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Abstract

The term lacus generally identified the public fountains in the main streets of ancient
Roman towns, providing for the population daily water demand. The simplest lacus con-
sisted of a stone basin and a spout stone, concealing one or two supply pipes. 35 street
fountains of this type have been surveyed in Pompeii, to gather information on their supply
and its variation in time. A new method was devised for calculating the discharge through
the overflow channel of each lacus, and this value was taken as an estimate of the water
supplied to each fountain. The overflow channel internal cross-section width was meas-
ured at four elevations, and the cross-section profile was reconstructed based on these data.
Three water levels of 1 cm, half of the cross-section height and entire cross section height,
were considered at each channel’s inlet, obtaining a corresponding channel discharge. The
values obtained, ranging from 0.03 to 2.9 /s, were checked against the trajectory of the
fountain water jet, making sure that it remained within the basin length. For 28 fountains
the average discharge was found to be 0.08 1/s when the water was at the lowest level,
0.43 I/s for the intermediate level and 1.18 I/s for a full inlet. The average time of residence
of the water, in the lacus draw basin, was estimated between 11 min and 3 h. An estimate
of the demand of all the town lacus was compared with the capacity of the aqueduct chan-
nel entering at Porta Vesuvio: the town lacus could have been supplied contemporaneously
at the minimum and intermediate discharges.
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Introduction

The street fountains in ancient Roman towns provided for the majority of the population
daily water demand, being the private houses connected to the public mains, limited in
number. The typical and simplest type of lacus was defined by Agusta-Boularot (2008b,
p- 95): a quadrangular basin made of stone slabs, flanked by an upright stone block hous-
ing a lead supply pipe that discharged water through a decorative mask. The water was
stored in the basin and continuously or very often replenished. Water containers could be
filled either under the water jet or by immersion; excess water spilled through an overflow
which, for the Pompeian fountains and many similar examples, consisted in a small chan-
nel carved in the top rim of the basin (Fig. 1).

This type of fountain was built from the Republican age in various towns in Italy, such
as Paestum and Aletrium (Agusta-Boularot 1997) and, starting from the Augustan age, in
the Roman towns of the western provinces (Agusta-Boularot 2008a; Schmolder-Veit 2009).
Some examples are shown Fig. 2. In Pompeii 42 public fountains have been described by
Eschebach and Schafer (1983) in their catalogue; 35 of them present the layout of the sim-
ple lacus described above.

Objectives of the study

Published studies on the Roman lacus fountains have focused on their architectural and
decorative features rather than their hydraulic features. Only recently the role of foun-
tains in the entire network operation was reconsidered (Richard 2012). Therefore, there
are many aspects of fountain design and operation that have yet to be understood. In this
regard, Pompeii presents to its visitors an almost complete water distribution system of the
Augustan to early Imperial age. Although many uncertainties remain on the dating of the
various water structures,' for the purpose of this study, we make the assumption that the
visible fountains were all included in the water distribution network, at least for various
years, before the destruction of the town.

The flowrate supplied to ancient fountains has been estimated for a limited number of
isolated structures. Vannesse et al. (2014) calculated, for three private installations fed by
rear-placed reservoirs in byzantine Apamea,” a flowrate in the range 7 to 33 I/s. Ortoloff
and Crouch (2001) calculated a maximum flowrate of 3.8 /s for each of the ten spouts of
the Ephesus fountain house. Fahlbusch (2006) estimated a flowrate of 1.0 1/s for an Hellen-
istic fountain fed by a terracotta pipe in Priene and 0.75-3.0 I/s for a public fountain con-
sisting of an upright stone for the pressure pipe and a front slab base holding the containers
at the front. The last two examples of fountains are similar in their hydraulic arrangements
and size to the Pompeian fountains. Both Vannesse and Fahlbusch calculated the maximum
fountain discharge, based on the trajectory of the water jet, confined within a specified dis-
tance from the spout. A similar method was applied to 15 Pompeian fountains (Monteleone
2009), obtaining flowrates between 3 and 6.6 I/s, for the water jet reaching the far end of
the basin.

! For the discussion on the evolution of the water system in Pompeii see Eschebach (1996), Ohlig (2001,
pp. 72-78), Jansen (2002) and Keenan-Jones (2015).

2 The fountains consisted of a front basin fed by a back reservoir through a pipe; the basins size ranged
from 1 to 7 m®. The reservoirs were supplied both by rainwater and the public aqueduct.
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In this paper a different method is explored, based on the calculation of the discharge of
the fountain overflow channels, under the assumption that the discharge was related to the
supply of the fountain® (Kessener 2013). The main input data of our calculations are the
diameter of the spout orifices and the size and shape of the overflow channels. The out-
puts obtained are the basin discharge, the trajectory of the water jets at the spouts and the
hydraulic retention time of the basins. A range for the total discharge of 39 Pompeii lacus
is estimated in litres/second and in quinariae, to be compared with the figures reported by
Frontinus for Rome (Rodgers 2004) and with the water discharged by the aqueduct channel
in the castellum divisorium at Porta Vesuvio.

The survey data

The geometric data on fountain spouts and overflow channels was acquired during four
field survey visits, conducted between 2017 and 2019. The fountains were observed in their
present condition and the measurement were taken of the visible elements. Several foun-
tains were reused in modern times, through the insertion of a tap in the original spout: in
one case the dimensions of the spout were not identified, in other three cases the spout
stone was missing or replaced by a modern one.* The overflow channels, which are at the
base of this study, were not altered in modern times. We found that three fountains’ basin
volume was reduced from the original size in ancient times, possibly as a consequence of a
reduced supply; this possibly allowed to maintain unaltered the residence time of the water
in the basin, as explained later in this paper.

