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Anchoring-mediated topology signature of self-assembled 
elastomer undergoing mechanochromic coupling/decoupling 

Ziyu Xinga, Haibao Lu*a and Yong Qing Fu*b 

Soft elastomers with their abilities to integrate strain-adaptive stiffening and coloration have recently received 

significant research interests for applications in artificial muscle and active camouflage. However, there lacks a 

theoretical understanding of their complexly molecular dynamics and mechanochromic coupling/decouping. In 

this study, a topological dynamics model is proposed to understand the anchoring-mediated topology signature 

of self-assembled elastomers. Based on the constrained molecular junction model, a free-energy function is firstly 

formulated to describe the working principles of strain-adaptive stiffening and coloration in the self-assembled 

elastomer. A coupled ternary “rock-paper-scissors” model is proposed to describe the topological dynamics of 

self-assembly, mechanochromic coupling and mechanoresponsive stiffening of the self-assembled elastomers, in 

which there are three fractal geometry components in the topology network. Finally, the proposed models are 

verified using the experimental results reported in literature. This study provides a fundamental approach to 

understand the working mechanism and topological dynamics in the self-assembled elastomers, with molecularly 

encoded stiffening and coloration. 

1 Introduction 

Elastomer, one of the most popular soft matters, has been 

widely used for sensors,1,2 wound dressing,3 piezoelectric 

devices and artificial muscles,4,5 attributed to their abilities to 

integrate adaptive coloration and mechanical properties.6 

Mechanochromic properties of the elastomers enable them 

with great potentials in applications of biological tissues and 

living organisms such as chameleons.7-9 Furthermore, great 

effort has been made in order to achieve good mechanical 

properties through molecular interactions,8-12 and to improve 

biocompatibility13,14 and stimulus-responsibility.15,16 However, 

there are few theoretical investigations or models to 

understand the working mechanisms and design principles for 

molecular self-assembly, which are essential for the guidance 

of chemical synthesis, understanding of structure-property 

relationships and practical applications.17-22 

So far, much effort has been made to enhance the 

mechanical properties of elastomers, e.g., using multi-

networks6,16 and self-assembly methods.8,9 Previously Davis et 

al. has successfully made mechanochemical polymers, which 

have the capability of translating macroscopic forces into 

chemical reactions by covalently connecting mechanophore 

molecules to polymers.23 Most of these studies are focused on 

the optimization of elastomers’ mechanical properties by 

designing the self-assembly of polymer networks using 

different components and compositions.8-16,24-28  

Recently, chameleon-like elastomers have been fabricated 

through molecularly encoding strain-adaptive stiffening and 

coloration, and their functional properties can be regulated by 

the polymer network of self-assembled macromolecules.9 

However, topological dynamics, which plays an essential role 

to determine the microstructures and macroscale properties 

of these self-assembled elastomers, has not been well 

investigated. Furthermore, modelling the couplings of multi-

fields has not been widely studied due to the extremely 

complex constitutive relationships.  

In this work, a ternary “rock-paper-scissors” model is 

employed to characterize the anchoring-mediated topology 

signature of the self-assembled elastomers, of which the 

topology network synchronously undergoes topological 

dynamics of self-assembly, mechanochromic coupling and 

mechanoresponsive stiffening. Based on the constrained 

molecular junction model, a free-energy function is formulated 

to identify the topological dynamics and coupling effect in 

these self-assembled elastomers. The constitutive 

relationships are then proposed to predict the 

mechanoresponsive stiffening and mechanochromic 

coupling/decoupling. Finally, the proposed models are verified 

using the experimental results reported in the literature. 

2. Theoretical framework 

The topological structure of a cross-linked network has a 

decisive influence on the mechanical properties of polymer. As 

the elastomers were synthesized through the self-assembly of 
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triblock copolymers, the dynamic networks therefore had 

various topology signatures due to the increase in numbers of 

chains involved as shown in Fig. 1. Self-assembly of triblock 

copolymers yields cross-linked networks, which show the 

topological network junctions (ψ) of ψ=2, ψ=3, ψ=4 and ψ=6. 
For example, ψ=3 means that there are three chains self-

assembled into a crosslink point in the network. Therefore, the 

regular hexagon network is formed due to a large number of 

chains self-assembled to form the network, in which one 

crosslink point is incorporated of three chains. 

