Thermodynamics shapes the biogeography of propionate-oxidizing syntrophs in paddy field soils

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Environmental Microbiology and Environmental Microbiology Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>EMIR-2021-0816</td>
</tr>
<tr>
<td>Journal:</td>
<td>Environmental Microbiology Reports</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>EMIR - Brief report</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>17-May-2021</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Jin, Yidan; Peking University
Jiao, Shuo; Northwest Agriculture and Forestry University
Dolfing, Jan; Northumbria University
Lu, Yahai; Peking University, College of Urban and Environmental Sciences |
| Keywords: | Rare biosphere, Propionate syntrophs, Biogeography, Methanogenesis, Paddy soil |
Thermodynamics Shapes the Biogeography of Propionate-Oxidizing Syntrophs in Paddy Field Soils

Running title: Biogeography of Propionate-Oxidizing Syntrophs

Yidan Jin,¹ Shuo Jiao,¹, ² Jan Dolfing,³ Yahai Lu¹*

¹College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
²Present address: State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
³Faculty of Engineering and Environment, Northumbria University, Newcastle-upon-Tyne, NE1 8QH, England, UK

*Corresponding author: luyh@pku.edu.cn; Tel., +86 10 62750669; Fax, +86 10 62750669.

Competing interests: The authors declare that they have no competing interests.
Summary

Soil biogeochemical processes are not only gauged by the dominant taxa in the microbiome but also depend on the critical functions of its “rare biosphere” members. Here we evaluated the biogeographical pattern of “rare biosphere” propionate-oxidizing syntrophs in 113 paddy soil samples collected across China. The relative abundance, activity and growth potential of propionate-oxidizing syntrophs were analyzed through sequencing bacterial 16S rRNA genes and anaerobic incubations to provide a panoramic view of syntroph biogeographical distribution at the continental scale. The relative abundances of four syntroph genera, *Syntrophobacter*, *Pelotomaculum*, *Smithella* and *Syntrophomonas* were significantly greater at the warm low latitudes than at the cool high latitudes. Correspondingly, propionate degradation was faster in the low latitude soils compared with the high latitude soils. The low rate of propionate degradation in the high latitude soils resulted in a greater increase of the total syntroph relative abundance, probably due to their initial low relative abundances and the longer incubation time for propionate consumption. The mean annual temperature (MAT) is the most important factor shaping the biogeographical pattern of propionate-oxidizing syntrophs, with the next factor being the soil’s total sulfur content (TS). We suggest that the effect of MAT is related to the thermodynamic conditions, in which the endergonic constraint of propionate oxidation is leveraged with the increase of MAT. The TS effect is likely due to the ability of some propionate syntrophs to facultatively perform sulfate respiration.

Keywords: Rare biosphere, Propionate syntrophs, Biogeography, Methanogenesis, Paddy soil.
Introduction

The soil microbiome plays a vital role in regulating global biogeochemistry. It has been recently documented that in spite of the immense biodiversity of the soil microbiome, only a few hundreds of phylotypes are prevalent across global soils and that these dominant phylotypes display distinct biogeographical distribution according to their habitat preferences (Delgado-Baquerizo et al., 2018). The factors shaping the biogeographic patterns of the global soil microbiome include climatic factors, edaphic properties and biological interactions (Garbeva et al., 2004; Schlatter et al., 2015; Bahram et al., 2018; Rillig et al., 2019; Steidinger et al., 2019). Identification of soil dominant taxa, their geographical distributions and the controlling factors provides a “priority” list for cultivation and genomic scrutiny that shall help in decoding biogeochemical mechanisms and pave a way toward developing global Earth system models that are soil context-dependent (Delgado-Baquerizo et al., 2018; Crowther et al., 2019; van den Hoogen et al., 2019). The dominants-focused approaches, however, will inevitably overlook the function of “rare biosphere” specialists (Lynch and Neufeld, 2015). It has been understood that biogeochemical processes are not only gauged by dominant taxa that dictate biomass turnover but also depend on critical functions of specialist members (Crowther et al., 2019). A typical example is microbial syntrophs, which play a critical role in anaerobic decomposition of organic matter and methanogenesis but have only a low relative abundance in natural environments like paddy field soils (Lueders et al., 2004; Gan et al., 2012).

