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SARS-CoV-2 within-host diversity and transmission
Katrina A. Lythgoe†*, Matthew Hall†*, Luca Ferretti, Mariateresa de Cesare,
George MacIntyre-Cocket, Amy Trebes, Monique Andersson, Newton Otecko, Emma L. Wise,
Nathan Moore, Jessica Lynch, Stephen Kidd, Nicholas Cortes, Matilde Mori, Rebecca Williams,
Gabrielle Vernet, Anita Justice, Angie Green, Samuel M. Nicholls, M. Azim Ansari,
Lucie Abeler-Dörner, Catrin E. Moore, Timothy E. A. Peto, David W. Eyre, Robert Shaw,
Peter Simmonds, David Buck, John A. Todd on behalf of the Oxford Virus Sequencing
Analysis Group (OVSG)‡, Thomas R. Connor, Shirin Ashraf, Ana da Silva Filipe, James Shepherd,
Emma C. Thomson, The COVID-19 Genomics UK (COG-UK) Consortium§, David Bonsall,
Christophe Fraser, Tanya Golubchik*

INTRODUCTION: Genome sequencing at an un-
precedented scale during the severe acute
respiratory syndrome coronavirus 2 (SARS-
CoV-2) pandemic is helping to track spread
of the virus and to identify new variants. Most
of this work considers a single consensus se-
quence for each infected person. Here, we
looked beneath the consensus to analyze ge-
netic variationwithin viral populationsmaking
up an infection and studied the fate of within-
host mutations when an infection is trans-
mitted to anew individual.Within-hostdiversity
offers the means to help confirm direct trans-
mission and identify new variants of concern.

RATIONALE: We sequenced 1313 SARS-CoV-2
samples from the first wave of infection in the
United Kingdom. We characterized within-
host diversity and dynamics in the context of
transmission and ongoing viral evolution.

RESULTS: Within-host diversity can be de-
scribed by the number of intrahost single
nucleotide variants (iSNVs) occurring above
a givenminor allele frequency (MAF) thresh-
old. We found that in lower-viral-load sam-
ples, stochastic sampling effects resulted in a
higher variance in MAFs, leading to more
iSNVs being detected at any threshold. Based
on a subset of 27 pairs of high-viral-load repli-
cate RNA samples (>50,000 uniquely mapped
veSEQ reads, corresponding to a cycle thresh-
old of ~22), iSNVs with a minimum 3% MAF
were highly reproducible. Comparing samples
from two time points from 41 individuals,
taken on average 6 days apart (interquartile
ratio 2 to 10), we observed a dynamic process
of iSNV generation and loss. Comparing iSNVs
among 14 household contact pairs, we esti-
mated transmission bottleneck sizes of one to
eight viruses. Consensus differences between

individuals in the same household, where
sample depth allowed iSNV detection, were
explained by the presence of an iSNV at the
same site in the paired individual, consistent
with direct transmission leading to fixation.We
next focused on a set of 563 high-confidence
iSNV sites that were variant in at least one high-
viral-load sample (>50,000 uniquely mapped);
low-confidence iSNVs unlikely to represent
genomic diversity were excluded. Within-host
diversity was limited in high-viral-load sam-
ples (mean 1.4 iSNVs per sample). Two excep-
tions, each with >14 iSNVs, showed variant
frequencies consistent with coinfection or con-
tamination. Overall, we estimated that 1 to 2%
of samples in our datasetwere coinfected and/or
contaminated. Additionally, one sample was
coinfected with another coronavirus (OC43),
with no detectable impact on diversity. The
ratio of nonsynonymous to synonymous (dN/dS)
iSNVs was consistent with within-host purify-
ing selection when estimated across the whole
genome [dN/dS = 0.55, 95% confidence inter-
val (95% CI) = 0.49 to 0.61] and for the Spike
gene (dN/dS = 0.60, 95% CI = 0.45 to 0.82).
Nevertheless, we observed Spike variants in
multiple samples that have been shown to in-
crease viral infectivity (L5F) or resistance to
antibodies (G446V and A879V).We observed a
strong association between high-confidence
iSNVs and a consensus change on the phylog-
eny (153 cases), consistent with fixation after
transmission or de novo mutations reaching
consensus. Shared variants that never reached
consensus (261 cases) were not phylogenet-
ically associated.

CONCLUSION: Using robust methods to call
within-host variants, we uncovered a con-
sistent pattern of low within-host diversity,
purifying selection, and narrow transmis-
sion bottlenecks. Within-host emergence of
vaccine and therapeutic escape mutations is
likely to be relatively rare, at least during early
infection, when viral loads are high, but the
observation of immune-escape variants in high-
viral-load samples underlines the need for
continued vigilance.▪
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1. Initial infection by a
largely homogeneous
viral population

2. Minor variants
appear de novo
within host

6. Over time some variants
disappear, others appear,
others persist

3. The transmission
bottleneck is narrow, 
and most often
only the majority
variant will transmit

4. More rarely
the transmitted 
variant is a minority 

5. Or a mixed infection
is transmitted

Diagram showing low SARS-CoV-2 within-host genetic diversity and narrow transmission bottleneck.
Individuals with high viral load typically have few, if any, within-host variants. Narrow transmission bottlenecks
mean that the major variant in the source individual was typically transmitted and the minor variants lost.
Occasionally, the minor variant was transmitted, leading to a consensus change, or multiple variants were
transmitted, resulting in a mixed infection. Credit: FontAwesome, licensed under CC BY 4.0.
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Extensive global sampling and sequencing of the pandemic virus severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) have enabled researchers to monitor its spread and to
identify concerning new variants. Two important determinants of variant spread are how frequently
they arise within individuals and how likely they are to be transmitted. To characterize within-host
diversity and transmission, we deep-sequenced 1313 clinical samples from the United Kingdom.
SARS-CoV-2 infections are characterized by low levels of within-host diversity when viral loads are high
and by a narrow bottleneck at transmission. Most variants are either lost or occasionally fixed
at the point of transmission, with minimal persistence of shared diversity, patterns that are readily
observable on the phylogenetic tree. Our results suggest that transmission-enhancing and/or
immune-escape SARS-CoV-2 variants are likely to arise infrequently but could spread rapidly
if successfully transmitted.