The data on the fountains included in Notizie degli Scavi, reporting on excavations over
various years, was very limited.’ Eschebach and Schafer (1983) included in their catalogue
42 public street fountains in Pompeii, giving details of their general layout and describing
the spout stone relief. Out of the 42 fountains in the catalogue, the 35 presenting the layout
of a lacus are the object of our study. Figure 3 identifies the 33 lacus surveyed with yellow
boxes. The yellow, semi-transparent boxes identify Fountains 19 and 10, which were not
accessible at the time of our survey. The white boxes identify the seven fountains with a
layout different from a lacus.®

3 Kessener (2013) identified the possibility of estimating Pompeii lacus supply from the calculation of the
overflow channels discharge and to compare the quinariae supplied to Pompeii lacus with the figures for
Rome, finally estimating a value for the quinaria unit discharge: “Water was taken from the lacus mainly
during daytime, at night they invariably filled up as the water flow never stopped. Surplus water flowed
from the basins through an overflow in the rim, flowing to the street and thence the drains. The outflow
through these overflows of course matched the inflow. From data of basins that have survived the discharge
through the overflows may be determined. This may give a clue of how much water the lacus generally
received, and, as the lacus at Rome took, within rather narrow limits, 2.26 quinariae, an idea, based on
archaeological material, of how much 1./sec one quinaria may have been”.

4 See Table 2. Fountain 31 spout orifice dimensions were not easily identified, Fountains 9, 17 and 23 had
the spout stone missing or replaced by a modern one.

3 For example in ‘Notizie degli Scavi’ of year 1906, the description of Fountains 19 and 20 consisted of a
couple of lines, mentioning the general layout of the fountains; similarly Notizie degli Scavi of year 1879
reports only one line of text, mentioning the finding of Fountain 40.

® Fountains 15 and 36 were not lacus and also there are not sufficiently visible remains. Fountain 25 is
located within a niche on the north side of the Germanicus arch, north of the forum, fed by an upper res-
ervoir (a second reservoir is found within the other base of the arch). Fountains 11, 30 and 38 present the
spout stone carrying the supply pipe, but not the collection basin (see note 13 for hypotheses on their opera-
tion).
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192 M. C. Monteleone et al.

Fig. 1 The simplest type of
lacus (Fountain 34 in Pompeii),
showing the elements surveyed
in our study

Overflow channel

T

B

Fig.2 Examples of lacus fountains in the western provinces: a Italy, Pompeii, b France, Lyon, (Delaval
and Savay-Guerraz 2004, p. 71), ¢ France, Saint Romain en Gal (Brissaud 2004, p. 107), d France, Poit-
iers (Gerber and Bambagioni 2009, Fig. 19), e Italy, Pompeii, f Italy, Paestum, g Italy, Aqui Terme, Corso
Roma, h England, Corbridge Roman fort

The dimensions of the fountains’ basin and a description of the layout of the basins
was given by Nishida (1990). Nappo (2002) provided information on some stretches of the
fountains’ supply pipes, found in deep trenches along the footpaths.
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Fig.3 Aerial view of the archaeological site of Pompeii showing the location of the 33 lacus fountains
(yellow boxes), two lacus fountains not surveyed (yellow, semi-transparent) and seven non-lacus fountains,
excluded from our analysis (white boxes)

The features of the fountains recorded during our survey were the maximum and mini-
mum diameter of the spout orifice, the size and shape of the overflow channels and the
height of the spout orifice over the top edge of the basin.

Recording the overflow channel features and cross-section

The overflow channel was an essential feature of the lacus fountains, directing the excess
water onto the public road. People accessed the fountains from the pavement side only,
especially in the roads open to wheeled traffic. In Pompeii the most frequent orientation of
the fountain is with the spout stone located over the footpath,’ the signs of wear showing at
the side of the spout stone (Fig. 4). The overflow channel is often® on the opposite side, its
position depending on the slope of the road surface.’

We do not have enough information on the dating of the single fountains; some overflow
channels present very worn top edges, while other channels are so well preserved that they
appear hardly used. The amount of wear is also dependent on the stone materials used for
the basin (Fig. 5h and i). We could not find significant calcium carbonate deposits mark-
ing the level of the water either in the basin or on the area wetted by the overflowing water,
below the channel outlet.'”

7 This is attested by the high wear of the top side of the basin stone on either side of the spout. Fountains
17,19 29, 32 and 39 have the spout stone perpendicular to the footpath; in these cases, the signs of wear are
on the footpath side.

8 20 out of 33 fountains have the overflow channel at centre front position, opposite the spout stone.

° On the paving, slope and drainage of Pompeii roads, see Poehler (2017).

10 Only in Fountain 14 were some deposits below the channel outlet visible; in the other cases possibly the
water jet had enough velocity to remain detached from the basin side? It must be noted that some fountains
were put back in use and subject to regular cleaning, in which the original sinter marks may have been lost;
some deposits would have formed during the modern use of some fountains. The chemical analysis of the
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194 M. C. Monteleone et al.

In two cases (Fountain 40 on the Via di Nola and Fountain 18 on Via Stabiana) the
lower surface of the overflow channel at its end is extended for a few centimetres clear of
the stone side of the lacus'! (Fig. 5e). Two fountains, 24 (Fig. 5a) and 27, have more than
one overflow channel.'? Fountain 6, in tufa, does not have a proper channel, but the visible
gap between the two front left elements seems to have been shaped to function as an outlet
(Fig. 5d). Fountain 31, the only one with a brickwork basin (Fig. 5b), lacks a proper over-
flow, the basin possibly being added at a later date.'® Fountain 32 presents an orifice imme-
diately below the overflow channel, with its axis 12 cm lower than the weir channel bottom
(Fig. 5¢) whose function is discussed later. Typically, each overflow channel starts with a
wider entrance cross-section, shaped to favour a smooth water transit, followed by a stretch
with a constant cross-section, slightly sloping up away from the fountain basin. Some chan-
nels slightly taper off towards the outlet section (Fountains 2, 3 4, 7, 9, 12 and 18); in only
three cases (Fountains 23, 26 and 34), the two sides are significantly convergent (Fig. 5h).