Complex organic matter in anoxic environments is degraded by an anaerobic food chain comprising primary and secondary fermenters, homoacetogens and methanogens (Glissmann et al., 2001; Stams and Plugge, 2009). Polymers are initially converted to
oligomers and monomers and subsequently fermented to short-chain fatty acids (SCFAs),
alcohols, acetate, and so on. A series of SCFAs and alcohols are transiently accumulated
as intermediate products during the process (Glissmann and Conrad, 2000; Glissmann et
al., 2001; Rui et al., 2009; Noll et al., 2010). Therefore during the anaerobic
decomposition of complex organic matter, a quite portion of the carbon flows through the
SCFAs, which are subsequently degraded to acetate and \(\text{CO}_2 \) by secondary fermenters (i.e.
the syntrophs) (Schink, 1997; Schink and Stams, 2006; McInerney et al., 2009; Stams and
Plugge, 2009). Propionic acid, one of the major SCFAs, accounts for up to 30% of the
total \(\text{CH}_4 \) formation in paddy soils (Krylova et al., 1997; Glissmann and Conrad, 2000).
The process of propionate degradation is thermodynamically more constrained than that
of ethanol and butyrate, making propionate degraders being slower in growth and more
sensitive to environmental conditions (Schink, 1997; Boe et al., 2010; Mueller et al., 2010;
Hidalgo-Ahumada et al., 2018). Identifying propionate-oxidizing key taxa and delineating
their biogeographical distribution are therefore important for better understanding and
predicting organic matter decomposition and carbon cycling in anoxic environments
including natural wetlands and paddy field soils.

All known propionate-oxidizing syntrophs had in pure cultures so far fall into four
bacterial genera: *Syntrophobacter*, *Pelotomaculum*, *Smithella* and *Desulfotomaculum*
(Sieber et al., 2012; Hidalgo-Ahumada et al., 2018; Dyksma and Gallert, 2019). Their
importance in anoxic environments, such as paddy field soils and natural wetlands, has
been demonstrated by using various approaches such as enrichment cultivation,
DNA/RNA stable isotope probing and meta-omics technology (Lueders et al., 2004; Li et
al., 2015; Tveit et al., 2015; Peng et al., 2018; Xia et al., 2019). Recently, a few candidate
taxa (e.g. *Ca. Syntrophosphaera thermopropionivorans* from the phylum *Cloacimonetes*,

...
Ca. Syntrophopropionicum ammoniitolerans from the family Peptococcaceae and member from the family Desulfobulbaceae) were proposed to be capable of performing syntrophic propionate metabolism (Dyksma and Gallert, 2019; Singh et al., 2021). The ecophysiology and environmental significance of these organisms however have remained unclear.

Paddy field soils are human-managed ecosystems and are important contributors to global CH₄ emissions (Thauer, 1998; Conrad, 2009). About 90% of paddy fields are located in Asia with 20% of that in China (Haefele et al., 2014). Rice production in China is dominated by irrigated systems, which are distributed mainly in the lowland of eastern China, extending from the warm sub-tropics at 18°N latitude to the cool temperate regions at 50°N (Deng et al., 2019). The long history of rice cultivation makes the region an ideal site for microbial biogeography investigations that are independent of large scale variations in vegetation and soil type. In the present study, we collected 113 paddy field soils from different sites across eastern China covering a latitudinal distance of 3689 kilometers. The potential for propionate degradation in each soil was evaluated through anaerobic incubations in the laboratory. The composition and relative abundance of four known genera of propionate oxidizing syntrophs in original soils and soil samples after anaerobic incubations were investigated using high throughput sequencing of bacterial 16S rRNA genes. We show here that temperature and the total sulfur content in soil are the most important factors shaping the biogeographic distribution and functional potential of propionate-oxidizing syntrophs in paddy field soils at the continental scale.

Results and Discussion
Biogeographical distribution of propionate syntrophs

A total of 6204541 high quality sequences of V3-V4 regions of the bacterial 16S rRNA genes were obtained from 113 paddy soil samples, which were clustered into 27411 OTUs. The most dominant OTUs were affiliated to *Proteobacteria*, *Firmicutes*, *Actinobacteria*, *Chloroflexi*, *Acidobacteria*, *Nitrospirae* and *Gemmatimonadetes* (Fig. S1).

