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Framework for parametric assessment of operational and 
embodied energy impacts utilising BIM 

 
 
ABSTRACT 
 
In recent years advances in digital tools have been leading the way in the construction of cleaner, 

more energy-efficient buildings. Furthermore, improvements in Building Information Modelling (BIM) 

have resulted in various tools being used to assess building performance and overall Life Cycle 

Analysis (LCA). This work offers a unique insight into the development of a parametric LCA BIM tool, 

focusing on both operational and embodied energy perspectives through case study analysis of a 

commercial and a domestic building in the UK. A mixed research method was employed combining a 

literature review, qualitative and quantitative LCA case study analysis, and parametric modelling. The 

results indicate that embodied energy is much more critical in the early stages of the building’s life, 

then is quickly overtaken by operational energy. In addition, many variations exist in energy outputs 

between domestic and commercial buildings. Operational energy takes a significant share in domestic 

buildings compared to commercial buildings. These variations are attributed to different design 

methods, construction materials, occupancy patterns and energy demands. The study proposes an 

LCA-BIM interactive user-led method of addressing energy hotspots for both operational and 

embodied elements, which can provide more instant identification of energy critical areas. Such an 

approach can offer real alternative BIM-based analysis tools during the design stages, compared to 

those currently being used, which focus mainly on either LCA of operational or embodied energy.  

 
Keywords: Building information modelling; operational energy; embodied energy; life cycle assessment; 

parametric design  
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1. Introduction 

The architecture, engineering, and construction (AEC) sector is recognised to be a major consumer of 

non-renewable energy and source of carbon emissions. It is responsible for 35% of global energy 

consumption and 38% of energy related global carbon emissions [1]. Of this 35%, 30% comes from 

the operational energy (OE) [1] that buildings use in operational activities such as heating, cooling, 

lighting, and building appliances [2]. Significant advances in both legislative measures and 

technologies have resulted in building mechanical systems becoming more efficient in terms of OE 

consumption [3], but this has caused the embodied energy (EE) share of whole life cycle energy, i.e. 

the energy required by all the processes associated with building production, to increase [2], [4]. Until 

recently, the EE share of buildings was not always fully accounted for due to the complexity and time-

consuming nature of its assessment, compared to operational energy use. However, in recent years it 

has become the focus of both policymakers and researchers wishing to optimise the total energy 

consumption of buildings throughout the life cycle [2], [5]. To enable the AEC sector to meet the 2015 

Paris Agreement goals [6] and United Nations (UN) sustainable development goals, equal attention to 

both operational and embodied energy impacts is required.  

Life cycle assessment (LCA) approaches are widely used to estimate the environmental impacts of 

Abbreviations 
 
AEC  Architecture, Engineering and Construction 
BIM Building Information Modelling   
BOQ Bill of Quantities 
BREDEM Building Research Establishment Domestic Energy Model  
CLC Construction Leadership Council 
EE Embodied Energy 
FSSD  Framework of Sustainable Strategic Development  
GH  Grasshopper  
GWP Global Warming Potential 
ICE Inventory of Carbon and Energy 
LCA Life Cycle Assessment 
LCI Life Cycle Inventory 
LCIA Life Cycle Impact Assessment 
LOD Level of Detail/Development 
MMC  Modern Methods of Construction  
NBS National Building Specifications 
OE Operational Energy 
PHPP Passive House Planning Package  
SDG      Sustainable Development Goals 
UN United Nations 
WPF Windows Presentation Foundation   
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buildings during their whole life cycle, from raw materials extraction to the end of life [8], [9]. However, 

the depth and breadth of LCA analysis has been a source of confusion and frustration for researchers 

as well as professionals in the AEC sector, due to the variables of material harmonisation [10] and 

boundary conditions [11]. Accordingly, the current research discussed in this paper follows 

international standards, using the methodological framework which has been described in ISO 14040 

[12] for estimating and evaluating environmental impact throughout a product or service system life 

cycle, from cradle to gate. According to this, LCA comprises four phases: goal and scope definition, 

life cycle inventory (LCI), life cycle impact assessment (LCIA), and interpretation (ISO 14040, 2006). 

Firstly, the goal and scope definition phase establishes the goal, system boundaries and level of detail 

of the LCA. The second phase, life cycle inventory (LCI), involves collecting and synthesising 

input/output data relating to the building being studied. The third phase, life cycle impact assessment 

(LCIA), involves evaluating the significance of potential environmental impacts using the LCI results. 

Typically, LCI and LCIA are merged and simplified in building analysis [13], [14]. The last phase, 

interpretation, deals with the demonstration of results from both LCI and LCIA. It includes 

summarising, drawing conclusions and recommendations, and decision-making in compliance with 

the goal and scope of the study.     

With regard to EE assessment, generally, the bill of quantities (BOQ) is required: the quantity of 

individual materials or components is multiplied by the energy coefficient extracted from a specific 

LCA database. Numerous LCA databases are available from which to extract coefficients of materials 

and components, for instance: Inventory of Carbon and Energy (ICE) [15]; ecoinvent 3.3 [16]; 

ÖKOBAUDAT [17]; and Athena Life Cycle Inventory Product Databases [18]. However, this manual 

estimation approach is very time-consuming; much effort is needed to establish the BOQ and find the 

correct coefficients of building materials from LCA databases, which are mostly either country-specific 

or region-specific [19], [20].  

A complete LCA of whole energy consumption will normally be considered when complete 

architectural construction and mechanical details for a project are identified. By then, it is often too 

late to consider potential substitutions of materials, components or systems to make the building more 

energy efficient. Early analysis in the architectural design process could be highly beneficial in 

enabling the minimisation of environmental impact [21]. In addition, LCA analysis needs to feature in 
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the current digitalisation drive of buildings, as opposed to current manual calculations [22]. 

BIM, with its many benefits, has been a transformative tool within the AEC sector [23]. In addition, in 

the last few years BIM maturity within projects has been assessed with reference to LCA from 

associated cost [24] to Global Warming Potential (GWP) assessment [25] and sustainable project 

delivery. Accordingly, there are opportunities available to optimise energy consumption by further 

improving design and construction using BIM. 

While many academic publications have focused mainly on impacts of operational and embodied 

energy and their associated carbon in isolation, the critical focus in this research is in terms of the 

challenges of a whole cycle approach for both EE and OE, and the most effective way to obtain 

meaningful answers within the AEC sector utilising BIM. No academic studies exist that link both 

operational and embodied aspects of energy in one tool for the AEC sector from a UK perspective.  