T
he ongoing evolution of severe acute res-
piratory syndrome coronavirus 2 (SARS-
CoV-2) has been the topic of considerable
interest as the pandemic has unfolded.
Clear lineage-defining single nucleotide

polymorphisms (SNPs) have emerged (1), en-
abling tracking of viral spread (2, 3) but also
raising concerns that newmutations, or com-
binations of mutations, may confer selective
advantages on the virus, hampering efforts at
control. There is compelling evidence that the
D614G mutation in the Spike protein (S),
which spread globally during the first year of
the pandemic, increases viral transmissibility
(4–6). Current variants of concern include the
B.1.1.7. lineage (7, 8), with an estimated trans-
mission advantage of ~50% (9), and the B.1.351
and P.1 lineages (10, 11), which may have de-
creased sensitivity to natural and/or vaccine-
acquired immunity (12–14). Lineage codes
given here are as designated by Pangolin soft-
ware (1).
Most analyses have been focused on muta-

tions observed in viral consensus genomes,
which represent the dominant variants within
infected individuals. Ultimately though, new
mutations emerge within individuals, so knowl-
edge of the full underlying within-host diversity
of the virus at the population level and how
frequently this is transmitted is important
for understanding adaptation and patterns of
spread.
TheUnitedKingdomexperienced one of the

most severe first waves of infection, with >1000

independent importation events contributing
to substantial viral diversity during this pe-
riod (15). In this study, we analyzed 1390 SARS-
CoV-2 genomes from 1313 nasopharyngeal
swabs sampled predominantly from symp-
tomatic individuals on admission to the hos-
pital and from health care workers during the
first wave of infection (March to June 2020;
table S1). The dataset comprised samples from
1173 unique individuals, including 41 with
samples at two to four time points, plus 93
anonymous samples, with multiple RNA ali-
quots from 76/1313 samples resequenced to
test for reproducibility. The samples were
collected by two geographically separate hos-
pital trusts located 60 km apart: Oxford Uni-
versity Hospitals and Basingstoke and North
Hampshire Hospital. Using veSEQ, an RNA-
Seq protocol based on a quantitative targeted
enrichment strategy (16), which we previously
validated for other viruses (16–19), we char-
acterized the full spectrum of within-host di-
versity in SARS-CoV-2 and analyzed it in the
context of the consensus phylogeny.
We observed low levels of intrahost diver-

sity in high-viral-load samples, with evidence
ofwithin-host evolutionary constraint genome
wide, including S. Although within-host var-
iants could be observed in multiple individu-
als in the same phylogenetic cluster, some of
whom resided in the same household, most
viral variants were either lost, or occasionally
fixed, at the point of transmission, with a nar-
row transmission bottleneck. These results

suggest that during early infection, when viral
loads are high and transmission is most likely
(20–22), mutations that increase transmissi-
bility or potential vaccine- or therapy-escape
mutationsmay rarely emerge and subsequently
transmit. Nonetheless, we identified variants
present inmultiple individuals that could affect
receptor binding or neutralization by antibodies.
Because the fitness advantage of escape muta-
tions in populations that are highly vaccinated
or have high levels of natural immunity could
be substantial, and because mutational ef-
fects can depend on the genetic background
on which they are found, these findings un-
derline the need for continued vigilance and
monitoring.

Detection of variants is influenced by viral load

Reliable estimation of variant frequencies re-
quires quantitative sequencing such that the
number of reads is proportional to the amount
of corresponding sequence in the sample of
interest. The veSEQ protocol has been shown
previously to be quantitative for a number of
different pathogens (17), including respiratory
viruses such as respiratory syncytial virus (RSV)
(18).We demonstrated here that the same quan-
titative relationship holds for SARS-CoV-2.
The number of uniquely mapped sequencing
reads that we obtained rose log-log linearly
with the number of RNA copies in serial
dilutions of synthetic RNA controls (r2 = 0.87;
fig. S1A) andwas consequently correlatedwith
cycle threshold (Ct) values of clinical samples
(fig. S1B), indicating that veSEQ reads can be
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considered a representative sample of viral
sequences within the input RNA.
To understandwithin-host diversity, we quan-

tified the number of intrahost single-nucleotide
variants (iSNVs) in the full set of 1390 genomes,
testing different thresholds for identifying var-
iants of between 2 and 5% minor allele fre-
quency (MAF). A minimum depth of at least
100 reads was also required to call an iSNV, and
all sites with MAF greater than the threshold
were included (Fig. 1A).
For all thresholds, we observed a nonlinear

relationship between sample viral load (esti-
mated by total unique mapped reads) and the
number of detected iSNVs, with the highest
number of iSNVs detected at intermediate
viral loads (~2000 mapped reads). However,
the mean MAF per sample did not vary with
viral load when no threshold was applied (P =
0.291, linear regression; Fig. 1B). This indi-
cates that as the number of mapped reads de-
creases, the variance in the observed MAF
increases, whereas themean stays the same.
This effect is at least partially caused by the
inverse relationship of the binomial distribu-
tion between the total number of draws and
the variance in the proportion of successes
observed among those draws. In Fig. 1C, we
demonstrate this effect by down-sampling
from high-depth samples: The increasing var-
iance associated with sparser sampling causes
the number of threshold-crossing iSNVs to in-
crease until eventually so few reads are sam-
pled that no iSNVs are detected.
This sampling effect of low viral load does

not preclude the existence of biological mech-
anisms also contributing to greater intrahost
diversity in low-viral-load samples. After the
initial peak, viral loads typically decrease as
infection progresses (20), whereas genetic di-
versitymay increase, as observed in other viral
infections such as HIV (23). RNA damage (24)
as infection progresses could also contribute

to the observed increased diversity in low-depth
samples.

Within-host variant frequencies
are reproducible

To calibrate our variant calling and to mini-
mize false discovery rates, we compared iSNVs
in resequenced controls with data for the
stock RNA sequenced and provided by the
manufacturer (Twist Bioscience) and masked
sites vulnerable to in vitro generation of var-
iants (table S2). We also masked a further
18 sites that were observed to be variant (>3%
MAF) in 20 or more high-viral-load samples
(table S3 and fig. S3). Most had consistently
low MAFs among samples, and some showed
evidence of strand bias and/or low reprodu-
cibility between technical replicates (fig. S2),
suggesting that they were not true genomic
variants. Among the excluded sites was 11083,
which was observed in 46 samples and is glob-
ally ubiquitous in GISAID (Global Initiative on
Sharing All Influenza Data) data. From manual
examination of mapped reads in our dataset,
this appeared to be caused by a common mis-
calling of a within-host polymorphic deletion
upstream at site 11082 occurring in a poly-T
homopolymeric stretch. If genuine, then this
homopolymer stutter may have a structural
or regulatory role; however, methodological
issues in resolving this difficult-to-map region
cannot be ruled out.
Establishing reliable variant calling thresh-

olds for clinical samples in which true variant
frequencies are unknown ideally requires re-
sequencing of multiple samples from RNA to
test for concordance. Working within the con-
straints of small volumes of remnant RNA from
laboratory testing, we resequenced 76 high-
viral-load samples, of which 27 replicate pairs
generated sufficient read numbers (>50,000
unique mapped reads) for reliable minor var-
iant detection. iSNVs with <2% MAF were gen-

erally indistinguishable from noise, whereas
those with ≥3% MAF were highly concordant
between replicates (Fig. 2A and fig. S2).

