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Abstract 

Episodic air pollution events that occur because of wildfires, dust storms and industrial incidents can 

expose populations to particulate matter (PM) concentrations in the thousands of µg m-3. Such 

events have increased in frequency and duration over recent years, with this trend predicted to 

continue in the short to medium term because of climate warming. The human health cost of 

episodic PM events can be significant, and inflammatory responses are measurable even after only a 

few hours of exposure. Consequently, advice for the protection of public health should be available 

as quickly as possible, yet the shortest averaging period for which PM exposure guideline values 

(GVs) are available is 24-hours. To address this problem, we have developed a novel approach, 

based on Receiver Operating Characteristic (ROC) statistical analysis, that derives 1-hour threshold 

concentrations that have a probabilistic relationship with 24-hour GVs. The ROC analysis was carried 

out on PM10 and PM2.5 monitoring data from across the US for the period 2014 to 2019. Validation of 

the model against US Air Quality Index (AQI) 24-hour breakpoint concentrations for PM showed that 

the maximum-observed 1-hour PM concentration in any rolling 24-hour averaging period is an 

excellent predictor of exceedances of 24-hour GVs.  

 

Keywords: Particulate matter, wildfires, bushfires, dust storms, AQI, California, Receiver Operating 

Characteristic, ROC. 
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Introduction 

In this paper we present a novel approach to the development of 1-hour threshold concentrations 

(TCs) for exposure to particulate matter (PM) during episodic air pollution events, as might occur 

during wildfires (Rappold et al., 2017) dust storms (Milford et al., 2020, Zhang et al., 2016, Rublee et 

al., 2020) or incidents at industrial facilities (Griffiths et al., 2018). Populations exposed to episodic 

air pollution events can experience PM concentrations in the hundreds and even thousands of µg m-

3 (Griffiths et al., 2018). Our approach uses a model that is developed using Receiver Operating 

Characteristic (ROC) statistical analysis of ambient monitoring data from the US over the period 2014 

to 2019. The development of 1-hour TCs is needed because health effects of elevated PM exposure 

are apparent at a timescale of hours, as evidenced by measurable inflammatory responses for 

volunteers exposed to PM in the 100 to 300 µg m-3 range, over short durations (Behndig et al., 2006, 

Tong et al., 2014, Ghio et al., 2000, Salvi et al., 1999, Stenfors et al., 2004). Short term (hours) health 

effects have also been noted in fire fighters (Greven et al., 2012, Swiston et al., 2008, Main et al., 

2020).  Nevertheless, unlike nitrogen dioxide and sulphur dioxide, which have health-based GVs for 

exposure durations of 1-hour or less (US EPA, 2014, WHO, 2006b), and many chemical substances 

for which there are Acute Exposure Guideline Levels (AEGLs) for periods as short as 10 minutes 

(Stewart-Evans et al., 2016), no such values are available for PM10 and PM2.5.  

The need for the development of short-term PM exposure guidance has become more pressing in 

recent years because periods of highly elevated PM concentrations have increased in frequency, 

duration and extent, especially during wildfires (Balmes, 2018, Dodd et al., 2018, Ford et al., 2018, 

Howard et al., 2021). These events are responsible for causing significant ill health effects (Reid et al., 

2016, Haikerwal et al., 2015, Faustini et al., 2015, Black et al., 2017, Cascio, 2018), particularly in the 

more vulnerable residents of an exposed area (Finlay et al., 2012, Liu et al., 2015, Holm et al., 2020, 

Wakefield, 2010). In addition, the toxicity of particulate emissions during combustion-related 

episodic pollution events has been found to be higher than for equivalent concentrations of ambient 

particulates (Wegesser et al., 2009). This enhanced toxicity is due to the wide range of chemical 

toxins present in PM that originate from combustion processes, including PAHs and benzene (Balmes, 

2018, Wegesser et al., 2009). The incidence of wildfires, globally, is predicted to increase in the 

medium term as a result of a warming climate (Moritz et al., 2012) and there is also evidence that 

fires at waste management sites are more frequent during warmer conditions (Griffiths et al., 2018). 

The health impacts of such changes may be considerable, with a recent study suggesting that 

premature deaths due to PM2.5 exposure during wildfires in the US alone could increase from the 

current 17,000 per year to 42,000 per year by 2050 (Ford et al., 2018). The associated health related 

economic costs are also expected to be significant (Johnston et al., 2020, Kochi et al., 2016). 
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The absence of short-term GVs for PM10 and PM2.5 has been acknowledged in the literature and 

there have been several studies that have derived surrogate exposure guidance for periods as short 

as one hour (Griffiths et al., 2018, Stieb et al., 2008, Mintz et al., 2013, European Union, 2020b, 

Connolly and Willis, 2013). A common theme to these approaches has been the relationship 

between the maximum hourly concentration within a 24-hour period and the corresponding mean 

value. A notable example is the European Union�[�• (EU) Common Air Quality Index (CAQI), which has 

�(�]�À�������o���•�•���•���Œ���v�P�]�v�P���(�Œ�}�u���Z�s���Œ�Ç���>�}�Á�[���š�}���Z�s���Œ�Ç���,�]�P�Z�[, each with corresponding concentration 

thresholds for PM10 and PM2.5, both for 1-hour and 24-hour measured concentrations (European 

Union, 2007). The 1-hour thresholds between the CAQI categories for PM10 were derived from the 

24-hour limits by dividing the latter by a factor of 0.55, which is the ratio between the mean 24-hour 

concentration and the maximum hourly concentration within the same period. The ratio of 0.55 is 

based on European ambient monitoring data from 52 urban monitoring stations for the period 2001-

2004 (European Union, 2007). Thus, for the 24-hour PM10 category boundary �����š�Á�����v���Z�u�����]�µ�u�[�����v����

�Z�Z�]�P�Z�[��(set at 50 µg m-3, which is the same as the EU/WHO 24-hour ambient guideline value) the 

calculated 1-hour category boundary is set at 90 µg m-3 (after rounding). For PM2.5, the class 

boundaries are based on those of PM10, applying a factor of 0.6, which is the fraction of PM10 that is 

PM2.5, again based on European monitoring data (European Union, 2020b). Stieb et al. (2008) 

employed a similar approach to CAQI in determining short term (3 hour) TCs. A numerically identical 

ratio was observed between the 24-hour mean concentration and the 3-hour maximum 

concentration for PM10 or PM2.5 (based on monitoring data collected in Canada over the period 1998 

to 2000).  Stieb et al. (2008) illustrated their approach using the US Air Quality Index (AQI) boundary 

�����š�Á�����v���Z�u�}�����Œ���š���[�����v�����Z�µ�v�Z�����o�š�Z�Ç���(�}�Œ���•���v�•�]�š�]�À�����P�Œ�}�µ�‰�•�[���~���Y�/�A�í�ì�ì�•, at which the corresponding 24-

hour PM10 sub-index guideline value of 150 µg m-3 has an equivalent 3-hour TC of 275 µg m-3.  