Table 1 gives the measure of the top width, the height and cross-section area of the
channels’ inlet cross-section. The size and shape widely vary across the fountains. Para-
bolic, rectangular (Fig. 5f) and trapezoidal cross-sections (Fig. 5g) are found, with a preva-
lence of the latter. For the trapezoidal type the average measure of the top width is 8.9 cm,
the bottom average width is 4.3 cm and the average height is 5.4 cm.

The overflow channel length, equal to the slab thickness, varies between 18 and 34 cm
with an average of 28 cm. Based on these measurements, the channels can be identified, for
the purpose of discharge calculation, as broad crested weirs. The condition that the length
is greater than two times the maximum water level (3.5-9 cm) at the inlet section is veri-
fied for all the overflow channels. The critical water depth occurs in a section within the
channel length, so that supercritical flow is established at the outlet. This, in turn, implies
that the channel discharge is only determined by the geometry and water height at the inlet
cross-section, and not at the outlet cross-section. It was therefore sufficient to record data
only for the inlet cross-section in the survey.

The overflow channel width was measured at three different levels from the bottom
(0, 2 and 4 cm) as well as at the channel maximum height. Starting from these measure-
ments, the section profile was reconstructed by interpolation. This method is illustrated for

Footnote 10 (continued)

sinter deposits was not included in this study; it could be useful for the comparison with the deposits found
in other structures such as in Matsui et al. (2009).

"4 c¢m for Fountain 40 and 1 cm for Fountain 18.

12 Fountain 24 has three overflow channels and Fountain 27 has two.

13 The rim of the fountain basin is depressed at the front, for a depth of 5.4 cm and a width of about 44 cm.
The discharge would have been over 7 I/s if the depression functioned as an overflow channel. Since this
fountain is significantly different from the others, it was not included in the discharge analysis. The spout
stone for this fountain is a monolithic piece, extending down to the basin base. In this regard Fountain 31 is
similar to Fountains 11, 30 and 38, presenting a vertical stone, concealing the pipe, and no collection basin.
One explanation for these fountains is that they returned to the public road, for the public use, the unused
water from nearby premises. Therefore, their supply could have been more discontinuous and reduced in
quantity than the average lacus supply. The retention time would probably have been longer than 4 h if a
collection basin was present. Dessales (2011) also favoured the hypothesis that this type of fountains (iden-
tified as ‘bornes-fontaines’) delivered the ‘aqua caduca’ or unused water, for the benefit of the industrial
workshops nearby. Our suggestion is that Fountain 31 could have been originally a ‘borne-fontaine’, the
brickwork basin being added at a later time, when an increased supply assured the appropriate retention
time of the water.

@ Springer
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Fig.4 a Example of the most common orientation of the fountains in Pompeii, with the spout stone on the
side of the footpath and the overflow channel in front, b signs of wear near the spout stone due to the basin
being accessed from the footpath, ¢ example of a fountain with the stone spout located perpendicularly to
the footpath, showing signs of wear on the footpath side

Fountains 14 and 37 in Fig. 6. In the same figure the discharge curve, obtained as explained
in the following paragraphs, is shown.

Spout orifices and original pipes’ size

The original lead pipes supplying the lacus fountains have never been found within the
spout back stone and orifice, during modern surveys. Nappo (2002) described pipes found
below the footpaths, heading in the direction of some of the fountains; they were cut off at
various distances before the basins. We can get an indication of the diameter of the supply
pipes from the vertical grooves at the back of the spout stone and from the size of the spout
orifice. The only supply pipe remaining visible in Pompeii is behind the basin of Fountain
27 in Vico della Maschera, cut off just above the footpath level (Fig. 7a and b). The on-
going excavations in Regio V have revealed, in the year 2019, a lacus fountain with the
original supply pipe in place (Fig. 7c and d); unfortunately we have not been able to inspect
the fountain or access information on its size and construction details.

We found for Fountain 27 spout orifice a maximum and minimum diameter of 4.9 and
3.5 cm; for the lead pipe at the back a maximum and minimum external diameter of 5.4

@ Springer



196 M. C. Monteleone et al.

Fig.5 Distinctive features of some overflow channels: a Fountain 24, with three overflow weirs; b Fountain
31, with a masonry basin presenting a large lowered front area; ¢ Fountain 32 with an orifice lower than
the original weir; d Fountain 37, with a gap between the two slabs at the front left in place of the regular
channel; e Fountain 40, whose channel bottom is prolonged for 4 cm out from the side of the lacus, f Foun-
tain 13 overflow channel, with the largest rectangular cross-section; g Fountain 4 overflow channel, with a
trapezoidal cross-section of minimum height; h Fountain 26 overflow channel, with neat edges (basin in
travertine) and sides converging towards the outlet; i Fountain 37 overflow channel, with worn edges (basin
in tufa)

and 3.4 cm, a maximum and minimum internal diameter of 3.2 and 2.1 cm. The pipe thick-
ness varied between 4.7 and 5.3 mm.'*

A close visual inspection inside the spout orifices for all fountains showed some small
lead fragments (with dimensions less than 1 cm X2 cm), firmly attached to the stone (Foun-
tains 1, 4, 11 and 24, Fig. 8). Their thickness is in many cases lower than 4 mm; their lead
material has so strongly adhered to the stone that it remained in place when the pipes were
removed. Looking at the pipe fragments found and at the shape of the orifices, in many
cases it is possible to conclude that the lead pipe reached the front edge of the orifice and
the position of the soldered seam along the pipe length was probably at the bottom.

The drawings proposed by various scholars'® also present a lead pipe continuing with
constant diameter up to the spout. Stanco (2009) published data on the spout stones of
the lacus in Alife and assumed that a bronze spout (cannula) was inserted in the orifice
and soldered to the supply pipe. This arrangement is to be considered unlikely in Pompeii,
since the remains of the lead pipe were found near the front of the orifice as described
above, and very few bronze spouts can be seen in the site stores. Furthermore, a reduc-
tion of the pipe diameter by means of a bronze spout would have been needed to increase

14 The size of the pipe is slightly larger than the spout orifice. This has no specific relevance, considering
that other pipelines surveyed along Pompeii walkways present slightly different cross-section measurements
between the two ends of the same pipe (e.g. pipe on the walkway close to I.VII.12 —Casa dell’ Efebo).

