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Abstract

Episodic air pollutionventsthat occurbecause ofvildfires, }l rmsand industriaincidentscan
expose populations to particulate matteI?M)conce s in the thousals of pg m. Such
events havencreasd in frequency and d tyearleth this trend predicted to
continuein the short to medium termbe t:I|m te warming Thehuman health cosof
episodic PM ewvets can besignifica ndinflasgmatory responsesire measurablesven after only a
few hours of exposureConsequ e for the protection gbublic healthshouldbe available

asquickly as possibjget thQ eraging period fowhichPMexposureguideline values

(GVshare availabléas 24- ddress thiproblem,we have developed aovel approach

based on Receiver O g Characteristic (ROC) statisticgsiarihht derives thour threshold
concentration robabilisticrelationship with 24hour GVs The RO@nalysis was carried
out onP n monitoringdatafrom across the US for the peri@)14 t02019.Validation of

the model agagmst UAir Quality Index (AQP4-hour breakpoint concentrationfor PMshowed that
the maximumobservedl-hour PM concentration in any rolling Z2dbur averaging period is an

excellent predictor of exceedances of-Bdur GVs.

Keywords:Particulate matter wildfires,bushfires dust storms AQI,California Receiver Operating

Characterist, ROC



Introduction

In this paper weresenta novel approach to the delopmentof 1-hour thresholdconcentrations
(TG)for exposure toparticulate matter (PMyluring episodi@ir pollutionevents as might occur
during wildfires(Rappold et al., 201 'dust stormgMilford et al., 2020, Zhang et al., 2016, Rublee et
al., 2020)r incidents at industrial facilitiegriffiths et al., 2018)Populations exposed to episodic
air pollution events can experience PM concentrations in the hundreds and evesaihads ofig m

3 (Griffiths et al., 2018)0Ourapproach usea model that is developedsingReceiver Operating
Characteristi¢gROC}tatistical analysis of ambient monitoring data from thegy8r the period 2014
to 2019 Thedevelopment ofl-hour TG is neededbecauséhealth effects okl dPMexposure
are apparentat atimescale of hours, as evidenced by measuratflemm sponsefor
volunteers exposed to PM in the 100 to 309 m*range, over short ehndig et al., 2006,
Tong etal., 2014, Ghio et al., 2000, Salvi et al., 1999, Stenfor&.,. Z00d4)term (hours) health
effects have also been noted in fire fight¢@Greven et al., ISton et al., 2008, Main et al.,

exposure durations df-hour or less(US EPA, 2014

2020) Neverthelessunlike ritrogen dioxideand sulphu diMd hichhavehealth-basedGVsfor
@, 20Q&imd many chemical substances
&

for which there areAcute Exposure Guidek sjor periods as short a0 minutes

(StewartEvans et a].2016) no suchvalue vailabldor PMy,and PV, s.

—+

Theneed for thedevelopment ofs

\n PMexposure guidanckas become more pressinig
recentyearsbecauseperiods of vated PM concentratidmesve increased in frequency,

durationand extent espe 42( ;N’ngvildfires(Balmes, 2018, Dodd et al., 2018, Ford et al., 2018,
Howard et al., 2021)TheS§, events are responsible for causing significant ill health eff@eisl et al.,
2016, Haikerwal et\gl., 5, Faustini et al., 201&ckBet al., 2017, Cascio, 201garticularly in the
more vulngrak idents of an exposed a(Emlay et al., 2012, Liu et al., 2015, Holm et al., 2020,
Wakefield, 28¢Q)in addition, the toxicity of particulate emissiodsringcombustionrelated

episodic poif®tion events has been found to be higher than for equivalent concentrations of ambient
particulates(Wegesser et al., 2009)his enhanced toxicity dkie to thewide range of chemical

toxins presenin PM thatoriginatefrom combustion processemcluding PAHs and benzefialmes,
2018, Wegesser et al., 2009heincidenceof wildfires globally,is predicted to increase ie

medium termas a result o warming climatéMoritz et al., 2012and there is also evidence that

fires at waste mangement sites are more frequent during warmer conditig@siffiths et al., 2018)
Thehealth impacts of sucbhangesnay be considerable, with a recent study suggesting that
prematuredeaths due to PMsexposureduringwildfiresin the US aloneould ircrease from the

current 17,000 per year t42,000per yearby 2050(Ford et al., 2018)'he associateddalth related

economic costs are also expected to be signifi¢dohnston et al., 2020, Kochi et al., 2016)



The absence of sheterm GVsfor PM, and MV, shas been eknowledgd in the literature and
there have been severaitudies that havelerived surogate exposure guidancr periods as short
as onehour (Griffiths et al., 2018, Stieb et al., 2008, Mintz et al., 2013, European Union,,2020b
Connollyand Willis, 2013)A common theme to thesapproachedas been the relationship
between themaximumhourly concentration within a 2fiour period and the correspondingean
value A notable example is thEuropean Uniofi {EU) Common Air Quality Index (CA@hich has
(JA o0 e¢ o &E VP]VP (E}u Zs Eeackwithfodsgond@mypncmzafion
thresholdsfor PMy, and PM s, both for £hour and 24hour measured concentratior(&uropean
Union, 2007)The thourthresholds betweerthe CAQtategoriesfor Pl\/howeWedfrom the

t

24-hour limits bydividingthe latter by a factorof 0.55, which is the ratibe@ mean24-hour

concentrationandthe maximum hourly concentration withithe sam i

basedon Europanambientmonitoring datafrom 52urban moni w@

2004 (European Union, 2007Jhus, for the24-hour PM,, cate x

Z Z] @& [t 50ug m®, which is the same as the EU/WHQ bient guidehe valug the

calculatedl-hour category boundarys set at 90ug n@r rounaing) For PM, the class
fa

boundaries are based on those of RMapplyi \p f 0.6, which is the fraction of pM¥at is
PM. s, again based on European monite dtardpean Union, 20203tieb et al. (2008)

employed a similar approach to C40I in déygrmining short term (3 A&&Br)Anumerically identical
ratio was observedetweenthe 24aguifgeanconcentration and thé&-hour maximum
a @'- monitoring data collectéa Canada over the period 1998

their approachusingthe USAir Quality IndexAQ) boundary
ZUvZ 03ZC (}E -« v dtqtichtre@Eoyiesperidingd-/ Aiiie