In the UK, the Department of Environment, Food and Rural Affairs (DEFRA) have derived 1-hour 

�Z�š�Œ�]�P�P���Œ�[�����}�v�����v�š�Œ���š�]�}�v�•�����•���������}�u�‰�}�v���v�š���}�(���š�Z�����h�<�•�������]�o�Ç�����]�Œ���Y�µ���o�]�š�Ç���/�v�����Æ���~�����Y�/�•��(Connolly and 

Willis, 2013, Holgate, 2011). The trigger concentrations establish a relationship between 1-hour 

measurements and the 24-hour mean concentration ranges that correspond to the DAQI air 

pollution categories of �Z�o�}�Á�[�U �Zmoderate�[, �Zhigh�[ or �Zvery high�[. Under the DAQI methodology, if two 

consecutive 1-�Z�}�µ�Œ���u�����•�µ�Œ���u���v�š�•�����Œ�������Z�������Z�š�Œ�]�P�P���Œ�[�����}�v�����v�š�Œ���š�]�}�v�U���š�Z�]�•���]�•���š���l���v���š�}���]�v���]��ate that 

current air quality falls within the relevant DAQI category, thus providing a �Z�Œ�����o-�š�]�u���[��element to 

public information about air pollution levels in the UK.  The trigger concentrations were derived 

using a categorical model based on 270,000 days of PM10 data and 27,000 days of PM2.5 data from 

automatic monitoring stations across the UK for the period 2004 to 2009 (Holgate, 2011). 
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In our own work in this field, we have developed a similar categorical model to DAQI, though one 

that is based on the higher concentration ranges that are observed during major incident fires 

(Griffiths et al., 2018). The model uses 1-hour PM10 and PM2.5 measurements to predict exceedances 

of 24-hour guideline and threshold concentrations that relate to public health advice during such 

incidents. The model development was based on �u�}�v�]�š�}�Œ�]�v�P�������š�����}���š���]�v�������(�Œ�}�u���š�Z�����h�<�[�•�����]�Œ���Y�µ���o�]�š�Ç��

in Major Incidents (AQiMI) programme (Griffiths et al., 2018), which coordinates field monitoring of 

a range of atmospheric pollutants arising from fires and loss of containment incidents at industrial 

facilities and waste disposal sites in the UK. Both authors of the present paper were involved in the 

AQiMI programme (Griffiths et al., 2018). The model demonstrated that there is a threshold 

concentration of 1-hour measured PM that, when breached, gives a defined probability that a 24-

hour guideline value is also likely to be exceeded.   

Other approaches to providing more responsive information on ambient PM exposure include: 

remote sensing (Krstic and Henderson, 2015), real-time dispersion modelling, e.g. the BlueSky 

wildfire smoke forecasting service used in Canada (Yao et al., 2013), predictive models based on 

autoregression neural networks (Videnova et al., 2006),  non-�o�]�v�����Œ���u�}�����o�•���µ�•�]�v�P���Z���]�P�������š���[��(Xu et al., 

2020), textual analysis of social media postings (Sachdeva and McCaffrey, 2018) and the USEPA 

Nowcast methodology which contributes to the US AirNow forecasting service (Mintz et al., 2013). 

The latter uses short term monitoring data (the previous 12 hours) to predict an equivalent 

�Z�]�v�•�š���v�š���v���}�µ�•�[���î�ð-hour PM concentration, which can then be compared to various health criteria. 

This method is designed to be responsive at times of rapidly changing pollution conditions. It does 

this by giving greater weightings to the three most recent hours of air pollution data at times when 

the air quality is very variable but gives more equal weighting to the previous 12 hours of air 

pollution data when pollution concentrations are more stable.  

This present paper builds upon our previous work (Griffiths et al., 2018) by using Receiver Operating 

Characteristic (ROC) analysis (Fawcett, 2006) of US EPA data for the period 2014 to 2019 to develop 

a probabilistic model from which 1-hour TCs can be derived for PM10 and PM2.5. The US Air Quality 

Index (AQI), and associated breakpoint concentrations for the PM sub-indices, were used as the 

source of GVs, as they represent a wide range of pollutant concentrations (0 to 500 µg m-3 for PM2.5 

and 0 to 605 µg m-3 for PM10) and are appropriate to the US monitoring data.  

 2. Method 

2.1 Principles of ROC analysis, as applied to air quality data 

The ROC model development work described in this paper was carried out as follows. Firstly, we 

built a model based on ROC analysis of PM10 and PM2.5 ambient concentration measurements from 
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across the US for the period 2014 to 2019. This allowed us to derive 1-hour TCs that gave defined 

probabilities that selected 24-hour GVs would be exceeded. We then evaluated the performance of 

the model using a cross-validation approach and also carried out a separate evaluation of an ROC 

model that was developed using monitoring data from California only.  

ROC analysis is a classification metric that analyses the ability of a predictive parameter, or �Zclassifier�[, 

to discriminate between two outcomes. It has been widely used for health-related diagnostic 

analysis (Hajian-Tilaki, 2013, Phillips et al., 2010), for example to identify biomarkers in serum 

related to PM10 exposure (Lee et al., 2015). In the environmental field, ROC analysis has been applied 

to the development of a model to predict the quality of beach water for swimming, based on either 

the �‰�Œ���À�]�}�µ�•�������Ç�[�•��rainfall or bacterial counts (Morrison et al., 2003). We used a variant of this 

analysis when developing our original model for AQiMI data (Griffiths et al., 2018). For that work, 

and in the present study, the classifier is the maximum 1-hour concentration in a rolling 24-hour 

period. The outcome is whether (or not) the mean concentration of the corresponding 24-hour 

period exceeds a selected 24-hour GV. The value of the GV can be selected from a range of health-

based values developed by the WHO, USEPA, EU and other bodies. 

The utilisation of ROC analysis is illustrated in Figure 1, which shows a typical output in which the 

true positive rate (TPR, or sensitivity) is plotted against the false positive rate (FPR, or 1 - specificity) 

(Fawcett, 2006). In formal terms, TPR and FPR are defined in Equations 1 and 2 respectively, where 

for a given set of analysed data, TP is the number of true positives (i.e. the model correctly predicts 

an exceedance of a 24- hour guideline value), FN is the number of false negatives (the model 

incorrectly predicts that the 24- hour guideline value is not exceeded), FP is the number of false 

positives (the model incorrectly predicts an exceedance of a 24- hour guideline value) and TN is the 

number of true negatives (the model correctly predicts that the 24- hour guideline value is not 

exceeded).  

������ 
L
�X�T

�X�T�>�J�R
   Eq. 1 

 

�	���� 
L
�J�T

�X�R�>�J�T
   Eq. 2 
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Figure 1: Example ROC plot. The solid blue line shows an ROC curve for the analysis of an illustrative set of PM10 data where 
the �Z�}�µ�š���}�u���[���]�•���Á�Z���š�Z���Œ (or not) a defined 24-hour guideline value has been exceeded. T�Z�����Z���o���•�•�]�(�]���Œ�[���]�•���š�Z�����u���Æ�]�u�µ�u���í-
hour concentration within the same 24-hour period. The dotted line shows an example of an ROC analysis where the 
�Z���o���•�•�]�(�]���Œ�[�����}�Œ�Œ�����š�o�Ç���‰�Œ�����]���š�•���í�ì�ì�9���}�(���}�µ�š���}�u���•���~area under the curve, AUC, =1.0), whereas the dashed line shows an 
example curve where only 50% of outcomes are correctly predicted by the classifier (AUC = 0.5). The vertical lines indicate 
different selections of TPR, together with the corresponding FPR. The optimal situation is to have a TPR as close as possible 
to 1, whilst minimising the FPR. Also shown is the numerical �À���o�µ�����}�(���š�Z�����Z���o���•�•�]�(�]���Œ�[���š�Z���š�����}�Œ�Œ���•�‰�}�v���•���š�}���š�Z�����•���o�����š������
TPR/FPR. 

 

The area under the curve (AUC) for the solid line in Figure 1 is an important parameter for ROC 

analysis, representing the overall probability that the chosen classifier parameter will rank a 

randomly chosen true positive instance above a randomly chosen true negative instance (Fawcett, 

2006). For our illustrative dataset the AUC is 0.843, meaning that the value of the maximum 1-hour 

concentration in a 24-hour period correctly determines exceedances of the 24-hour GV in 84.3% of 

cases.  

Two other example curves are shown in Figure 1: a dotted line with an AUC of 1.0 (100% probability 

of distinguishing between two outcomes) and a diagonal, dashed, line with an AUC of 0.5, which 

means there is only a 50% probability of correctly discriminating between two outcomes, i.e. no 

better than chance. Curves that appear below the diagonal represent situations where the model 

classifier is giving rise to a reciprocal classification. 