 
1.1 Aim and objectives 

The aim of this research was to develop a single parametric BIM and whole LCA-based tool that can 

be used to estimate both operational and embodied energy of buildings in the UK context. The 

research aim was delivered through the following objectives: 1) Identification and critique of existing 

LCA-BIM analysis tools; 2) Selection and creation of BIM-ready commercial and domestic case 

studies; 3) Analysis of critical materials and operations which make significant energy contributions; 

and 4) Proposal of a single parametric approach which can be utilised by the AEC sector, based on 

the case study findings.   

This paper is organised into four main sections. The first section contains a literature review, including 

the adoption of LCA within BIM, its many challenges, and the definition of systems boundaries for the 

LCA-BIM case study analysis. The second section describes the methodology of the study in which 

two different UK case studies were evaluated within BIM environments to identify energy-critical 

elements from both embodied and operational aspects. The case study provides useful multi-

perspective insights to deal with the complex, multi-faceted issues of LCA in buildings. The third 

section presents the user-driven parametric framework. The final section discusses the proposed 

framework as a whole energy LCA-BIM decision-making tool in building projects.  
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2. Literature review  

2.1 BIM utilisation and complexity of LCA analysis   

 
BIM has made significant impacts in transforming day-to-day operations within the AEC industry 

through promoting collaborative culture and project delivery [26] and enhancing performance across 

the building and infrastructure life cycle [27]. Incorporating energy analysis into BIM during the design 

stage would provide many benefits, including giving more consideration to alternative options which 

would optimise the whole building life cycle energy consumption [28]. A number of innovative 

methods have been used recently, integrating LCA [19] and operational energy assessment within 

BIM processes [29], but the literature contains few research contributions on integrating whole 

building life cycle energy analysis and utilising BIM to optimise total energy consumption. This 

systematic analysis explores the challenges faced in using existing tools for whole building life cycle 

energy analysis in BIM-based projects. The current BIM-based sustainability and LCA processes are 

summarised in Figure 1 and Figure 2, which show standalone energy simulation systems and semi-

integrated BIM approaches, respectively. 

 

 
 

Figure 1: Workflow for standalone BIM approaches 
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Figure 2: Workflow for semi-automated BIM approaches 

 
The complexity of using both of the above methods for material and energy properties leads to 

possible data loss. When it comes to analysing a model, designers and others have to do additional 

work to make sure the information is accurate. This process is time-consuming and requires IT skills 

which are not always available to the sector. In addition, very few studies have focused on linking 

workflow obstacles of green projects to potential improvements using current BIM capabilities [30]. 

Fully integrated LCA analysis systems do not exist; this area is often overlooked in favour of software 

used for design and construction planning.  

 
2.2 Challenges in using existing BIM tools for whole life cycle energy analysis  

 
Many researchers in the AEC sector have highlighted that estimating total energy within design 

projects is challenging [31], [32]. LCA BIM-based energy analysis is increasing [33], and many off-the-

shelf systems exist [19]. However, their uptake has been limited due to economic and technical issues 
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(see Table 1). Many challenges remain, as will be highlighted in this section. While tools exist, their 

application is limited in terms of accounting whole LCA impacts, and there are numerous issues with 

interoperability and BIM access to databases [34], [35]. Reluctance within the AEC sector to adopt 

LCA BIM is a big challenge. A recent national UK BIM adoption survey [36] indicated that the use of 

BIM to meet sustainability targets is a low priority when it comes to applying BIM to a project. While 

the sector is under pressure to adopt global sustainability measures and meet sustainable 

development goals (SDG), it appears the BIM agenda still revolves around improving design quality, 

increasing productivity, and enabling collaboration. In reality, BIM also needs to be adopted as a 

framework for sustainability analysis energy reduction targets, and can be applied to different stages 

of projects. It has been demonstrated that the use of innovative applications in the construction 

industry, such as modern methods of construction and offsite manufacture, utilised within BIM [37], 

can help with addressing current environmental pressures; the Framework of Sustainable Strategic 

Development (FSSD)  [38], is one example which may help the sector become more accepting of 

sustainability challenges.  

Table 1: Interoperability and complexity of existing life cycle energy analysis tools 

 
Tool Interoperability issues within BIM and complexity  

Within BIM environment  

Tally ® 

[39]  

Plug-in limited only for Revit: 

- It is a plug-in within Revit architecture or structure model  

- Depends on the granularity and detail of BIM model level of development 

(LOD) 

Deals with three detailed levels:  

- Schematic design: showing building components weighting  

- Design option comparison: comparing materials impact from the BIM 

model 

- Complete LCA analysis  

- Limited customised development or update for the inventory data and not 

flexible to other system boundaries 

One Click LCA 

[40]  

Can be used with a wide range of software, so not limited to one:  

- Web-based interface software (IFC can be plug-in Revit, IES-VE, 

Graphisoft ArchiCAD, Tekla structures etc.) 

On separate platform – BIM model can be used for material take-off  

Athena Impact 

Estimator  

- Manual entry of material quantity information; requires highly experienced 

LCA individual to complete information module about a product, 
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[41] 

 

 

construction installation, use, end of life  

- Very complicated for the use of screening and simplified LCA that is 

suitable for early design conceptual phases  

eTool LCD 

[42]  

- Manual entry of all material, assembly, and operational inputs 

- Has simplified scheme for entering data results not connected to BIM 

model  

BOQ, MS Excel, 

and databases 

such as ICE, Gabi, 

and US LCI  

- Results are not connected to the BIM model 

- Level of complexity is flexible and can be designed to suit the conceptual 

design stage 

- High possibility of errors  

- Does not allow iterative process as it will be impractical and time-

consuming 

- Reliability is not assured, and validation is required 

 

 
Rather than taking the static approach of using BIM to generate a BOQ and then mapping the 

materials on different platforms, researchers in recent years have been investigating more dynamic, 

interactive methods. For example, Tally [39] and One Click LCA [40] commercial software provide a 

dynamic approach for LCA, but require a licence, which may be a barrier, especially for smaller-sized 

organisations. Several scholars have also developed dynamo and embedded Revit tools to provide 

integrated and dynamic approaches. Silvestre and Pyl (2020) [43] have developed the BIMEELCA 

tool using Revit to import inventory databases inside Revit and Windows Presentation Foundation 

(WPF) in order to develop a user guide interface. The tool recognises the material quantity - which 

could be volume, area or unit - and allows the user to select from the embedded library. Bueno, 

Pereira, and Fabricio (2018) [44] used dynamo in order to import elements’ [45] midpoint values into 

Revit family components, and to calculate and extract Excel reports. A similar, but more advanced 

tool was developed by Genova (2019) [46], which uses a series of dynamo scripts to build a material 

library with the required inventory database and the quantities modelled in Revit, with visualisation 

options. In summary, many researchers at present are striving to provide a dynamic, flexible tool 

using programming languages to deal directly with the BIM model, and this trend is likely to continue 

with increased digitalisation and automation of the process.  