15 Eschebach and Schafer (1983, p. 27), Nappo (2002, pp. 93-94).
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Fig.6 Fountain 14, above: on-site measurement of the inlet cross-section width, at various levels from the
bottom. Below: section profile, constructed through interpolation; discharge curve, showing the discharge
of the channel for various water levels

the flow velocity at the jet outlet. As will be described later, the axis of the spout in Pom-
peii’s lacus fountains often points downwards, suggesting that the flow velocities were high
enough at the spout, and that there was no need for a smaller-section cannula, but rather for
a downwards direction to ensure that the water jet was contained inside the fountain basin.
Table 2 reports the maximum and minimum diameters of the spout orifice for 29 out of
the 35 fountains considered in the study (as mentioned earlier, Fountain 10 and 19 were not
accessible, and in Fountains 9, 17 and 23 the spout stone is missing or has been replaced
by a modern one). In Table 2, the estimate of the size of the supply pipe was obtained from
the average diameter of the spout orifice, considering an appropriate pipe thickness. Spe-
cifically, it was observed that the pipes surveyed along Pompeii’s footpaths and in the site
store have a wall thickness ranging between 0.4 and 1 cm, irrespective of the pipe size'®;
therefore, we assumed a constant pipe thickness value of 5 mm as a reasonable average

16 The pipes measured had internal diameter in the range 1.4-5 cm.
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Fig.7 a Fountain 27 in Vico della Maschera, b cross-section of the supply pipe visible behind the basin, ¢
fountain recently excavated in Regio V and d its spout stone, with the original pipe in place (Parco archeo-
logico di Pompei, www.facebook.com/pompeiisoprintendenza/photos/a.1523717371268809/2245875905
719615/type=3 &theater)

value. As a result, the average internal diameter varies from < 2 cm to a maximum of 5 cm,
with an average value of 3.31 cm calculated over 29 fountain basins.

For each pipe, the cross-section area corresponding to the average diameter was divided
by the cross-section area of a Roman quinaria pipe (2.31 cm internal diameter, correspond-
ing to a 4.189 cm? cross-section area), to obtain the corresponding capacity of the pipe
expressed in Roman guinariae units (last row in Table 2). Figure 9 displays the diameter
variability across the 29 fountains, compared with the diameters of the standard Roman
pipes described by Frontinus and commented by various modern authors.!”

The size of the Pompeii fountain supply pipes ranged from smaller than a digitus to
larger than a denaria, with the majority of the pipes (14 out of 29) being close to a senaria

17 Frontinus 1.37-63 (in Rogers 2004); Pace (1986, table 8), Nir-El (2017, table 2).

@ Springer


http://www.facebook.com/pompeiisoprintendenza/photos/a.1523717371268809/2245875905719615/?type=3&theater
http://www.facebook.com/pompeiisoprintendenza/photos/a.1523717371268809/2245875905719615/?type=3&theater

200 M. C. Monteleone et al.

Fig.8 Small portions of the lead supply pipes found attached to the sides of some spout orifices

or settenaria pipe, of diameter of 2.77 and 3.23 cm and capacity of 1.42 and 1.87 qui-
nariae, respectively. The average diameter of 3.31 cm, calculated over 29 fountains, is also
closer to a settenaria rather than an ottonaria pipe.

The average value of quinariae for the fountains of Pompeii is also compared with the
values given by Frontinus for Rome'® in Table 3.

In Pompeii the average value of 2.14 quinariae per lacus is very close to the values
known for Rome, ranging from 2.13 to 2.46 quinariae. This range of quinariae corre-
sponds to the cross-section area of a supply pipe of diameter 3.3-3.6 cm. The similarity in
values possibly confirms the similarity in design and operation of the lacus fountains built
in the two Roman towns.

Various other /acus might remain to be found in the unexcavated areas; it was assumed, in
this study, that a total of 39 fountains of the lacus type might be present. The possible total
supply to 39 lacus fountains is estimated as 83.5 quinariae, based on the average supply of
2.14 quinariae per lacus. This value can be checked against the guinariae computed for the
pipes exiting the castellum divisorium at Porta Vesuvio,'® using the assumptions (Ohlig 2001,
p. 196) that they had diameter of 21 cm.?” The cross-section area of two pipes>! would total to
164 guinariae, while three pipes would add to 246 guinariae.>* The fountains would represent

18 Frontinus, De Aquis 2. 78-96; for a summary of the figures on the supply to the various structures in
Rome: Lanciani (1880) and 1975 reprint, Evans (1994), Wilson (2007); on the reliability of Frontinus fig-
ures: Bruun (2003).

19 Similar considerations on the quinariae capacity of the pipelines exiting the castellum were made by
Hodge (1996), with diameters of 25 and 30 cm.

20 The diameter of the pipe reported by Maiuri (1973) was similar (interior diameters of 22.7 and 17.3 cm)
while the large pipe visible in the stores is composed of two stretches of internal diameters 16 and 19 cm,
17.5 and 22.5 cm.

2l Maiuri (1973) found a mask/fountain spout inside the castellum and provided drawings of the area in
front of the building, underlining the presence of two pipelines directed towards the two east and west ori-
fices in the facade of the castellum; therefore, there is a possibility that the central orifice did not supply the
network but a local lacus, usually present at the city gates.

22 Hodge (1996) also calculated the surface of the lower section of the aqueduct at the entrance of the cas-
tellum as 179 quinariae.

