Why a new volume on non-pollen palynomorphs?

Jennifer M. K. O’Keefe1*, Fabienne Marret2, Peter Osterloff3, Matthew J. Pound4 and Lyudmila Shumilovskikh5

1Department of Physics, Earth Science, and Space Systems Engineering, Morehead State University, Morehead, Kentucky, USA
2Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
3Shell International Exploration and Production, London SE1 7NA, UK
4Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
5Department of Palynology and Climate Dynamics, Georg-August-University Göttingen, Germany

Abstract: Here we introduce the volume Applications of Non-Pollen Palynomorphs: from Palaeoenvironmental Reconstructions to Biostratigraphy. The study of non-pollen palynomorphs (NPPs) has a long and rich history that is interwoven with that of pollen-based studies. NPPs are among the oldest fossils on record and are instrumental in determining the origin and evolution of life, as well as studying origination and extinction events prior to the origin of pollen-producing angiosperms. This new volume on NPPs provides an up-to-date and seminal overview of the subject, linking deep-time and Quaternary study of the subject for the first time.
Early history of palynology and NPP studies

The name ‘non-pollen palynomorph’, in many ways, is based on the assumption that pollen are most important for palynological, especially palaeoecological, studies. This is a uniquely Quaternary viewpoint. Indeed, while pollen was described by Malphigi and Grew in 1675–82 (Malpighi 1675, 1679; Grew 1682), what we now call NPPs began to be described very soon thereafter (Fig. 3), beginning with pteridophyte and fungal spores by Tournefort in the 1690s and Geoffroy in the early 1700s (Geoffroy 1714; Stroup 1990; Bernasconi and Taiz 2006) and dinoflagellates in the mid-1700s (Baker 1753; Rochon et al. 2013). The first fossil pollen were described from thin-sections of coal in 1833 by Witham (1833), although they were initially described as resin vessels. The first undisputed fossil pollen were described and illustrated by line drawings in 1836 by Göppert as part of a study of fossil plants. Dinoflagellate cysts and acritarchs were described near-simultaneously by Ehrenberg (Fig. 4a; Ehrenberg 1837; Sarjeant 2002; Traverse 2007); these studies culminated with the publication of Mikrogeologie in 1854 (Ehrenberg 1854). Fossil microfungi were first described in 1848 (Fig. 4b; Berkeley 1848; Taylor et al. 2015), and their study progressed to parallel that of fossil pollen through the early 1900s. The late 1840s and early 1850s were an era of discovery; in addition to those named above, many other NPPs were identified for the first time, largely through the efforts of microscopy clubs, such as that in Clapham, UK (Sarjeant 1991): foraminiferal linings and Botryococcus algae were both described in 1849; prasinophytes were described in 1852; and scelecocods in 1854 (Sarjeant 2002). In the early years, emphasis was on documenting all the microscopic taxa recovered in the course of a study, whether it be from a modern lake or bog or from Pleistocene peats or from Carboniferous coals. This trend continued through the earliest part of the 1900s as additional NPPs, including testate amoebae, spermatophores of copepods, and Rhabdocoel oocytes (Rudolph 1917), were described in Quaternary bogs and peats. While changes were in the air, discovery continued, with heliozoans, Macroboutus sp. eggs, and chytrids on...
Introduction: non-pollen palynomorphs

Fig. 3. A timeline of NPP discoveries. Dinoflagellate and Acritarch images from Ehrenberg (1837); the dinoflagellate preserves the unusual orientation chosen by Ehrenberg. Microfungi image by R. Kalgutkar in Kalgutkar and Jansonius (2000); used with permission of the AASP Foundation. Heliozoan image by Jablot via Wikipedia (image is in the public domain). All other palynomorph images adapted from the authors’ collections.

pollen walls being described in the late 1920s (Hesmer 1929) and chitinozoans in 1931 (Fig. 4c; Eisenack 1931; Sarjeant 2002).