SA v Zu} 5
hour PM, sub-in id¢ftne value of 150g m*has an equivalent-Bour TCof 275pug m°.
In the UK, tment of Environment, Food and Raiffairs DEFRPhavederived 1-hour
ZSE]PP [ }v VvVSE S]}ve - }u%ltv vS }( §Z h<q€onnpiydandE Ypu 0]SC /
Willis, 2013 Holgate, 201} The triggetrconcentrationsestablish a relatioship betweenl-hour

eratio of 0.55is
ons for the period 2001
ndar 3A v Zu Jpu[ v

concentrationfor PM,p or P
to 2000. Stieb et al. (20

measurements anthe 24-hour meanconcentrationrangesthat correspondo the DAQHhir

pollution categoriesof Z o | #hoderate| High[or Zery high] Underthe DAQI methodology, if two

consecutive 1Z}uE& u e*pE u vse E Z ZSE]IPP E[ }v \w@ab]}vU SZ]e |-
current air quality falls within theelevantDAQIcategory, thus providing & & $ Jas efementto

public information about aipollution levelsn the UK.The trigger concentrationsere derived

using a categorical modbhsed on 270,000 day$ PMo data and 27,000 days of Bidatafrom

automatic monitoring stations across the [t the period 2004 to 200€Holgate, 2011)



In our own work in this fieldwe havedeveloped a similar categoricamodelto DAQ) thoughone
that isbased orthe higher concentration ranges that are observed durimgjor incident fires
(Griffiths et al., 2018)The modelses thour PM,,and PM s measurements tgredictexceedances

of 24-hour guideine andthreshold concentrationshat relate to public health advice during such

~

incidents.Themodeldevelopmeit wasbasedon u}v]3}E]JvP 3§ } §]Jv (E}u $Z h<]Je

in Major Incidents (AQiMI) programn{&riffiths et al., 2018whichcoordinatesfield monitoring of

a range of atmospheric pollutants arising from fiegglloss of containmenincidents at industrial
facilities and waste disposal sitisthe UK Both authors of the present paper were involved in the
AQiMI programméGrifiths et al., 2018)The model demonstrated that ther&hreshold
concentration of thour measured PM that, when breacheagiyes a define@ ility that24-

hour guideline value is also likely to be exceeded.

Otherapproaches to providing moresponsive information on &e M exposure include:
remote sensingKrstic and Henderson, 2015¢aktime dispeg odellinge.g.the Blueky
wildfire smokeforecasting service used in Candao et ayz predictive models based on
autoregres#on neural networkgVidenova et al., 20 opol]v (E u} oe pe]vEXuzetld, S |
2020) textual analysis of social media p &eva and McCaffrey, 2088 the USEPA

Nowcast methodology which contribute e US AirNow forecastngce (Mintz et al., 2013)

The latteruses short term monitori

Z]lves8 vS v }houf AN congEn

ata (tfe previous 12 hours) to predict an equivalent

, Which can then be compared to various health criteria.

Thismethod is designed to spafisive at times of rapidly changing pollution conditions. It does

this by giving greater w@o the three most recent hours of air pollutionatgteneswhen
butgives more equal weighitg tothe previous 12 hours of air

the air quality is v@
pollution dat ion @mncentrations arenore stable

a
Thispresent vQﬂds upon ou previouswork (Griffiths et al., 2018py usingReceiver Operating
Characteri ROC) analy@tawcett, 2006df US EPAatafor the period2014to 2019to develop
a probabilistic modefrom which Xhour TG can be derived for PNMand PMs. TheUS Air Quality
Index AQ), and associated breakpoint concentrations for the PM-gutices were used as the
source of GVs, dkey represent a wide range of pollutant concentratiofsdq 500 g ni® for PM s

and 0 to 605ug ni*for PMy) andare appropriate to the US monitoring data.

2. Method

2.1 Principles of ROC analysis applied to air quality data

TheROC modealevelopment worldescribed in this papewras carried out as follows. Firstly, we

built a model based on ROC analysis off2vid PM sambient concentration measurements from

ke



across the US for the period 2014 to 2019. This allowed us to dehweerIl Gthat gave defined
probabilities that selecte@4-hour GVavould be exceeded. We then evaluated the performance of
the model using a crosslidation approactandalso carried out a separate evaluationaosf ROC

modelthat was developed using monitoring detam Californisonly.

ROC analysis is a classification metric that analyses the ability of a predictive paramétasstiel
to discriminate between two outcome#. has been widely used for healtblated diagnostic
analysigHajianTilaki, 2013Phillips et al., 2010jor example to identify biomarkeris serum
related toPM,o exposure(Lee et al., 2015)n the environmental field, ROC gnalysis has lzgmghied
to the developmenbf amodel to predicthe quality ofbeach water for swim , lsad on either
the %o E A]} prainfall pr bacterial countéMorrison et al., 2003)We us @ arlant of this
analysis when developing our original model for AQiMI d&taffiths ’2 8)For that work,

tr

and in the present study, the classifietli® maximum hour con ation in a rolling 2Aour

period. The outcomeis whether (or not) themean concentra
period exceed a selected24-hour GV. The value of th Vc@ be
basedvaluesdeveloped by the WHO, USEPA, heiebo

he corresponding24-hour

electeffom a range ohealth

The utilisation of ROC analysidlisstrate re$whichshowsa typicaloutput in which the

true positive rate (TPRr sensitivitluis plottegagainst the false positive rate (FRR 1- specificity)

(Fawcett, 2006)In formal terms,;TP. FPR are defined in Equations 1 and 2 respeatitiele
for a given st of analysediat ' number of true positivés. the modelcorrecty predicts
anexceedance of 84- ho idefpe valug FN is the number of false negativgse modd

incorrectly predictghag trig24-Mour guideline valués not exceede}j FP is the number of false

positives(the modéRgcorwctly predicts an exceedance of a Bdur guideline valugand TN is the
number o uives(the modelcorrectly predicts that the 2zhour guideline value is not

exceedeql.

Eqg. 1

XRJIT Eq. 2



Figure 1Example ROC pldEhe solidblueline showsan ROC curvéor the & % of aillustrative set ofPM,, data where
the Z}us }u [ ]+ A®@r dof)a@efined 24hour guideline value has hpellgededTZ Z o «+](] €[ ]* $3Z u AJupu i

hour concentration within the same 2dour period The dottedli sane ple of an ROC analysis where the

Z o ¢ ](] E] }EE 350C % E hréeuridarahéd (2=2.0}, whereas the dashed line shoars

example curve where only 50% of outcomes are correctiggore by the classifier (A&}’ ke vertical lines indicate

different seletions of TPRogether withthe corresg@ndiiy . Thptimal situationis tohavea TPR as close as possible

to 1, whilst minimising the FPRIso shown is thalig A o }(8Z Z o «¢](] €[ $Z § }EE *%}v * S} §Z
TPR/FPR.