For the present study we focused on four genera of propionate-oxidizing syntrophs (i.e. *Syntrophobacter*, *Pelotomaculum*, *Smithella* and *Desulfotomaculum*) and *Syntrophomonas* (Fig. S2). A total of 30 OTUs belonging to these five syntroph genera were obtained. Members of the genus *Syntrophomonas* are not known to oxidize propionate but butyrate and fatty acids up to C_{10} (Zhang et al., 2004). The inclusion of *Syntrophomonas* in our analysis was due to the fact that *Smithella*, which utilize the C_{6} dismutation pathway \([2\text{CH}_3\text{CH}_2\text{COO}^- \rightarrow \text{CH}_3\text{COO}^- + \text{CH}_3\text{CH}_2\text{CH}_2\text{COO}^-]\), can release butyrate as an intermediate product, which is then metabolized by *Syntrophomonas* (Xia et al., 2019). *Desulfotomaculum* was included, even though their relative abundances were very low (Fig. S2, 3), because some *Desulfotomaculum* species such as *D. thermobenzoicum* and *D. thermocisternum* have been known to utilize propionate in coculture with methanogens (Nilsen et al., 1996; Plugge et al., 2002) and because *Pelotomaculum* species are phylogenetically a branch of *Desulfotomaculum* (Imachi et al., 2006; Imachi et al., 2007).

The total relative abundance of the five syntroph genera in combination, referred to as synTotal, ranged from 0.01 to 0.34% across 113 soil samples. This low relative abundance certificates that syntrophs in paddy soils belong to a subset of the “rare biosphere” community (defined as individual species or OTUs accounting for <0.1% of the total relative abundance). Albeit “rare” in relative abundance, the synTotal displayed...
a distinct geographical distribution, showing the highest relative abundance in the warm
low latitude soils and gradually decreasing towards the high latitude regions (Fig. 1A).
Conventionally the geographical division separating China into the south (low latitude) and the north (high latitude) regions follows to the Qinling Mountains-Huaihe River Line (latitude ≈ 32°), a critical geographical boundary for climate, landform and soil conditions (Qi et al., 2016). We summarized our soil samples accordingly into a low latitude and the a high latitude group, respectively (bottom-left of Fig. 1A). The mean relative abundance of the low latitude group (South) was significantly greater (by 1.84-fold) than that of the high latitude group (North). In line with this, the α-diversity of syntrophs, estimated based on OTU richness, significantly decreased with increasing latitude (Fig. 1B). Having found this, we then identified the key environmental factors related to the synTotal distribution through Spearman correlation analysis. Mean annual temperature (MAT) and total soil sulfur (TS) were identified as the two most important factors, followed by ammonium-nitrogen (NH$_4^+$-N), soil organic matter (OM), microbial biomass carbon (MBC) and total nitrogen (TN) (Fig. 1C). Soil cation exchange capacity (CEC) and pH showed negative correlations. The importance index estimated based on the Boruta algorithm reiterated that MAT and TS were the two most important factors linked to the biogeographical distribution of synTotal (Fig. 1C).

To compare the distribution of different syntrophs, the relative abundances of five syntroph genera were individually analyzed (Fig. S3). The distributions of *Syntrophobacter, Pelotomaculum, Smithella* and *Syntrophomonas* were consistent with the distribution of the synTotal (Fig. S3A-D). *Desulfotomaculum* was an exception, showing the highest abundance in the middle latitude regions (Fig. S3E). Division of the low and high latitude groups revealed that the mean relative abundances of
Syntrophobacter, Syntrophomonas and Pelotomaculum were significantly greater in the low latitude regions than in the high latitude regions (Fig. S3F), in consistence with the synTotal. *Syntrophobacter* had the highest mean relative abundance followed by *Syntrophomonas* and *Smithella*, while *Pelotomaculum* and *Desulfotomaculum* showed very low relative abundances (Fig. S3F).