Figure 1, together with the AUC value, is useful for visualising the overall performance of the model. 

It can also be used to decide on the acceptable TPR that will at the same time minimise the FPR, as 

shown by the red and blue vertical lines, and their relationship with the solid curve. For example, we 

could decide it is essential that all true positive values are correctly identified (red line) and have to 
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accept an 80% false positive rate, or we could compromise on a lower level of true positive 

identification, which has the advantage of a lower false positive rate, as shown by the blue line, 

where TPR = 95% and FPR = 60%. However, the important point is that for each selected TPR, there 

is an associated value of the classifier (the maximum 1-hour concentration in any 24-hour period). 

Thus, for the PM10 data shown in Figure 1, the value of classifier concentration that will give a true 

positive rate of 95% (and a false positive rate of 60%) is 255 µg m-3, whereas to achieve a true 

positive rate of 100% (and a false positive rate of 80%), we would need to lower the threshold to 180 

µg m-3. The value of the classifier at a given TPR is, de facto, a 1-hour TC, that has a probabilistic link 

to the selected 24-hour GV.  

Regarding selection of an appropriate TPR/FPR value, the decision must be made on the basis of an 

acceptable scale of risk that balances public health protection against the resources that are 

available for incident response. The advantage of our ROC analysis approach to defining 1-hour TCs 

is the ability to specifically define the probabilities on which these decisions are made. 

It is important to emphasise that because we use the maximum 1-hour concentration (in any 24-

hour period) as the classifier parameter in the ROC analysis, and that this value can occur at any 

position in a rolling 24-hour period, the results obtained from the models on which this analysis is 

based must have an equivalent interpretation. In other words, a one-hour TC could be triggered at 

the beginning middle or end of the 24-hour period that is predicted to exceed the relevant 24-hour 

GV. A preliminary analysis using SPSS showed that the median position for the maximum 1-hour 

concentration was at hour 12 for both PM10 and PM2.5, as might be expected.  

2.2 Initial model development using ROC analysis of PM10 and PM2.5 measurements from monitoring 

stations across the US. 

Pre-generated data files of hourly PM10 (USEPA parameter code 81102 ) and PM2.5 (USEPA 

parameter code 88101) concentration data for the years 2014 to 2019, from ambient monitoring 

stations across the whole of the US, were downloaded in Comma Separate Values (CSV) file format 

from the US Environmental Protection Agency (US EPA) website (US EPA, 2021). The files were 

imported into Microsoft Access for further analysis. Table 1 summarises the number of monitoring 

stations in each state that were used in this study to provide 1-hour measurement data for PM10 and 

PM2.5 concentrations. The stations form part of a larger network of monitoring stations within these 

states. Additionally, Table S1 in the supplementary material summarises the PM monitoring 

methods employed by the selected monitoring stations for the years 2014 to 2018. Beta attenuation 

monitoring was by far the most often used technique, but the other methods included Tapered 
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Element Oscillating Microbalance (TEOM), Filter Dynamics Measurement System (FDMS) with TEOM, 

laser light scattering and broadband spectroscopy. 

Table 1: Summary of the number of sites recording hourly PM concentrations across US states in 2019 (US EPA parameter 
codes 81102 and 88101 for PM10 and PM2.5 respectively). Missing states had no monitoring records in the US EPA dataset 
for the specified parameter codes. The hourly measurement sites form part of a larger PM monitoring network in each 
state. 

State 

PM10 
monitoring 
sites 

PM2.5 
monitoring 
sites State 

PM10 
monitoring 
sites 

PM2.5 

monitoring 
sites 

Alabama 4 3 Montana 11 15 
Alaska 8 6 Nebraska 2 3 
Arizona 43 18 Nevada 20 14 
California 53 40 New Hampshire 1 7 
Colorado 4 15 New Jersey - 12 
Connecticut 8 9 New Mexico 13 12 
Delaware - 6 New York - 7 
District Of Columbia 1 5 North Carolina 9 17 
Florida 21 18 North Dakota 4 5 
Georgia 2 8 Ohio 6 15 
Hawaii 3 14 Oklahoma 5 13 
Idaho 6 2 Oregon - 3 
Illinois 2 17 Pennsylvania 13 31 
Indiana 3 16 Rhode Island - 6 
Iowa 1 5 South Carolina 4 5 
Kansas 7 6 South Dakota 6 7 
Kentucky 2 15 Tennessee 3 18 
Louisiana 4 2 Texas - 25 
Maine - 9 Utah - 17 
Maryland - 11 Vermont - 5 
Massachusetts - 14 Virginia - 4 
Michigan 5 9 Washington 5 20 
Minnesota 8 23 West Virginia 2 2 
Mississippi 1 8 Wisconsin 7 16 
Missouri 9 13 Wyoming 16 11 

 

Pre-generated data files are available from the US EPA website in a format that has the null-data 

lines stripped out, whereas we required contiguous datasets at each monitoring station to calculate 

the rolling 24-hour averages that are required for the ROC analysis. We reconstructed contiguous 

datasets for each year, with null values reinstated, using an SQL query in Microsoft Access based on 

a contiguous hourly time series for that year together with the pre-generated USEPA data file. 

Subsequently, these reconstructed hourly datasets of PM10 and PM2.5 concentrations at each 

monitoring station were analysed in Excel after exporting as a CSV file from Microsoft Access.  

For each year and each monitoring station, the data files were prepared for ROC analysis in SPSS 

using Microsoft Excel as follows. Firstly, we calculated the average concentration of PM10 and PM2.5 

for each rolling 24 hour period for which there were at least 20 hours of valid measurements (the 

average concentration is denoted C24(i), where i represents an individual rolling 24 hour period). As a 

QC check on the data, Excel formulae were used to identify year-beginnings/ends, to ensure that 

there was no crossover analysis of data from different monitoring stations; and to flag up any non-

contiguous data sequences. Secondly, we identified the maximum hourly concentration recorded in 
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each rolling 24-hour period, Cmax24(i).  The data was analysed in batches so that the maximum number 

of rows in Excel was not exceeded (ca. 950,000 for the 2016, 64-bit version of Excel used). It should 

be noted that there were no selection/exclusion criteria regarding the nature of any exceedances, i.e. 

whether they originated from wildfires, industrial emissions, dust storms, or as a result of unusual 

meteorological conditions 

The 24-hour GVs used in the ROC modelling were the US AQI category boundary concentrations for: 

�Z�h�v�Z�����o�š�Z�Ç���(�}�Œ���•���v�•�]�š�]�À�����P�Œ�}�µ�‰�•�[���~�ï�ñ�X�ñ µg m-3 and 155 µg m-3 for PM2.5 and PM10 respectively; AQI = 

100)�V���Z�h�v�Z����lthy�[���~55.5 µg m-3 and 255 µg m-3 for PM2.5 and PM10 respectively; AQI = 150); ���v�����Z�s���Œ�Ç��

�µ�v�Z�����o�š�Z�Ç�[���~�í�ñ�ì�X�ñ��µg m-3 and 355 µg m-3 for PM2.5 and PM10 respectively; AQI = 200) (US EPA, 2014). 

There is a higher category boundary �}�(���Z�Z���Ì���Œ���}�µ�•�[���~250.5 µg m-3 and 425 µg m-3 for PM2.5 and PM10 

respectively; AQI = 300), however due to the limited availability of monitoring data at these high 

concentrations, it was not used in the initial model development or validation. Nevertheless, 1-hour 

TCs were calculated for this category in a separate analysis. 