The area undethe curve (A @)'Iid line irFigure 1is an important parameter for ROC

analysis, representing % lIprobability that the chosewlassifieparameter will rank a

randomly chosen tru ive instance above a randomly chosen true negative ingfaveeett,
2006) For our i ivg/dataset thelUC is0.843 meaning thathe value of themaximum2-hour
concentr. our periodcorrectly determinesexceedances of the4-hour GVin 84.3%of
cases

Two otherexamplecurves are shown in Figure 1datted line with an AUC 0.0 (100% probability

of distinguishing between twoutcomeg and a diagonal, dashed, line with an AUC of OtiGhv
means there is only a 50@tobabilityof correctly discriminating between twautcomes i.e.no

better than chance. Curves that appear below the diagonal represent situations where the model

classifielis giving rise to a reciprocal classification.

Foure 1 together with the AUC values useful for visualising the overall performance of the model.
It can also be used to decide on the acceptable TPR that will at the same time minimise the FPR, as
shown by the red and blue vertical lines, and theiatieinship with the solid curve. For example, we

could decide iisessentiakhat all true positive valueare correctly identified (red line) and have to



accept an 80%alse positive rateor we could compromise on a lower levelfe positive
identification, which has the advantage of a lovigise positive rateas shown byhe blue line,
where TPR= 95% and®PR= 60%However, the important point is that for each selected TiRBre
is en associated valuef the classifie(the maximum ihour concentration in any 2&our period).
Thusfor the PMg data shown in Figure the value oftlassifieconcentrationthat will give arue
positive rateof 95%(anda false positive rate d0%) is 255 pg nt, whereas to achieve taue
positive rateof 100% (and dalse positive ratef 80%), we would need to lower thiresholdto 180
ug m°. Thevalueof the classifiemt a given TPR, de factq a 1-hour TG that hasa probabilisticlink

to the selected24-hour G\,

Regardingelection of an appropriate TPR/FPR vallie,decision musbe @ bn the basis afn
acceptable scale of risk thatlances public health protection again@sources that are
r to definingl-hour TG

available for incident responséhe advantage of oUuROC anal

is theability to specifically define therobabilitieson which % ecClsions are made

It isimportant to emphasis¢hat because we use t irium reur concentration(in any 24
hour period) aghe classifieparameter inthe RQE a dthat this value can occuat any
positionin arolling 24hour period the re talfed from thenodels on which this analysis is

the beginning middle orra of the

based must havan equivaleninterpretatioli§ln other words, a onrbour TCcould be triggered at
\period that is predicted texceed the relevant 2iour

GV, A preliminary analysis usin showed thah#tkan position for the maximurirhour

concentration was at ho§g fompoth RMand PM 5, as might beexpected.

2.2 Initial model deve
stations acros

esof hourlyPM,o (USEPA parameter code 811)hd PM, s (USEPA

t using ROC analysis af BiMi PM, smeasurements from monitoring

Pre-generat
parameter 8101)concentrationdatafor the years 2014 to 2@l from ambient monitoring
stations acrosghe whole of the USwyere downloadedn Comma Separate Values (CH#e)Yormat
from the USEnvironmental Protection Agency (US ERé)site(US EPA, 2021The files were
imported into Microsoft Acces®r further analysisTable 1 summariséie number of monitoring
stationsin each statehat wereusedin this studyto provide 1-hour measurementdatafor PM,,and
PM, s concentrations The stations form pa of a larger network of monitoring stationgithin these
states Additionally, TableS1lin the supplementary materiummariseshe PMmonitoring
methods employed by the selected monitoring stations for the years 2014 t8. B¥ta attenuation

monitoring was by far the most often used technique, but the other methods inclUdgxred



ElementOscillatingVlicrobalance TEON, FilterDynamics Measurement Syst§fFDM$ with TEOM,

laser light scatterig and broadband spectroscopy.

Table 1: Summary of the number of sites recording hourly PM concentrations across US 2ai8WSEPA parameter
codes 81102 and 88101 for Rjind PM s respectively). Missing states had no monitoring records in th&ERKS dataset
for the specified prameter codesThe hourlymeasurement sites form part of a larger PM monitoring network in each
state.

PMo PMs PMo PMs
monitoring  monitoring monitoring  monitoring
State sites sites State sites sites
Alabama 4 3 Montana 11 15
Alaska 8 6 Nebraska 2 3
Arizona 43 18 Nevada 20 14
California 53 40 New Hampshire 1 7
Colorado 4 15 New Jersey - 12
Connecticut 8 9 New Mexico 13 12
Delaware - 6 New York - 7
District Of Columbia 1 5 North Carolina 9 17
Florida 21 18 North Dakota 4 5
Georgia 2 8 Ohio 6
Hawaii 3 14 Oklahoma 5
Idaho 6 2 Oregon -
lllinois 2 17 Pennsylvania 13
Indiana 3 16 Rhode Island -
lowa 1 5 South Carolina 4 , 5
Kansas 7 6 South Dakota
Kentucky 2 15 Tennessee 18
Louisiana 4 2 Texas - 25
Maine - 9 - 17
Maryland - 11 - 5
Massachusetts - 14 - 4
Michigan 5 9 5 20
Minnesota 8 23 2 2
Mississippi 1 8 isconsin 7 16
Missouri 9 13 ming 16 11
Pre-generated datdiles vaildblérom the USEPA websitén a format that hashe null-data
lines stripped out, w e required contiguous datasets at each monitoring stattoncalculate

the rolling 24-hour al%gradeghat are requiredor the ROGnalysisWe reconstructed @ntiguous
datasets far e with null valueseinstated using an SQL query in Microsoft Access based on
a contiguous Wourly time series ftrat year together with the pregeneratedUSEPAlata file
Subsequeny, these reconstructed hourlyatasets of Py, and PM, s concentrationsat each

monitoring station were analysed in Excel after exporting @S¥ile from Microsoft Access.

For each yearrad eachmonitoring station, he datafiles were preparedor ROC analysis in SPSS
usingMicrosoft Excelsfollows. Firstly,we calculatedhe average concentratioof PMygand PM, 5
for each rolling 24 hour perbfor which there vere at least 20 hours of valid measuremeifise
average concentration idenoted Gy, wherei represents anndividual rolling 24 hour periodps a
QCcheck on the dataExcelformulae wereused to identifyyearbeginnings/ads, to ensure that
there was no crossover analysis of data from different monitoring statmmgto flag up any non

contiguous data sequenceSecondly, welentified the maximumhourly concentrationrecordedin



eachrolling 24hour period, Graes. The data was analysed batches so that the maximum number

of rows in Excel was not exceeded (ca. 950,000 for the B3ait version of Excel used]} should

be notedthat there were no selection/exclusion criteria regarding the nature of any exceedances, i.e.
whether they originated from wildfires, industrial emissions, dust stongs a result otinusual

meteorological conditions

The 24hour GVsused inthe ROC maelling were the U8QIcategoryboundary concentrationfor:
ZhvZ 08ZC (}&E < ve]3]hy mPard 158 [miZfori M sand PM, respectively AQI =
100)V Z h \ti& [ 55.5pug nmi° and 255 pg mi® for PMysand PMg respectively AQI =150); v Zs EC