 

To explore the working principles and topological dynamics 

of cross-linked network, the elastic free-energy function (ΔFel) 

is introduced based on the constrained junction model,29-31 
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where ΔFph  is the free-energy of the phantom network,  ΔFc is 

the constraint free-energy, ψ is the average functionality of 

the network junctions, Nel is the cross-linking density of elastic 

phantom network, T is the temperature, kB is the Boltzmann 

constant, Bi and Di are two parameters representing the 

degrees of the constraints, κc is a given parameter for the 

entanglement constraint in the phantom network, λ1 , λ2 and 

λ3 represent the stretching ratios of the elastomers along 

three directions, respectively. According to this constrained 

junction model,29-31 the mechanical properties of the 

elastomer can be described using the parameter, 
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Equation (6) can be used to describe the mechanical 

properties of the elastomer that is governed by the free-

energy of the phantom network (ΔFph), where the weak 

constraint (κc→0) results in ΔFc=0. Meanwhile, equation (7) is 

used for describing mechanical properties of the elastomer 

that is governed by the elastic free-energy function (ΔFel), 

where the strong constraint (κc→∞) results in ΔFc≠0.29-31 To 

simplify the expressions of equations (6) and (7), the function 

of I3= λ1λ2λ3=(h·h/h0
2)0.5 (h is the tensor of end-to-end distance 

of a polymer chain and h0 is the initial end-to-end distance of 

polymer chain) is introduced, as reported in Refs. [24-31]. 

Under a uniaxial tension (e.g., λ1=λ and λ2=λ3=(I3/λ)0.5 where 

λ1=λ is the uniaxial elongation ratio), the constitutive 

relationship of true stress for the elastomer as a function of 

elongation ratio can be written as, 
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where p is the hydrostatic pressure. According to the rubber 

elasticity theory,17 the change of end-to-end distance (Δh and 

|h|=Δh+h0) of the polymer chains caused by the external force 

(f) can be written as, 
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where Ef is the modulus of the polymer chain.17 According to 

the rubber elasticity theory, there is a constitutive relationship 

between modulus (Ef) and shear modulus (Gf) of Ef≈3Gf, 

because the Poisson's ratio is approximately 0.5. Based on the 

boundary conditions of σtrue(λ=1)=0, equation (8) can be 

rewritten as, 
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Fig. 2 shows the analytical results obtained using equation (11), 

which are compared with experiment data of EAMA (EA: ethyl 

acrylate and MA: methyl acrylate) elastomers reported in Ref. [6]. 

The parameters used in calculations using the equation (11) are 

NelEfh0=5.72 MPa, Efh0/kBT=2.2 and ψ=4. The classical rubber 

elasticity theory mainly includes two models: the phantom model 

and the affine model.17 The affine model is the earlier version of the 

rubber model. Cross-linking points are the main parts in the affine 

model, and they are randomly distributed and can move in the 

same proportion according to macroscopic deformation. According 

to these assumptions, Flory established the affine model based on 

Gaussian chain (the free energy of the affine network ΔFaf = 

NelkBT(λ1
2+λ2

2+λ3
2-3)/2).17 It is found that the analytical results 

obtained from the constrained junction model are in good 

agreements with the experimental data, if compared with those 

obtained using the phantom and affine models.17 The constrained 

junction model is suitable to characterize the plasticity of the EAMA 

elastomer due to the distinct differences in mechanical behaviors of 

two components of EA and MA, besides of rubber elasticity.6 

Furthermore, the contribution of junction to the mechanical 

behavior has also been considered by the constrained junction 

model. Whereas for the phantom and affine models, the cross-

linking point has not been considered to influence the mechanical 

Fig. 1 Illustration of cross-linked topology networks in terms 

of self-assembly of triblock copolymers in elastomers. 
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behavior. Therefore, our theoretically analytical results fit well with 

the experimental ones. 