ROC analysis was performed using IBM SPSS Statistics Version 26. In total, across all monitoring 

stations for all six years, there were in excess of 16 million rolling 24-hour periods for PM10 and 22 

million rolling 24-hour periods for PM2.5. For each of the two PM size fractions, individual Excel files 

comprising the columns C24(i), Cmax24(i), �Z�^�š���š�������}�����[�����v�����Z�z�����Œ�[ were imported separately into SPSS 

and then combined into one SPSS data file �µ�•�]�v�P���š�Z�����Z�D���Œ�P�����&�]�o���•�[��feature.  The final step in 

preparing the data for ROC analysis was to use the �Z�Z�����}�������š�}�����]�(�(���Œ���v�š���s���Œ�]�����o���•�[��SPSS function to 

generate binary identity variables (denoted �ZState Variable�[ in SPSS ROC terminology, though note 

that this �]�•���v�}�š���Œ���o���š�������š�}���š�Z�����Z�^�š���š�������}�����[���‰���Œ���u���š���Œ) for each rolling 24-hour period. The identity 

variables, EGV(i), indicated whether or not a rolling 24-hour period exceeded a specific 24-hour GV 

respectively (1 = exceeded; 0 = not exceeded). Thus, for PM10 the following variables, based on US 

���Y�/�����Œ�����l�‰�}�]�v�š�����}�v�����v�š�Œ���š�]�}�v�•���(�}�Œ���Z�h�v�Z�����o�š�Z�Ç���(�}�Œ Sensitive Individuals�[�U���ZUnhealthy�[�����v�����Z�s���Œ�Ç��

�h�v�Z�����o�š�Z�Ç�[ were generated: E155(i), E255(i) and E355(i). For PM2.5 the corresponding US AQI variables 

were E35.5(i), E55.5(i) and E150(i). Additional EGV(i) values were also generated for ROC analysis 

corresponding to other 24-hour GVs. 

ROC analysis was performed on Cmax24(i) �~�š�Z�����Zclassifier�[�• against each of the EGV(i) values (as state 

variables) using the SPSS �Z�Z�K�������µ�Œ�À���[��analysis option. Outputs included the ROC curve, the AUC 

value, and the p-value for the model. Additionally, an option to display the coordinate points of the 

ROC curves (TPR and FPR) was selected, allowing the identification of specific TCs that would give 

true positive rates of 100% 99%, 95% and 90% for each of the selected 24-hour GVs.  
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We were also interested in quantifying the probabilities associated with the EU (European Union, 

2020a) and Stieb et al. (2008) approach to generating 1-hour TCs, i.e. the division of the 24-hour 

guideline by a factor of 0.55 (the ratio of C24(i) : Cmax24(i)). This was done by reading from the ROC 

output table, the corresponding TPR and FPR for the calculated 1-hour TC. In addition, we repeated 

this analysis for C24(i) : Cmax24(i) ratios calculated from the US EPA dataset used in the current study.  

 

2.3 Validation 

The ROC probability approach to deriving 1-hour TCs was validated using a cross-validation design 

(Schaffer, 1993). The data was grouped according to year and, �•�µ�������•�•�]�À���o�Ç�U���������Z���]�v���]�À�]���µ���o���Ç�����Œ�[�•��

data was used as a test set for an ROC model based on the remaining five years of data (the training 

set). This involves running an ROC analysis independently on the test set and on the training set and 

comparing predicted probabilities (set at 100%, 99%, 95% and 90%) with actual TPRs. By repeating 

this process for each of the six years, a statistical assessment of the inter-year model variability can 

be made. Predicted and actual FPRs were similarly obtained. 

We carried out an additional model development and validation in which data only from the US 

state of California was used as the training set (all years) and the remainder of data from the other 

US states (all years), used as the test set. California has the greatest number of monitoring stations 

of all US states (see Table 1) and also experiences a large number of wildfires (Rappold et al., 2017). 

Therefore, the rationale for this separate validation was to see whether a model based on this 

profile is transferable to other states, where sources of elevated PM may differ, for example the dust 

storms in Arizona and New Mexico (Hyde et al., 2018, Raman et al., 2014). 

3. Results and discussion 

3.1 Exceedance statistics for data used in the ROC analysis 

ROC analysis was used to evaluate the effectiveness of the Cmax24 classifier to predict exceedances of 

selected 24-hour health-based GVs for exposure to PM. The GVs used were the breakpoint 24-hour 

concentrations for the PM sub-indices of the US AQI. These values have been developed using 

epidemiological evidence (Federal Register, 2013).  Specifically, an AQI value of 100 represents the 

boundary at which air quality might be considered unhealthy (for sensitive groups) and for which the 

PM sub-indices are set at the US 24-hour ambient exposure GV (35.5 µg m-3 and 155 µg m-3 for PM2.5 

and PM10 respectively) (Federal Register, 2013, Perlmutt and Cromar, 2019). The top of the AQI scale 

is set at a value of 500, with the corresponding 24-hour PM sub-indices based on concentrations 

estimated during historical wintertime pollution episodes in London, and their associated health 
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effects (500 µg m-3 and 604 µg m-3 for PM2.5 and PM10 respectively)  (Federal Register, 2012). The 

other US AQI 24-hour breakpoint PM concentrations are set as follows:  the �Z�h�v�Z�����o�š�Z�Ç���(�}�Œ��sensitive 

�P�Œ�}�µ�‰�•�[/  �Z�h�v�Z�����o�š�Z�Ç�[ breakpoint concentration (AQI = 150) is set proportionately to AQI = 100 (55.5 

µg m-3 and 255 µg m-3 for PM2.5 and PM10 respectively), whilst for AQI values above 150, the 

breakpoint concentrations are set at relatively uniform increments up to  AQI = 500.  

As part of the process of compiling monitoring data for the model development and validation 

stages of this paper, some overall summary data on exceedances of various health-based 24-hour 

GVs were produced.  Figure 2 shows the relative proportion of exceedances, by state, of selected 24-

hour GVs, for both PM10 and PM2.5. Specific numbers of exceedances, by state, are detailed in Tables 

S2 and S3 in the supplementary material. In addition, Tables S4 and S5 show an overall statistical 

summary of PM10 and PM2.5 concentrations (number of measurements, arithmetic average, standard 

deviation and maximum) for the US EPA datasets used in this study over the period 2014 to 2019. 

 

Figure 2 Relative proportions, by state, of exceedances of specified 24-hour GVs for PM10 and PM2.5 over the period 2014 
to 2019. From left to right the GV values represent the breakpoint concentrations �(�}�Œ���Z�h�v�Z�����o�š�Z�Ç���(�}�Œ��Sensitive �'�Œ�}�µ�‰�•�[�U��
�Z�h�v�Z�����o�š�Z�Ç�[�����v�����Z�s���Œ�Ç���h�v�Z�����o�š�Z�Ç�[���Œ���•�‰�����š�]�À���o�Ç�X Plot labels indicate the states that make the greatest contribution to the 
overall number of exceedances of each GV. State abbreviations are as follows: AK, Alaska; AZ, Arizona; CA, California; CO, 
Colorado; ID, Idaho; IN, Indiana; MT, Montana, NV, Nevada; NM, New Mexico; ND, North Dakota; OK, Oklahoma; PA, 
Pennsylvania; UT, Utah and WA, Washington.  
 
For each state, the number of exceedances of any GV will be a function of both the number of 

monitoring sites that are in operation for PM10 and PM2.5 and the propensity for acute air pollution 

events. For example, California has by far the greatest number of PM10 and PM2.5 monitoring sites 

(see Table 1) but also has a large number of wildfires each year (Rappold et al., 2017), hence a large 

number of exceedances across the range of GVs. Thus, for the AQI �Zunhealthy�[�����v�������Y�/���Z�À���Œ�Ç��

�µ�v�Z�����o�š�Z�Ç�[��24-hour GVs (the two highest 24-hour GVs used in this analysis for each PM fraction), 
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California contributes more exceedances than for all the other US states combined. For AQI 

�Z�µ�v�Z�����o�š�Z�Ç���(�}�Œ���•���v�•�]�š�]�À�����P�Œ�}�µ�‰�•�[��(150 µg m-3 and 35.5 µg m-3 for PM10 and PM2.5 respectively), 

California contributes just under half of the exceedances.  