Biogeographical pattern of syntroph functioning potentials

Next we evaluated the biogeographical pattern of syntroph functioning potentials. For this purpose, fresh soil samples were incubated under anaerobic conditions at 30°C with addition of 10 mM propionate. We tracked CH₄ production until >90% of the added propionate had been consumed. Three distinct methane production patterns were identified according to the time “lapse” required for CH₄ production from propionate oxidation (Fig. 2). Pattern I comprised 45 soil samples with a time lapse of 13 d to 27 d, representing the high rate group of syntrophic metabolisms (Fig. 2A). The majority of soil samples in this group was located at the low latitudes. Pattern II, comprising 51 samples and representing the median rate of syntrophic metabolisms (28 d to 43 d) did not show a distinct latitudinal tendency (Fig. 2B). The pattern III group comprising 17 soil samples required 44 d to 82 d for CH₄ production from propionate oxidation and hence represented the low rate group. The soils of this group were distributed mainly in the cool high latitude regions (Fig. 2C). The SCFAs analyses further underpinned and justified the separation of soil samples into three groups (Fig. 3A). Acetate was the major intermediate detected in all samples (Fig. 3B). Butyrate was detected in 28.3% of soil samples (detection limit of 0.05 mM) (Fig. 3C), most likely as an intermediate product.
from the C₆ dismutation pathway of *Smithella*. The highest butyrate concentrations occurred in the pattern III soils (Fig. 3C). Taking all soil samples together, the time lapse for methanogenesis from propionate degradation displayed an explicit biogeographical pattern, being significantly slower in the high latitude soils than in the low latitude soils (Fig. 4A). Linear least squares regressions revealed that the time lapse for methanogenesis was significantly negatively correlated with the relative abundance of synTotal in original soils, MAT, TS, and other edaphic factors including soil OM, MBC, available Fe, Cu and Mn (Fig. 4C). The functional potential of propionate degradation can also be inferred from the maximum rate of methanogenesis (Fig. 4B), which supports the biogeographical tendency revealed by the time lapse.

Shifts in microbial community during anaerobic incubation with propionate

At the end of the anaerobic incubations, the structure of the microbial communities in the soil samples was revisited. The community composition at the phylum level did not show significant changes between the original soil samples and those after anaerobic incubations. The relative abundances of a few phyla, however, had changed markedly (Fig. S4A). Specifically, the relative abundances of *Proteobacteria* and *Acidobacteria* decreased during the incubations while those of *Actinobacteria, Firmicutes* and *Chloroflexi* were increased. As expected, the α-diversity of the bacterial communities at the OTU level showed a substantial decline at the end of the incubation compared with the original soils (Fig. S4B). The β-diversity at the genera level showed the separation of soil samples into two clusters for the low latitude and the high latitude soils, respectively (Fig. S4C). The co-occurrence network analysis of the top 10% OTUs confirmed that the
OTUs for the low and high latitude regions tended to group separately (Fig. S4D). These results indicate that the bacterial community shifted significantly during anaerobic incubation, while the separation of metacommunities into the low latitude and the high latitude groups remained robust.

The relative abundance of syntrophs except *Desulfotomaculum* had increased markedly after the incubation with the maximum relative abundance of synTotal reaching 12.5%, indicating significant growth. We estimated the increase of individual syntrophs by calculating the logarithmic (log$_2$) fold change (R) of the relative abundance before and after the incubation. The relative abundance of *Desulfotomaculum*, being low right at the beginning, did not change over the incubation (data not shown). The other four genera showed significant increases, but to different extents (Fig. 5). *Pelotomaculum* showed the greatest increase, followed by *Smithella* and *Syntrophomonas*, while *Syntrophobacter* exhibited the lowest increase (Fig. 5F). Strikingly, the relative increases of syntrophs showed an opposite geographic tendency compared with their relative abundances in the original soils (Fig. 2). The log$_2$R values for *Syntrophobacter*, *Syntrophomonas* and *Smithella* increased with the increase of latitude (Fig. 5A, B, D). The values for *Pelotomaculum* also increased with latitude, though showing the highest value at the middle latitude (Fig. 5C). These results indicate that the relative abundance of propionate syntrophs after anaerobic incubation increased to a greater extend in the high latitude soils compared to the low latitude soils.