 

2.1 Topological dynamics and transition 

As reported in Ref. [9], PMMA-PDMS-PMMA (PMMA: 

poly(methylmethacrylate); PDMS: polydimethylsiloxane) 

elastomers were synthesized through the self-assembly of 

linear-bottlebrush-linear (PMMA works as the linear block and 

PDMS acts as the bottlebrush) triblock copolymers. To 

investigate topological dynamics and mechanochromic 

coupling, the constitutive relationship between molecular 

topology structure and mechanochromic property is proposed 

for the self-assembled elastomers. 

According to the interfacial free-energy equation, the free-

energy function of microphase (FA) is introduced as,22,34-36 
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where lbA is the segment length, χ is the interaction parameter, 

NA is the segment number and d2 is the diameter of the self-

assembled domain. According to the principle of minimized 

interfacial free-energy function (∂ΔFA/∂d2=0), the diameter can 

then be obtained as, 
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Fig. 3A illustrates the physically cross-linked and topology 

networks. d2 is the diameter of spherically shaped PMMA domain. 

d3 represents the distance between two PMMA domains and it 

determines the morphochromism of elastomer, which can be 

obtained from the ultra-small-angle x-ray scattering (USAXS) 

measurements. Meanwhile, Fig. 3B describes the working principles 

of mechanochromic coupling for the self-assembled network. 

Under a tensile loading, the distance between two PMMA domains 

(d3) is gradually decreased due to the increase in the elongation 

ratio (λ). Therefore, the ternary coupled “rock-paper-scissors 

(d2(h0)-d3(h0)-λ)” model is then employed to describe the 

topological dynamics and transition of self-assembly, 

mechanochromic coupling and mechanoresponsive stiffening, in 

which there are three fractal geometry components in the topology 

network.35  

The item of ψ is the average functionality of the network 

junctions and plays an essential role to determine the microphase 

separation of PMMA-PDMS-PMMA elastomers.9 As revealed in Fig. 

3, the microphase is originated from spherically shaped PMMA 

domain, of which the volume is determined by the intra-domain 

distance (d2) and obtained from 4/3π(d2/2)3=π(χ/54)0.5NA
2lbA

3, 

whereas the volume of each chain is NAlbA
3. Based on the Flory-

Huggins theory for microphase separation,20-22 the number of self-

assembled chains undergoing the microphase separation can be 

obtained based on ψ=π(χ/54)0.5NA
2lbA

3/NAlbA
3=π(χ/54)0.5NA≈4, 

whereas χ=1 and NA≈10.5.20-22,32,33 

 

 

The mass ratio (<xβ>) of each site is used to characterize the 

effect of d2 on the topology network, and it has the following 

expression, 

2
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where β is the number of domains with a unique diameter of d2, 

and N is the number of chains in a spherically shaped domain. 

Then, the molecular weight distribution (<Mβ>) of the domains is 

given as, 

0M M x = ( 1,2, )N = …,                      (15) 

where M0 is the molecular weight of one chain. 

According to the rubber elastic theory,17,20 the initial end-to-end 

distance (h0) can be then obtained, 
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Fig. 2 Comparisons between analytical results using 

equation (11) and experimental data of the EAMA 

elastomer reported in Ref. [6], based on the constrained 

junction, phantom and affine models. During the uniaxial 

extension, the EAMA elastomer undergoes mechanochemical 

reaction,6 and the stretchable network is strongly constrained by 

the broken chains, which is well predicted by the constrained 

junction model. 

Fig. 3 Schematic illustrations of mechanochromic coupling 

in terms of domains (d2 and d3) and elongation ratio (λ) in 

elastomer. A) For dynamic transition of molecular networks. 