Quaternary palaeoecology began to blossom in the 1890s and early 1900s in Sweden, Denmark, Finland and Germany with the recognition that different layers of sediment from bogs preserved different quantities and assemblages of palynomorphs (Weber 1893, 1896; Lagerheim 1895; Sarauw 1897; Lindberg 1900; Witte 1905; Holst 1908). With the publication of Von Post’s (1916, 1918) papers, Quaternary palaeoecology, firmly tied to the pollen record, was born (Edwards 2018), and solidified through the work of his colleagues and students, most notably Erdtman (1925), Sarjeant (2002) and Traverse (2007). Despite this emphasis on

Fig. 4. Discoverers and describers of early NPPs: (a) Christian Gottfried Ehrenberg (1795–1876); (b) Rev. Miles Joseph Berkeley MA FLS (1803–89); (c) Alfred Eisenack (1891–1982). Painting of Ehrenberg by Eduard Radke courtesy of Wikipedia; photograph of Berkeley by Maull & Polybank, courtesy of the Wellcome Collection. Attribution 4.0 International (CC BY 4.0); photograph of Alfred Eisenack by Werner Wetzel (Tübingen) from Gocht and Sarjeant (1983); used with permission of Micropaleontology.
pollen, studies of NPPs occurring in palynology slides continued, albeit sporadically, until renewed interest in them began in the 1960s.

Palaeopalynology had begun to diverge from actuopalynology at about the same time as Quaternary palaeoecology developed, beginning with adoption of the artificial nomenclatural scheme originally proposed by Reinsch, Bennie and Kidston in the 1880s, first used by H. Potonié in the 1890s, and subsequently by palaeobotanists, especially Bartlett, in the 1920s (Bennie and Kidston 1886; Bartlett 1929a, b; Sarjeant 2002; see O’Keefe et al. 2021), and continuing with the recognition that palynomorphs could be useful in correlating coal seams beginning in 1918 (Thiessen 1918, 1920; Thiessen and Staud 1923). This realization, which came into its own in England and Germany from cross-fertilization due to visits in the mid-1920s from both Thiessen, to Sheffield and many other places (Lyon and Teichmüller 1995), and Erdtman, to various universities, including Leeds, where he worked closely with the botany and palynology group led by Burrell (Cross and Kosanke 1995; Marshall 2005). This knowledge was carried to the USA by both Erdtman himself and a young student named L.R. Wilson, who happened to be studying at the University of Leeds with Burrell immediately following Erdtman’s visit (Cross and Kosanke 1995). While trained as an actuopalynologist, L.R. Wilson turned his attention to palaeopalynology beginning with a 1937 study of palynomorphs from a coal seam in Iowa (Wilson and Brokaw 1937), and collaborated with J.M. Schopf, who had himself begun to study palynomorphs in 1936, eventually producing a seminal work on Carboniferous spores in the Illinois Basin (Schopf et al. 1944). By 1944, however, palynostratigraphy had become the major emphasis in deep-time palynology (Wilson 1944). Interestingly, the development of palaeopalynology in Britain also began at Leeds around the same time, when A. Raistrick was a student and young researcher there. Raistrick began publishing palynological studies in the 1930s and, like Wilson, began with actuopalynological studies of peat before progressing to studies of Carboniferous spores (Raistrick and Woodhead 1930; Raistrick 1933a, b, 1934a, b, 1935, 1936, 1937, 1938, 1939; Marshall 2005). Raistrick, along with his collaborator Kathleen Blackburn, continued work on palynology ranging from Quaternary to Carboniferous studies after his move to Newcastle; a key addition in terms of NPP research was their confirmation that the Carboniferous algae noted by Thiessen many years earlier were indeed Botryococcus, and indistinguishable from their modern counterparts (Marshall 2005). Again, during the same period in the mid-1920s, I. Cookson was in residence in Britain, first at Imperial College London, then at the University of Manchester (Dettmann 1993; Riding and Dettmann 2013); it is likely that she, too, was catalysed by lectures from Erdtman and Thiessen, although her interest in fossil plants and fungi was already developing. Cookson was trained as a modern botanist and mycologist in Australia, but turned her attention to palaeobotany and palaeomycology while in the UK; this collaboration produced many notable works, most importantly her seminal paper on Cenozoic fungi (1947). Near-simultaneously, in Germany, R. Potonié, beginning with his 1931 papers (Potonié 1931a, b, c), demonstrated the utility of palynostratigraphy and correlation in Paleogene coal-bearing sediments; these studies used the system of form-nomenclature propounded by Bartlett, which rapidly became entrenched in palaeopalynology – thus, not only were actuopalynologists and deep-time palynologists going in different directions, from the 1930s onward, they were speaking separate languages (see O’Keefe et al. 2021), and much of the early cross-fertilization of ideas began to wane.