Given their low relative abundances and their critical roles in oxidizing intermediate products during anaerobic decomposition of organic matter, propionate-oxidizing syntrophs represent a typical example of rare but important taxa in paddy soil microbiome. Here we show that the relative abundance of propionate syntrophs is
significantly correlated with MAT (Fig. 1). Based on the time lapse for propionate-fueled methanogenesis, we further reveal that the biogeographical pattern of syntroph functioning potentials (Figs. 2, 3) is in accordance with their relative abundances in soils. It has been documented that within the physiological range, the microbial diversity, metabolic activity and population growth rates in terrestrial ecosystems increase exponentially with temperature (Zhou et al., 2016). Hence, climate warming is expected to accelerate temporal turnover and divergent succession of microbial communities in soils (Guo et al., 2018; Guo et al., 2019). In response to the increased temperature, microbiota can also modulate metabolic and trophic interactions through shifting functional guilds (Tveit et al., 2015). Syntrophs are known to have a specific lifestyle by living at thermodynamic limit. Syntrophic propionate degradation has been revealed to be temperature sensitive (Tveit et al., 2015). In order to obtain a deeper insight into the temperature effect, we calculated the Gibbs free-energy changes ($\Delta G'$) for the reaction of propionate oxidation $[\text{CH}_3\text{CH}_2\text{COO}^-_{(aq)} + 2\text{H}_2\text{O}_{(l)} \rightarrow \text{CH}_3\text{COO}^-_{(aq)} + 3\text{H}_2(\text{g}) + \text{CO}_2(\text{g})]$ (Fig. 6A). ΔG^0_f and ΔH^0_f values for acetate and propionate were obtained from the database established by Shock and Helgeson (Shock and Helgeson, 1990). We put temperature as the only variable with other variables set to standard conditions and calculated the $\Delta G'$ as described by Hanselmann (Hanselmann, 1991). The calculated $\Delta G'$ decreased linearly with temperature at a rate of -0.44 kJ mol$^{-1}$ °C$^{-1}$ (Fig. S5). Consequently, the cool high latitude regions showed significantly higher positive values of $\Delta G'$ than the warm low latitude regions (Fig. 6A). The geographical distribution of the Gibbs free-energy changes is in corroboration with the linear positive correlations of synTotal and the maximum rate of CH$_4$ production with temperature (Fig. 6B,D) and with the negative correlation for the time lapse of methanogenesis from propionate degradation (Fig. 6C). These correlations
suggest that the decrease of Gibbs free-energy changes in the southern regions of China alleviates the thermodynamic tension, hence supporting the greater abundance and functional potential of propionate-oxidizing syntrophs compared with those in the northern regions. It has to be noted that the values of $\Delta G'$ depicted in Fig. 6A are positive due to the use of standard conditions except temperature. In reality, negative $\Delta G'$ values are to be expected due to low in situ concentrations of H$_2$ and acetate (Schutz et al., 1988; Kramer and Conrad, 1993). Fluctuations in concentrations of substrates and products actually can exert a significant impact on $\Delta G'$, especially the fluctuations in H$_2$ as three moles of H$_2$ are produced per mole of propionate oxidized in the reaction mentioned above. Indeed, due to significant seasonal and spatial variations, the explanatory power of thermodynamics hinging on in situ concentrations of substrates and products has to be applied with care to infer geographical patterns at a large distance scale. Only very few studies have determined methanogenic substrates and products under quasi-steady conditions in paddy soil, which showed that H$_2$ concentrations were mostly lower than a few Pa (Schutz et al., 1988; Kramer and Conrad, 1993). Accumulation of such observations from different locations shall help shape a better understanding about geographical distributions of syntrophic organisms.

We found that the total sulfur content of the soil was the second most important factor influencing propionate syntroph biogeography. This was possibly due to the fact that many of propionate syntrophs, such as *Syntrophobacter fumaroxidans* and *Pelotomaculum thermopropionicum*, are facultative sulfate reducers (Harmsen et al., 1998; Imachi et al., 2002; Sedano-Nunez et al., 2018). In the presence of sulfate these organisms tend to perform anaerobic sulfate respiration instead of syntrophy with methanogens, maximizing energy conservation (Van Kuijk and Stams, 1995; Rebac et al.,
1996; Worm et al., 2014; Li et al., 2018; Sedano-Nunez et al., 2018). Notably, while the relative abundances of *Syntrophobacter, Smithella* and *Syntrophomonas* in paddy soils were significantly correlated with TS, that of *Pelotomaculum* was not (Fig. 1C). Therefore, individual syntrophs have different responses to TS. Besides TS, the relative abundances of syntrophs were also positively correlated with the contents of soil OM, total N, MBC; additionally the functioning potential was correlated with the contents of trace elements Fe, Cu and Mn (Fig. 4C). Since a high soil OM content is usually associated with high TN, MBC and trace element contents and even TS, these edaphic factors are probably co-variables, yet the positive correlations likely indicate the favorable living conditions for most microbes including syntrophs.