B) Topological transition of topology networks. 
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where Csc is a scaling constant, Nel=ρNAvo/<M>, Nelh0
2= Csc, ρ is the 

density of the elastomer, NAvo is the Avogadro’s constant and d2= 

(2χ/3)1/6NA
2/3lbA. 

Substituting equations (11) and (13) into (16), the end-to-end 

distance of a polymer chain (h0) and the true stress functions can be 

obtained as, 
1 2 21 1
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where NA=VAφA, VA is the number of chains and φA represents the 

volume fraction of one chain in the domain. 

To verify equation (17b), the analytical results of stress as a 

function of elongation ratio have been plotted for the elastomer, of 

which the topology networks undergo dynamic transitions, at a 

given parameter of Efh0/kBT=2 and CscEf/h0=1.0MPa. As shown in 

Fig. 4A, the constitutive stress-elongation ratio relationship has 

been investigated at different topological network junctions (ψ) of 

ψ=2, ψ=3, ψ=4 and ψ=6 for the self-assembled elastomer.  

 

 

With an increase in the junctions (ψ) from ψ=2, ψ=3, ψ=4 to ψ=6 

in the topology networks, the stress is gradually increased from 

2.74 MPa, 2.95 MPa, 3.05 MPa to 3.16 MPa at the same elongation 

ratio of λ=3.0. In theoretical analysis, the value of ψ can be infinity, 

which means each chain is crosslinked to an infinite number of 

other chains, and the theoretical maximum can help scientists o 

tdetermine the enhancement effect of physical crosslinking and 

prevent blind application. These analytical results indicate that the 

topology structure has a significant influence on the mechanical 

properties of the self-assembled elastomer, which is attributed to 

the increased cross-linking density in the polymer network based on 

the rubber elastic theory.17,20 On the other hand, the finite-element 

analysis (FEA) method is also applied to analyze the dynamic 

transitions of these topology networks, and the obtained results are 

shown in Fig. 4B. As designed, the mechanical behavior of self-

assembled elastomer is critically determined by the constrained 

junction (ψ), which determines the cross-linking density. With an 

increase in the constrained junctions from ψ=3, ψ=4 to ψ=6, the 

mechanical stress of topology network is then gradually increased 

owing to the increased cross-linking density. According to the 

constrained junction model,29-31 topological dynamics of the cross-

linked network is resulted from the increased constrained junctions 

due to the externally mechanical loading, which causes that the 

topology network shows an enhanced mechanical performance and 

the elastomer shows a classical plasticity. These analytical results 

provide a working principle in topological dynamics and transition 

of self-assembled elastomers, which undergo strain-adaptive 

stiffening as the experimental results revealed.9 

2.2 Mechanochromic coupling and decoupling 

Optical properties of the elastomer are also determined by the 

dynamic transition of topology network due to the 

mechanochromic coupling, where the inter-domain distance (d3, 

which is linked with the optical property) is determined by the 

strain-adaptive elongation ratio (λ, which is linked with the 

mechanical property).9 Here, the refractive index (n) can be 

described as,36,37 

0 2

0 02 2

0

1
= [1 ( )]

3

f

B

E h
n n n

h k T





= + −

h h
                     (18) 

where n0 is the initial value of refractive index parameter without 

stress. 

To identify the working principles in mechanochromic coupling 

and decoupling of self-assembled elastomer, the effects of strain-

adaptive elongation ratio (λ) on the mechanical stress and optical 

refractive index have been investigated, and the results are shown 

in Fig. 5. The analytical results of stress as a function of elongation 

ratio (λ) have been firstly plotted in Fig. 5A. It is revealed that the 

stress is gradually increased from 1.94 MPa, 2.45 MPa, 2.89 MPa, 

3.62 MPa to 4.63 MPa with an increase in the diameter of 

spherically shaped domain (d2) from 30 nm, 35 nm, 40 nm, 45 nm 

to 50 nm, at a given elongation ratio of λ=3.0. With a given value of 

the diameter of spherically shaped domain (d2), the inter-domain 

distance (d3), which determines the optical property of elastomer,9 

is decreased with an increase in the elongation ratio (λ). Here the 

end-to-end distance of a polymer chain (h0) is decreased, thus 

resulting in the increase of stress according to the equation (17b). 