HVZ 038ZC [ug A axdiB55ug m? for PM,sand PM, respectively AQI = US EPA, 2014)
There is a higher categobpundary}( ZZ 1 E25@5jig+i°and425u M, sand PMg
respectively; AQI 300), howeverdue to the limitedavailability of m ~ ataat these high

concentrations it was not used in the itial model development va Jaton. Neverthelesshdur

TG were calculate for this categoryn a separate analysis

ROC analysis was performesing IBM SPSS Statis rsionr2ttal, across all monitoring
stationsfor all six yearsthere werein excess 01 lling 24hour periods for P and 22
million rolling 24hour periods for PMs. F e two PM size fractiomsgividual Excel files
comprising thecolumnsG, Cna><24(. v wére imfiofted separately into SPSS

preparing the data for ROC an usethe ZzZ } 8} ]J(( & v3SPSEfunabice|

and then combinednto oneSPSﬁ? pHe]vP §Z ZD @Eaure&Tiee npl stepin
§Z Z"S S)forteagh%olli 2hcur@eriod Theidentity

generatebinary identity vafibleflenoted 3tate Variablgin SPSROC terminologyhoughnote
thatthis ] v}3§ {
variables By, moh@ether or not arolling 24hour period exceeded specifi4-hour GV

respectiv eeded; 0 = not exceedétys,for PMythe followingvariables based on US
YI & vé v vSE §]}ve QabsitidndiidualAUhGepRy] v Zs E&C
hvZ o8 ¢enerated B, Bssgand Bssj). For PMysthe correspondindgJS AQI variables

were Bs 5, Bs 5and Bsqp. AdditionalEsy;) valueswere alsogeneratedfor ROGanalysis

corresponding to otheR4-hour GVs

ROC analysis wasrformed onGaesg ~ S Zlasifief] against each of th&s,; values(as state
variableg using theSPSS Z K ua&RBalysjoption. Outputs included the ROC curtee AUC
value,and thep-valuefor the model. Additionally, aroption to display the coordinate points of the
ROC curve@PRandFPRyas selectedallowing the identification a$pecificTGthat would give
true positive ratef 100%699%, 95%and 9®ofor each of theselected24-hour GVs



We were also interested in quantifying tipeobabilities associated witthe EU(European Union,
2020a)and Stieb et al. (200&pproach to generating-thiour TG, i.e.the division of the 24our
guideline bya fador of 0.55(the ratio 0fGuj) : Graeaq). This was donéy readingfrom the ROC
output table,the corresponding TPR and FPR fordakeulatedl-hour TC In addition, werepeated

this analysis foGuj) : Gnaeaq) ratios calculated from the US EPA datassed in the current study.

2.3Validation

The ROC probabiligpproach to derivind-hour TG wasvalidatedusing a cro%ationdesign
(Schaffer, 1993)he datawas grouped according to year and ¢ ]

U Z]lv]AlpoC G

datawas used a a test set for an RQf@odel based on the remaining ®'s of ddtee training

set). This involves running an ROC analyglspendentlyon the tegt s d on th&aining set and
this procesdor each of the six yeara,statisticalassessme?f I nter-year modebariabilitycan
be made Predicted and actual FPRs we'rmilarlyob@

actual TPR By repeéing

We carried out an additionahodel devel t alidationin which data only fronthe US
state of California was used as the traini yearsjyand theremainder of data fronthe other
US states (all years)sed as the test alifornia has the greatest numbermbnitoring stations

of allUS states (see Table 1) @ ences a large number of wildfir@®appold et al., 2017)
Therefoe, the rationalefor@ te validatiowas to see whethea model based on this
hertat

profile is transferable t(x es, vene sourcef elevated PMmay differ, for examplehe dust
stormsin Arizonaaggd N exicgHyde et al., 2018, Raman et al., 2014)

3. Result @ion

3.1Exceeda statistider data used in the ROC analysis

ROC analysis was used to evaluate the effectiveness @ thaclassifier to predict exceedances of
selected 24hour healthbasedGVsfor exposure tdPM. TheGVsusedwere the breakpoint 24hour
concentrations fothe PM subindicesof the USAQI Thesevalues have been developed using
epidemiological evidenc@-edenl Register, 2013)Specifically, an AQI value of 1@presents the
boundaryat whichair quality might be considered unhealthy (&ensitivegroups)andfor which the
PMsubindices areset at theUS 24hour ambientexposureGV(35.5 ug it and 155 pg i for PMs
and PM, respectively (Federal Register, 2013, Perlmutt and Cromar, 20083 top of the AQI scale
is set at a value @00, with the correspondin@24-hour PM subindicesbased orconcentrations

estimated during historical wintime pollution episodes in London, and thassociatecealth



effects(500ug m* and604 pg ni° for PM, sand PM, respectively)(Federal Register, 2012)he
other USAQI24-hour breakpointPM concentrations aresetas follows the ZhvZ o0 S 26Qsi(iye€E
PE} L%y Z ddeakpointconcentration(AQI = 150)s setproportionately to AQI 400(55.5
ug m° and 255pg mi® for PMpsand PM, respectively, whilst for AQIvalues above 50, the

breakpoint concentratiosare sé at relatively unifam incrementsup to AQI = 500.

As part of the process of compiling monitoring data for the model development and validation
stages of this paper, some overall summary data on exceedances of varioustbeesat24-hour
GVswere produced Figure2 shows the relative proportionf exceedancedygstate of selected4-
hour GVsfor both PMgand PM s Specifimumbersof exceedancedy state, etailed inTables
S2and S3n the supplementary materialn addition,Tables &and $ sho @ prall statistical
summary of PNy and PM sconcentrationgnumber of measurememetic average, standard
deviation andmaximum) forthe US EPA datasets used in this ¢ period 2014 to 2019

Figure 2 Relative proportions, by statd exceedances of specifi@d-hour GVdor PM,;and PM s over the period 204

to 2019 From left to right the GV values represent thieakpointconcentrations(} E Zhvz &nEitve(XEG L %o [U
ZhvZ 08ZC[ v Zs EC hvZ RictEiRlk ifEicet thé jtates it make the greatest contribution to the
overall number of exceedance$each GV. State abbreviations are as follows: AK, AlAZkArizona; CACalifornia; CO,
Colorado; ID, Idaho; IN, Indiana; MT, Montana, NV, Nevada; NMMésieo; ND, North Dakota; OK, Oklahoma; PA,
Pennsylvania; UT, Utah and WA, Washington.