Anaerobic incubation with propionate caused a marked shift in the soil bacterial community (Fig. S4). Specifically, the relative abundances of syntrophic populations increased by up to 29-fold over the incubation period. The increase in relative abundances, however, differed among the five syntroph genera. *Pelotomaculum* showed the greatest growth, followed by *Smithella* and *Syntrophomonas* while *Syntrophobacter* and *Desulfotomaculum* grew the least (Fig. 5). These results indicate that *Pelotomaculum* species have the most potential to be active in paddy soils across a wide range of geographical locations when favorable conditions become available. *Smithella* in combination with *Syntrophomonas* are the next group with high metabolic potentials, while *Desulfotomaculum* showed virtually no response. Compared to the other three syntroph genera (*Pelotomaculum, Smithella* and *Syntrophomonas*), *Syntrophobacter* had the highest mean relative abundance in original soils (Fig. S3) but showed the least increase after the incubation (Fig. 5). Probably, under a warmer 30°C condition during the incubation (compared with the mean summer temperature of 17-29°C across sampling
sites), *Syntrophobacter* were less competitive in utilizing propionate than the other syntrophs (Gan et al., 2012; Chen et al., 2020). Alternately, it is also likely that *Pelotomaculum* and *Smithella* reacted faster than *Syntrophobacter* when an adequate concentration of propionate (10 mM in this study) was supplied. *Pelotomaculum* and *Smithella* are known to use the methylmalonyl-CoA (MMC) pathway and the C$_6$ dismutation pathway, respectively (Liu et al., 1999; de Bok et al., 2001; Mueller et al., 2010; Xia et al., 2019). Due to the necessity of only two electrons released from the C$_6$ pathway compared with six electrons from the MMC pathway per propionate oxidized, *Smithella* are considered to have a larger window of opportunity in environments than the MMC-utilizing syntrophs (Dolfing, 2013). The calculation of $\Delta G^\text{'}$ values indicates that the energetics of the C$_6$ pathway is less sensitive to temperature than the MMC pathway (Fig. S6). Consistent with this, we found that the maximum increase of relative abundance occurred at the middle latitudes for *Pelotomaculum* but farther north for *Smithella* and *Syntrophomonas* (Fig. 5A vs B and D). Together with the detection of butyrate as a significant intermediate (Fig. 3C), our results suggest that *Smithella* and *Syntrophomonas* likely form syntrophic interaction during propionate degradation and they are potentially more active in the cool high latitude soils.

The increase in relative abundances, expressed as log$_2$R, tended to be greater in the high latitude soils relative to the low latitude soils (Fig. 5), in contrast to the geographical distribution of relative abundances in original soils (Fig. 1). There are three plausible explanations for this result. Firstly, in a mixed community, not only syntrophs are present (Fig. S4), and a relatively slow response of those other organisms would result in a relative increase of syntrophs. Secondly, for an initially low biomass (which appears to be the case in the present experiment), consumption of an identical quantity of substrate is
expected to produce a greater fold change of biomass compared with a group of
organisms having an initial high biomass. Thirdly, the anaerobic incubations were
stopped when >90% of propionate were consumed, which resulting in incubations of
between 13 d and 82 d for different soils (Fig. 2). A longer duration may have resulted in
a greater biomass yield per unit substrate consumption by preventing energetic loss from
overflow metabolism (e.g. futile cycles and protein synthesis) (Thauer et al., 2008;
Beardmore et al., 2011; Lipson, 2015; Seel et al., 2016). Whether this rate-yield tradeoff
relationship really exists in paddy soil syntrophs requires further investigation.

In summary, we demonstrate in the present study that both the relative abundance
and functioning potential of propionate syntrophs in paddy field soils exhibit a distinct
biogeographical pattern. MAT and TS are identified as the two most important factors
related to the biogeographical distribution. The temperature effect is very likely related to
thermodynamic conditions, which improve when the temperature increases. The effect of
soil sulfur content is possibly due to the fact that some facultative propionate syntrophs
perform sulfate respiration in the presence of sulfate. Though originating from areas with
a MAT lower by only 6.7°C, the mean time lapse for methanogenesis from propionate
degradation was approximately 30 d longer in the high latitude soils relative to the low
latitude soils. This result, on the one hand, indicates that the rates of organic matter
decomposition and C cycling are potentially lower in the cool high latitude regions. On
the other hand, it suggests that the global warming, which is occurring to a greater extent
at the high latitudes, can cause a significant acceleration of organic matter decomposition
and C cycling in the high latitude soils.