Within-host variants vary during infection

We also compared iSNV frequencies and con-
sensus changes at different time points for
the 41 multiply sampled individuals, with the
duration between sampling ranging between
1 and 20 days apart (median 6 days; Fig. 2, B
and C). Because viral loads tend to fall as in-
fection progresses, we considered all samples
rather than limiting ourselves to those with
>50,000 unique mapped reads. Among the 41
individuals, we observed little concordance in
minor variant frequencies across time points
within individuals. Our observations, consistent
with other studies (24–26), suggest a dynamic
within-host landscape but also reflect the in-
herent stochasticity associated with low-viral-
load samples.

The transmission bottleneck size within
households is small

The transmission bottleneck size is a key com-
ponent in determining the likelihood that
new within-host variants will spread in the
population (27). Estimating bottleneck size is
difficult for SARS-CoV-2 because it requires
sufficient genetic diversity to differentiate dis-
tinct viruses that may be transmitted in known
source-recipient pairs (28–31) and confidence
that transmission is the cause of variants ob-
served in both source and recipients. The in-
clusion of variants that are not shared by
transmission can greatly increase transmis-
sion bottleneck size estimations (29). We iden-
tified 16 households in which two individuals
had a first positive sample within 2 weeks of
each other, and assumed direct transmission
if the consensus sequences in the individuals
had fewer than three differences (thus exclud-
ing one household). A further household was
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Fig. 1. Characterization of iSNV frequencies. (A) Distribution of the
number of identified iSNV sites in each sample against the number of
unique mapped reads. The colors represent different MAF thresholds. An
iSNV site is identified within a sample if the MAF is greater than the
threshold. (B) Distribution of the mean MAF in each sample against the

number of unique mapped reads, with no MAF threshold applied. The
black line is the estimated mean value by linear regression. The green ribbon
is the 95% CI. (C) Distribution of the number of identified iSNV sites at the
3% MAF threshold when subsampling from high-depth samples. Each color
represents a different high-depth sample.
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excluded because the assumed source indi-
vidual had no variants with >3% MAF.
Using the exact beta-binomial method (28),

we estimated maximum likelihood bottle-
neck sizes between one and eight among
the 14 household transmission pairs (Fig. 3A
and table S4). These observations are con-
sistent with the small bottleneck sizes ob-
served for influenza (30–32) and SARS-CoV-2
(33–37) but considerably lower than estimates

in a recent Austrian study (25). The reasons
for the discrepancies are unclear but could
reflect differences in how variants were se-
lected for analysis (37) or how closely the ob-
served diversity represents the diversity of
virus both available for transmission and
successfully transmitted. An association be-
tween the route of exposure and the trans-
mission bottleneck has been demonstrated
experimentally for influenza (32), so genuine

differences in bottleneck sizes in different
settings cannot be ruled out.

Within-host variants are present in most
SARS-CoV-2 samples

To further characterize iSNV sites within indi-
viduals, we identified a set of 563 high-confidence
iSNV sites that were observed (i) in high-viral
load samples with at least 50,000 unique
mapped reads (462 samples, 160 from Oxford

Lythgoe et al., Science 372, eabg0821 (2021) 16 April 2021 3 of 10
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Fig. 2. Comparison of allele frequencies between sequencing replicates of
the same sample and multiple time points from the same individual.
(A) Comparison of MAFs from 27 replicate pairs resequenced from RNA, with
each point representing a single genomic position in a pair of replicates. The plot
represents all MAF frequency comparisons for the 27 samples where both
replicates had >50,000 unique mapped reads, limited to genomic sites with
MAF >0.02 in at least one of the 54 replicates. The blue lines are the threshold
value of 0.03. (B and C) Comparison of allele frequencies from 41 individuals

sampled on different days, with each point representing a genomic position in a
pair of samples from the same individual. Each individual is represented by a
different color, and for each individual, all genomic positions are considered
where the MAF >0.03 at either sampling time point and/or a change in
consensus was observed. In all cases, the poly-A tail and sites variable in RNA
synthetic controls were excluded, as were sites observed to be variable in
>20 samples at MAF >3% because these are unlikely to represent genomic
variants. (C) is an enlargement of the region of (B) near the origin.

A B

Fig. 3. Small transmission bottleneck size within households. (A) Estimated
bottleneck size in 14 households calculated using the exact beta-binomial method
described in (28). Bottleneck size for both combinations of potential source
and recipient were calculated if the first positive samples from each individual in the
household were collected within a week of each other. No estimate was recorded if
there were no identified iSNVs >3% MAF in the source individual (household 8)
or if the two individuals in the household had more than two consensus differences

(household 15). The error bars represent the 95% CI determined by the likelihood
ratio test. (B) Fate of the identified iSNVs within households. Each line links the allele
frequency of a given variant in one household member with that in the second
member. Points and lines are colored by household. Each was identified as an iSNV
in at least one individual but not necessarily (and usually not) both. Where the dates
of sample collection differed by at least a week, we also indicate the assumed
source and recipient members of the household.
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and 302 from Basingstoke), (ii) at a depth of
at least 100 reads, (iii) with a MAF of at least
3%, and (iv) not observed to vary in synthetic
RNA controls or to appear at low frequency
in a large number of samples (table S3). All
1313 samples were included in our analysis
under the assumption that by ascertaining
on a small set of predefined sites, it is less
likely that we included sites that only reach
>3% MAF in low-viral-load samples because
of the stochastic sampling effects described
above.
Among the iSNV sites taken forward for

variant analysis, most were only observed
in one or two of the 1313 samples (Fig. 4A),
but most samples with >50,000 unique reads
(305/462, 66%) harbored at least one iSNV
(Fig. 4B). These low levels of SARS-CoV-2 within-
host diversity during acute infection are con-
sistent with other reported levels (26, 33) but
lower than in some other studies (24, 25), likely
reflecting how variants were identified.
Two samples had a particularly high num-