2.3 Complexity of mapping life cycle input data and level of details in building BIM models  
 
The complexity and time-consuming nature of mapping life cycle input data with building material 

quantities are the main challenges of using existing tools [33]. The multiple manual inputs required to 
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match the sustainability data with the material properties database is impractical because it takes a 

long time and means high susceptibility to errors during transfer, as highlighted in section 2.1. A 

critical aspect of BIM is the level of details or developments (LOD) of the model, which is typically 

LOD 100 for concept design, rising to LOD500 as built. Typically, studies have looked at high LODs of 

300 and above, but for LCA to be effective, the analysis needs to cover the early stages of design as 

well [19], [47]. However, not all projects consist of elements that are accurate or fully coordinated at 

LOD 300. Alwan and Gledson (2015) [48] provide a concept for a theoretical framework, linking LOD 

levels to building performance utilising green buildings certification and retrofitting. 

The current approach of using both manual (by professionals within the AEC sector) and commercial 

calculation tools is often based on BOQ and presented as a solution to energy and carbon accounting 

for a project’s LCA carbon impact. It is anticipated that the framework presented will address the 

current gaps of the LCA-BIM one platform approach and identify crucial elements for such a platform, 

rethinking or mitigating the impact within LCA-BIM for both EE and OE, rather than relying on last-

minute accounting.  

LOD is related to the inventory database of building elements, that are refined in the design process, 

and can be used in material calculations [19]. There are three levels of detail building level: element 

level, component level and materials level. For example, the Swiss Buildings Database gives an 

estimate which can be used at the concept stage . For LOD 100, European Bauteilkatalog element 

library average values can be used, for LOD 200, 300 component level such as “gypsum board twin 

metal frame wall” or a “brick cavity insulated wall”  are classified as one element. The last level is LOD 

300 and 400 with a specific coefficient value provided to a material such as brick and rockwool 

insulation gypsum board for example.  In the  UK , the ICE database used in this study can be applied 

at later LOD stages only. There are limited database options that can be used at different LOD 

stages, therefore LOD 300, or above LOD3 as defined in NBS BIM toolkit [49], is adopted in this case 

study. It can be concluded that for predictive BIM analysis to work, there needs to be synergy 

between global databases and LOD levels. It should also be highlighted that there is more than one 

way of expressing LOD. The NBS definition of LOD is LOD 1, 2, 3, 4, rather than LOD 200, 300, 350, 

400, which is the North American standard, and which is widely used worldwide.  

 
3. Methodology  
 
In order to achieve the research aim and present in one unified approach a whole life parametric 
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energy estimation tool, both qualitative and quantitative methods using BIM were employed. In the 

first part, current BIM concepts of digitalisation workflows were applied to two case studies, one 

commercial and one domestic (see Figure 3 and 4), focusing on both operational and embodied 

energy perspectives in order to identify the major energy critical elements. The second part involved 

the development of a parametric user-led LCA-BIM whole system platform within BIM. The outputs 

from the case studies were key in enabling the identification of the parametric framework to analyse 

key operational and embodied components. It is expected that this approach will form a combined 

analysis of both EE and OE, which could be adopted and used within the AEC sector. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: BIM model of commercial case study at different stages of design from (LOD 200, 300 to 400)  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: BIM model of domestic case study showing highlighting main elements to be analysed 
 

 
3.1 Boundary for construction elements in BIM 

 
The part of the method that involves identifying construction elements is essential, as the selection of 
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the correct co-efficient for EE and OE will be limited to certain stages of the building analysis. Whole 

impact assessment of every single component is almost impossible, as a building might comprise 

1000+ items or types of material, therefore a focus on EE of major building materials’ impacts has 

been adopted. As described in the introduction, LCA begins with goal and scope definition. 

Accordingly, systematic mapping was carried out with the aid of BS EN 15978:2011, Building Cost 

Information Service (BCIS) elements classification, and Royal Institute of British Architects (RIBA) 

building development stages, as presented in Figure 5, which explains the boundary of the study for 

both EE and OE.  

 
 

Figure 5: Scope of the study (mapped with the aid of BS EN 15978:2011, and RIBA plan of work)  

 
3.2 Assessment of operational and embodied energy within the design process   

 
The building elements that were chosen for the EE estimation were termed critical embodied and 

operational “energy hotspots”, due to their larger volume and energy consumption. This was a unique 

feature of this research and was used in order to give a true reflection of the critical elements when 

considering whole energy LCA within BIM. This numerical operational modelling was developed to 
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give a realistic measure of current energy consumption for the case studies, based on typical energy 

consumption in the UK context. This will most likely differ between commercial and domestic buildings 

due to their differing patterns of use. One commercial and one domestic case study were selected in 

order to explore where energy was consumed in both operations and materials LCA, thus providing 

valuable input for the parametric LCA framework regarding what should be included in terms of 

energy input ratios. 

The LOD used to extract the BOQ of both building types – the domestic and commercial case studies 

- was categorised as graphical model elements in terms of quantity, size, shape, and location. This 

information also covers non-graphical data on materials, such as construction block types, windows, 

and glazing units’ thermal performance, as different construction approaches may result in different 

OE demand, for example. 

The commercial case study was a virtual project developed by a BIM-specific training firm, White Frog 

(2020) [50] in conjunction with the BIM Academy (see Figure 3). This virtual project was selected 

because it was specifically developed to replicate an actual office, and it has been widely used for 

training purposes by the BIM Academy [51]. It is anticipated that the findings of this research will be 

used in future training programmes involving AEC sector professionals. BDN Limited, an architecture 

firm, provided the domestic case study, which is located in the North of England. The project is 

exemplary in utilising Modern Methods of Construction (MMC) through 3D BIM offsite cleaner 

fabrication and addressing many low carbon considerations (see Figure 4). Both case studies were 

representative of the UK construction sector; however, the methodology of this research can be 

applied to other construction types, and is not exclusive to the UK.  

The characteristics and materials of the case studies were as follows: the commercial office consisted 

of a steel frame, glazing and precast concrete slabs as a construction option and mixed mode 

ventilation system. Using a steel frame means more rapid construction time and lower construction 

costs. A mixed mode or hybrid ventilation system has the advantage of allowing users to maximise 

passive cooling and utilisation of mechanical systems in extreme hot or cold conditions.  