@ Springer



201

9oyLI0 oY) Ul pajtesul Suraq odid urepow € 0) anp ‘rjoweIp [eurS1Io 9y} Anseaw 03 dqrssod Jou sem I,
AaAIns 3y JO Sy 3y} 18 J[QISSIOOE JOU AI2M 6 PUE ()] SUIBIUNO

quo uropou & Aq pade[dar 10 Surssiwu sem 9uo3s Jnods urelunoy oy,

619 vIT 00€ LTT LTI LTT SCE 00€ TWI T  — 00€ $90 T6T 91T 86T — IL€ 6L'E 2vlvumb ‘edIe UONOIS-SOI)
I€€ 007 09T 09T 09T S9% STv SLT SLT — 00F S$T 0TE€ OVE STE — Stb 0y WO Iopweip [eumdjul 3eoay
S0 S0 S0 SO SO SO SO SO SO - SO SO SO SO SO - SO0 S0  wopawnsse ssawpry odid
8§ S 9¢ L€ Ov S§S TS §€ Oy - 09 €€ 6% TS St - 95 09 wo ‘xew (7 20y1I0 Jnods
6 S 9¢ S€ TE 0SS 8 ¥ S€ - 0¥ vT S€ 9¢ Or - €S 0€ wo ‘ur ( 2010 1mods

snovj|

6T 01 avLDU
-mb w0l oSerAy T I¥ OF 66 LS ¥E €€ TE LIE 6T 8T LT 9T YT «£T W 1T ureyunoy
vel - 6CT - €97 9ST Tl Wl - - SLO €TF 86T 01T 691 89v T Tp0  ovlpumb ‘eaIe UONIIS-SSO1)
89C - 0S€ - SLE OLE SLT SLT - - 00T SLY  STE  SEE 00€  00S  SST  0STT WO IOWeIp [RuIdur 9FeIdny
S0 - S0 - SO SO SO SO - - §0 SO SO SO S0 S0 S0 S0  wopawnsse ssowpry odid
sLe - S - ¢S 9¢ o O - - §€ €9 05 S¥ 0¥ 0L 9¢ 0¢ wo ‘xew ( 2oy10 1modg
9¢ - v - 0¥ 8¢ §¢ S¢ - - ST 0OS <S¢ T O0F 0§ §€ 0T wo ‘urw (7 90y1o Jnods
0T 461 8T LT 9T v €1 T O 4 8 L 9 S v ¢ z I urelunog

The supply of the public lacus of Pompeii, estimated from the...

odid A1ddns ayj jo 10joweIp 95BI0AR 2U) JO AJBWIISY PUE SUreIunoj snovj s neduwod Jo 20yL0 Inods ay) Jo s1jowelq g djgeL

pringer

As



202

M. C. Monteleone et al.

55
5.0
45
4.0
35
3.0
25
2.0

Average Pipe Diameter, cm

1.5
1.0

°
[ e denaria 4.62 |
oo
°
e . ottonaria 3.7 °
i °
Averagg .Supply Pipe 3.31 1 .e settenaria 3.23
b senaria 2.77
LA J .' = = 1 LA J
° (XX}
quinaria 2.31
| digitus 1.848 o
°

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Fountain Number

Fig. 9 Distribution of the estimated fountain supply pipe diameter across 29 lacus fountains in Pompeii and
comparison with the diameters of the standard Roman pipes

Table 3 The guinariae supply of the lacus fountains in Rome and in Pompeii

Aqueduct Castella Lacus To Lacus To Lacus Quinariae/lacus Corresponding

Quinariae % pipe diameter,
cm

Aqua Appia* 699 20 92 2260 323 2.46 3.62
Anio Vetus* 1509 35 94 2180 14.5 2.32 3.52
Aqua Marcia* 1472 51 113 256.0 17.4 2.27 3.48
Aqua Tepula* 331 14 13 32.0 9.7 2.46 3.63
Aqua Julia* 597 17 28 65.0 10.9 2.32 3.52
Aqua Virgo* 2304 18 25 51.0 2.2 2.04 3.30
Aqua 3498 92 226 482.0 13.8 2.13 3.37

Claudia/A.

Novus*
Pompeii ? 397  83.5%* ? 2.14 3.31

*Values for the aqueducts of Rome from Frontinus

**Obtained by multiplying the average 2.14 quinariae per lacus by the total number of lacus including the
ones in the unexcavated areas, assumed as 39

51% of the town water supply in the first case and 34% in the second case. Compared with the
figures for Rome, the latter value would be more likely than the former. We do not know yet if,
in Pompeii, the fraction of the supply directed to the various users was significantly different
from the fraction in Rome; future research will allow to identify the water consumption of the
various types of buildings in Pompeii.
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The discharge of the lacus overflow channels

The curve describing the relation between the height of water in the overflow channel and
the flowrate in the channel, known as rating curve, can be obtained by computing three dis-
charges for the three conditions: 1 cm water height at the channel inlet, water height equal
to half of the inlet cross-section height (H/2, half-full channel) and water height equal to
the inlet cross-section height (H, full channel). For each height condition, the correspond-
ing flowrate is obtained as the sum of the flowrates of unit subsections of height /; and
width b, according to the following formula for broad crested weir>®

where g is the acceleration of gravity (9.81 m/s?).

The three flowrates obtained might be assumed as a maximum value for the fountain
minimum continuous supply, intermediate continuous supply and maximum continuous
supply, respectively; in fact there is no certainty that the fountains were supplied with a
constant flowrate throughout the day.

Plotting in a chart the value of discharge corresponding to each water level, we obtained
the rating curve for the overflow channels of the 31 fountains (see previous Fig. 6). Fig-
ure 10 shows examples of the various shapes and sizes of the inlet cross-section and the
corresponding rating curves.

The discharges calculated for each channel and for the three water heights at the inlet
(1 cm, H/2 and H) are given in Table 4. Overall, the minimum discharge, corresponding to
water height of 1 cm, ranges between 0.03 and 0.15 I/s. The intermediate discharge ranges
between 0.12 and 0.95 1/s. The maximum discharge, corresponding to H, ranges between
0.45 and 2.92 I/s.