These analytical results can be explained by the rubber elastic 

theory,17,20 e.g., the constrained junctions (ψ) is increased with an 

increase in the diameter of spherically shaped domain (d2), which 

results in more chains self-assembled into the domain. 

Furthermore, the cross-linking density of polymer network is 

increased to achieve an enhanced mechanical property of the 

elastomer.  

On the other hand, the mechanochromic coupling of the self-

assembled polymer network has been further investigated for the 

Fig. 4 A) Analytical results based on equation (17) for the 

stress as a function of elongation ratio of elastomer, at a 

given constrained junction of ψ=2, 3, 4, 6 and ∞. B) FEA of 

the dynamic deformation and transition of topology 

networks, at a given ψ=3, 4 and 6. 
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elastomer, and the obtained results are shown in Fig. 5B. Firstly, the 

analytical results of refractive index as a function of elongation ratio 

(λ) have been plotted at a given value of Efh0/kBT=0.1, 0.2, 0.3, 0.4 

and 0.5, in order to identify the working principles of 

mechanochromic coupling and decoupling during the dynamic 

transition of topology network. It is revealed that the refractive 

index is increased from 1.08, 1.28, 1.49, 1.72 to 1.96 with an 

increase in the Efh0/kBT from 0.1, 0.2, 0.3, 0.4 to 0.5, at a given 

elongation ratio of λ=3.0. Here the end-to-end distance of a 

polymer chain (h0) is kept a constant in order to maintain the value 

of Efh0/kBT a constant. These analytical results reveal that the 

refractive index is gradually increased with an increase in the 

Efh0/kBT from 0.1 to 0.5. The strain-adaptive coloration is 

determined by the end-to-end distance of a polymer chain (h0), 

which is originated from the inter-domain distance (d3) as the 

diameter of spherically shaped domain (d2) is kept a constant. The 

analytical results can be verified by the experimental ones reported 

in Ref. [9], in which the strain-adaptive coloration is determined by 

the inter-domain distance (d3) based on the experimental USAXS 

measurements.9 

 

According to these analytical results, the mechanochromic 

coupling can be therefore characterized using our newly proposed 

model. The mechanochromic decoupling is determined by the 

strain-adaptive elongation ratio (λ, for the mechanical property) 

and inter-domain distance (d3, for the optical property), 

respectively, whereas the mechanochromic coupling and 

decoupling are both governed by the “rock-paper-scissors (d2(h0)-

d3(h0)-λ)” model in the topology network.35 Furthermore, these 

analytical results can be verified using the rubber elastic theory and 

constrained junction model.17,20,29-31 

3 Experimental verification of self-assembled 
elastomer 

3.1 Constitutive stress-elongation ratio relationship 
According to the interfacial free energy and the 

thermodynamics of microphase separation, ψ=4 can be 

determined as shown in Section “2.1 Topological dynamics and 

transition”. Moreover, according to equation (17), the 

nonlinear terms are tended to be constants when λ is large 

(1/λ3→0, λ+2/λ2→λ and λ-1/λ2→λ), where the modulus can be 

estimated according to the end point. After these two 

parameters are determined, the data can be processed and 

the remaining two thermodynamic parameters which are 

difficult to obtain through experiments can be obtained by the 

least square method. 

To experimentally verify the proposed model of equation 

(17), the analytical results have been plotted in Fig. 6 to 

predict the mechanical stress-elongation ratios of the PMMA-

PDMS-PMMA elastomers,9 whereas the effect of volume 

faction of PMMA (φA) has been investigated at a given 

segment number of PDMS (NB). During the analysis, the 

following parameters are used in equation (17), e.g., 

EfCscM0d3
0.5/NAvokBTρ=2.2, EfCscM0χ1/6lbAVA

2/3/NAvokBTρd3
0.5=8.7, 

ψ=4 and CscEf
2/kBT=180 kPa. The obtained analytical results 

shown in Fig. 6A reveal that the stress is increased from 274 

kPa, 361 kPa to 410 kPa, with an increase in the volume faction 

of PMMA (φA) from 0.03, 0.06 to 0.17. 

