen to characterize 
the precipitation rate, it is likely that nonlinear wave-particle processes 
play a fundamental role, especially when wave amplitudes reach �| 1�nT 
values (Breneman et�al.,�2017; Mozer et�al.,�2018; Shumko et�al.,�2018). 
Strong whistler-mode wave activity (including the less structured hiss-
like variety) has been observed to correlate with raised levels of energetic 
electron density and anisotropy (Gao et�al.,�2014; W. Li et�al.,�2010), as 
according to the standard theory (Davidson et�al.,�1972; Kennel & Pet-
schek,�1966; Ossakow et� al.,�1972; Tang & Summers,�2019). Here, we 
show that significant diffusion and advection occur during short-times-
cale (�|100�ms) dynamics due to interactions with high-amplitude hiss-
like whistler-mode waves (�|100�nT at saturation), which are generated 
by strong (thermal-anisotropy driven) instabilities. Of particular note 
for comparison is the work by Shumko et�al.� (2018), in which Van Al-
len Probe data of near-parallel-propagating and near-equatorial hiss-like 
whistler-mode waves at L� ��|�6 (with background electron number densi-
ty��|�107 m�3 ) indicated electron microbursts with a duration 150�500�ms. 
These parameters and characteristics are very similar to those presented 
in this study. Collecting together all of these discussed results leads us 
to hypothesize that the wave-growth phase itself may play an important 
role in the electron microburst mechanism, for the few tens of keV energy 
range. Since our experiments are conducted in the equatorial/uniform 
B approximation, this hypothesis will need to be confirmed via future 
studies that include electron bounce motion due to background magnetic 
field line inhomogeneities, and therefore the existence of a loss cone.

The results here demonstrate the pivotally important role that anisotrop-
ic components can play in electron dynamics, despite the fact that such 
components may make up a very small portion of the total plasma densi-
ty. This presents the further motivation for more detailed statistical mod-
els of the anisotropy and number density of the fractional higher temper-
ature anisotropic species in the radiation belts. In particular, it would be 
interesting to know, on a statistical basis: (i) how extreme the levels of 
anisotropy can be; (ii) how often such “large” values occur; (iii) and what 
proportion of the total electron density they constitute.

6.  Summary and Future Work

The current limits on computational power dictate that any operational 
(physics-based) forecasting model of the Earth's radiation belts must be 
a reduced-physics model, such as Fokker-Planck diffusion codes. How-
ever, it is clear that nonlinear wave-particle interaction effects, and more 
general nonlinear kinetic effects (such as wave growth and saturation) 
are not only interesting to study, but important to understand for mod-
eling of high energy electron dynamics. The important and underlying 

ALLANSON ET AL.

10.1029/2020JA028793

17 of 22

Figure 10.  30 randomly chosen electron trajectories from Run VIII for 
particles with energies initially resonant with waves of frequency f�=�0.3fce 
with pitch angle 15° (a); 35° (b); 55° (c); 75° (d). The thin “central” 
overplotted black line represents the mean value of the 30 electrons, and 
the thicker black lines represent the mean�±�1 standard deviation. We start 
tracking the electron data from the time (t��|�0.03s) at which the whistler-
mode waves first reach the right-hand side of the physical domain (as 
discussed in Section�2).
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question could be summarized: “how can we best incorporate very short-timescale effects (that may include 
the influence of very high-amplitude waves) into longer timescale global modeling of the radiation belts?” 
The study here tries to stimulate further discussion on this important topic, and highlight some particularly 
interesting features of this large and challenging problem.

Using the method established in Allanson et�al.�(2019), we analyze (in the radiation belt context) the elec-
tron response to a combination of externally driven and internally generated whistler-mode waves with 
realistic background thermal anisotropy, and with a kinetic plasma physics code. We observe that:

1.	 �For our experiments run with “lower/typical” levels of anisotropy, wave properties are relatively unaf-
fected by the background thermal conditions. Furthermore, the quasilinear approach seems appropriate 
over the short timescales considered (with some caveats in a similar manner to those that are discussed 
in Allanson et�al.�(2020), and similarly by Liu et�al.�(2010) in the case of EMIC waves).

2.	 �For experiments run with the “higher” levels of anisotropy, an instability is triggered with growth and 
saturation phases. Electron dynamics during this instability are radically different to that predicted using 
the typical average wave power method in the quasilinear theory.

3.	 �During the wave growth phase the dynamics include both strong diffusive and advective components 
which both saturate as wave power saturates, with the advective component often dominant.

4.	 �The growth phase facilitates rapid advective changes in electron pitch angle, via successive electron in-
teractions with the (widening) resonance regions in energy and pitch-angle space.

5.	 �We hypothesize that the wave-growth phase for whistler-mode waves that saturate at high amplitudes 
may itself play an important role in the electron microburst mechanism for the few tens of keV energy 
range.

The study here is intended to complement other recent studies that explicitly compare the efficacy of the 
quasilinear diffusion theory with physics-based numerical experiments to describe electron dynamics when 
it may not be expected to be formally appropriate (e.g., see Allanson et�al.,�2020; Camporeale & Zimbar-
do,�2015; Gan et�al.,�2020; Liu et�al.,�2010,�2012; Tao et�al.,�2011,�2012,�2013). In particular, this study moti-
vates future work on the macroscopic impact of very short timescale and nonlinear processes in radiation 
belt modeling, and the effects of anisotropic background plasma components on electron scattering. Future 
work could include rigorous and detailed comparisons between results from kinetic experiments and nu-
merical diffusion models in energy and pitch-angle space. Furthermore, a more realistic treatment of ra-
diation belt particle and wave dynamics should include particle mirror/bounce motion due to background 
magnetic field-line inhomogeneities (e.g., see Tao et�al. [2012] for example experiments using a test-particle 
method). We aim to consider this problem using the particle-in-cell method in future works. In particular, 
it will be interesting to consider the suggestion raised here that the nonlinear electron dynamics (diffusion 
and advection) during the rapid (�|100�ms) wave-growth phase for whistler-mode waves that saturate at high 
amplitude (�|1�nT) may contribute to the electron microburst mechanism.
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Figure 11.  Ratio of advection to diffusion for Run VIII in energy space (a) and pitch angle space (b). The plots show 
data for electrons with initial values of pitch angle � 0�=�5°, 15°, 25°, 35°, 45°, 55°, 65°, 75°, 85°, and 89°, and energies 
that correspond to particles resonant with f�=�0.3fce. We start tracking the electron data from the time (t��|�0.03s) at 
which the whistler-mode waves first reach the right-hand side of the physical domain (as discussed in Section�2).
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Data Availability Statement

The Supporting Information provides (S1) basic instructions on how to run the same experiments that are 
presented in the main article. Data file D1 is available at https://doi.org/10.6084/m9.figshare.13653065.v1. 
This data file provides the contents of the input text files, used for the numerical experiments that are pre-
sented in the main article. A combination of the information provided in S1 and D1 will enable readers to 
locally generate the same experimental data as was considered in the main article.
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