For PM10, the other states that have high numbers of exceedances of the 24-hour exposure GVs 

include Arizona and New Mexico, which have frequent dust storms (Hyde et al., 2018, Raman et al., 

2014) but also have a relatively high number of monitoring stations (see Table 1). For PM2.5, 

Montana and Washington make the greatest contributions to exceedances after California, 

reflecting the relatively large number of PM2.5 monitoring stations in each of these states, but also 

the relatively high incidence of wildfires (Fann et al., 2018, Rappold et al., 2017).  

Finally, a clear trend from Figure 2, particularly for PM2.5, is that for the lower 24-hour GVs there is a 

far greater diversity of states contributing exceedance data. In contrast, �(�}�Œ�����Y�/���Z�h�v�Z�����o�š�Z�Ç�[, for both 

PM10 and PM2.5, only six states recorded exceedances during 2014 to 2019 (California, Arizona, New 

Mexico, Nevada, Washington and Alaska for PM10; California, Washington, Montana, Colorado, 

Indiana and Arizona for PM2.5). The relative contributions of different states to the total number of 

exceedances used in the ROC analysis, and the reasons for this, i.e. source and relative numbers of 

monitoring stations, is an important context for the overall model development and results. 

3.2 ROC model performance 

Figure 3 shows the results of the ROC analysis for PM10 and PM2.5 using data from all US states for 

the period 2014 to 2019, together with the respective AUC values. Published criteria for evaluating 

the performance of ROC, based on the value of AUC,  indicates that values above 0.7 could be 

considered �Zgood�[, whereas values greater than 0.8 could be considered �Zvery good�[ and those 

higher than 0.9, �Zexcellent�[��(Bekkar et al., 2013). A more stringent interpretation of AUC is given by 

Zhu et al. (2010), who set the boundary for �Zgood�[��at 0.8. For our ROC analysis, the AUC values are all 

above 0.99, demonstrating that Cmax24 is an excellent classifier parameter for determining whether 

selected 24-hour GVs will be exceeded. 
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Figure 3: ROC curves (blue line) at three different 24-hour GVs for PM10 and PM2.5. Also shown is the AUC value. The 
diagonal red, dashed, line corresponds to ROC curve with an AUC of 0.5.  
 

Tables 2 and 3 show, for PM10 and PM2.5 respectively, the values of Cmax24 that will achieve TPRs of 

90%, 95%, 99% and 100% for the selected 24-hour GVs. For clarity, we have denoted this value as 

Cmax24(TPR). The predicted FPR is also shown. The values of Cmax24(TPR) and FPR in Tables 2 and 3 were 

obtained from the ROC analysis output table for each corresponding TPR.  

Cmax24(TPR) is, in effect, a 1-hour TC that has a probabilistic link to a 24-hour GV. Thus, from Table 2 we 

see that for PM10 at �š�Z�������Y�/���Z�µ�v�Z�����o�š�Z�Ç�[��breakpoint concentration (255 µg m-3), setting a 1-hour TC 

of 305 µg m-3 is likely to result in the prediction of all exceedances of the 24-hour GV. The associated 

FPR of 1.76% means that for each monitoring station, on average, there are likely to be ca. 154 

rolling 24-hour periods each year for which a breach of the 24-hour GV would be falsely predicted. 

Accepting a lower TPR, e.g. 99 % (1 hour TC = 427 µg m-3) or 95 % (1 hour TC = 708 µg m-3), reduces 

the FPR considerably (to 1.00% and 0.43 % respectively). The results from the ROC analysis for other 

PM10 24-hour guidelines in Table 3 can be similarly interpreted. Likewise for the PM2.5 24-hour GVs in 

Table 4.  
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The nature of elevated air pollution events means that false positives are likely to come in clusters, 

as illustrated by Figure 4, which shows an analysis, by date and site, of FPs associated with the PM2.5, 

24-hour GV of 150 µg m-3
 for 2018. Across 40 sites at which FPs were recorded, the FPs are clustered 

around dates corresponding to the Carr Fire in July/August (Lareau et al., 2018, Wong et al., 2020) 

and the Woolsey and Camp Fires in November (Keeley and Syphard, 2019, Wong et al., 2020). These 

are also the dates at which most TPs were recorded. Nevertheless, for each site, there are long 

periods of the year where no FPs are recorded. 

Table 2: Results for the overall ROC analysis for PM10, based on over 16 million rolling 24-hour periods from monitoring 
sites across the US. Cmax24(TPR) is the value of Cmax24 that will achieve true positive rates (TPRs) of 90%, 95%, 99% and 100% 
for the selected 24-hour GVs. The predicted false positive rate (FPR) is also shown. Cmax24(TPR) can be considered to be a 1-
hour TC. 
 GV = 155 µg m-3 (AQI >100: 

Unhealthy for sensitive groups) 
GV = 255 µg m-3 (AQI >150: 
Unhealthy) 

GV = 355 µg m-3 (AQI >200: 
Very unhealthy) 

Selected TPR Cmax24(TPR) (1-
hour TC) 

Predicted FPR Cmax24(TPR) (1-
hour TC) 

Predicted 
FPR 

Cmax24(TPR) 
(1-hour TC) 

Predicted FPR 

100 % 186 3.89 305 1.76 561 0.68 
99 % 227 2.72 427 1.00 707 0.46 
95 % 281 1.85 708 0.43 984 0.25 
90 % 370 1.11 890 0.27 - - 

 

Table 3: Results for the overall ROC analysis for PM2.5, based on over 22 million rolling 24-hour periods from monitoring 
sites across the US. Cmax24(TPR) is the value of Cmax24 that will achieve true positive rates (TPRs) of 90%, 95%, 99% and 100% 
for the selected 24-hour GVs. The predicted false positive rate (FPR) is also shown. Cmax24(TPR) can be considered to be a 1-
hour TC. 

 GV = 35.5 µg m-3 (AQI >100: 
Unhealthy for sensitive groups) 

GV = 55.5 µg m-3 (AQI >150: 
Unhealthy) 

GV = 150.5 µg m-3 (AQI >200: 
Very unhealthy) 

Selected TPR Cmax24(TPR) (1-
hour TC) 

Predicted FPR Cmax24(TPR) (1-
hour TC) 

Predicted 
FPR 

Cmax24(TPR) 
(1-hour TC) 

Predicted FPR 

100 % 41 2.89 65 0.83 178 0.09 
99 % 45 2.02 70 0.67 183 0.08 
95 % 50 1.48 77 0.50 189 0.07 
90 % 54 1.16 82 0.42 202 0.06 

 

The decision on which TPR is acceptable depends on the proposed public health response to 

predicted exceedances of the 24-hour value. For example, if the response is to send advisory health 

warnings to the affected population through media sources (Kochi et al., 2016, Mott et al., 2002), or 

to display the information through a mobile phone App, then the resource implications are clearly 

much less significant than if physical measures were taken to evacuate people (Stares et al., 2014, 

Wong et al., 2020). A higher FPR is likely to be tolerated in the former case, though there is a 

concern that too many false alarms will undermine confidence in the public health response system 

that is in place. Nevertheless, the results of the analysis in Figure 4, show that FPs are associated 

with specific events, and so FPs might not necessarily be registered by the public as false alarms. An 
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additional aspect of the statistics on FPs, as shown in in Tables 2 and 3, is that lower FPRs are 

associated with higher 24-hour GVs, i.e. where public health advice is most needed. 