For each state e number of exceedances ahy GVwill be a function of both the number of
monitoring sites that are in operaticior PM,, and PM s and the propensity for acutair pollution
events. For example, California has by far the greatest number gfdPlllPM, s monitoring sies
(see Tabld) but also has a large numbef wildfires each yeafRappold et al., 2017hencealarge
number of excedances across the range @%s Thusfor the AQI dnhealthy v Y/ ZA EC
MV Z o 2ZIirGVsthe two highest24-hour GVsaised in this analysier each PM fractiop



Californiacontributes moreexceedancethanfor all the other US statesombined ForAQI
ZuvZ o03ZQ@(BFA PIEYuga@® pnd 35.5ug m*for PMyand PM srespectively,

Californiacontributes just under half of the exceedarsce

For PM,, the ather states that have high numbers of exceedanukthe 24-hour exposureGVs
include Arizonaad New Mexico which havdrequent dust stormgHyde et al., 2018, Raman et al.,
2014)but also have aelatively highnumber of monitoring stationsséeTablel). For PM; s,

Montana and Washingtormale the greatest contributions to exceedancafier California
reflectingthe relatively large number of PM monitoring stations in eacbf thgsestates, but also

the relatively high incidence @fildfires(Fann et al., 2018, Rappold et al., 2

far greaterdiversityof statescontributing exceedance datén cont

Finaly, aclear trend from Figur@, particularly for PMs, isthat for the -% our GVshere isa
Y/ Zhv,2Zor bddlZ C [

PMypand PM s, only sixstates recorded exceedances durin 0 2@Aifornia, Arizona, New

Mexico, Nevada, Washington and AlagiaPM,,; California, gton Montana, Colorado,

Indiana and Arizontor PM,5). The relative contributi ifferei¥ states to the tothknumber of

exceedances used in the R@dalysis, and the rﬁ/ this, i.e. source and relative numbers of
he

monitoring stationsjs animportant conte ,@ erall modelevelopment andesults.

3.2 ROC model performance

Figure3 showsthe resulsof the
the period 2014 to 20190

ysis for Rjdnd PM, s usingdata from all US states for
therespective AUC valugBublished criteria for evaluating
the performance oRO(&ie n thevalue ofAUC indicates that values aboveDcould be
consideredgood| wher alues greater than 0.8 could be considefedy goodiand those
higher thano.ﬁl [(Bekkar et al., 2013\ more stringent nterpretation of AUGs given by
Zhu et al. ( set the bondary for good[at 0.8 For our RO@nalysis, theAUC values are all
above 0.99 onstrating th&,.x24iS an excellent classifier parameter for determining whether

selected24-hour GVswill be exceeded.



Figure3: ROC curvegblue line) athree diffelqgt24-hour¥BVs foPM,,andPM, s Also shown is the AUC value. The
diagonal red, dashed, line corresponds t curve with an AUC of 0.5.

Tables2 and 3show, for PMylan srespectivelythe valuesof G, that will achieve TPRs of
90%, 95%, 99%nd 1090 the’selected24-hour GVsFor clarity, ve have deoted thisvalueas
CGraxatrry Thepredidéed ARR is also showvilihe values 06y axe4rpriand FPRN Tables 2 and Bere

obtainedfrom C analysis output tatier each corresponding TPR

GraxeateryS, In gffect, a dhour TCthat has a probabilistic link to24-hour GV Thus,from Table 2 we
see thatfor PMypat $Z Y/ Z uv Zoreakpdif foncentratiorf255 g ni°), setting al-hour TC

of 305ug m®is likely to result in th@redictionof all exceedances of the dbur GV. The associated
FPR ol.76% means thdbr eachmonitoring station,on averagethere are likely to be cd 54
rolling 24-hour periodseach yearfor whicha breach othe 24-hour GMvould befalselypredicted
Accepting a lower TPR, e.g. 991%¢urTC=427 g m°) or 95% (1 houffC=708pug m°), reduces
the FPReonsiderably(to 1.000and 0.43 % respectivelylhe esults from the ROC analy$is other
PMyo 24-hour guidelinesn Table 3 can bemilarly interpreted.Likewisefor the PM s 24-hour GVsn
Table4.



The nature of elevatedir pollution events means thdalsepositivesare likely to come in clusters
asillustratedby Figure4, which showsn analysis by date and sitegf FPsassociatedvith the PM, 5,
24-hour GV of 50 pg mi*for 2018 Across 40 sites at whidiPs wereecorded, he FPsre clustered
around datesorresponding to theCarrFre in July/Augus{Lareau et al., 2018, Wong et al., 2020)
and the Woolsey and Canfjires ilNovember(Keeley and Syphard, 2019, Wong et al., 20P0g¢se
are also the dates at whiaghost TPs weraecorded Neverthelessfor each site, therarelong

periodsof the year where ndPs are recorded.

Table2: Results for the overall ROC arsidyfor PM,, based on ovet6 million rolling 24hour petiodsirom monitoring
sites across the U8 aacreris thevalue ofGyay4that will achievetrue positive rates TPR}of 95%, 99% and 100%

hourTC

GV = 155 ni° (AQI >100: GV = 255ig m° (AQI >150:
Unhealthy for sensitive groups Unhealthy)

Selected TPR  Graxoacrer{1- PredictedFPR  Gnaxoacrer(1- Predicted

hourTQ hourTQ FPR
100 % 186 3.89 305 1.76
99 % 227 2.72 427 1.00
95 % 281 1.85 708 0.43 /8 0.25
90 % 370 1.11 890 0.27@ - -
Table3: Results fothe overall ROC analysis for P oigver 2ahillion rolling 24hour periodsfrom monitoring
sites across the U§;a4reris the value oG ay04t chievérue positive ratesTPRyof 90%, 95%, 99% and 100%

for the selected 24our GVs. The predictddlse posi rateRPRis also shownGya4rer$an be consideretb bea 1-
hourTC

JBig m® (AQI >150: GV = 150.5g ni° (AQI >200:

GV = 35.5ig m° (AQI >100:

Unhealthy for sensitiv: ealthy) Very unhealthy)

Selected TPR  Graxearer{1- Pregli axoarer{1- Predicted Cnax24(TPR) PredictedFPR
hourTQ hourTQ FPR (2-hourTQ