Elsewhere in the world, studies of pre-Quaternary NPPs, primarily spores, acritarchs, chitinozoans, dinoflagellate cysts and prasinophytes, began in earnest in the lead-up to World War II (Sarjeant 2002). In Russia, much of this early work was led by Naumova (1939) and Liuber (1938), with an emphasis on late Paleozoic spores and pre-pollen. In India, pioneering work by Virkki (1937), a student of Birbal Sahni, on Pernian floras set the stage for an explosion of palaeopalynological studies in that country. Dinoflagellate cyst studies experienced a renaissance in the 1930s, beginning with the work of Wetzel (1932, 1933a, b), Deflandre (1935, 1936, 1937), Lejeune (1936) and Eisenack (1931, 1935, 1936a, b), and Lewis (1940), and early explorations of their utility as biostratigraphic indicators by Shell Oil (Sarjeant 2002), although WWII put a hiatus on much progress. It was not until the nestor of dinoflagellate studies, W. Evitt, turned his attention to their biology and geology in the late 1950s that their study blossomed into the robust community it is today (Riding and Lucas-Clark 2016). His work catalysed fellow dinoflagellate workers Downie, Gocht, Hughes, Rossignol, Sarjeant, Vozzhennikova, Wetzel, among others (Sarjeant 2002), and led to the establishment of two major centres of fossil dinoflagellate research: (1) Stanford University in the USA and (2) the University of Sheffield in the UK. Downie’s research group at Sheffield was instrumental in advancing acritarch research following WWII, as were Naumova in Moscow and Timofeyev in Leningrad, and many others in mainland Europe. Prasinophyte research did not make many advances until the post-war era, when some 14 genera were named in the period from 1952–67 (Guy-Ohlson 1996; Sarjeant 2002). It was also in
this period that the origin of Scolecodonts was realized after Lange (1947, 1949) and Kozlowski (1956) presented articulated jaws from the Devonian of Brazil and Ordovician of Poland, respectively, and further study in Poland led to Kielan-Jaworowska’s (1966) seminal work on the preliminary phylogeny of this group. However, much of this phylogeny is now obsolete and the phylogeny and classification of scolecodonts is part and parcel of the study of fossil annelids (Parry et al. 2019), as is the study of clitellate cocoons, although these cocoons are of limited taxonomic value in and of themselves. Studies of Chitinozoa, too, blossomed in the post-war period, and continue to be robust biostratigraphic markers throughout their range, although their affinity remains unknown, although the consensus is that they are the remains of an extinct organism (Liang et al. 2019). By the late 1960s and early 1970s, study of NPPs, in both geological and Quaternary contexts was coming into its own and, through the early 2000s, has become increasingly important in palaeoecological studies.