φA  σme(105Pa) σms(105Pa) R2 

0.03 4.10 3.23 96.69% 

0.06 3.61 2.85 92.94% 

0.17 2.74 2.42 92.02% 

 

As discussed above for the topology network of self-

assembled elastomers, the increase in volume faction of 

PMMA (φA) results in the increased diameter of spherically 

shaped domain (d2), and the decreased end-to-end distance of 

a polymer chain (h0, h0∝(d3-d2)0.5). Therefore, the stress is 

increased due to the decrease in end-to-end distance of a 

Fig. 5 Mechanochromic coupling and decoupling of self-

assembled elastomer. A) Analytical results of equation (17) 

for the stress as a function of elongation ratio at a given 

value of d2=30 nm, 35 nm, 40 nm, 45 nm and 50 nm, 

whereas CscEf
2/kBT=0.5 MPa, ψ=4 and EfCscM0/NAvokBTρ=0.2 

nm-0.5. B) Analytical results of equation (18) for the 

refractive index as a function of elongation ratio at a given 

value of Efh0/kBT=0.1, 0.2, 0.3, 0.4 and 0.5, whereas n0=0.9. 

Table 1. Comparison between analytical results and experimental data of the maximum 

true stress in Fig.6. 

Fig. 6 Comparisons of analytical (using equation (17)) and 

experimental results for the stress as a function of 

elongation ratio in PMMA-PDMS-PMMA elastomers with 

various volume faction of PMMA (φA) of φA= 0.03, 0.06 and 

0.17, at a given segment number of PDMS (NB) of NB=302.9 

A) For the constitutive stress-elongation ratio curves. B) 

Divergences of the analytical and experimental results. 
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polymer chain (h0), based on the equation (17). Furthermore, 

the divergences between the analytical and experimental 

results9 of the PMMA-PDMS-PMMA elastomers are calculated 

using the correlation index (R2), which are 96.69%, 92.94% and 

92.02% for φA=0.03, 0.06 and 0.17, respectively, as shown in 

Fig. 6B. Meanwhile, the comparisons between analytical 

results and experimental data are listed in Table 1, where σme 

is the true stress at the maximum elongation ratio for 

experimental data and σms is the true stress at the maximum 

elongation ratio for analytical results. 

On the other hand, the analytical results of stress as a 

function of elongation ratio for the PBMA-PDMS-PBMA 

(PBMA: poly(benzyl methacrylate)) elastomers have been 

plotted and compared with the experimental results reported 

in literature.15 Effects of volume faction of PBMA (φA) and the 

chain number of PDMS (NB) have also been investigated, and 

the results are shown in Fig. 7.  

φA  σme(105Pa) σms(105Pa) R2 

0.05 0.38 0.37 94.76% 

0.10 0.72 0.44 84.92% 

0.25 0.98 0.95 97.15% 

 

The following parameters are used in equation (17), e.g., 

EfCscM0d3
0.5/NAvokBTρ=3.1, EfCscM0χ1/6lbAVA

2/3/NAvokBTρd3
0.5=9.9, 

ψ=4 and CscEf
2/kBT=60 kPa. The obtained analytical results 

show good agreements with the experimental data of self-

assembled PBMA-PDMS-PBMA elastomers. It is found that the 

stress is increased from 38 kPa, 72 kPa to 98 kPa, with an 

increase in the volume faction of PBMA (φA) from 0.05, 0.10 to 

0.25. As discussed above for the topology network of self-

assembled elastomer, the increase in volume faction of PBMA 

(φA) results in the increased diameter of spherically shaped 

domain (d2) and the decreased end-to-end distance of a 

polymer chain (h0, h0∝(d3-d2)0.5). Therefore, the stress is 

increased due to the decrease in end-to-end distance of a 

polymer chain (h0). The divergences between the analytical 

and experimental results15 of the PBMA-PDMS-PBMA 

elastomer are calculated using the correlation index (R2), and 

the results are 94.76%, 84.02% and 97.15% for φA=0.05, 0.10 

and 0.25, respectively, as shown in Fig. 7B. Moreover, the 

comparisons between the analytical results and experimental 

data are listed in Table 2. 