Data availability
The datasets supporting the conclusions of this article are available in the NCBI Sequence Read Archive under BioProject PRJNA544819 and PRJNA601098 that are publicly accessible at https://www.ncbi.nlm.nih.gov. R codes on the statistical analyses are available at https://github.com/jinyidan/Rare-Biosphere-Propionate-Syntrophs-in-Paddy-Field-Soils.

Acknowledgments

This work was made possible through two NSFC (National Natural Science Foundation of China) grants (91951206, 41630857) and a grant from National Basic Research Program of China (2016YFD0200306).

Y.L., S.J., Y.J. designed the study. S.J. conducted field soil sampling. Y.J. and S.J. executed lab work. Y.J., S.J. and Y.L. analyzed the data. J.D. helped perform the data analysis with constructive discussions. Y.L. and Y.J. wrote the original manuscript. All authors read, revised and approved the final manuscript.

The authors declare that they have no competing interests.

References

Seel, W., Derichs, J., and Lipski, A. (2016) Increased biomass production by mesophilic
food-associated bacteria through lowering the growth temperature from 30°C to 10°C. *Appl Environ Microbiol* **82**: 3754-3764.

Figure Legends

Figure 1: Biogeographic distribution of propionate syntrophs in paddy field soils across eastern China. (A) The map shows the spatial distribution of total relative abundance (Rel. abun.) of five syntroph genera (referred to synTotal) comprising *Syntrophobacter*, *Pelotomaculum*, *Smithella*, *Desulfotomaculum* and *Syntrophomonas* together. The map was built using Kriging interpolation method with cross-validation (cv) based on Pearson
correlation. The inset in lower-left corner shows the difference in mean relative abundance of synTotal between the low (South) and the high (North) latitude soils. The red asterisks indicate the significant difference at $P \leq 0.001$. (B) The α-diversity of propionate syntrophs expressed as OTU richness, which decreases with the increase of latitude. The solid line denotes the least-squares linear regression, which was significant at $P < 0.0001$. (C) Correlations between the relative abundance of propionate syntrophs (either in total or individually) and environmental factors. The color and size of circles indicate the Spearman correlation coefficients. The black asterisks indicate the significant correlations: * $0.01 < P \leq 0.05$, ** $0.001 < P \leq 0.01$, *** $P \leq 0.001$. Bars in the right show the importance of environmental factors to five syntroph genera estimated based on Boruta algorithm. The environmental factors include the mean annual temperature (MAT) and fifteen edaphic factors: the content of soil organic matter (OM), dissolved organic carbon (DOC), pH, cation exchange capacity (CEC), microbial biomass carbon (MBC), the total contents of N, P, K, S, Fe, Mn, Cu, Zn (TN, TP, TK, TS, TFe, TMn, TCu, TZn), ammonium (NH_4^+) and nitrate (NO_3^-).

Figure 2: Geographic features of CH$_4$ production from propionate degradation in paddy field soils. The time till CH$_4$ production reached the quantity corresponding to $>90\%$ degradation of propionate added was defined as the time lapse. Three patterns can be distinguished from 113 paddy field soils analyzed. (A) Pattern I, representing the high rate group, comprises 45 soil samples (red dots), having time lapses of 13 d to 27 d. (B) Pattern II, representing the medium rate group, includes 51 soil samples (green dots), with time lapses of 28 d to 43 d. (C) Pattern III, the low rate group, contains 17 soil
samples (blue dots), having the time lapse of 44 d to 82 d. The CH$_4$ production curves of each soil in the three groups are illustrated in the lower-left corner of each panel. The CH$_4$ production curves within each group are colored randomly; the two vertical grey dot lines denote the ranges of time lapse. The error bars indicate the standard deviation of three replicates. All soil samples are displayed in maps with the pattern-specific samples highlighted by the increased sizes of the colored dots (red for Pattern I, green for Pattern II, and blue for Pattern III).

Figure 3: The dynamics of short-chain fatty acids in paddy soils during anaerobic incubation. Propionate was added to a final concentration of 10 mM to each soil samples, which were incubated anaerobically until at least >90% of propionate had been oxidized. (A) The consumption of propionate. (B and C) The transient accumulations of acetate and butyrate, respectively. Soil samples are separated into three groups in accordance with three patterns revealed by methanogenesis, circles for Pattern I, triangles for Pattern II and diamonds for Pattern III. Soil samples within each group are colored randomly.