The domestic building was of lightweight insulated concrete block construction, with external 

expanded polystyrene EPS insulation board and render finish. The house was serviced by an air 
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source heat pump and underfloor heating in the main living areas, which is typical in the UK 

environment where summer cooling is seldom required, but winter heating is necessary. 

 

3.3 Establishment of embodied energy building profile within BIM through case study analysis 

 
In this study LOD 300 was used, which is equivalent to LOD 3 as defined in the NBS digital toolkit [49] 

definition of deliverables. BOQs were extracted and automated using a BIM-based approach at LOD 

300 and within the boundary set in Figure 5. 3D models of the case studies were analysed, and 

volumes were extracted and linked to material information for different Revit files, populating the 

model with appropriate data taken from the ICE 2.0 database [15], a UK-based database which 

details the embodied energy and carbon of over 120 materials; it is free to use and not country-

specific. The developed model was used to extract BOQ materials, estimates of missing information 

were documented and applied and then mapped to material-specific values in the ICE database using 

an Excel sheet. In this quantitative method, using correct building models generated within BIM 

frameworks, both the quantities and density of the major building elements were established using the 

EE factors from the ICE database. Areas outside the research boundary (such as secondary 

materials and furnishing) were not included in the analysis. Finally, a parametric script on Rhino was 

developed to enable a dynamic iterative approach in order to eliminate the manual work required to 

map materials on Excel, which will be explained further in section 5.2.  

 
3.4 Establishment of operational energy building profile within BIM through case study 
analysis  

 
For the domestic case study, the Building Research Establishment Domestic Energy Model 

(BREDEM) [52] was used. This is a methodology tailored for calculating the energy use and fuel 

requirements of dwellings based on their characteristics. It is suitable for use in research work, such 

as stock modelling, and is preferred in UK conditions over commercial software. It allows evaluation of 

heating, cooling, and appliances, as well as other energy demands, such as cooking and electrical 

appliances.  

For the commercial case study, the operational outputs analysis system, EnergyPlus
TM

, a whole 

building energy simulation programme for AEC professionals, was used. It is a standalone simulation 

programme without a 'user-friendly' graphical interface and is the most recognised worldwide 

operational energy software. In this case, the DesignBuilder [53] research and the educational licence 
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was used as an interface for the EnergyPlus [54] environment to allow the researchers to carry out 

simulations in a straightforward way by defining elements of building model geometry, requesting 

data, and analysing heating, cooling, and other demands on commercial buildings. DesignBuilder has 

been developed explicitly around EnergyPlus, enabling the use of EnergyPlus databases of building 

materials, glazing units and other fabrics. 

 

3.5 Exporting results and BIM visualisations  

 
EE and OE are measured in different units: EE in MJ/kg/m

2
 
1
(representing Global Warming Potential 

(GWP)), and OE data in kW/m
2
 generated (representing use). The most commonly used unit for 

energy in the AEC sector is kWh/m2, so all of the data was converted into kWh for use in the next 

stage of the process, which concerned which elements can be controlled in a parametric design and 

altered within the early stages of design.  

 
3.6 Synthesis of energy critical OE and EE elements in BIM parametric lens  

 
A parametric script was developed and adapted for UK conditions using modelling software 

Grasshopper (GH), generating suitable matrices for total energy intensity. The parametric design is 

useful as it can be used to study the impact of geometric and material variables on environmental 

aspects, namely embodied energy and operational costs. Parametric tools can also be used to 

increase awareness in the AEC sector of the potential effects of design and material decisions, due to 

their interactivity. In this case, a specific LCA plug-in was designed for GH. The script is free and 

available at Food4Rhino
2
. This has been used and optimised for the first time for complete energy 

analysis in the UK context. The tool can be used to perform functions similar to the calculation of 

BOQs, and linked to a database library based on UK environmental conditions and outputs from the 

case studies. Crucially, it includes the ability to carry out dashboarding of the elements to limit its 

impact, and can be controlled by the user. 

 
4. Results  
 
The aim of this research was to adapt existing BIM concepts of digitalisation of design and 

                                                      
1
 1 MJ=3.6kWh 

2
 https://www.food4rhino.com/ 
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construction processes, which are currently underutilised and not used for energy analysis. The 

results of the LCA (both OE and EE) are presented in this section. An example of the EE outputs for 

the major building materials, analysed in accordance with the LCA boundary set in Figure 5, is shown 

in Table 2 (see Appendix 1 for the full analysis of both sets of building results). The results indicate 

that the density of the material rather than its volume plays a significant role in its overall energy 

impact. MJ, which is an indication of GWP, is the obvious choice for measuring EE as a functional unit 

within an ICE database.  

Table 2: Example of specific material selection extracted BOQ from BIM model.  

 
A full breakdown of the major construction elements is provided in Figure 6 and Figure 7, showing the 

EE for both the commercial and domestic case studies, extracted from the BIM model. It can be seen 

that the substructure was by far the biggest contributor in the domestic case study, while the roof 

(followed closely by the substructure) was the greatest contributor in the commercial setting. 

Elements near the end of the design process were unlikely to show more variation as the design 

Jo
urn

al 
Pre-

pro
of



process was near end of LOD 300; in both cases, concrete constituted more than 60%, which is 

hugely significant.  

 
Figure 6: BIM based embodied energy impact analysis of commercial case study, percentage of MJ units 

 
Figure 7: BIM based embodied energy impact analysis of domestic case study, percentage of total MJ units 

 
Using real case studies means a detailed account can be given of the major elements within the 

building fabric and their contribution in terms of energy intensity and captured energy in construction 

blocks. However, this is only half the picture of LCA; hence the case studies were also analysed from 

an operational energy perspective. 

OE analyses for the domestic case study revealed that space heating in the winter months, followed 

by appliances, was by far the highest contributor (see Figure 8). On the other hand, in the commercial 

setting, the greatest OE impact arose from mechanical systems and heating and cooling, with 

different zones of the building having markedly different contributions (see Figure 9). 
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Figure 6: OE for the domestic case study based on BREDEM analysis, example generation of energy profiles 

 

 
Figure 7: OE for the commercial case study based on Design Builder analysis 

 
It is worth noting that in order to obtain results with high accuracy, different BIM energy analysis tools 

were used, as set out in section 3.4 of the methodology, based on BREDEM and EnergyPlus, both of 

which were non-parametric and non-iterative.   

Once a building is occupied, another phase of accounting for both OE and EE impact starts and 

continues over its lifetime. By aggregating the results for all the building elements and performing 

analyses at the building level over a ten-year future horizon (see Figure 10 and 11) for both of the 

case studies, interesting variations emerged relating to the impact of operational and embodied 

elements. It was assumed that a building’s operational energy impact will be the same every year to 
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maintain lighting, heating etc., so that it will increase over 10 years, while the embodied impact locked 

into the material will remain static for 10 years, unless major renovations are carried out to the 

building’s fabric. 