 Effect of the chain number of PMMA (NA) on the 

constitutive stress-elongation ratio relationship of the PMMA-

PDMS-PMMA elastomers has further been investigated, and 

the results are shown in Fig. 8. The analytical results have been 

plotted as a function of elongation ratio in order to predict the 

experimental results of stress,9 whereas the chain number of 

PMMA (NA) is chosen as 365, 480, 810 and 930. The following 

parameters are used in the calculation using equation (17), 

e.g., EfCscM0d3
0.5/NAvokBTρ=4.9, EfCscM0χ1/6lbA/NAvokBTρd3

0.5= 

0.06, ψ=4 and CscEf
2/kBT=2.8×105Pa. The analytical results in 

Fig. 8A reveal that the stress is decreased from 369 kPa, 297 

kPa, 276 kPa to 200 kPa, with an increase in the chain number 

of PMMA (NA) from 365, 480, 810 to 930.  

NA  σme(105Pa) σms(105Pa) R2 

365 3.69 3.09 93.05% 

480 2.97 2.35 90.83% 

810 2.76 2.76 91.23% 

930 2.00 2.08 94.07% 

 

As discussed above for the topology network of self-

assembled elastomer, increase in the chain number of PMMA 

(NA) results in increases of the diameter of spherically shaped 

domain (d2), whereas the end-to-end distance of a polymer 

chain (h0, h0∝(d3-d2)0.5) is then decreased as the chain number 

of PDMS (NB) is kept at a constant of NB=1065. With the 

decrease in the end-to-end distance of a polymer chain (h0), 

the modulus is therefore increased as revealed in equation 

(17). It is worthwhile to note that the high modulus of the self-

assembled elastomer is resulted from the smaller value of h0, 

Table 2.  Comparison between analytical results and experimental data of the maximum 

true stress in Fig.7. 

Fig. 7 Comparisons of analytical and experimental results 

for the stress as a function of elongation ratio in PBMA-

PDMS-PBMA elastomers with various volume faction of 

PBMA (φA) of φA=0.05, 0.10 and 0.25, at a given segment 

number of PDMS (NB) of NB=1000.15 A) For the constitutive 

stress-elongation ratio curves (using equation (17)). B) 

Divergences of the analytical and experimental results. 

Table 3. Comparison between analytical results and experimental data of the maximum 

true stress in Fig.8. 

Fig. 8 Comparisons of analytical and experimental results15 

for the stress as a function of elongation ratio in PMMA-

PDMS-PMMA elastomers with various segment numbers of 

PMMA, NA=365, 480, 810 and 930. A) For the constitutive 

stress-elongation ratio curves (using equation (17)). B) 

Divergences of the analytical and experimental results. 



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 7  

Please do not adjust margins 

Please do not adjust margins 

leading to a larger true stress under the same elongation ratio. 

Meanwhile, the divergences between the analytical and 

experimental results9 of the PMMA-PDMS-PMMA elastomers 

are calculated using the correlation index (R2), which are 

93.05%, 90.83%, 91.23% and 94.07% for NA=365, 480, 810 and 

930, respectively, as shown in Fig. 8B. The comparisons 

between analytical results and experimental data are listed in 

Table 3. 