 

Figure 4: Incidence of false positives, FP, for exceedance of the PM2.5  �Z�h�v�Z�����o�š�Z�Ç�[��GV (150 µg m-3) across sites in California 
in 2018. Only those sites recording one or more FPs are shown (40 in total). For each day, up to 24 FPs can be recorded at 
any particular site because the exceedances relate to rolling 24-hour periods. In total, across all sites, there were 1567 FPs 
and 832 TPs. 
 

3.3 Model validation  

Figure 5 shows the results of the cross-validation study that was carried out on the overall dataset. 

There is excellent agreement between the predicted (red line) and observed (black line) TPRs, with 

the observed performance for several of the 24-hour GVs exceeding that of the predicted. 

Nevertheless, we see that the standard deviation of the mean observed TPR values increases for 

lower values of predicted TPR, i.e. at 90% and 95%; this is because there are far fewer data points at 

the higher values of C24 and Cmax24 that are associated with these lower TPRs. Consequently, 

predictions made at TPRs of 95% and 90% are less reliable, though still likely to capture over 80% of 

exceedances for any particular year. The full set of cross-validation data for PM10 and PM2.5 is 

available in Tables S6 and S7, respectively.  

We also investigated the predictive performance of an ROC model based only on data from 

California. The results of this validation study are shown in Figure 6, with the full dataset, including 

FPRs, available in Tables S8 and S9 for PM10 and PM2.5 respectively.  For PM10, at all the 24-hour GVs, 

the observed TPRs track above the predicted curves. The agreement between predicted and 

observed TPRs is particularly noteworthy because the model developed for California was based 

mainly on exceedances due to wildfires, whereas for the validation set, other sources such as dust 

storms were major reasons for exceedances, notably the large number of exceedances contributed 

by Arizona and New Mexico (see Figure 2). The observed FPRs are also somewhat lower than the 

predicted FPRs. For PM2.5, the agreement is less good, with the curve for the observed TPRs tracking 
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�����o�}�Á���š�Z���š���}�(���š�Z�����‰�Œ�����]���š�����V���š�Z�]�•���]�•�����•�‰�����]���o�o�Ç���v�}�š�����o�����(�}�Œ���š�Z�������Y�/���Z�À���Œ�Ç���µ�v�Z�����o�š�Z�Ç�[���î�ð-hour GV (150 

µg m-3). The derived 1-hour TCs at each probability level (Tables S6 and S7) are numerically very 

similar to those derived for the whole model, though for PM10, there are some deviations at the 95% 

and 90% levels. 

 

Figure 5 Results of the cross-validation study for PM10 (upper set of panels) and PM2.5 (lower set). From left to right the 24-
hour GV values represent the breakpoint concentrations �(�}�Œ���Z�h�v�Z�����o�š�Z�Ç���(�}�Œ���^���v�•�]�š�]�À�����'�Œ�}�µ�‰�•�[�U���Z�h�v�Z�����o�š�Z�Ç�[�����v�����Z�s���Œ�Ç��
�h�v�Z�����o�š�Z�Ç�[���Œ���•�‰�����š�]�À���o�Ç. Predicted TPRs (red dashed line) are at the set values of 90%, 95%, 99% and 100%. Black dashed 
lines show the average TPR obtained from six cross-validation runs in which, �•�µ�������•�•�]�À���o�Ç�U���������Z���]�v���]�À�]���µ���o���Ç�����Œ�[�•�������š�����Á���•��
used as a test set for an ROC model based on the remaining five years of data. The error bars are ± 1 sd.  
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Figure 6 PM10 (upper set of panels) and PM2.5 (lower set) results for an ROC model based only on Californian data. From left 
to right the 24-hour GV values represent the breakpoint concentrations �(�}�Œ���Z�h�v�Z�����o�š�Z�Ç���(�}�Œ���^���v�•�]�š�]�À�����'�Œ�}�µ�‰�•�[�U���Z�h�v�Z�����o�š�Z�Ç�[��
���v�����Z�s���Œ�Ç���h�v�Z�����o�š�Z�Ç�[���Œ���•�‰�����š�]�Àely. Predicted TPRs (red dashed line) are at the set values of 90%, 95%, 99% and 100%. Black 
dashed lines show the TPR obtained from all US data, excluding California.  
 
An additional piece of confirmation work for our ROC model would be to examine the statistical 

relationship between exceedances of 1-hour TCs and selected health endpoints taken from 

population-based health data for the affected areas. In so doing, the 1-hour TCs could be assessed 

for their efficacy as health-relevant indicators of PM exposure in their own right.   

3.4 Comparison with other approaches to calculating 1-hour TCs 

As discussed in the introduction, an alternative approach to the development of 1-hour TCs in the 

literature has been to divide the relevant 24-hour GV by a fixed factor i.e., the ratio of the mean 24-

hour concentration to the maximum hourly concentration for the same period. This factor has been 

calculated to be 0.55 for PM10, based on monitoring data from urban background and roadside 

monitoring stations in Europe (European Union, 2007). Separately, a numerically identical value has 

been derived for data from Canada (Stieb et al., 2008). For the European study, the purpose of 

producing a 1-hour TC was to ensure that � t̂he PM10 sub-index based on hourly values on a given day 

will be (on average) consistent with the daily value once it is calculated (the next day)�_ (European 

Union, 2007). Nevertheless, this approach, and that of Stieb et al. (2008), cannot provide any 

information on the proportion of exceedances of 24-hour GVs that are predicted by their derived 1-

hour TCs. However, since our ROC approach also uses the maximum 1-hour concentration (Cmax24), 

we can calculate TPRs for 1-hour TCs derived using the European Union (2007) and Stieb et al. (2008) 

approach. One caveat is that the CAQI index for which 1-hour TCs were derived does not range as 
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high as the 24-hour GVs considered in the current paper: for PM10, the boundary between CAQI High 

/  Very High occurs at 100 µg m-3. 

We can also make comparisons with 1-hour TCs calculated using ratios derived from the US data in 

the current study. Ratios of 0.46 and 0.48 were calculated for PM10 and PM2.5 respectively, though 

these overall values mask considerable variation between states, as shown in Tables S10 and S11. 

Table 4 summarises the predicted TPRs (and FPRs) for PM10, based on 1-hour TCs that were derived 

from 24-hour guidelines using the C24 : Cmax24 approach. The 1-hour TCs derived in this way do predict 

a high proportion of exceedances, with the accuracy increasing at the higher corresponding 24-hour 

GVs, i.e. up to 99.7% for the 355 µg m-3 GV. The 1-hour TC derived using US C24 : Cmax24 data gives a 

slightly lower accuracy, reflecting its higher value. 

However, for PM2.5, Table 5 shows that TPRs predicted using the C24 : Cmax24 ratio-derived 1-hour TCs 

show a much lower accuracy, which decreases at the higher 24-hour GVs. Thus, for the 150 µg m-3 

24-hour GV, the corresponding 1-hour TC (factor = 0.55) predicts only 47.9 % of exceedances.  

Table 4: Predicted TPRs (and FPRs) for 1-hour PM10 TCs, that were derived by dividing 24-hour guidelines by a fixed factor, 
based on the ratio of the mean 24-hour concentration to the maximum hourly concentration for the same period. Two 
fixed factors are used: 0.55, derived from European data, and 0.46, derived from US monitoring data from the current 
study. 
 