ber (15 and 18) of iSNVs, each with high and
correlated MAFs consistent with coinfection
by two diverse variant haplotypes (38). For one
of these samples, laboratory contamination
was unlikely because we could not identify any
samples that could be the source. We could not
distinguish between coinfection and contami-
nation in the other sample because both var-
iant haplotypes within it represented common
genotypes in our study.
In general, however, the low level of genetic

diversity of the virus makes identifying co-
infection or contamination—and distinguish-
ing between them—difficult. If sites where a
large number of SNPs is present (mutations
that distinguish common lineages in our data-
set) are only observed to be variant within host
because of coinfection or contamination, then
we estimate that between~1 and 2%of samples
are potentially affected by coinfection or con-

tamination (table S2). As a precaution against
contamination or batch effects, we sequenced
known epidemiologically linked samples in
different batches where possible (fig. S4).
We hypothesized that a proportion of the

observed within-host variation could have
been due to coinfection with seasonal corona-
viruses, which has been reported in 1 to 4% of
SARS-CoV-2 infections (39, 40). Specifically,
closely matching reads from similar viruses
could be mapped to SARS-CoV-2 and appear
as mixed-base calls. To understand the impact
of coinfection, we recaptured and analyzed a
random subset of 180 samples spanning the
full range of observed SARS-CoV-2 viral loads
(Ct 14 to 33, median 19.8) using the Castanet
multipathogen enrichment panel (17), which
contains probes for all known human corona-
viruseswith the exception of SARS-CoV-2. Among
the 111 samples that yielded both SARS-CoV-2
and Castanet data, we identified one sample
that was also positive for another betacorona-
virus, human coronavirus OC43 (fig. S5). Within
the SARS-CoV-2 genome from this sample, which
was complete and high-depth, we observed
only a single iSNV at position 28580 and no
evidence of mixed-base calls at any other ge-
nomic position. This suggests that even when
coinfection was present, it did not affect the
estimation of SARS-CoV-2 within-host diver-
sity in our protocol. However, whether coinfec-
tion with OC43 or other coronaviruses exerts a
selective pressure on SARS-CoV-2 remains an
open question.

Distribution of iSNVs across the genome

We next considered the distribution of the
identified high-confidence iSNV sites across
the genome. Even excluding the untranslated
regions (UTRs), which have a highly elevated
density of iSNV sites, there was considerable
variability across the genome,withopen-reading
frames (ORFs) 3a, 7a, and 8 and nucleocapsid

(N) showing the highest densities (Table 1).
In addition, we calculated ratio of nonsynon-
ymous to synonymous substitutions (dN/dS)
values under the assumption that each iSNV
appeared de novo in each individual in which
it was observed (Table 1). Consistent with
other studies (24, 33), most areas of the ge-
nome appeared to be under purifying se-
lection, with dN/dS values <1, including S.
Without a full model incorporating within-
host evolutionary dynamics and transmission,
it is difficult to draw strong conclusions. How-
ever, we obtained similar results assuming that
each iSNV was only generated once de novo
and then subsequently transmitted (table S5).
These patterns are also broadly consistent
with dN/dS values calculated for SNPs among
SARS-CoV-2 consensus genomes (41), suggest-
ing that evolutionary forces at the within-host
level are reflected at the between-host level,
at least for within-host variant sites in high-
viral-load samples.

Within-host variant sites
are phylogenetically associated

We sought to gain a better understanding of
SARS-CoV-2 evolution and to determine whether
iSNVs could be used to help resolve phylog-
enies and transmission clusters. For the 1390
genomes in our study, we constructed a phy-
logeny using the robust procedure outlined
by (42) (Fig. 5A). Viral phylogenies are based
on the consensus sequence for each sample,
with branches indicating differences in the
consensus sequence among samples. Given
the inferred narrow transmission bottleneck
size, we hypothesized that consensus changes
on the phylogeny arise because of the emer-
gence of within-host variants that either reach
consensus within the individual in which they
emerged or fail to reach consensus but are then
transmitted and result in a consensus change in
the recipient. In a sufficiently densely sampled
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Fig. 4. iSNV sites were
often found in multiple
samples and most
samples had at least one
iSNV. (A) Histogram
showing the number iSNV
sites that were found in
N samples. All samples in
our dataset are included.
(B) Stacked histogram
showing the number of
samples that had n iSNV
sites for all samples with
>50,000 mapped reads
(dark red) and samples with
<50,000 mapped reads
(light red). All 563 sites
identified for variant
analysis were included (see
main text), including sites in the 3′UTR and 5′UTR but excluding the polyA tail and the 18 sites variable in 20+ individuals.
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population of infected individuals, we should
therefore be able to observe a phylogenetic as-
sociation between samples containing iSNVs
with branches on the tree leading to a change
in consensus at the same locus.
Of the 563 high-confidence iSNV sites, we

identified 153 sites that were present in at
least two samples and in which we also ob-
served differences in the consensus among
samples (SNPs). We call these sites iSNV-
SNPs. We examined the proximity of tips with
the iSNVs to the position of consensus changes
(between the two most common bases at the
site of the iSNV) on the phylogeny. A highly sig-
nificant negative association (one-sided Mann-
WhitneyU test,P<3× 10−16; fig. S6A)was found
between the presence of an iSNV at a given
site in a sample and the patristic distance to
the nearest example of a consensus change at

the same site; that is, intrahost variation clus-
tered on the tree with branches supported by
the same variant as consensus.Whenwe tested
siteswherewehad identified at least two iSNVs
individually, six showed a significant associa-
tion after Benjamini-Hochberg correction (P <
0.05), reducing to five if only one sample from
each individual was included. Repeating this
procedure on each of 1000 phylogenetic boot-
strap replicates yielded a universally very strong
association when taking sites across the whole
genome (maximum P = 2.46 × 10−10), whereas
every bootstrapped tree had between one and
nine significant iSNV-SNPs (median seven, IQR
five to seven).
In Fig. 5B, we show the example of site 28580