3.2 Self-healing behavior in elastomer 
The self-healing behavior plays an essential role to determine 

the mechanical properties of elastomer, where the broken 

polymer chains produce free radicals and the reaction rates of 

self-healing (kh) are governed by the Fick's second diffusion 

law.20,21 Therefore, the reaction rate of self-healing (kh) can be 

expressed by, 
2

2

h hk k
D

t z

 
=

 
                                       (19) 

where t is the time, D=kBT/6πηRh is the diffusion coefficient, z 

is the distance, Rh is the hydrodynamic radius and η is the 

viscosity. The value of η can be further expressed as,21 
3

0 elaN =                                         (20a) 

0elaN N x=                                     (20b) 

where η0 is the initial viscosity, Nela is the segment number of 

elastomer and N0 is initial segment number of the elastomer. 

Substituting equations (14) and (20) into D=kBT/6πηRh, the 

diffusion coefficient can be obtained, 
3

2
3 23

10 0

( )
6

N
B

h

k T
D d d

R N





−

=

= −                         (21) 

In combination of equations (19) and (21), the reaction rate 

of self-healing (kh) of elastomer can be obtained as, 
2

2
0 0

0

2
( ) exp( )

4 2

z

Dt
h h h hl

z z
k k k k d

Dt Dt
= − − −         (22) 

where kh0 is the initial constant of reaction rate and khl is the 

constant of reaction rate under the mechanical loading. 

Figure 9 shows the analytical results of self-healing ratios as 

a function of waiting time, which are also compared with the 

experimental results reported in Ref. [38,39]. Experimental 

data of PEA-co-IBA (PEA: phenyl ether acrylate; IBA: isobornyl 

acrylate) elastomers are used to compare with the analytical 

results of self-healing ratio as shown in Fig. 9A.38 The following 

parameters are used in equations (21) and (22), e.g., kh0=1.1, 

khl=0.45, N=11, d3-d2=1.1 and z(3πη0RhN0
3/2kBT)0.5=71.64. 

While the experimental data of NaSS-co-MPTC (NaSS: sodium 

p-styrenesulfonate; MPTC: 3-(methacryloylamino) 

propyltrimethylammonium chloride) elastomers reported in 

Ref. [39] are used to compare with the analytical results of 

self-healing ratio, as shown in Fig. 9B, whereas the following 

parameters are used in equations (21) and (22), e.g., kh0=1.15, 

khl=0.2, N=11, d3-d2=1.1 and z(3πη0RhN0
3/2kBT)0.5=58.45. It is 

found that the analytical results from our models are in good 

agreements with the experimental data of PEA-co-IBA and 

NaSS-co-MPTC elastomers, which undergo the self-healing as a 

function of waiting time. Meanwhile, the divergences between 

the analytical and experimental results38,39 of the elastomers 

are calculated using the correlation index (R2), which are 

93.77% and 99.03% for PEA-co-IBA and NaSS-co-MPTC 

elastomers, respectively. 

 

 

4 Conclusions 

In this study, we propose a topological dynamic framework to 

investigate the working principle of strain-adaptive stiffening 

and coloration in self-assembled elastomers. The anchoring-

mediated topology signature is explored to describe the 

topological dynamics and transition of self-assembly, 

mechanoresponsive stiffening and mechanochromic coupling, 

in terms of three fractal geometry components, respectively. A 

free-energy equation is firstly developed based on the 

extended constrained molecular junction model, in order to 

formulate the constitutive stress-elongation ratio relationship, 

identify the topological dynamics in mechanochromic coupling 

and decoupling of elastomers, in terms of ternary “rock-paper-

scissors (d2(h0)-d3(h0)-λ)” model, whereas diameter of domain 

(d2) for self-assembly, inter-domain distance (d3) for 

morphochromism and elongation ratio (λ) for mechanical 

elongation. Finally, the proposed framework is proved to be 

able to well predict topological dynamics, mechanochromic 

coupling and self-healing behaviors of self-assembled 

elastomers, and the accuracy of analytical results has then 

been verified using the experimentally obtained data reported 

in literature, which have been well fitted. This newly proposed 

model provides a new mechanism of topology dynamics in 

self-assembled elastomers and also critical insights into the 

physical principles which govern the constitutive relationship 

between molecular self-assembly and mechanochromic 

coupling. 
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