The trajectory of the water jet for discharge validation

The values of flowrate computed using the geometry of the overflow channels can be ver-
ified, on the base of the corresponding flow velocity and the trajectory of the water jet
from the spout hole. A subset of 28 fountains (Table 5) is analysed, corresponding to those
fountains for which geometric data on both the spout orifice and overflow channel(s) are
available. For each fountain and each flowrate (minimum continuous supply, intermediate
continuous supply and maximum continuous supply) the flow velocity at the spout is com-
puted with the following expression:

V=

Y
i @

2 The formula applies to the condition of the weir crest much larger than the height of water over the
weir, so that the critical height is 2/3 of the water height, which in turns produces a 0.385 coefficient (see
for example Chadwick et al. 2013, p. 457). Although a second experimental coefficient could be applied,
the formula is considered sufficiently accurate for this case. The cross-section is divided in vertical stripes
of 0.2 cm and the sum of the discharges through each stripe is considered as the discharge for the cross-
section.
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where Q is the discharge estimated for the overflow channel(s) and A is the cross-section
area of the supply pipe. The values of velocity are shown in Table 5, columns 6-8. The
horizontal distance from the spout at which the jet impacts the water in the basin (Xj,,) is
calculated, from the above velocity and knowing the spout height over the top of the basin
(H,) with the formula®*:

X, =V : 3

8

The values obtained for the distances X, are shown in Table 5, columns 10-12. Column
13 contains the values of the width of the basin; columns 15-17 contain the ratio between
the distance of the water jet and the basin width (X;,/W). In dark green are identified the
values equal or above one, which means that the jet is not contained within the basin. This
is the case for Fountains 1, 13, 24, 27 28, 40 and 41.

Column 14 identifies with a “Y” notation the fountains for which an evident downward
direction of the spout axis was observed. For Fountains 27 and 40 X,,/W is very close to 1
and the spout axis is oriented downwards, which most likely caused the actual X;,/W value
to be lower than 1. Therefore, their corresponding maximum continuous supply discharge
values can be considered reasonable. In Fountains 1 and 28, the small supply pipe diameter
(< 2 cm, diameters marked in yellow in Table 5, column 2) causes the velocity values to be
significantly larger than in the other fountains.

The final rows of Table 5 contain the average values, calculated over all the 28 foun-
tains considered or calculated with the exclusion of the 7 fountains with improbable values
(highlighted in green). With the exclusion of the improbable values, the computed average
maximum continuous supply of the fountains is 1.18 I/s; the intermediate continuous sup-
ply is 0.43 /s and the minimum continuous supply is 0.08 I/s. The average of the maximum
velocities at the spout is 1.25 m/s and the distance from the spout at which the water jet hits
the water surface in the full basin is 0.31 m, or 34% of the basin width. The variability of
discharge across the various ranges of the spout diameters is displayed in Fig. 11.

Average retention time of water in the fountain basins

The lacus fountains, with their small but available storage capacity, could compensate for
some irregularities in the supply and periods of flow interruption. We expect that, to main-
tain an acceptable water quality and avoid temperature increase® in the warmer periods
of the year, the residence of the water in the basin for long times had to be controlled. At
present, there is no information on possible values of residence time because none of the

24 The formula is derived from the two equations describing the motion of a free water jet, discharged from
an orifice with velocity V, in the x and z directions, and then eliminating the time variable between the two
(see for example Som and Biswas 2008, p. 229).

25 Some fountains are located on the most shaded side of the street, other basins are exposed to the sun,
so that in the summer the water temperature could have been over 20 °C, favouring microbiological over-
growth. A thermal modelling of the basins would be useful to assess the patterns of temperature and veloc-
ity inside the draw basin; this type of modelling was not included in the present study.
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Fountain 17

Fountain 2 25

Fountain 13 8

Fig. 10 Examples of the variability across the overflow channel cross-section shape, size and correspond-
ing discharge curve. Fountains 17 and 2 (among the smallest for cross-section and discharge), Fountain 13
(largest maximum discharge) and Fountain 23 (rectangular inlet cross-section and converging channel) are
considered

published study have discussed the flow field distribution inside an ancient fountain draw
basin.?

The water retention time, also known as residence time or hydraulic retention time
(HRT), is computed as the ratio between the fountain basin volume and the continuous
flowrate through it:

HRT = Yolume @
Discharge

The larger the basin or the lower the flowrate, the less rapid is the water circulation and
mixing in the basin. Three values of hydraulic retention time are obtained for each fountain
basin, for the three discharge conditions; the results are summarised in Table 6 and plotted
in the chart of Fig. 13.

The fact that the basin supply and the basin volume were related through the hydraulic
retention time, becomes clear from consideration of the modifications to some fountains,
in ancient times (Table 6 and Fig. 12). In the case of Fountain 32 (Fig. 12a) the volume
of the basin was not altered, however a 5 cm orifice was pierced below the original over-
flow channel; the calculations have excluded that both the overflow channel and the orifice
could operate simultaneously, since in this case the discharge would have been so large
that trajectory of the water jet at the spout would have surpassed the basin width. When the
water level was up to 2 cm above the orifice lower edge, for a retention time between 24

26 The importance of assessing the velocity and retention time in the lacus of large nymphaea fountains
was outlined by Richard (2016), nevertheless he did not provide any estimate.
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Fig. 11 Relation between the discharge of the overflow channel and the fountain supply pipe diameter

and 92 min, obtained when the original channel was in function, the discharge of the ori-
fice would have been about 50% lower than the discharge of the original overflow channel.