Figure 4: Geographical distribution of syntrophic potential and the correlative factors. (A) The map showing the functioning potential expressed as the time lapse for propionate degradation. The shorter the time lapse, the higher the functioning potential. (B) The map showing the functioning potential expressed as the maximum rate of CH$_4$ production, which was estimated during the period when CH$_4$ concentration was at the linear increase. The maps in (A) and (B) were build using Kriging interpolation method. The insets in the lower-left corner of each panel display the actual values of the time lapse (blue) and the
maximum rate (red) of CH$_4$ production, respectively. (C) The correlations of the time
lapse with the relative abundance of total syntrophs (Rel. abun. of synTotal), the mean
annual temperature (MAT), the contents of total soil sulfur (TS), organic matter (OM),
microbial biomass carbon (MBC), and the bioavailable contents of Fe, Cu and Mn (AFe,
ACu, AMn). The solid lines denote the least-squares linear regressions. Individual soil
samples are colored from blue to red in correspondence with their locations from the low
latitudes to the high latitudes.

Figure 5: The relative growth of propionate syntrophs during anaerobic incubation. The
relative growth was expressed as the logarithmic (log$_2$) fold change (R) in relative
abundance of individual syntroph genera over the anaerobic incubation. (A-D) The
geographic distributions of relative growth of *Syntrophobacter*, *Syntrophomonas*,
Pelotomaculum and *Smithella*, respectively. (E) The mean relative abundances of four
syntroph genera at the end of the anaerobic incubation. (F) The mean log$_2$ fold change (R)
in relative abundance of four syntroph genera. Soil samples in (E) and (F) were clustered
into two geographic groups for the low latitude regions (South) and the high latitude
regions (North), respectively. The red asterisks denote the significant differences between
the “South” and “North” groups: * $0.01 < P \leq 0.05$, ** $P \leq 0.01$.

Figure 6: The geographical features of Gibbs free-energy changes for propionate
degradation. (A) The geographic distribution of Gibbs free-energy changes ($\Delta G'$) for
propionate oxidation corrected by temperature. The mean summer temperature (from
June to September) at sampling sites was used to correct the calculation of Gibbs free-
energy changes for the reaction: CH$_3$CH$_2$COO$^-$(aq) + 2H$_2$O(l) \rightarrow CH$_3$COO$^-$(aq) + 3H$_2$(g) +
CO_2(g). The values of standard Gibbs free-energy changes (ΔG°) and enthalpy changes
(ΔH°) at 25°C (i.e. 298.15 K, 100 kPa, 1 M) equal to +73.5 kJ and +205.1 kJ per mol of
propionate, respectively (for calculation details, see the Supplemental Material). The inset
in the lower-left corner shows the difference in mean ΔG’ between two geographic groups
for the low (South) and the high (North) latitude soils, respectively. The red asterisks
indicate the significant difference at P ≤ 0.001. (B) The correlation of synTotal relative
abundance with temperature. (C) The correlation of time lapse for propionate degradation
with temperature. (D) The correlation of maximum rate of CH_4 production with
temperature. The solid lines in (B-D) denote the least-squares linear regressions.

Individual soil samples are colored from blue to red in correspondence with their
locations from the low latitudes to the high latitudes.

Supporting Information

Figure S1. Phylogenetic relationship of 528 dominant OTUs (top 2.5%) retrieved from
113 paddy field soils. Figure S2. Neighbor-joining tree of 16S rRNA gene sequences
related to five syntroph genera including representative sequences retrieved from this
study and the reference sequences. Figure S3. Biogeographical distributions of five
syntroph genera in paddy field soils across eastern China. Figure S4. Bacterial
community in original soils and in soil samples after anaerobic incubations. Figure S5.
The effect of temperature on the Gibbs free energy change of propionate oxidation via the
methylmalonyl-CoA pathway. Figure S6. Temperature sensitivity of the Gibbs free
energy changes of propionate oxidation through the methylmalonyl-CoA pathway vs the
C_6 dismutation pathway. (PDF 2511 kb)
Figure 1: Biogeographic distribution of propionate syntrophs in paddy field soils across eastern China.
Figure 2: Geographic features of CH4 production from propionate degradation in paddy field soils.
Figure 3: The dynamics of short-chain fatty acids in paddy soils during anaerobic incubation.
Figure 4: Geographical distribution of syntrophic potential and the correlative factors.
Figure 5: The relative growth of propionate syntrophs during anaerobic incubation.
Figure 6: The geographical features of Gibbs free-energy changes for propionate degradation.