(significant in 85.8% of bootstrap replicates),
with the red clade representing change from
the global consensus G to A (a nonsynonymous

change D103N in N) and nearby iSNVs oc-
curring both as minor As in the nodes an-
cestral to the change branch and asminor Gs
in the branch’s immediate descendants. Based
on corresponding epidemiological data, this
represents a health care-associated cluster
with onward transmission to close contacts.
In Fig. 5C, we give the further example of site
20796 (significant in 98.4% of bootstrap rep-
licates), a synonymous substitution L6843 in
ORF1a. Trees for the other significant sites
after Benjamini-Hochberg correction are shown
in fig. S7. Supporting this relationship between
SNPs and iSNVs, we note that in the household
transmission pairs that we examined, for the
five consensus differences in which there was
sufficient depth, all were within-host variant
in one of the two individuals (Fig. 4B).
For the 261 iSNVs that were present in at

least two individuals but never reached con-
sensus, we analyzed the association with the
phylogeny of each iSNV as a discrete trait using
two statistics: the association index (34) and
themean patristic distance between iSNV tips.
After adjustment for multiple testing, no sites
showed a P-value <0.05 for a phylogeny-iSNV
association for either statistic. Similarly, if we
simply compared the distance to the nearest
iSNV tip among iSNV and non-iSNV tips across
all 261 iSNV sites, there was also no evidence
of phylogenetic association (one-sided Mann-
Whitney U test, P ≈ 1; fig. S6B). Nevertheless,
some individual sites did show patterns sug-
gestive of iSNV transmission, with diversity
maintained after transmission (22 with P <
0.05 before adjustment for multiple testing for
at least one of the two statistics; the nine with
P < 0.025 are shown in fig. S7), suggesting that
we may lack the power to statistically detect
some associations. Among the 15 household
transmission pairs, we observed only one iSNV
shared in two individuals within the same
household. This iSNVwas specific to these two
individuals in our dataset, demonstrating a
likely example of transmitted viral diversity
(Fig. 3B).
Taken together, our observations suggest

that the transmission bottleneck can be wide
enough to permit cotransmission of multiple
genotypes in some instances but narrow enough
that multiple variants do not persist after a
small number of subsequent transmissions.
In the cases in which transmission culminated
in a consensus change on the phylogeny, these
patterns were readily observable, but in most
cases, we suggest that patterns of cotransmis-
sion were drowned out by the high proportion
of iSNVs that failed to transmit or were trans-
mitted but then lost. Analysis of transmission
events over multiple generations is needed to
fully elucidate these patterns.
Variants occurring repeatedly but without

phylogenetic association could indicate sites
under selection in distinct individuals (43). Of
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Table 1. iSNVs and dN/dS by gene and over the whole genome.

Gene Length
iSNVs Mean iSNVs

per 100 sites
dN/dS

(95% CI)Total NS S

5′UTR 265 82 - - 0.0223 -
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

ORF1a 13218 572 369 203 0.0031 0.51 (0.43, 0.61)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp1 540 54 39 15 0.0072 0.79 (0.44, 1.47)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp2 1914 105 65 40 0.0039 0.46 (0.31, 0.69)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp3 5835 175 108 67 0.0022 0.45 (0.33, 0.61)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp4 1500 101 61 40 0.0048 0.44 (0.3, 0.66)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp5A 918 25 22 3 0.002 2.08 (0.72, 8.77)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp6 870 62 42 20 0.0051 0.58 (0.35, 1.01)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp7 249 6 2 4 0.0017 0.14 (0.02, 0.73)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp8 594 13 7 6 0.0016 0.32 (0.11, 0.98)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp9 339 15 9 6 0.0032 0.46 (0.17, 1.37)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp10 417 16 14 2 0.0028 1.99 (0.56, 12.67)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp12* 2795 122 69 53 0.0031 0.34 (0.24, 0.49)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

ORF1b 8088 349 212 137 0.0031 0.42 (0.34, 0.52)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp13 1803 59 33 26 0.0024 0.37 (0.22, 0.63)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp14 1581 92 59 33 0.0042 0.48 (0.31, 0.74)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp15 1038 31 21 10 0.0021 0.57 (0.27, 1.26)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

nsp16 894 45 30 15 0.0036 0.54 (0.29, 1.03)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

S 3822 190 129 61 0.0036 0.6 (0.45, 0.82)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

ORF3a 828 108 96 12 0.0094 2.29 (1.31, 4.4)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

E 228 13 4 9 0.0041 0.15 (0.04, 0.47)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

M 669 32 20 12 0.0034 0.51 (0.25, 1.08)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

ORF6 186 10 8 2 0.0039 0.97 (0.24, 6.43)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

ORF7a 366 41 34 7 0.0081 1.43 (0.67, 3.52)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

ORF7b 132 8 8 0 0.0044 ∞ (0.93, ∞)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

ORF8 366 49 19 30 0.0096 0.17 (0.09, 0.3)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

N 1260 145 106 39 0.0083 0.81 (0.56, 1.18)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

ORF10 117 11 6 5 0.0068 0.32 (0.09, 1.09)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

3′UTR 229 74 - - 0.0232 -
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

All coding regions† 29260 1526 1009 517 0.0038 0.55 (0.49, 0.61)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Full genome 22903 1708 - - 0.0041 -
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

All genome positions are relative to the Wuhan-Hu-1 reference sequence. iSNVs at the 18 “highly shared” sites and those
identified from the synthetic controls are excluded, as are those in the poly-A tail (positions 29865 to 29903). The “mean
iSNVs per 100 sites” column is the mean number in each gene over all 1390 sequenced genomes. Note that because of gene
overlap and noncoding intergenic regions, the total number of iSNVs (1708) cannot be obtained as the sum of any column in
this table, even if the rows for nonstructural proteins in ORF1ab are excluded. *nsp12 overlaps the boundary between
ORF1a and ORF1b. †Intergenic regions are excluded from this row.
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particular note are the variants that we ob-
served at three sites in S: 21575 (L5F), 22899
(G446V), and 24198 (A879V), with G446V
lying within the receptor-binding domain.
The minor variant F5 was observed in 14
samples and represented SNPs in eight sam-
ples but did not have phylogenetic associa-
tion in our iSNV-SNP analysis (P = 0.771 before
multiple testing adjustment; Fig. 5D). This
L5F mutation has been shown to increase
infectivity in vitro (44) and has previously
been identified as a potential site subject to
selection (45). This variant has repeatedly
been observed in global samples, including
as minority variant, but appears to be in-
creasing in frequency slowly if at all, sug-
gesting that it is only advantageous within
a small subset of individuals, with the variant
either “reverting” in subsequent infections
[as seen in HIV (46)] or failing to transmit at
all. Similarly, we observed the minor variants
V446 and V879 in four and six individuals,
respectively. Both variants have previously
been shown to reduce sensitivity to conva-
lescent sera in vitro (44), and V446 strongly
reduces binding of one of the antibodies
(REGN10987) in the REGN-Cov2 antibody
cocktail (47), suggesting that these may rep-
resent antibody escape mutations. We did

not observe N501Y or E484K, both mutations
of concern, in any of our samples (48).