Basis for derivation 
of 1-hour TC 

24-hour GV = 155 µg m-3 (AQI >100: 
Unhealthy for sensitive groups) 

24-hour GV = 255 µg m-3 (AQI >150: 
Unhealthy) 

24-hour GV = 355 µg m-3 (AQI 
>200: Very unhealthy) 

 1-hour 
TC 

Predicted 
TPR / % 

Predicted 
FPR / % 

1-hour 
TC 

Predicted 
TPR / % 

Predicted 
FPR / % 

1-hour 
TC 

Predicted 
TPR / % 

Predicted 
FPR / % 

CAQI, European 
data: (24-hour GV /  
0.55) 

281 95.0 1.85 464 98.1 0.87 645 99.7 0.54 

Current paper, US 
data: (24-hour GV /  
0.46) 

335 92.0 1.33 551 97.1 0.66 766 98.1 0.40 

 

Table 5: Predicted TPRs (and FPRs) for 1-hour PM2.5 TCs, that were derived by dividing 24-hour guidelines by a fixed factor, 
based on the ratio of the mean 24-hour concentration to the maximum hourly concentration for the same period. Two 
fixed factors are used: 0.55, derived from European data, and 0.46, derived from US monitoring data from the current 
study. 
Basis for derivation 
of 1-hour TC 

24-hour GV = 35.5 µg m-3 (AQI >100: 
Unhealthy for sensitive groups) 

24-hour GV = 55.5 µg m-3 (AQI >150: 
Unhealthy) 

24-hour GV = 150 µg m-3 (AQI 
>200: Very unhealthy) 

 1-hour 
TC 

Predicted 
TPR / % 

Predicted 
FPR / % 

1-hour 
TC 

Predicted 
TPR / % 

Predicted 
FPR / % 

1-hour 
TC 

Predicted 
TPR / % 

Predicted 
FPR / % 

CAQI, European 
data: (24-hour GV / 
0.55) 

65 71  0.63 101 70.4 0.24 274 47.9 0.03 

Current paper, US 
data: (24-hour GV / 
0.46) 

73 61.1 0.45 115 57.6 0.17 311 39.6 0.02 
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Taking these results together, whilst the use of a constant factor to derive 1-hour TCs from the 

corresponding 24-hour GVs has an agreeable simplicity, we have shown that it is not a suitable 

approach for PM2.5, nor does it result in a consistent predictive accuracy across the range of 24-hour 

GVs for either PM fraction. Nevertheless, it is helpful that such approaches can be quantified using 

the ROC analysis method that we have developed. 

3.5 Using the ROC model to calculate 1-hour TCs for 24-hour GVs from the UK and WHO 

Having demonstrated the excellent predictive capability of Cmax24 in the validation study, the model 

can be used with confidence to calculate 1-hour TCs for a range of other 24-hour health-based GVs. 

Table 6 shows additional 1-hour TCs for PM10, including for 24-hour GVs corresponding to: WHO 

interim Target 2 and Target 3 (also equivalent �š�}���š�Z�����h�<�[�•�������Y�/��24-hour boundaries for �Z�Z�]�P�Z�[�����v����

�Z�À���Œ�Ç�[���Z�]�P�Z); the UK Trigger to evacuate; and the US AQI ���}�µ�v�����Œ�Ç���(�}�Œ���Z�Z���Ì���Œ���}�µ�•�[�����]�Œ���‰�}�o�o�µ�š�]�}�v��

conditions (for the PM10 sub-index). Similarly, Table 7 shows 1-hour TCs for PM2.5 at the additional 

WHO interim targets�U���š�}�P���š�Z���Œ���Á�]�š�Z���h�^�����Y�/���Z�Z���Ì���Œ���}�µ�•�[. It should be noted that at the higher Cmax24 

values, there are a limited number of data points and so it is not possible to accurately calculate 1-

hour TCs for the lowest TPRs (95% and 90%). Moreover, at these higher concentrations, there is a 

tendency for individual states, and even individual episodic events, to dominate the data. For 

example, across the US, there are only 180 exceedances of the PM2.5 24-hour GV of 250 µg m-3 (AQI 

�Z�Z���Ì���Œ���}�µ�•�[�•, with the majority coming from �}�v�����Á�]�o���(�]�Œ�����]�v���]�����v�š�W���š�Z�����Z�d�Z�}�u���•���&�]�Œ���[���š�Z���š�����(�(�����š������

Ventura and Santa Barbara Counties in December 2017 (Oakley et al., 2018, Zhou and Erdogan, 

2019, Wong et al., 2020).  

Finally, from Table 6, we note that at the UK DAQI PM10 ���}�µ�v�����Œ�Ç�����}�v�����v�š�Œ���š�]�}�v���(�}�Œ���Z�Z�]�P�Z�[���~24-hour 

average = 75 µg m-3), the corresponding  DAQI 1-hour trigger concentration of 107 µg m-3 (Connolly 

and Willis, 2013) will give a TPR of about 99% using our ROC approach (i.e. comparing against the 

closest Table 6 Cmax24(TPR) entry of 109 µg m-3). Similarly at the UK DAQI PM10 boundary concentration 

�(�}�Œ���Zvery �Z�]�P�Z�[��(24-hour average = 100 µg m-3), the corresponding DAQI 1-hour trigger concentration 

of 177 µg m-3 (Connolly and Willis, 2013) will give a TPR of approximately 95%.  The high 

corresponding TPRs for threshold (trigger) concentrations derived using an alternative methodology 

and dataset (DAQI uses UK ambient air quality data), gives us further confidence in the applicability 

of the ROC approach developed in this paper.  
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Table 6 Additional 1-hour TCs for PM10, where Cmax24(TPR) is the value of Cmax24 that will achieve true positive rates (TPRs) of 
90%, 95%, 99% and 100% for the selected 24-hour GVs. The predicted false positive rate (FPR) is also shown. Cmax24(TPR) can 
be considered to be a 1-hour TC. AUCs of 0.9849, 0.9910, 0.9991 and 0.9993 were obtained for the 24-GVs of 75 µg m-3, 
100 µg m-3, 320 µg m-3 and 425 µg m-3 respectively.  
 GV = 75 µg m-3 (WHO Interim 

Target-3�V���h�<�������Y�/���Z�Z�]�P�Z�[) 
GV = 100 µg m-3 (WHO Interim 
Target-2�U���h�<�������Y�/���Z�À���Œ�Ç���Z�]�P�Z�[) 

GV = 320 µg m-3 (UK Trigger 
to Evacuate) 

GV = 425 µg m-3 (AQI >300: 
Hazardous) 

Selected TPR Cmax24(TPR) (1-
hour TC) 

Predicted FPR Cmax24(TPR) (1-
hour TC) 

Predicted FPR Cmax24(TPR) (1-
hour TC) 

Predicted 
FPR 

Cmax24(TPR) 
(1-hour TC) 

Predicted FPR 

100 % 91 12.4 125 7.52 439 0.99 658 0.53 
99 % 109 8.73 146 5.53 592 0.62 945 0.28 
95 % 129 6.14 171 4.01 932 0.27 - - 
90 % 149 4.44 197 3.00 - - - - 

 
 
Table 7 Additional 1-hour TCs for PM2.5, where Cmax24(TPR) is the value of Cmax24 that will achieve true positive rates (TPRs) of 
90%, 95%, 99% and 100% for the selected 24-hour GVs. The predicted false positive rate (FPR) is also shown. Cmax24(TPR) can 
be considered to be a 1-hour TC. AUCs of 0.9958, 0.9978, 0.9989 and 1.000 were obtained for the 24-GVs of 37.5 µg m-3, 50 
µg m-3, 75 µg m-3 and 250 µg m-3 respectively.  
 GV = 37.5 µg m-3 (WHO Interim 

Target-3) 
GV = 50 µg m-3 (WHO Interim 
Target-2) 

GV = 75 µg m-3 (WHO Interim 
Target-1) 

GV = 250 µg m-3 (AQI >300: 
Hazardous) 

Selected TPR Cmax24(TPR) (1-
hour TC) 

Predicted FPR Cmax24(TPR) (1-
hour TC) 

Predicted FPR Cmax24(TPR) (1-
hour TC) 

Predicted 
FPR 

Cmax24(TPR) 
(1-hour TC) 

Predicted FPR 

100 % 43 2.53 58 1.07 86 0.43 345 0.02 
99 % 48 1.76 63 0.86 93 0.34 - - 
95 % 53 1.26 70 0.64 101 0.27 - - 
90 % 57 1.02 75 0.51 108 0.23 - - 

 

3.6 The public health response 

It is acknowledged that decisions on public health interventions for episodic PM events need to be 

taken as quickly as possible (WHO, 2006b). Nevertheless, there is a problem that the shortest 

averaging period for which there are epidemiological-based PM GVs is 24-hours (WHO, 2006b, 

Federal Register, 2012, WHO, 2006a). Therefore, the ability to robustly relate PM measurements 

gathered over shorter averaging periods to the epidemiologically based 24-hour PM guidelines 

provides a way of addressing this shortcoming. Our ROC-based probability model allows precisely 

this type of relationship to be established and potentially speeds up the public health risk 

assessment and decision-making processes. The question then remains as to what public health 

response is required during episodic events, and at which 24-hour GV (and associated 1-hour TC) this 

should be triggered. 