Figure 8: Total energy of domestic case study in first year 

(Assumption of OE doubling while EE remains same, Note 1kW= 3.6MJ) 

 

Figure 9: Total energy of commercial case study in first year  
(assuming OE rises over time while EE remains same; note 1kW= 3.6 MJ) 

This appears to be a straightforward modelling assumption. However, and more crucially, there were 

significant differences in the elements accounting of building materials for commercial and domestic 

buildings. When considering LCA and overall energy use of buildings, it is important to take a longer-

term view of both EE and OE. 
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5. Discussion  
 
This section discusses the findings of the case study analysis and the challenges facing not only 

researchers but also AEC practitioners in accounting for overall energy and LCA processes. The case 

study analysis showed different hot spots for total energy use, and the results were used to develop a 

parametric framework within LCA-BIM. Parametric modelling is suggested as a future approach for 

interactive BIM energy analysis for the AEC sector.  

 
5.1 Different characteristics of benchmarks for domestic and commercial buildings  

 
One of the objectives of the research was to get more accurate LCA data by evaluating the impact of 

both operational and embodied energy of buildings in the UK context within an LCA-BIM tool. 

Previous research, which looked at the embodied aspects of materials alone, and did not account for 

operational energy use, only gave half the picture of true LCA. Without accounting for operational 

energy, we cannot reflect on the full impacts in terms of buildings’ total LCA.     

The work has demonstrated that this can be done from a BIM perspective in a 3D environment 

through operational and embodied analysis with different geometries and different building types. 

Figures 6 and 7 give an overview of how domestic and commercial energy consumption patterns vary 

in terms of material impact and intensity. Such variations in LCA and impacts of building use were 

used as indicators in Figure 12 in the development of key aspects of the resulting parametric 

framework.  

Clear differences exist between profiles of EE and OE, as can be demonstrated in Table 3, showing 

an attempt at benchmarking in kWh and MJ units, which can be entered into a BIM parametric 

platform as indicators of use and LCA for buildings from a UK perspective. The results clearly indicate 

that the commercial case study had a more significant EE impact than the domestic one, suggesting 

that EE is more significant in commercial buildings; meanwhile, OE makes up a larger share of overall 

impact for domestic buildings. This suggests that it is vital to assess operational impacts at the design 

stage, a process that is often currently overlooked.  

Table 3: Overview of total energy based on take-off for significant building elements and operational energy 
modelling based on BIM frameworks 

Case study EE 
MJ(GJ) 

OE  
(kWh) 

Floor area 
(m

2
) 

EE 
(MJ/m

2
) 

OE 
(kWh/m

2
) 
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The results of this paper are unique in going beyond normal operational and embodied carbon 

impacts of buildings. The results provide a practical tool that can be used by practitioners, integrated 

within BIM procedures and protocols, to give a flavour of how the two measures can be synchronised 

as the only critical way of assessing carbon impact through a single framework for buildings, thus 

enabling and facilitating the move towards zero carbon buildings. The results offer a unique insight 

into how energy and associated carbon can have a longer-term impact over the lifetime of buildings. It 

is safe to assume that information about total energy and associated carbon kgCO2 of MJ/kg can 

have much greater environmental value if captured early at the design stage, rather than five or ten 

years after the building has been built.  

5.2 BIM as an iterative unified parametric design tool for effective LCA of whole energy and 
feedback  

 
While the development of parametric modelling for environmental assessment has been addressed 

by previous research in terms of its challenges [55], its application within BIM has been relatively 

underutilised and, more importantly, does not exist within commercial software packages used in BIM. 

The unique framework (see Figure 12) was developed based on the outputs from EE and OE analysis 

of key energy outputs and hotspots of GWP in MJ and kWh in the commercial and domestic case 

studies. It allows users to carry out quick and timely analysis  so they can use the feedback 

immediately for real-time design decisions affecting current and later stages of the design LOD 300 

within BIM, incorporating the assessment of operational energy. The system allows users to integrate 

different kinds of material libraries from different countries or regions. It can also be linked back to 

ranges of operational energy consumption patterns and benchmarks. In addition, the calculated 

operational cost considers  variations of the impact of day/night temperature , and especially changes 

in the weather over the year, by using the weather data files. 

 

Commercial  5,806.728 (5.8) 150,000 1238 4690 210 

Domestic  1,527.023(1.5) 19,000 210 1527 91 
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Figure 10: A framework dissection map of Grasshopper script overview developed for both operational and 
embodied energy, linking seven key areas which have the greatest impact 

 
The key geometrical elements of the model were linked to the materials and simulated using 

parametric script linking seven key elements, as shown in Figure 12. The results for heating, cooling, 

lighting, and electrical appliances were collected, and the results were aggregated together to 

represent the total annual operational energy consumption (OE). For calculating EE, different areas 

were linked to their materials, along with their mass and EE factor, to measure the layer’s impact, 

followed by the component’s impact and total EE values. This unique approach of linking most of the 

critical OE and EE aspects in one approach is key from a building analysis point of view.  

The proposed framework is suitable for further development, with the potential to add more layers of 

data; for instance, to profile the differential impacts of building occupancy, use type, lifetime of 

building, and any future refurbishments. The results have indicated that domestic buildings’ 

operational energy impact becomes more significant and rapidly overtakes the impact of materials 

over a ten-year period. Within a parametric model, operational energy use (e.g. heating and lighting) 

can be adjusted using a dashboarding system, and advance modelling of how design affects 

operational energy use (e.g. height of walls) is possible. This is likely to be highly useful to AEC 

professionals, who want rapid results and instant feedback without the additional effort of accessing a 

separate database outside the BIM domain.  
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Rhino/Grasshopper as a tool is used by creative designers for free form generation and creative 

building structures, but the software has greater analytical potential if adopted in the right way. For 

example, a critical look at the application of parametric methods in the practice of design reveals use 

is still predominantly based on aesthetic, structural, and fabrication criteria [56] while its applications 

for building performance and daylighting research are still growing  [57]. 

In the proposed tool (Figure 12), a unique integration was carried out by linking an EE database (ICE) 

and an OE database (Energyplus+). The Bombyx plug (energy analysis), developed by ETH in 

Switzerland, was adapted and used in a UK context [58]. ETH Zurich researchers have expressed 

interest in further collaboration and development and have made a version of this available online 

[59]. 