Evolutionary history of NPPs

For much of the fossil record, it is NPPs that are dominant, and their diversification parallels the development of multicellular life and land plants (Table 1, Fig. 5). Beginning with the simple spherical carbonaceous forms noted by Javeaux et al. (2010), both marine and terrestrial NPPs, including acritarchs, monolete and trilete plant spores, have been keys to understanding the oxygenation of Earth’s atmosphere (Agić and Cohen 2021), rise of multicellular life in the oceans (Agić and Cohen 2021), and the invasion of land (Wellman and Ball 2021). Indeed, Precambrian through Paleozoic biostratigraphic studies rely on NPPs, including acritarchs, chitinozoans, and precursors to dinoflagellates (Huntley et al. 2006; Knoll et al. 2007; Molyneux et al. 2013; Servais et al. 2013), as do Mesozoic and Cenozoic studies of marine sediments (Hubbard et al. 1994; Penaud et al. 2018). Thus, the evolutionary history of NPP groups is the evolutionary history of the earliest life, and a vibrant record of its diversification and preservation in the rock record.

An overview of this book

To date, no compendium addressing NPPs and their utilities from modern to ancient applications exists. This book endeavours to fill the gap by providing 12 review papers on the use and identification of NPPs. It is arranged in three sections. The first

Table 1. Geological age ranges of major groups of non-pollen palynomorphs

<table>
<thead>
<tr>
<th>Non-pollen palynomorph type</th>
<th>Range in millions of years ago (Ma)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial Cysts</td>
<td>3200–Recent</td>
<td>Agić and Cohen (2021)</td>
</tr>
<tr>
<td>Cyanobacteria</td>
<td>2017–Recent</td>
<td>Hodgskiss et al. (2019)</td>
</tr>
<tr>
<td>Achitarcha</td>
<td>1650–Recent</td>
<td>Agić and Cohen (2021)</td>
</tr>
<tr>
<td>Fungi</td>
<td>1230–Recent</td>
<td>Loron et al. (2019)</td>
</tr>
<tr>
<td>Chlorophyta</td>
<td>1000–Recent</td>
<td>Tang et al. (2020)</td>
</tr>
<tr>
<td>Arthropoda</td>
<td>541–Recent</td>
<td>Betts et al. (2014)</td>
</tr>
<tr>
<td>Foraminifera (linings)</td>
<td>540–Recent</td>
<td>Pawlowski et al. (2003)</td>
</tr>
<tr>
<td>Scolecodonts</td>
<td>497–Recent</td>
<td>Szaniawski (1996)</td>
</tr>
<tr>
<td>Helminth eggs</td>
<td>485–Recent</td>
<td>De Baets et al. (2020)</td>
</tr>
<tr>
<td>Chitinozoa</td>
<td>480–359</td>
<td>Servais et al. (2013); Miller (1996)</td>
</tr>
<tr>
<td>Non-reproductive vascular plant remains</td>
<td>460–Recent</td>
<td></td>
</tr>
<tr>
<td>Monolete and Trilete plant spores</td>
<td>460–Recent</td>
<td>Retallack (2020)</td>
</tr>
<tr>
<td>Testate amoebae</td>
<td>407–Recent</td>
<td>Strullu-Derrien et al. (2019)</td>
</tr>
<tr>
<td>Streptophyta</td>
<td>407–Recent</td>
<td>Head (1992), van Geel and Grenfell (1996),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wellman et al. (2019)</td>
</tr>
<tr>
<td>Freshwater sponges</td>
<td>304–Recent</td>
<td>Schindler et al. (2008)</td>
</tr>
<tr>
<td>Dinoflagellata</td>
<td>247.2–Recent</td>
<td>Janouškovec et al. (2016)</td>
</tr>
<tr>
<td>Tintinnids</td>
<td>201.3–Recent</td>
<td>Lipps et al. (2013)</td>
</tr>
<tr>
<td>Tardigrades</td>
<td>145–Recent</td>
<td>Guidetti and Bertolani (2018)</td>
</tr>
<tr>
<td>Loricate Euglenophyta</td>
<td>145–Recent</td>
<td>Ascaso et al. (2005)</td>
</tr>
<tr>
<td>Chrysophyceae</td>
<td>112–Recent</td>
<td>Kristiansen and Škaloud (2016)</td>
</tr>
<tr>
<td>Rotifers</td>
<td>40–Recent</td>
<td>Waggoner and Poinar (1993)</td>
</tr>
<tr>
<td>Rhabdocoela</td>
<td>37.2–Recent</td>
<td>Poinar (2003) Baltic Amber</td>
</tr>
<tr>
<td>Textile Fibres</td>
<td>0.34–Recent</td>
<td>Kvavadze et al. (2009)</td>
</tr>
</tbody>
</table>
contains three background chapters: an overview of what organismal remains are considered NPPs (Shumilovskikh et al. 2021), how processing impacts the NPP spectrum obtained by the researcher (Pound et al. 2021) and a historical overview of nomenclature and recommendations for naming NPPs moving forward (O’Keefe et al. 2021). These chapters provide necessary background for current and student NPP researchers and context for interpreting what is known about NPP occurrence and utility as proxies. The second section contains an overview of the major groups of NPPs: fungi (Nuñez Otaño et al. 2021); freshwater remains including dinoflagellates, tintinnids, euglenids, arcellinids, rotifers thecae and eggs, flatworm egg cases, nematode eggs, and the remains of cladocerans and diptera (McCarthy et al. 2021); testate amoebae (Andrews et al. 2021); marine remains including dinoflagellates, acritarchs, tintinnids, ostracod and foraminiferal linings, copepods, and worm remains (Mudie et al. 2021). These chapters provide in-depth overviews of the major NPP groups in the context of their occurrence (terrestrial or marine). They are invaluable resources for understanding the intricacies of each taxon as a proxy and interpreting their distribution in rocks and sediments. The third section provides reviews of state of the art of application of NPPs to a variety of problems: interpreting human impact on the environment (Gauthier and Jouffroy-Bapicot 2021); using coprophilous fungal spores to study mega herbivores (van Asperen et al. 2021); examining NPP distribution in marine settings across a major hyperthermal event (Denison 2021); tracing the origin and distribution of early land plants (Wellman and Ball 2021); and tracing the origin of early life and eukaryotes (Agic and Cohen 2021).