100 % 41 & 65 0.83 178 0.09

99 % 45 0 70 0.67 183 0.08

95 % 50 1 77 0.50 189 0.07

90 % 54 O .16 82 0.42 202 0.06

The decision of) which TPR is acceptable depends on the proposed public health reésponse
predicted exceedances ofé24hour value For example, if the response is to send adviseaith
warningsto the affected populatiorthrough media source@ochi et al., 2016, Mott et al., 2002
to display the information through mobile phoneApp,then the resource implications are clearly
much less significant than if physical measures were taken to evacuate [{Stgles et al., 2014,
Wong et al., 2020)A higher FPR is likely to be tolerated in the former case, though there is a
concernthat too many false alarms will undermienfidence irthe public health response system
that is in placeNevertheless, theesults of theanalysis in Figuré, show that FPs are associated

with specific events, and $ePanight not necessarilype registered byhe public adalse alarmsAn



additional aspect of the statistics on FRss shown in in Tabl@and3, is thatlower FPRs are

associated withhigher24-hour GVsi.e.where public health advice is most needed

O

Figure4: Incidence of false positiveBP, for exceedance of the BMZ hv Z B m?) across sites in California

in 2018 Only those sites recordirape or moreFPs are shown (40 in totaR y, up to 24 FPs can be recorded at
any particular site because the exceedancaaate to rolling24-hour perio@ al, across all sites, there were 1567 FPs
and 832 TPs. ,

3.3 Model validation @

Figure5 showsthe results of the crossali studythat was carried out on the overall dataset.

Thereis excellentagreement betweelythe predicte@ed line)andobserved (black line)PRswith

the observed performancéor se &€4-hour GVexceedngthat of the predicted.

Neverthelessye see thath deviation of the meapbserved TPRalues increses for

lower values of predict& . at 90band 95%this is because there afar fewer dda points at

the highervaluesofG,4 «e4that are associated with these lowePRsConsequently

predictions m of 95% and 9G¥e less reliable, thougstill likely to capture over 80% of
Ny’

exceedanc

articular yearThe full set otrossvalidation data for P and PMsis

available in leS6and S7, respectively.

We also investigatedhe predictive performance ain ROC model basezhly on data from

California. The results of this validation study are shown in Figure 6, with the full dataset, including
FPRs, available in Tab®8and S9for PMyyand PM s respectively.For PM,, at all the 24-hour GVs,

the observed TPRs track above the predicted cuiilas.agreement betweepredicted and

observed TPRis particularly noteworthy because the model developed for California was based
mainly on exceedances due to wildfires, whereas fonthikdation sefother sources such as dust
storms were mgor reasons for exceedances, notabitg large number of exceedances contributed

by Arizona ad New Mexico(see Figure 2he observed FPRs are also somewhat lower than the

predicted FPRs. For BMthe agreement is less good, with the curve for the observed TPRs tracking



0}A 8Z 3 }(8Z %@E ]38 V §Z]*]* *% ] 0ooC v}3 -wur@WEHIS® Y/ ZA @
ug m°). The derived dhour TG at each probability level (Tablg§ and SAre numerically very

similar to those derived for the whole model, though for BMhere are some deviations at the 95%

and 90% levels.

Figure5 Results of the crosgalidation studydg PM,;, (upierset of panelsand PM s(lower set). From left to righthe 24
hour GV values represent the breakpoimincerfgations(}E& ZhvZ 03ZC (}E » ve]8]A '"E}u%-+[U ZhvZ 08ZC

hvZ 03ZC[ & .PtedidgdT hedlinejre at the set values &0%, 95%, 99% and 100Btack dashed
lines showthe average TPBbtainedfront’si alidation rursin which,ep +«]A oCU Z]lv]AlpoC E[+ 3§ .
used as a test set for an ROC m n the remaining five years.dftdataror barare+ 1 sd.

\
O



Figure6 PM,o (upperset of panelyand PM s(lower set) resultsfor an ROCYg based only on Californian datam left
to right the 24hour GV values represent the breakpoduncentrations ( ShvZ 03ZC (}JE ~ ve]S]A '"Elu%-+[U Zh

v Zs EC hvzZ o352g [P@ictéd TEHsAd dashed li the setWalues of 90%, 95%, 99% and 100%. Black
dashed lines show the TPR obtained fralhiUS dataexcludln
An additional piece of confirmation wor modeNouId be toexaminethe statistical
relationship betweenexceedances of-ho s andelected health endpointskenfrom

populationbased health dat&or the cted areasInso doing the 1-hour TCs could be assessed

for their efficacy a&ealthreleva rs of PMxposure in their own right.
3.4 Comparison with oth pr hes to calculatinigour TG

As discussed in th% tion, alternativeapproach to the development dthour T&in the
literature has iide theelevant24-hour G\Wy a fixed factor.e., the ratio of the mean 24
hour co m the maximum hourly concentratifor the same periodThis factor has been
calculated t .55for PM,, basedon monitoring data fromurban background and roadside
monitoring statios in EuropéEuropean Union, 2007peparatelya numerically identicalaluehas
been derived for data from Canad&tieb et al., 2008)-or theEuropearstudy, the purpose of
producing a ihour TCwasto ensure thatthe PMy subrindex based on hourly values on a given day
will be (on average) consistent with the daily value once it is calculated (the nexi(Baydpean
Union, 2007)Neverthelessthisapproach andthat of Stieb et al. (2008rannotprovide any
informationon the proportion of exceedances @&4-hour G\$that are predicted byheir derived 1
hour TG. However since ourROGapproachalso uses the maximumtiour concentration Gyaxz9,

we cancalculate TPRsr 1-hour T& derivedusing theEuropean Unioif2007)and Stieb et al. (2008)

approach One caveais thatthe CAQI index for whichthour TG were derived does not range as



high as the24-hour GV<onsidered in tk currentpaper:for PMy,, the boundary between CAQI High
/ Very Highoccursat 100ug i,

We can also make comparisongh 1-hour TG calculatedusing ratiogderived from the US data in
the current studyRatios 00.46 and 0.8 were calculated foPMy and PM s respectively though

these overall values mask considerable variation between statehavgn inTables S10andS11

Table4 summarissthe predicted TPRs (and FPRs)PM,,, based orl-hour TGthat werederived
from 24-hour guidelinesising theGy : Graxeaapproach. Thel-hour TG derived in this way dpredict
a high proportion of exceedancewith the accuracy increasirag the higherc ponding24-hour
GVsi.e. up to 99.7% fahe 355ug mi® GV. Thel-hour TCderived using U Mdata gives a

slightly lower accuracy, reflectint higher value

However for PM, 5, Table5 shows thafTPRs predictedsingthe Cﬁ;gtio-derivedl-houﬂcs
@ sThusfor the 150ug m?*

24-hour GV the corresponding-hour TC(factor = 0.55) pr?i only 47.9 % of exceedances

show a much loweaccuracywhich decreasest the highe

Table4: Predicted TPRs (and FPRs) férolr PM,, TG, that w; ivesby dividing24-hour guidelinesy a fixed factor,
based orthe ratio of the mean 24our concentrationg axi hourly concentration for the same perlwd
fixed factors are used.55, derived from Europeg and$46, derived fronmidBitoringdata from the current
study.