One positive aspect of this system is that it can be adopted to different regions, depending on local 

environmental factors and different types of databases. This can be facilitated through the 

opensource, codes, and plug-ins, which are downloadable through the grasshopper community [60]. 

These plug-ins cover aspects such as daylight and shading. In addition, energy profiles for occupancy 

loads, energy consumption, and the script are modified according to the requirements of specific 

geographical locations and environmental priorities. For example, hot dry regions of the world will 

adapt the script to have more focus on shading, while a temperate region will focus on material use 

and heating options. Similarly, the materials library of BIM objects and environmental impact vary 

depending on the databases and energy intensity associated with material production. Figure 13 

shows how the tool allows the user to manipulate elements of the design, such as height, and the 

impact of such changes on operational energy, within a domestic case study. The software 

development in this section gives an insight into how LCA analysis can be approached within a UK 

context, and the results of this work will be added to the community depository for anyone to 

download.  
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Figure 11: Example of real-time adjustment of both OE&EE using sliders and set limits 

It is not common for architecture practices to adopt standalone parametric modelling with no upper or 

lower material or energy range limit. The current framework offers a dashboarding system based on 

UK building regulations, which the user can influence for immediate results. A tool such as this one 

may provide important early level design input regarding which areas have the greatest impact, 

depending on building type, allowing the user to model, demonstrate and influence change.  

 
5.3 A plethora of different LCA datasets and benchmarks 

 
Findings from the literature and the research suggest that while parametric whole LCA for impacts is 

possible, confusion lies in the range of software and datasets available, and choosing which is the 

best one to apply. While adaptation to calculation methods for embodied impacts is challenging, 

issues with material libraries for LCA calculations can be confusing for professionals in the AEC 

sector. Similar work was done using a European Swiss database (KBOB, 2017), and it was noted that 

the approach to GWP was very different to that of the UK-based ICE database. Another factor to 

consider is different BIM-based methodologies for environmental impacts. In the domestic case study, 

BREDEM energy modelling proved an effective methodology for domestic energy analysis in the UK, 

based on construction characteristics (Underwood et al., 2007), indicating that appliances are the 

main energy consideration in domestic buildings. Other methods for ultra-low carbon cases might use 

the Passive House Planning Package (PHPP), which could yield different results.   
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In different parts of the world there will be different databases for both OE and EE, and associated 

carbon counting, as well as different policy procedures for integration of embodied impacts. For 

example, in the Netherlands it is a legislative requirement to carry out a LCA; while in British 

Columbia in Canada, embodied carbon assessment is mandatory, all projects are required to report it, 

and there is a target for a 40% reduction in embodied impacts by 2030 [61]. In the digital world of 

global collaboration, a unifying global approach is needed to guide AEC practices. 

 
5.4 Virtual reality to enhance BIM and digital representation of impacts  

 
For AEC experts and other stakeholders to engage with the impacts of parametric modelling, instant 

and accessible feedback is needed, and this may be difficult to achieve through the cumbersome task 

of operating a parametric dashboard, which also needs technical skills. The research team is currently 

investigating better visualisation of the parametric tool within BIM, so that users and stakeholders can 

better relate to overall total parametric LCA within Virtual Reality (VR) (see Figure 14). In recent years 

VR technology has been applied to facilitate design, construction, and management for the built 

environment [62]. VR programmes’ ability to integrate with BIM and the live synchronisation between 

the BIM and the VR model enables auto-updates in real-time. In reality, terms such as GWP, kgCO2, 

MJ/kg, and kWh might be hard to interpret in architecture offices, and even for many AEC 

professionals, and their application in an immersive environment may be more convincing. The 

application of VR in LCA can diminish discrepancies at the source. Furthermore, despite the different 

technical backgrounds of users, participants have been shown to positively embrace the ideas and 

aspirations of VR [63]. 
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Figure 14 : Future trajectory of research ultimately applying VR to visualise LCA impact from parametric 

dashboard  

Visual programming, if done well, can provide immediate information that can be acted upon straight 

away, providing an important link between geometry and the data [64], and this novel approach may 

persuade the sector to consider LCA as a major priority within BIM. The use of computer-generated 

VR imagery, such as flythrough animations and interactive solutions, is not new to the sector [65] and 

has been used in marketing and design representations, although not previously as an LCA concept. 

Virtual models have the benefit of dynamic information input and output, which can be integrated into 

a BIM model. As the parametric LCA total analysis is evolving, physical live data such as climate and 

material and EE can be exported from the GH model in Figure 10 and integrated in the virtual model 

using VR gaming technology, Unreal gaming engine [66]. The time span on the simulation can be 

included as a variable factor in the model and can run from LOD 200-400, to allow for lower impact 

EE. Observing and interacting with virtual reality does not require technological knowledge in a certain 

field, thus reducing barriers on communication between user and materials impact, making parametric 

tools much more accessible within BIM. For instance, users are able to switch between different 

construction layers and materials to gain an understanding of both the visual aesthetic impact and 

energy performance at the same time, thus better enabling them to make decisions on the full impact 

of different materials and design choices.  

5.5 BIM as a driver for change and cleaner fabrication  

 
This study has demonstrated that utilising BIM to address areas of the greatest energy impact - 

“Hotspots” - is possible for the purpose of total energy LCA analysis in building projects. Such results 

can feed into ISO 14040 or the BIM Execution Plan [67], which facilitates the implementation of 

energy and other LCA targets in a BIM project. Furthermore, links between parametric LCA and other 

established BIM procedures can be made, such as the National Building Specifications (NBS) BIM 

library, which is recognised internationally. 

The availability of standardised components for BIM objects such as NBS is becoming more common 

for design consideration [68], and moves for fabrication and offsite manufacturing can be BIM-

integrated [37]. The dynamic framework proposed can allow for material substitution for cleaner 

standardised components such as walls and other equipment, allowing more opportunities for 

innovation and collaboration in new production processes for design and construction . 
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Future legislative pressure and targets for BIM frameworks should be integrated within building 

performance and linked to LCA. The AEC sector is at a crossroads with the new construction 

revolution 4:0 [69], which requires the industry to transform itself to incorporate more automation and 

digitalisation. The sector is already lacking in competitiveness, as highlighted by the Construction 

Leadership Council [70], because of its low levels of research and innovation. It is critical that such 

challenges are addressed, and LCA accountability which leads to sustainability by innovation could 

help to achieve this.  