Acknowledgements Development of this book was not without its unforeseen challenges. The COVID-19 pandemic struck just as papers were being finalized for submission, significantly slowing the process as several co-authors and their families battled for their health and sanity during repeated global, regional and local shut-downs as well as a transition to primarily online course delivery and/or working remotely. We thank our many contributors, reviewers, production staff and families for their patience and support during the lengthy process.
Introduction: non-pollen palynomorphs

Author contributions JMKO: conceptualization (equal), writing – original draft (lead), writing – review & editing (lead); FM: conceptualization (equal), writing – original draft (supporting), writing – review & editing (supporting); PO: conceptualization (equal), writing – review & editing (supporting); MJP: conceptualization (equal), writing – review & editing (equal); LS: conceptualization (equal), writing – review & editing (supporting).

Funding This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data availability Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

Eisenack, A. 1936b. Eodinia pachytheca n.g, sp., ein primitiver Dinoflagellat aus einem Kelloway-Geschiebe Ostpreußens. Zeitschrift für Geschiebeforschung und Flachlandsgeologie, 12, 72–75.

Kielan-Jaworowska, Z. 1966. Aparaty szczękowe wie-loszczetów z ordowiku i syluru polski i porównania z
Introduction: non-pollen palynomorphs

Kozlowski, R. 1956. Sur quelques appareils masticateurs

Lagerheim, G. 1895. Uredineae Herbarii Eliae Fries.

Lewis, H.P. 1940. The microfossils of the Upper Caradocian phosphate deposits in Montgomeryshire, North Wales. Annals and Magazine of Natural History, Series, 11, 1–39

Introduction: non-pollen palynomorphs

van Hoeve, M.L. and Hendrikse, M. (eds) 1998. A study of non-pollen objects in pollen slides. The types as described by Dr. Bas van Geel and colleagues. Laboratory of Palynology and Palaeobotany, Utrecht.

Downloaded from http://sp.lyellcollection.org/ by guest on August 11, 2021