Basis for derivation  24-hour GV =155ug m° (AQIGL00:  24-hour GV = 25%ig mi° (AQI >150: 24-hour GV = 35%ig ni° (AQI
of 1-hourTC Unhealthy for sensitiy® gy Unhealthy) >200: Very unhealthy)

1-hour Predicted ad 1-hour Predicted Predicted 1-hour Predicted Predicted

TC TP " % TC TPR % FPR % TC TPR % FPR %
CAQI European 281 .85 464 98.1 0.87 645 99.7 0.54
data: (24-hour GV
0.55)
Current paperus 3 2. 1.33 551 97.1 0.66 766 98.1 0.40

data: (24-hour GV/

PRs (and FPRs) férolir PM, 5 TG, that were derivedby dividing24-hour guidelinesy a fixed factor,
based orthe ratio of the mean 24our concentration to the maximum hourly concentration for the same periadb
fixed factors are used: 0.55, derived from European data, and 0.46, derived fromit®ring datafrom the current

study.
Basis for derivation  24-hour GV 85.5ug m° (AQI >100:  24-hour GV = 55 g m° (AQI >150:  24-hour GV 250pg ni° (AQI
of 1-hourTC Unhealthy for sensitive groups) Unhealthy) >200: Very unhealthy)
1-hour Predicted Predicted 1-hour Predicted Predicted 1-hour  Predicted Predicted
TC TPR/% FPR/% TC TPR/% FPR/% TC TPR/% FPR/%
CAQI, European 65 71 0.63 101 70.4 0.24 274 47.9 0.03
data: (24hour GV /
0.55)
Current paper, US 73 61.1 0.45 115 57.6 0.17 311 39.6 0.02

data: (24hour GV /
0.46)




Taking these results together, whitbie use ofa constantfactor to derive 1-hour TG from the
corresponding24-hour GVdhas an agreeable simplicitwe have shown that it is not a suitable
approach for PMs, nor does it result in a consistent predie accuracy across the range2gthour
GVsfor either PM fractionNevertheless, it iselpfulthat such approaches can be quantified using

the ROC analysisethod that we have developed.
3.5 Using the ROC model to calculataour TG for 24-hour GV$rom the UK and WHO

Having demonstrated thexcellent predictive capability &,..4in the validatiorstudy, the model
canbe used with confidence to calculatehour TG for a range obther24ho%thbased GVs.

Table6 shows additional thour TG for PM, includingfor 24-hour GVs ¢ ing t?HO

interim Target 2 andlarget3 (alsoequivalent§} SZ h <[ 24-h¥ sforzZ|PZ[ v

Z A & Q;th& /K Zrigger to evacuatandthe US AQI }uv ZZ 1 @& }ue[ ]E %}o0p:
conditions (for the PN} subindex).Similarly, Tabl& shows XforPM%at the additional

WHO inerim targetsU §}P §Z G A]S3Z h™ X8 @otdlihdt at the higherGaxo4

values, there ara limited number ofdata points an Is not possible to accurately calculate 1

hour TG for the lowest TPR$95% and 9%) M r&, esehigher concentrationghere is a
dep

&
example across the UShere are orly 80 exdgedancesf the PM, s 24-hour GVof 250 pg n? (AQI

7z 1 @ ith[the majorityco v Alo (JE Jv] VEW §Z ZdZ}u » &]E [ §Z
Ventura and Santa Barbara Gou @ December R0&Kley et al., 2018, Zhou and Erdogan,

2019, Wong et al., 2020

tendency for individual states, and eve odicevents, to dominate the datdor

Finally from Table@ thaatthe UK DAQIPM }uv EC }v VvSE S|2AHQUE ZZPZ[ ~
t orresponding DAQiHbur trigger concentratiorof 107pg m? (Connolly

average 51

and Williﬁgivea TPPRf about99% using our ROC approdchk.comparing againghe
closestTabl aearprENtry of 109ug m°). Similarlyat the UK DAQI PMboundaryconcentration

(} @ry¥ Z ] P(Z4hour average 200ug m°), the corresponding DAQ!Hbur trigger concentration

of 177pg m® (Connollyand Willis, 201will givea TPRf approximately95%. The high
corresponding TPRs for threshdtdgger)concentrations derived using an alternative methodology
and dataset(DAQI uses UK ambient air quality data), gives us further confidence apiieability

of the ROC approach developed in this paper.



Table 6 Aditional Zhour TG for PMg, whereGyaxoareris the value of,ax4that will achievetrue positive rates TPRpof
90%, 95%, 99% and 100% for the selecteti@4 GVs. The predictddlse positive rateRPRis also shownG,axoarer$an
be consideredo bea 1-hour TC AUCs of 0.9849, 0.9910, 0.9991 and 0.9993 were obtaingtidé@4-GVs of 759 m®,
100pg m®, 320ug m* and 425ug m° respectively.

GV = 7%1g m° (WHO Interim GV = 10Qug m° (WHO Interim GV = 32Qug m° (UK Trigger GV = 42%ig mi° (AQI >300:

Target3V h< Y/)ZZ]P Target2U h< Y/ ZA)E to Evacuate) Hazardous)

Selected TPR  Graxoacrer(1- PredictedFPR  Graxoacrer(1- PredictedFPR  Graxaacrer(1- Predicted Ghax24(TPR) PredictedFPR
hourTQ hourTQ hourTQ FPR (2-hourTQ

100 % 91 12.4 125 7.52 439 0.99 658 0.53

99 % 109 8.73 146 5.53 592 0.62 945 0.28

95 % 129 6.14 171 4.01 932 0.27

90 % 149 4.44 197 3.00 - -

Table 7Additional hour TG for PM 5, whereGraxacreris the value oG, a4that will achievetry itive ratesTPR}of

90%, 95%, 99% and 100% for the selecteti@4r GVs. The predictddisepositive rate FPE D SNOWNCaxzacrerGaN
be consideredo bea 1-hour TC AUCs of 0.9958, 0.98, 0.98B9 and 1.000were obtained fofhe 24*GVs of37.5ug m'3, 50
Hg m>, 75ug m° and250pg mi® respectively.