Three fountain basins (Fountains 37, 24 and 6) were reduced in volume, compared to
the original size, by raising the level of the basin bottom; the new and the original bottom
drain holes remain visible. The depth of the basin of Fountain 37 (Fig. 12b) was decreased
from 72 to 60 cm, with a reduction of volume of 16.8%; for this fountain only it was found
that the original spout orifice of 5.25 cm was reduced to 2.5 cm (Fig. 12b); with the flow-
rate proportional to the cross-section area, the reduced flowrate would have been around
22.7% of the original flowrate. In the case of Fountain 24 (Fig. 12c) the bottom was raised
of 28 cm, causing the basin volume to be reduced from 0.74 to 0.45 m>. The original reten-
tion time corresponding to the three overflow channel discharges was 4.2, 22.7 and 62 min,
closer to the other lacus retention times than the values corresponding to the reduced vol-
ume; this would point at a reduction of the flowrate in a similar proportion of the volume
reduction, from the range 0.2-2.9 I/s to the range 0.12—1.8 I/s. In the case of Fountain 6
(Fig. 12d) the new basin bottom was 16 cm higher than the original one, causing a reduc-
tion of about 18.5% from the original volume; we expect that the flowrate decreased too,
however this fountain lacks a regular overflow channel, therefore it was not included in
Table 6. For the above fountains two values of retention time in the current and original
condition were included in Table 6 and in the chart in Fig. 13.

With the exclusions of the flowrates highlighted in Table 5, and considering the original
volume for the three basins modified in time, the minimum HRT (corresponding to the
maximum continuous discharge) ranges between 3 and 27 min, with an average value of
11.7 min. For the intermediate water level (corresponding to the intermediate discharge),
the HRT ranges between 11 and 119 min, with an average value of 37.8 min. For the low-
est flowrate (minimum continuous discharge) the average retention time is calculated as
3 h, ranging between 0.5 and 4.7 h. In fact, 20 out of 31 values remain below 2.9 h. From
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210 M. C. Monteleone et al.

Fig. 12 Fountains presenting elements modified in ancient times. a Fountain 32 modified overflow with the
piercing of a circular hole below the original channel, b Fountain 37 modified basin volume (bottom eleva-
tion) and reduction of the spout orifice, ¢ Fountain 24 modified basin volume (bottom elevation), d Foun-
tain 6 modified basin volume (bottom elevation)

Fig. 13 it is evident that three values (Fountains 1, 5 and 20) of the retention time are
higher than 7 h: it can only be speculated for those three fountains that their flowrate was
most of the time larger than their calculated minimum continuous discharge.

From the discussion presented on the retention time, it comes clear how the permanence
of water in the fountain basin, under solar radiation would have resulted in an alteration of
the water temperature: was the hydraulic retention time the variable determining the size of
the draw basin in any ancient fountains, especially in the warmer climates®’?

27 In Pompeii the basins’ volume ranges from 0.4 to 1.2 m® with an average of 0.7 m>. Looking at the
size of some basins found in Gaul: Bavay lacus (Loridant 2004): base 1.75x1.93 m; Lyon, clos du Verbe
Incarné” (Delaval and Savay-Guerraz 2004) 1.75x1.15x1.05 m; Saint Romain en Gal (Brissaud 2004):
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Fig. 13 Values of hydraulic retention time in the fountain basins for the three discharge conditions consid-
ered. The question marks identify the values higher than 7 h, the coloured dots identify the HRT for Foun-
tains 24, 32 and 37 corresponding to a reduced basin volume

Discussing the lacus operation and the total water supplied
to the town fountains

The simple lacus basin, as well as the front draw basin in other, larger fountains, was
designed to overflow; this is an assumption accepted by all scholars.?

Once that the lacus basin was filled (for example during the night), a continuous trickle
of water might have been sufficient to maintain it full. In Pompeii, the trickle discharge
would correspond to the calculated average minimum discharge activating the overflow,
0.08 1/s. This flowrate would be similar to the one supplying the lacus of Timgad and
Herculaneum shown in Fig. 14. Once a basin with an average depth of 0.69 cm was full

Footnote 27 (continued)

Rue de Portique 1.70%3.20 m, Rue des Thermes 1.10x2.55 m; Poitiers (Gerber and Bambagioni 2009)
1.75 m® and 2.4 m>. In Paestum (Schmélder-Veit 2009, p. 111) basins have also dimensions larger than
Pompeii: decumanus maximus E 1.3X2.5%0.64 m or 1.8 m?; cardo maximus N 1.40%1.21x0.77 m or
1.19 m®. The larger fountains and nymphaea, equipped with front draw basins of up to 80 m in length,
might have been supplied with higher flowrates, so that similar retention times were maintained: more
information and research is needed in this regard.

28 One demonstration that lacus were kept full is also the fact that in some monumental fountains the
front full lacus discharged into secondary front labra or basins through its overflow, as in the Tritons nym-
phaeum in Hierapolis and the angle fountain of Althiburos (Lamare, Le fontaines monumentales en Afrique
Romaine 2019, Fig. 136), These secondary basins could not operate without the main lacus being full.

@ Springer



212 M. C. Monteleone et al.

(average basin size 0.90x 1.12 m), the flowrate of 0.08 1/s would fill a 5 L container,?’

placed under the jet, in around 1 min, and allow to fill almost 58 X5 L containers per hour,
without any drop in the level of water in the basin. Possibly at some hours of the day the
number of users could have been larger: further 50X 5 L containers filled per hour would
have caused a 25 cm drop.

Therefore, at the minimum ‘trickle’ of water, 108 containers of 5 L could be filled per
hour, before the level dropped below two-thirds of the basin average depth. The intermedi-
ate average discharge of 0.43 /s, calculated for the case of overflow channels half full, is a
considerable discharge, being almost threefold the maximum quantity of water discharged
by a kitchen tap. It would have allowed to fill almost 310X 5 L containers per hour, without
any drop in the water level. Therefore, the chance that the basins were maintained quite full
during the day (if the mentioned discharges were assured) was possible, in practice.

When the lacus ran full, the supply coincided with the overflow channel discharge; in
limited periods of time the lacus water level could have been lower than the overflow level,
however there are indications that the target was to maintain some water discharge even
at low supply as explained in the previous section, regarding the retention time and the
changes in some basins’ volume.