Concluding remarks

We uncovered a consistent and reproducible
pattern of within-host SARS-CoV-2 diversity in
a large dataset of >1000 individuals, with iSNV
sites showing strong phylogenetic clustering
patterns if they were also associated with a
change in the consensus variant at the same
site. However, most samples harbored few in-
trahost variants, and estimated transmission
bottleneck sizes were very small, with max-
imum likelihood estimates between 1 and 8
among household transmission pairs. This
means that if mutations do arise, they will be
prone to loss at the point of transmission. The
dense sampling and deep sequencing of SARS-
CoV-2 has enabled us to witness “evolution in
action,” with variants generated in one indi-
vidual, if transmitted, leading to a change in
consensus and fixation in subsequently in-
fected individuals. This suggests that within-
host variants could be used, at least in some
instances, to help better resolve patterns of
transmission in a background of low consen-
sus diversity.
Our observations indicate that the within-

host emergence of vaccine- and therapeutic-

escape mutations is likely to be relatively rare,
at least during early infection, when viral loads
are high. However, even in the absence of
vaccine or therapeutic selection pressure,
potential host-adaptive mutations are ob-
servable with sufficient frequency that even
a rare transmission event combined with
narrow bottleneck size could result in rapid
spread. Here, we identified 30 nonsynony-
mous minor variants in S that were present
inmultiple individuals (table S2). Two of these
(G446VandA879V)havepreviously been shown
to escape antibody binding (44), and a third,
L5F, has been shown to increase viral infectiv-
ity (44). We suggest that commonly occurring
iSNVs, along with variants known to affect
transmissibility, severity of infection, or im-
mune responses, should be investigated and
monitored, particularly as vaccines and ther-
apeutics are rolled out more widely.
The emergence of new variants of concern,

including B.1.1.7, B.1.351, and P.1, underscores
the need for continued vigilance. A leading
hypothesis is that these variants, characterized
by a large number of nonsynonymous muta-
tions, originated within individuals with long
durations of infection during which the virus
was subject to prolonged immune pressure
(7, 8), and that this was potentially facilitated
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Fig. 5. Consensus phylogeny of
all isolates. In (A), tips are
colored by sampling center
(Oxford = orange; Basingstoke =
green). The tree scale is in sub-
stitutions per site. (B to
D) Distribution of samples with
iSNVs at three loci. The genomic
coordinate (with respect to the
Wuhan-Hu-1 reference sequence)
appears in the top left. Tree
branches are colored by the con-
sensus base at that position, and
filled circles indicate iSNVs
present at a minimum of 3%
frequency in samples with depth
of at least 100 at that position,
and are colored by the most
common minor variant present.
For sites 28580 (B) and 20796
(C), an inset panel enlarges the
section of the phylogeny where a
consensus change is in close
proximity to iSNVs with the rele-
vant pair of nucleotides involved.
The highlighted samples were
prepared in separate batches and
the patterns were not caused by
contamination. (D) Variants at site
21575 (L5F) occurred in 14 samples
but with no phylogenetic associa-
tion with consensus changes at this site, which may represent independent emergence of this variant in multiple individuals. The phylogeny was constructed by
maximum likelihood according to the robust procedure outlined by Morel et al. (42).
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by the within-host emergence of deletions
(49). However, the presence of multiple muta-
tions on the same genetic background is not a
necessary prerequisite for a new variant to be
cause for concern. The single D614G S muta-
tion spread globally after it emerged during
the early stages of the pandemic, likely be-
cause of a transmission advantage (50). The
potential for mutations including N439K and
E484K, which may enable the virus to evade
host-immune responses (47, 51), to emerge on
the highly transmissible B.1.1.7 background
is also troubling, particularly as population
immunity builds due to natural infection and
vaccination.
Our work demonstrates that an essential

requirement for incorporating intrahost var-
iants in any analysis is an understanding of
the observed intrahost diversity in the con-
text of the methods used to produce the deep-
sequencing data. Throughout this study, we
aimed to minimize sequencing artifacts and
sample contamination where possible. More-
over, our results emphasize the power of open
data, large and rigorously controlled datasets,
and the importance of integrating genomic,
clinical, and epidemiological information to
gain an in-depth understanding of SARS-
CoV-2 as the pandemic unfolds.

Materials and methods
RNA extraction

Residual RNA from COVID-19 reverse tran-
scription quantitative polymerase chain reac-
tion (RT-qPCR)–based testing was obtained
from Oxford University Hospitals (hereafter
“Oxford”), extracted on the QIASymphony plat-
form with QIAsymphony DSP Virus/Pathogen
Kit (QIAGEN), and fromBasingstoke andNorth
Hampshire Hospital (hereafter “Basingstoke”),
extractedwith one of the following: theMaxwell
RSC Viral total nucleic acid kit (Promega),
the Reliaprep blood gDNA miniprep system
(Promega), or the Prepito NA body fluid kit
(PerkinElmer). An internal extraction control
was added to the lysis buffer before extraction to
act as a control for extraction efficiency [genesig
qRT-PCRkit, #Z-Path-2019-nCoV inBasingstoke,
MS2 bacteriophage (52) inOxford]. The #Z-Path-
2019-nCoV control is a linear, synthetic RNA
target based on sequence from the rat ptprn2
gene, which has no sequence similarity with
SARS-CoV-2 (GENESIG PrimerDesign, per-
sonal communication, 6 April 2020). The MS2
RNA likewise has no SARS-CoV-2 similarity
(52). Neither control RNA interfered with
sequencing.

Targeted metagenomic sequencing

Samples with suspected epidemiological link-
age, where this information was available be-
fore sequencing, were processed in different
batches. Sequencing libraries were constructed
from remnant volume of nucleic acid after

clinical testing, ranging from5 to 45 ml (median
30 ml) for each sample depending on the avail-
able amount of eluate. These volumes repre-
sented 1 to 15% of the original specimen (swab).
Libraries were generated following the veSEQ
protocol (16) with some modifications. Briefly,
unique dual indexed (UDI) libraries for Illumina
sequencingwere constructedusing the SMARTer
StrandedTotalRNA-SeqKit v2Pico InputMam-
malian (Takara Bio) with no fragmentation
of the RNA. An equal volume of library from
each sample was pooled for capture. Size se-
lection was performed on the captured pool
to eliminate fragments shorter than 400 nu-
cleotides (nt), which otherwise may be pre-
ferentially amplified and sequenced. Targeted
enrichment of SARS-CoV-2 libraries in the pool
was obtained through a custom xGen Lock-
down Probes panel (IDT), using the SeqCap
EZ Accessory Kits v2 and SeqCap Hybridiza-
tion and Wash Kit (Roche) for hybridization
of the probes and removal of unbound DNA.
After 12 cycles of PCR for postcapture am-
plification, the final product was purified using
Agencourt AMPure XP (Beckman Coulter). Se-
quencing was performed on the IlluminaMiSeq
(batches 1 and 2) or NovaSeq 6000 (batches 3 to
27) platform (Illumina) at the Oxford Genomics
Centre, generating 150–base pair (bp) or 250-bp
paired-end reads.