GV = 37.5ig m° (WHO Interim GV = 5Qug mi°® (WHO Interim % 10 Interim GV =250pg m° (AQI >300:

Target3) Target2) Hazardous)

Selected TPR  Graxoacrer{1- PredictedFPR  Graxearer(1- PredictedFPR Predicted Cnax24(TPR) PredictedFPR
hourTQ hourTQ ) FPR (2-hourTQ

100 % 43 2.53 58 1.07 , 86 0.43 345 0.02

99 % 48 1.76 63 0.86 0.34 - -

95 % 53 1.26 70 0,6 101 0.27

90 % 57 1.02 75 51 108 0.23

3.6 The public health response

It is acknowledged that decisions ic health interventiongor episodic PM eventseed to be

taken as quickly as possit{M/H evertheless, there is a probletinat the shortest

averagingperiod for whic re pidemiologicatased PM5Vss 24hours(WHO, 2006b,
FederalRegister, 201 & W2006a@herefore, the ability taobustlyrelate PMmeasurements
gathered over shﬁr ging perioasthe epidemiologically base®4-hour PM guidelines
provides avay; sing thishortcoming Our RO&@asedprobabilitymodel allows precisely
thistype ofreigt ip to be establisheaind potentially speed up the public healthrisk
assessmenmafidecisionmakingprocesgs. The question then remains as to whmtblic health
response is requildduring episodic evas, and at which 24hour GV (and associatednbur TQ this

should be triggered.

Severaktudies have found thatommunicatingsimple advisoryneasures abouthe need to restrict
physical activity and to shelter indodnasbeneficial effectgKolbe andSilchrist, 2009)including a
association with reduced respiratory effe¢idott et al., 2002)In the USstates arealready
requiredto report 24-hour AQI valies for each metropolitan area witpopulationexceeding
350,000(Code of Federdegulations, 2016}or many states, this done throughhe web-based

NowCast systenwhich has the added advantagepdicting 24hour concentrations based on the



previous 12 hoursf data(US EPA, 2018, Mintz et al., 2QE3chAQI categoy has aspecified
cautionary statementyhich depend on the sip-index that has been breachete|, those forP My,
PM s, G;, CO, Stbr NQ). These statements aigarticulatly targetedat wulnerable peoge, urging
themto stay indoors and toninimise physicaldivity. It is important that thecare is taken to reach
the more marginalisednembers of society, who might also be the most affedt®dntana et al.,
2020, WHO, 2006b)

Amore timely prediction that certain 2hour GVs wilbe exceededillowsfor better planning, for
vulnerable members of a populatiq®tares et al., 2014in closing school@Ho t al., 2020)
advisingon the wearing of mask@VHO, 2006bKolbe and Gilchrist, 2009 @ e use of air
cleaningsystemsin homes, school&orkplaces and;mokerefuges(St. al., 2014, Mott et al.,
2002, Holm et al., 2020, Barn et al., 2016)

example in ensuring that decisions are takendentifying andsafelyevacuatw more

Regarding the most extreme of these measures, evacu *3 § PYECU Z, 1 E }y
(PMuy, 425ug m;, PM, s, 250.5ug m), does not con CIfI guirement to evacuate, rather
the adviceisthat the vulnerableshould stay md& p physical activity levels IgWS EPA,

2018) However,guidance given to publig ials in the event of wildfires in thddgS

specifythe possible evacuatiorZ -rigk %o } o Whénthe 24hour PM, sconcentrationreaches
the Y/ Z, 1 Ecitegdry(Stone etWL, 2019 heBritish Columbia Centre for Disease Control
'@ deredAZ v h™ Y/ Z, 1 € }pe[tHouglhat Z

d presence of vulnerabsibgroups, such as the elderly,

alsorecommendsghat evacuatio

the likely durationplume
children and those wi
From Tables 6 andhe 28hourAQIZ, 1 E }ue[ $ P }¢B25ug-mikl BM s, 250.5ug i)

would cor s ‘our TG of 658 ug m® and 345ug m for PMy, and PM s respectivelyat a
TPR of 100%&our ROC analysis

ing health conditigase taken into accounfStares et al., 2014)

Thepracticeof having threshold concentratiorier evacuationsone that is used in other countries,
for examplethe UK wherea 24-hour PMy, Zigger 8} A poE320ug m° has been useduring
major incident firegBrunt and Russell, 201,23nd for which wénave previously caulateda
corresponding dhour TCof 550ug m® (100% TPRGriffiths et al., 2018)This1-hour TCis

somewhat higher thathe value of 43qug m® obtainedfrom the ROGnodelusing US datan the
current work(Table6). Nevertheless, iis similarto the 99% TPRL-hour TCof 590 ug ni®in the
current paperand also thenow withdrawn 1 to 3hour average Recommended Action LevViébr the
closure of public buildings and possible evacuatighichwas setf Ai1o ... HouPMyPM,s

during wildfires(Lipsett et al., 2008)



Any decisions on evacuation should be carefully considered betaergeis evidencéhat they have

a significaneffect on mental and emotional heal{f®odd et al., 2018, Krstic and Henderson, 2015)
and may also involve other risks, such as expostizelinerable populations and respondecsair
pollutantsduring the ewacuation proces§StewartEvans et al., 2016 0ther mitigating measures
may be more effective, such as sheltering in plgtewartEvans et al., 2016¢ombined with the

use d portable air cleaning devicgBarn et al., 2016, Mott et al., 2002)

4. Conclusions

In thispaperwe have demonstratethe applicationof ROGnalysigo deri@ G that have a
S

probabilistic relationship witfPM,qand PM s health-based Zmourem .The analysis,

based orl6 million and 22 million rolling 2dour periodsfor PM, grespectivelyand
involving a crossalidation designshows thatthe maximu PM concentration in any
rolling 24hour averaging period is an excellent predlct edances-bba@dGVsAn ROC
analysis based on data only from California also t dod basis for the prediction of
exceedancefrom across the remaining st he O

The main advantages ofir ROC method as follows: (i) the high degree of accuracy that ROC

genagated TCs can achieve in predic§ng exceedances of hieatied 24hour guidelines; (ii) the

consistency of year on year corgp

Zspv Jo]SC[ }( 8
that balances the nee

, as demonstrated by the validation anaiydise (i
u $Z} i.pvthP use @& hé RCZ autplt table to selecta TC
ve as high a TPR as possible, whilst also minimising tig thER; (

transferability of thj 0 ology to other datasets, e.g. in different countries, and to other
pollutants for health based GV for which the correspondidgolir TC is requirednd
(v) the ease the ROC modeh generaing TCs. The main disadvantagfghe ROC approach
is the high s that are generated for then®dr GVs at the lower end of the imfulness scale,

though we have also shown that false predictions tend to be clustered around specific episodic
events, coincident with real exceedances, and thus might not registered as a false alarm by the

affected population.

Hevated PMduring episodt air pollution eventss associated with significant shagrm health
impacts, including mortalityand so the ability to providémely public health guidance on
appropriateremedialmeasures foaffectedpopulationsis vital. We hope that the straiglfdrward

approachto developingl-hour TGthat we have outlined in this paper might assist in this process.
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