Several studies have found that communicating simple advisory measures about the need to restrict 

physical activity and to shelter indoors has beneficial effects (Kolbe and Gilchrist, 2009), including an 

association with reduced respiratory effects (Mott et al., 2002). In the US, states are already 

required to report 24-hour AQI values for each metropolitan area with a population exceeding 

350,000 (Code of Federal Regulations, 2016). For many states, this is done through the web-based 

NowCast system, which has the added advantage of predicting 24-hour concentrations based on the 
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previous 12 hours of data (US EPA, 2018, Mintz et al., 2013). Each AQI category has a specified 

cautionary statement, which depends on the sub-index that has been breached (i.e, those for PM10, 

PM2.5, O3, CO, SO2 or NO2). These statements are particularly targeted at vulnerable people, urging 

them to stay indoors and to minimise physical activity. It is important that the care is taken to reach 

the more marginalised members of society, who might also be the most affected (Santana et al., 

2020, WHO, 2006b).  

A more timely prediction that certain 24-hour GVs will be exceeded allows for better planning, for 

example in ensuring that decisions are taken on identifying and safely evacuating the more 

vulnerable members of a population (Stares et al., 2014), in closing schools (Holm et al., 2020), 

advising on the wearing of masks (WHO, 2006b, Kolbe and Gilchrist, 2009), or on the use of air 

cleaning systems in homes, schools workplaces and smoke refuges (Stares et al., 2014, Mott et al., 

2002, Holm et al., 2020, Barn et al., 2016).  

Regarding the most extreme of these measures, evacuation, the �Z�]�P�Z���•�š�����Y�/�������š���P�}�Œ�Ç�U���Z�,���Ì���Œ���}�µ�•�[��

(PM10, 425 µg m-3; PM2.5, 250.5 µg m-3), does not contain a specific requirement to evacuate, rather 

the advice is that the vulnerable should stay indoors and keep physical activity levels low (US EPA, 

2018). However, guidance given to public health officials in the event of wildfires in the US does 

specify the possible evacuation �Z���š-risk �‰�}�‰�µ�o���š�]�}�v�•�[��when the 24-hour PM2.5 concentration reaches 

the ���Y�/���Z�,���Ì���Œ���}�µ�•�[ category (Stone et al., 2019). The British Columbia Centre for Disease Control 

also recommends that evacuation is considered �Á�Z���v���h�^�����Y�/���Z�,���Ì���Œ���}�µ�•�[���]�•���Œ�������Z����, though that 

the likely duration, plume toxicity, and presence of vulnerable subgroups, such as the elderly, 

children and those with underlying health conditions, are taken into account (Stares et al., 2014). 

From Tables 6 and 7, the 24-hour AQI �Z�,���Ì���Œ���}�µ�•�[�������š���P�}�Œ�]���•���~�W�D10, 425 µg m-3; PM2.5, 250.5 µg m-3) 

would correspond to 1-hour TCs of 658 µg m-3 and 345 µg m-3 for PM10 and PM2.5 respectively at a 

TPR of 100% for our ROC analysis.  

The practice of having threshold concentrations for evacuation is one that is used in other countries, 

for example the UK, where a 24-hour PM10 �Ztrigger �š�}�����À�����µ���š���[��of 320 µg m-3 has been used during 

major incident fires (Brunt and Russell, 2012), and for which we have previously calculated a 

corresponding 1-hour TC of 550 µg m-3 (100% TPR) (Griffiths et al., 2018). This 1-hour TC is 

somewhat higher than the value of 439 µg m-3 obtained from the ROC model using US data in the 

current work (Table 6). Nevertheless, it is similar to the 99% TPR, 1-hour TC of 590 µg m-3 in the 

current paper and also the now withdrawn 1 to 3-hour average �ZRecommended Action Level�[ for the 

closure of public buildings and possible evacuation, which was set of �ñ�î�ò���…�P���u-3 for PM10/PM2.5 

during wildfires (Lipsett et al., 2008).  
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Any decisions on evacuation should be carefully considered because there is evidence that they have 

a significant effect on mental and emotional health (Dodd et al., 2018, Krstic and Henderson, 2015) 

and may also involve other risks, such as exposure of vulnerable populations and responders to air 

pollutants during the evacuation process (Stewart-Evans et al., 2016).  Other mitigating measures 

may be more effective, such as sheltering in place (Stewart-Evans et al., 2016), combined with the 

use of portable air cleaning devices (Barn et al., 2016, Mott et al., 2002).  

 

4. Conclusions 

In this paper we have demonstrated the application of ROC analysis to derive 1-hour TCs that have a 

probabilistic relationship with PM10 and PM2.5 health-based 24-hour exposure GVs.  The analysis, 

based on 16 million and 22 million rolling 24-hour periods for PM10 and PM2.5 respectively, and 

involving a cross-validation design, shows that the maximum-observed PM concentration in any 

rolling 24-hour averaging period is an excellent predictor of exceedances of 24-hour GVs. An ROC 

analysis based on data only from California also provided a good basis for the prediction of 

exceedances from across the remaining states of the US.  

The main advantages of our ROC method are as follows: (i) the high degree of accuracy that ROC-

generated TCs can achieve in predicting exceedances of health-based 24-hour guidelines; (ii) the 

consistency of year on year comparisons, as demonstrated by the validation analysis;  (iii) the 

�Z�š�µ�v�����]�o�]�š�Ç�[���}�(���š�Z�����Z�K�����u���š�Z�}�����]�v���P���v���Œ���š�]�v�P���d���•�U��i.e. the use of the ROC output table to select a TC 

that balances the need to achieve as high a TPR as possible, whilst also minimising the FPR; (iv) the 

transferability of this methodology to other datasets, e.g. in different countries, and to other 

pollutants for any 24-hour health based GV for which the corresponding 1-hour TC is required; and 

(v) the ease of use of the ROC model in generating TCs. The main disadvantage of the ROC approach 

is the high FPRs that are generated for the 24-hour GVs at the lower end of the harmfulness scale, 

though we have also shown that false predictions tend to be clustered around specific episodic 

events, coincident with real exceedances, and thus might not registered as a false alarm by the 

affected population.  

 

Elevated PM during episodic air pollution events is associated with significant short-term health 

impacts, including mortality, and so the ability to provide timely public health guidance on 

appropriate remedial measures for affected populations is vital. We hope that the straightforward 

approach to developing 1-hour TCs that we have outlined in this paper might assist in this process.  
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Graphical abstract 

 

Highlights 

�x Model based on Receiver Operating Characteristic analysis of air pollution data 
�x Over 38 million US hourly particulate matter measurements used to develop model 
�x Model derives 1-hour threshold concentrations (TCs) for airborne particulates 
�x 1-hour TCs accurately predict exceedances of 24-hour health-based guideline values 
�x Model can be applied to a range of airborne pollutants  
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