Quantification controls

A dilution series of in vitro–transcribed SARS-
CoV-2 RNA [Twist Synthetic SARS-CoV-2 RNA
Control 1 (MT007544.1), Twist Bioscience] was
included in every capture pool of 90 samples
starting frombatch 3 and sequenced alongside
the clinical samples. Control RNA was serially
diluted into Universal Human Reference RNA
(UHRR) to a final concentration of SARS-CoV-
2 RNA of 500,000, 50,000, 5000, 500, 100, and
0 copies/reaction. From this, we produced a
standard curve demonstrating linear associ-
ation between viral load and read depth (fig.
S1). For an experiment comparing iSNV pres-
ence with and without probe capture, we ad-
ditionally sequenced two replicates of the
Twist RNA control without capture, diluted
into UHRR to give an expected concentration
of 50,000 copies per reaction.
As an additional validation step, we com-

pared iSNVs in resequenced controls with data
for the stock RNA sequenced and provided by
the manufacturer (Twist Bioscience). Six well-
defined iSNVs, which were present in the man-
ufacturer’s data and presumably arose during
in vitro transcription, were also recovered by
our protocol (fig. S8). In addition, we identi-
fied 112 sites that appeared vulnerable to low-
frequency intrahost variation in vitro (table
S3), possibly as a result of structural variation
along the genome or interaction with the se-
quencing protocol. We blacklisted vulnerable
sites from further analysis.

In-run controls
In addition to the synthetic RNA standards
described above, each batch included a non-
SARS-CoV-2 in-run control consisting of pu-
rified, in vitro–transcribed HIV RNA from
clone p92BR025.8 obtained from the National
Institute for Biological Standards and Control
(53). For batches 1 and 2, which were sequenced
before synthetic RNA became available, we
included negative buffer controls. As additional
negative controls, we sequenced six matched
clinical samples from non–COVID-19 patients
distributed across different sequencing runs,
and none contained any SARS-CoV-2 reads.

Minimizing risk of index misassignment

All samples had UDI to prevent cross-detection
of reads in the same pool. The in-runHIV RNA
controlswere used to estimate indexmisassign-
ment because this provided a sequence-distinct
source of RNA: <3 SARS-CoV-2 reads were de-
tected in any HIV control (median 0), and
<10 HIV reads were detected in any SARS-
CoV-2 control (median 0), suggesting that index
misassignment, if present, occurred at extremely
low levels.

Bioinformatics processing

Demultiplexed sequence read pairs were clas-
sified by Kraken version 2 (54) using a cus-
tom database containing the human genome
(GRCh38 build) and the full RefSeq set of bac-
terial and viral genomes (pulled May 2020).
Sequences identified as either human or bacte-
rial were removed using filter_keep_reads.py
from the Castanet (17) workflow (55). Remain-
ing reads, composed of viral and unclassified
reads, were trimmed in two stages: first to re-
move the random hexamer primers from the
forward read and SMARTer TSO from the re-
verse read, and then to remove Illumina adapter
sequences using Trimmomatic version 0.36
(56), with the ILLUMINACLIP options set to
“2:10:7:1:true MINLEN:80.” Trimmed reads
were mapped to the SARS-CoV-2 RefSeq ge-
nome of isolate Wuhan-Hu-1 (NC_045512.2)
using shiver (57) version 1.5.7, with either smalt
(58) or bowtie2 (59) as the mapper. Both map-
pers generated comparable results, and smalt
was used for the final analysis. Only properly
paired reads with insert size <2000 and with at
least 70% sequence identity to the reference
were retained. For analysis of consensus ge-
nomes, consensus calls required a minimum
of two uniquely mapped (deduplicated) reads
per position, equivalent to >15 raw reads per
position. Analysis of within-host diversity was
restricted only to positions with minimum raw
depth of 100, except when examining diversity
within presumed recipients of transmissions
in the bottleneck analysis. MAFs were com-
puted at every position using shiver (57) (tools/
AnalysePileup.py), with the default settings
of no BAQ and maximum pileup depth of
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1000000.Lineageswereassignedby thePangolin
web server (60) using the determined consen-
sus genome for each sequenced sample.

Alignment

Oxford and Basingstoke samples were selected
if the consensus sequence (inferred from unique
mapped reads) consisted of nomore than 25%
N characters. As an alignment to the reference
sequence was already performed in shiver, no
further alignment was necessary. To place
these data into the global phylogenetic context
and to help resolve ancestry, a collection of non-
UK consensus sequences from the GISAID data-
base (61) were included in the set of sequences
to be aligned. All GISAID (62) sequences were
downloaded from the database on 26April 2020
and filtered to remove sequences that were
<29,800 base pairs in length, had >1% Ns, or
were from the United Kingdom. The remain-
ing sequences were clustered using CD-HIT-
EST (63) using a similarity threshold of 0.995,
and then one sequence per cluster picked. The
resulting set, along with the reference ge-
nome Wuhan-Hu-1 (RefSeq ID NC_045512),
were aligned using MAFFT (64), with some
manual improvement of the algorithmic align-
ment and removal of problematic sequences
performed as a postprocessing step. Indels
with respect toWuhan-Hu-1 in both the Oxford
and/or Basingstoke and GISAID alignments
were deleted, resulting in two alignments
of 29,903 nucleotides that could be readily
combined.

Demonstration of the effect of read down-sampling

To demonstrate the effect of read depth on es-
timated iSNV counts, we selected the 30 sam-
ples with the highest total number of mapped
reads, chose a variety of down-sampling frac-
tions for each, and removed all but that pro-
portion of called bases from consideration.
We then determined, for each sample and frac-
tion, the number of iSNVs that would be iden-
tified at a threshold of 3% MAF at a minimum
depth of 100 if only that fraction of called bases
were available to us.