 
5.6 Advantages and limitations of BIM-LCA approach   

 
The novel approach outlined in this paper involves combining both OE and EE use and linking the 

outputs to a range of data benchmarks, or ones set by users. This can in turn be linked to a VR 

domain to allow users to analyse energy consumption data in a user-friendly fashion. Currently, 

professionals consider each element of building design in isolation when it comes to building 

evaluation of construction projects and decision-making on the addition of renewables or low carbon 

materials. Building parametric intelligence into BIM-LCA models provides a great deal of design 

power in terms of allowing parametric decisions control for decision-making. For instance, within the 

BIM model, constraints can be built in for specific materials not to exceed certain benchmarks for EE 

and OE within a project, meaning low energy alternatives or carbon solutions have to be sought. The 

benchmarks in Table 3 could act as standards for commercial and domestic scenarios.  

It is also worth noting that the framework tool is at an early design stage and is likely to mature and 

evolve, with more established benchmarks and better material libraries being developed, especially 

for EE aspects. One potential limitation to consider in terms of wider adoption of such tools is that 

while design iterations can be quick and link to databases, parametric design and BIM integration can 

be a steep learning curve for professionals in the AEC sector, almost akin to learning from 3D, and 

constituting a huge move from the traditional 2D approach. Finally, construction projects and the 

market have to be ready to adopt such a data-driven approach for it to be successful, if wider 

adoption is to be realised in the long term. 

  

6. Conclusion 
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This research demonstrated a new, systematic approach to evaluating total operational and embodied 

carbon impacts in a building, utilising a BIM framework. The literature suggested that a variety of 

databases and methods exist for assessing buildings’ impact. The use of actual case studies provided 

a valuable insight into the impacts of different construction types, as well as different structural 

elements. Case study analysis showed that while it is important to assess embodied impacts at an 

early development stage, operational impact assessment may not be possible until the later stages 

(LOD 300), when mechanical systems and energy specifications are issued. Furthermore, taking a 

longer-term view of total impact over 10 years of energy consumption in a building (combined 

operational and embodied) may lead to different results. The case study analysis illustrated that 

embodied and operational impacts affect different stages of the workflow and cannot be assessed at 

the same time. 

This unique approach, which has not been attempted before, enhances the feasibility of dashboarding 

and testing of sustainable alternatives, for both operational and embodied aspects. This method of 

visual scripting potentially provides more flexibility, allowing the designer to focus on the impact of 

major building elements. The addition of benchmarks could be used to further improve the proposed 

framework, and additional case studies should be investigated in different national and regional 

contexts. 

Providing a range including upper and lower limits for AEC practitioners, as well as benchmarks, is 

vital for the tool to be a success. Visualisation of results is key: it is much more important to show a 

convincing impact of a few major hotspots in, for instance, a VR domain, rather than total energy 

impact in a hard-to-interpret graphic. There needs to be further integration of LCA in terms of 

simulation and existing BIM protocols, BIM objects and governmental drivers, otherwise a standalone 

LCA tool will not be effective in the long term.  
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Material Qty Unit

Substructure
 Foundation, Lowest floor, 
Basement retaining wall 

In cast R/ concrete 142.65                            m³
342,360.00                               3.0                                      1,027,080                         

1,027,080                         

Timber 10.16                              m³ 7,323.33                                    7.4                                      54,193                              

Steel Universel Beams(254 x146 x 31) 60.38                              m 1,871.66                                    20.1                                    37,620                              

91,813                              

Upper Floors Floors Insulated Form Concrete 54.59                              m³ 61,031.62                                 1.0                                      61,032                              

61,032                              

 Insulated Form Concrete  13.50                              m³ 15,093.00                                 1.0                                      15,093                              

 Toughened Glass   2.97                                 m² 37.04                                         23.5                                    870                                    

 Al  0.88                                 m² 2.90                                            155.0                                  450                                    

16,414                              

Concrete 141.45                            m³
158,565.45                               0.7                                      110,996                            

Insulated Concrte Foam 69.18                              m³ 440.67                                       102.1                                  44,992                              

155,988                       

Steel 0.19                                 m3 1,491.31                                    20.0                                    29,826                              

R/ Concrete 1.36                                 m3 3,264.00                                    3.0                                      9,792                                 

Stair ramp finishes Timber  0.18                                 m3 129.74                                       7.4                                      960                                    

Toughened Glass (15mm thk) 9.12                                 m2 341.09                                       23.5                                    8,016                                 

Steel 8.22                                 m 7.00                                            20.1                                    141                                    

48,735                          

Toughened Glass  2.20                                 m2 27.43                                    23.5                               645                               
Al 0.54                                 m2 1.78                                      155.0                             276                               

Toughened Glass  3.40                                 m2 42.39                                    23.0                               975                               
Al 0.38                                 m2 1.25                                      155.0                             194                               
Toughened Glass  1.74                                 m2 21.69                                    23.0                               499                               
Al 0.25                                 m2 0.83                                      155.0                             128                               

 Doors (2100 x 1010 mm)  Hard wood 2.12                                 m2 1,528.00                              10.4                               15,891                          

6               
Stairs, Ramps and Landings

EE  of Stairs, Ramps and Landings

Stair Ramp Structure

 Stiar, Ramp, Balustardes and 
Handrails 

External Walls

EE of Substruture

2               

EE of Frame 

Frame

1               

Frame

3               
EE and EC of Upper Floors

EE of Roof

 Roof sturcture, Roof coverings, 
roof lights and roof features 

Roof

5               

4               

EE of External Walls

 External enclosing walls above 
ground level, External enclosing 
walls belwoe ground level 

 Domestic case study Humbledon Hill

NO Main Building Element Sub Elements
Building Materials  Mass

(kg) 
 EE Factor
(MJ/kg) 

 EE
(MJ) 

 side hung window (630 x 1050 
mm) 

 Side hung window (1800 x1200 
mm) 

 Plain glass window 
(2480x800mm) 
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Toughened Glass 2.40                                 m2 30.00                                    23.0                               690                               
Timber 3.95                                 m2 2,876.00                              10.4                               29,910                          
Toughened Glass  5.82                                 m2 72.57                                    23.0                               1,669                            
Al 1.02                                 m2 3.36                                      155.0                             521                               
Toughened Glass  6.92                                 m2 86.29                                    23.0                               1,985                            
Al 1.32                                 m2 4.36                                      155.0                             675                               
Toughened Glass  9.67                                 m2 120.58                                  23.0                               2,773                            
Al 0.78                                 m2 2.57                                      155.0                             399                               
Toughened Glass  9.67                                 m2 120.58                                  23.0                               2,773                            

Al 0.91                                 m2 3.00                                      155.0                             465                               

EE  of Windows and External Doors 60,469                          
Gypsum board 254.00                            m2 8,923.64                                    7.0                                      62,465                              