We cannot assume that the supply was constant throughout the day, however we do not
know how it varied within the day. The pipelines connecting the water towers to the public
fountains were found in limited lengths and no taps were ever found; we assume that some
way to stop the supply to the basin was needed to perform regular maintenance, however
there is not enough information at present, to understand if any fountain was disconnected
during some parts of the day or in the night. The water marks in the basins are not suffi-
ciently evident to identify the most recurrent level of the water during the regular fountain
operation.

We would like to draw some considerations on the flowrates needed in the case where
all the lacus of the town (assumed as 39 in number) operated simultaneously, with the
three discharges calculated in this study. The total supply, calculated by multiplying the
average discharges by 39, would be 3.1, 16.8 and 46.0 I/s for the minimum, intermediate
and maximum discharge. The values exclude the supply to other types of public fountains,
different from a lacus, such as the arch of Germanicus at the north east end of the forum.

The values can be compared with the discharge of the aqueduct channel, supplying the
castellum divisorium at Porta Vesuvio. Data on the geometry of the channel was made
available by Ohlig (2001, p. 23 and chapter 4), for a length of about 112 m from its out-
let. The channel width and the bottom level®” measured at the various cross-sections, was
entered in a series of steady open channel flow simulations, considering various discharge
values.>! The resulting water surface profiles were compared with the data on the sinter
deposit marks on the two sides of the channel,* finding out which flowrate generated the
best matching profile.

2 For example, a hydria type of container, ranging from 20 to 40 cm in height might have carried up to 6
L of water.

30 Ohligh, op. cit, 299-301.

31 The HEC-RAS open channel modelling (https://www.hec.usace.army.mil/software/hec-ras/) included
85 cross-sections, starting from the first linear mark in the bottom of the castellum divisorium tank, up to
87 m upstream along the channel. Two values of Manning’s roughness coefficient of 0.014 and 0.019 s/
m1/3 (Motta et al. 2017) were used. Since we could not validate the data on site and confirm the precision
of our calculations, the results of the simulations are proposed only as a reference value and no other detail
is given within this study.

32 Ohlig, op. cit. pp. 302-303.
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Fig. 14 Example of overflowing lacus supplied with a flowrate close to the minimum average discharge
calculated for Pompeii fountains. a Timgad (courtesy of El-hadi Tebbane, flickr public collection), b Hercu-
laneum (Hartnett 2008)

There was not a good agreement between the sinter marks and the profile within the last
4 m of the channel, having a reduced cross-section; for the rest of the channel the lowest
flowrate value could be identified as 20-25 1/s, the same value proposed by Ohlig, while
the highest flowrate was close to 60 I/s, higher than the value 45 1/s proposed by Ohlig.

The 39 lacus minimum total discharge of 3.1 I/s represented 14% of the minimum chan-
nel discharge and 5% of the maximum channel discharge. The lacus intermediate total dis-
charge of 16.8 1/s represented 67% of the aqueduct channel minimum discharge and 28%
of the aqueduct channel maximum discharge. The lacus maximum total discharge of 46 1/s
was almost double the minimum aqueduct channel discharge and 76.6% of the maximum
aqueduct channel discharge, which would have left 23.4% (or 14 1/s) to other public and
private uses.>* Given that the data available for the lacus in Rome identifies a percentage
of the total aqueduct discharge between 2.2 and 32% (Table 3), we are inclined to con-
clude that the minimum and intermediate lacus discharges, calculated in this study, might
have been more probable than the maximum supply values. Without a quantification of
the water used by private houses, public buildings and workshops, any other discussion on
Pompeii water demand remains purely abstract.

So, if the most likely discharge was close to the minimum and intermediate values, why
the overflow channels were oversized? The overflow channel might have been designed
to readily discharge an occasional surplus water in the water towers, acting as a pressure

33 1t is not possible to provide more precise results without carrying out a new channel survey. However it
is unlikely that the channel could carry more than 60 I/s in its final layout.

3* Various authors have estimated that up to 100 houses in Pompeii could have been supplied by the public
water system (see for example Dessales 2008); considering that the water supply of Casa dell’Efebo and
Casa dell’Orso was estimated in the range 0.45-0.80 1/s (Monteleone 2020), the simultaneous supply of the
private residences could have demanded from 45 to 80 I/s. The fact that this figure is close to the maximum
supply of the aqueduct channel, possibly suggests the use of a timed supply, unless another aqueduct line
was present.
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and flowrate valve; if this was the case their operation was not very efficient, being various
water towers covered with thick deposits, formed by the water overflowing from the top
tank.

Conclusions

In this study, a survey campaign was carried out in Pompeii archaeological site, gathering
new data on the size of the spout orifices for 29 lacus fountains and on the size of the over-
flow channels for 31 lacus fountains.

A new method for estimating the water supplied to a lacus from the discharge of its
overflow channels was introduced. This was done for the lowest, intermediate and highest
assumed discharges. The size of the spout orifice for most of the fountains was recorded,
enabling the size of the supply pipe to be deduced. By applying the calculated overflow
discharges to the spout pipes, information on the flow velocity was derived. By calculating
the water jet trajectory at the spout, it was possible to comment on what values of discharge
might have been too high, so that they were excluded from the rest of the calculations.

A new parameter, the hydraulic retention time, relevant in the understanding of the qual-
ity of the water available in the lacus draw basins was introduced, with values for the Pom-
peian lacus lower than 3 h.

Considerations on the total discharge needed to supply water to 39 lacus, calculated in
I/s and in gquinariae, concluded that the castellum divisorium and the aqueduct channel
discharging into it, could deliver the lowest and intermediate fountain discharges, but prob-
ably could not support the highest discharges. Indications on some variations in time, in the
supply of some fountains, have been given.

The results presented in this study can be confirmed with the hydraulic analysis of the
pipelines connecting the fountains to a nearby water tower; we hope to complete this other
study and make it available soon.
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