Transmission bottleneck analysis

Sixteen potential transmission pairs were iden-
tified by shared address (household) and first
positive sample within 2 weeks. If samples
from the two individuals in the household
differed by fewer than three consensus differ-
ences (15 households), direct transmission was
assumed. Apart from one genome position in
household 6 and one in household 12, all sites
associatedwith a consensus differencewithin
a household were within-host variable in at
least onemember of the household pair, lend-
ing support to assumption of direct transmission
(the exceptions are associated with low-read
samples). Household 15 had six consensus dif-
ferences and was therefore excluded from our

bottleneck analysis, although we note that for
all six positions, the site was within-host var-
iable in one or other individual. This pattern
is inconsistent with direct transmission but
may represent transmission from a common
source. When the first samples for each in-
dividual in the household were >1 week apart,
we assumed that the earlier sampled individ-
ual was the source; otherwise, we considered
both possible directions of transmission. If in-
dividuals had more than one sample or repli-
cate sequences from the same sample, then
we used the sample and/or replicate with the
highest number of mapped reads.
Bottleneck size was calculated using the

exact beta-binomial method described in
(28). Because most samples in the analysis
had <50,000 mapped reads, we considered
all sites in the genome, including sites in
the 3′ and 5′ UTR, but excluding the poly-A
tail (positions 29865 to 29903), the 18 “highly
shared” sites, and those identified from the
synthetic controls. All sites with >3% MAF and
>100 reads in the assumed source individual
were used in the analysis. In the recipient,
all reads at these sites were considered, with
an error threshold of 0.5% MAF. Following
(28), 95% confidence intervals (CIs) were
calculated using a likelihood ratio test. No
estimate was recorded for household 8 be-
cause there were no identified iSNVs >3% in
the source.

Calculation of dN/dS

The total number of synonymous and non-
synonymous substitutions in the SARS-CoV-2
genome was estimated using the first method
of (65) applied to the coding regions of the
Wuhan-Hu-1 reference sequence. Overlapping
reading frames were accounted for such that
a substitution was considered nonsynony-
mous overall if it was nonsynonymous in either
frame.
We took two approaches to this calcula-

tion, first by counting all iSNVs individu-
ally, and second by counting only unique
iSNVs. In the latter case, where we detected
iSNVs with different base changes at the same
position, we included only the most frequent.
The results of the former are the basis for
Table 1, whereas those of the latter appear
in table S5.
The dN/dS ratio for iSNVs over a genomic

region G was then calculated as follows:X
p∈G

iNp

TN
G

,X
p∈G

iSp

TS
G

where iNp is the fraction of iSNVs at p that are
nonsynonymous, or 0 if there are no iSNVs
at p; TN

G is the total number of potential non-
synonymous substitutions in G; and the de-
nominator replaces N with S to represent
synonymous substitutions. The 95% CIs for

these estimates were obtained using the likeli-
hood ratio test.

Phylogenetics

Phylogenetic reconstruction was performed
on the alignment consisting of the 1390 con-
sensus sequences, along with the GISAID set
and the Wuhan-Hu-1 reference sequence. We
followed the recommendations of Morel et al.
(42), inwhich 100 separatemaximum likelihood
phylogenies were generated using RAxML-NG
(66) and the GTR+G substitution model, such
that each reconstruction used a different ran-
dom starting parsimony tree. The final phy-
logeny was then obtained from this set using
majority rule. This final tree was rooted with
respect to the reference sequence, and then
that and all GISAID isolates were pruned.
To identify homoplasic sites,we selected sites

that changed state more than once along the
tree after inferring the states at internal nodes
using ancestral state reconstruction as imple-
mented in ClonalFrameML (67) and rooting the
tree using the reference genome NC_045512.
The recommendations of Morel et al. do not

easily lend themselves to fast bootstrapping,
so to explore phylogenetic uncertainty, we per-
formed an additional phylogenetic reconstruc-
tion on the same alignment using the ultrafast
bootstrap procedure in IQ-TREE (68). A total of
1000 bootstrap replicates were used.

Phylogenetic association of iSNVs and SNPs

Where an iSNV corresponded to a consensus
SNP (by the base pair involved, not simply
the site), we performed ancestral state re-
construction on the consensus trees using
ClonalFrameML (67) to identify all branches
upon which that substitution was involved.
Tips derived from the same clinical sample
were then pruned until only one (the one with
the highest overall depth) remained. Then, for
each tip in the tree, we calculated the patristic
distance from that tip to the midpoint of the
closest one of these branches and used a one-
tailed Mann-Whitney U test to test for associa-
tion between the iSNV existing in a sample and
this distance.Multiple testingwas controlled for
using the Benjamini-Hochberg adjustment. As
a sensitivity analysis, this was repeated such
that all but one tip per infected individual, rather
than per clinical sample, were pruned. These
analyses were done both on an individual site
level and across all sites of interest.
To confirm that the associations that we ob-

served here were unaffected by phylogenetic
uncertainty, we used the set of 1000 IQ-TREE
bootstraps. We repeated the Mann-Whitney
U tests above for each of these 1000 trees.

Phylogenetic association of iSNVs at consensus
invariant positions

For the remaining iSNVs, we calculated the
extent of association with the consensus
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phylogeny by treating the presence of an iSNV
as a discrete character and calculating the as-
sociation index and the mean patristic distance
between iSNV tips. Once again, the consensus
tree was pruned such that tips corresponding
to samples with read depth <100 at the posi-
tion and all but one tip coming from the same
individual were removed. A null distribution
was generated by permuting the tip labels of
this tree 10,000 times, and a one-sided permu-
tation test P-value was calculated. Multiple
testing was adjusted for as above. In addition,
for each tip in the phylogeny at each site of
interest, we calculated the minimum patristic
distance to a different tip corresponding to an
iSNV and used theMann-WhitneyU test again
to compare the distribution of these distances
between iSNV and non-iSNV tips.
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transmissionsuperspreader events. After transmission, most variants fizzled out, but occasionally some initiated ongoing 
viral entry, the authors also saw evidence for transmission clusters associated with households and other possible
many variants. Although the evidence indicates strong purifying selection, including in the spike protein responsible for 
patterns of within-host virus diversity. The authors observed only one or two variants in most samples, but a few carried
isolates to find out how the virus is mutating within individuals. Overall, there seem to be consistent and reproducible 

 have undertaken in-depth sequencing of more than 1000 hospital patients'et al.antibody treatment escape. Lythgoe 
variants emerging. Some of these variants have worrying functional implications, such as increased transmissibility or 

A year into the severe acute respiratory syndrome coronavirus 2 pandemic, we are experiencing waves of new
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