Timber Joists (3500x 100x63mm) 0.45                                 m3 302.76                                       10.0                                    3,028                                 

65,493                          

1,527,023                    

12,725                          

 

Workings: 

1                All openings are triple galzed. Assumed that they are toughened glass (5mm thk). 12.47 Kg/m²
2               

3               

4               
5                Mass of Materials were calculated as per BS 648:1964 unless otherwise specified

6               

 Assumed thickness of the Al sheet 
used for window/door and curtain 
wall is 0.048 in 

7                Mass of ICF (50mm thk) is 6.37kg/m3

8               
9                Timber joists assumed to be spaced in 400mm and (3370x 147x63mm)

10              Mass of steel universal beam (254 x 146 x 31 mm) ‐ 31kg/m

 EE factors were extracted from ICE Bath database unless 
otherwise specified  

EE of Internal Walls and Partitions

Total EE of Substructure and Supersturcture

Floor area of the building= 

 Glass balustrade assumed to be toughened glass  

 toughened glass (15mm thk) 37.40 Kg/m² 

 Steel capping of the glass balustrade assumed to be (50.8 x25.4 
x4.8 mm)‐ 1.18kg/m 

8                Internal Walls and Partitions Internal walls

 2 Doors (2100x1510 mm) 

 1 Bi Folding door (2540 x 2743) 

 4 Doors (2020 x1020 mm) 

 1 Door (2580 x4050 mm) 

 2 Door (2580 x2050 mm) 

7               
Windows and External Doors
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Material Qty Unit

light weight concrete 238.510                          m³ 267,369.710                             0.700                                  187,158.797                    

cast in place R/concrete 222.550                          m³
534,787.650                             3.166                                  1,693,137.700                 

1,880,296.497                

Frame Frame Steel 3.420                              m³ 26,843.580                               20.100                               539,555.958                    

539,555.958                    
Upper Floors Floors

‐                                     

 Cast‐in‐place R/concrete  150.960                          m³ 362,756.880                             3.166                                  1,148,488.282                 

 Vapour control layer based on PE‐LD (Low 
Density Polyethylene)‐ 2mm thick 

1,161.000                      m²
2,205.900                                  78.100                               172,280.790                    

 PIR thermal insulation board (146mm thick)  1,161.000                      m²
5,085.180                                  101.500                             516,145.770                    

 Polymeric membrane for roof 
waterproofing (2mm thick) 

1,161.000                      m² 3,947.400                                  51.000                               201,317.400                    

2,038,232.242                

blocks 3,636.000                      nr 94,536.000                               0.590                                  55,776.240                      

mortar 18.110                            m³ 72,028.000                               1.330                                  95,797.240                      

mineral wool batts 749.000                          m2 2,846.200                                  16.800                               47,816.160                      

bricks 43,378.000                    nr 144,015.000                             3.000                                  432,045.000                    

plaster Gypsum board 734.000                          m2 8,220.800                                  6.750                                  55,490.400                      

single glass 243.750                          m² 1,779.375                                  11.500                               20,462.813                      

 Al 162.500                          m² 552.500                                     155.000                             85,637.500                      

793,025.353               

Stair Ramp Structure

Stair ramp finishes
 Stiar, Ramp, Balustardes and 
Handrails 

‐                                

single glass 64.560                            m² 471.288                               11.500                           5,419.812                    
Al 21.020                            m² 71.468                                  155.000                        11,077.540                  

single glass 5.570                              m² 40.661                                  11.500                           467.602                       

Commercial case study Virtual Project 

 Curtain Walls 

EE and EC of Upper Floors

Roof
 Roof sturcture, Roof coverings, 
roof lights and roof features 

EE of Roof

External Walls

EE of External Walls

Stairs, Ramps and Landings

EE of Frame 

1               

NO Main Building Element Sub Elements
Building Materials

Substructure
 Foundation, Lowest floor, 
Basement retaining wall 

EE of Substruture

2               

3               

4               

5               

6               

 EE
(MJ) 

 External enclosing walls above 
ground level, External enclosing 
walls belwoe ground level 

 Mass
(kg) 

 EE Factor
(MJ/kg) 

 single panel window (685 x685 
mm) 

 single panel window (685 

EE  of Stairs, Ramps and Landings
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Al 3.360                              m² 11.424                                  155.000                        1,770.720                    
single glass 23.470                            m² 171.331                               11.500                           1,970.307                    
Al 15.650                            m² 53.210                                  155.000                        8,247.550                    

 Doors (1510 x 2110 mm)  Hard wood 15.931                            m² 11,482.700                          10.400                           119,420.080                
single glass 14.180                            m² 108.040                               11.500                           1,242.460                    

Al 12.154                            m² 41.324                                  155.000                        6,405.158                    

EE  of Windows and External Doors 156,021.228               
plaster board 1,030.000                      m² 11,536.000                               6.750                                  77,868.000                      

galvernized steel 1.808                              m³ 14,192.800                               22.600                               320,757.280                    

softwood 0.252                              m³ 131.393                                     7.400                                  972.308                            

399,597.588               

5,806,728.87              

4690.41 MJ/m2

 

Workings: 

Item Glass Al
 single panel window (685 x685 
mm)  0.86                                            0.14                                                               
 single panel window (685 x2710 
mm)  0.75                                            0.25                                                               
 single panel window (1650 x2710 
mm)  0.75                                            0.25                                                               
Doors (1600 x 2110 mm) 0.70                                            0.30                                                               
 Curtain wall  0.75                                            0.25                                                               

3. Assumed thickness of the Al sheet used for window/door and curtain wall is 0.048 in

4. Mass of Polythene (2mm thick) is 1.9kg/m2

5. Mass of PIR board (146 mm) is 4.38kg/m2

6. EE factors were extracted from ICE Bath database unless otherwise specified 

7. Weight of a Cement block is 26kg

8. Weight of mineral wool batt is 3.8kg/m2

Floor area of the building= 1238 m2

 Doors (1600 x 2110 mm) 

 single panel window (1650 
x2710 mm) 

1. Glass and Al content of windows, doors and curtain wall

 2. Mass of Materials were calculated as per BS 648:1964 unless 
otherwise specified 

Total EE of Substructure and Supersturcture

Internal walls

7               

8               

x2710 mm) 

Windows and External Doors

Internal Walls and Partitions

EE of Internal Walls and Partitions
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Highlights 

 

Significance of  both embodied and operational analysis within LCA  

Performance of energy enabled  LCA  analysis  in commercial and domestic settings  

BIM enabled digital framework for whole LCA energy analysis  

Developing Benchmarks for embodied energy in buildings. 
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