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Enhancement of flexibility in multi-energy microgrids
considering voltage and congestion improvement:

Robust thermal comfort against reserve calls

Abstract

In recent years, multi-energy microgrid (MEM) has gained increasing interest, which

could use clean and efficient electro-thermal resources, multi-energy storages (MESs)

and demand response potential to improve the flexibility of MEM. However, max-

imizing the flexibility potential of MEM and alongside managing the electrical pa-

rameters (EPs) is a challenging modelling problem. In this paper, a probabilistic

nonlinear model is presented to maximize the flexibility with all the power grid

constraints taking into account EPs constraints using power flow. To this end, volt-

age profile and congestion improvement, robust thermal comfort provision during

reserve call and MESs utilization are the key properties of the proposed model. The

outcome of suggested model ensures sustainability in the MEM performance, which

is an essential feature in modern smart cities. The presented model is applied to a

distribution network in the UK and results illustrate how equipment scheduling and

demand response leads to observe the EPs limitation and maximizes MEM flexibility.

The achieved results show a decrease in MEM revenue (decrease of 34% and 24%

without and with reserve commitment, respectively) and in contrast, a significant

increase in flexibility compared to non-compliance with EPs constraints.

Keywords: Electrical parameters, flexibility, multi-energy microgrid, multi-energy

storage, reserve commitment, thermal comfort.
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Nomenclature

A. Acronyms

CHP Combined heat and power

DHW Domestic hot water

EB Electrical boiler

EHP Electrical heat pump

EP Electrical parameter

ES Electrical storage

GB Gas boiler

MEM Multi-energy microgrid

MEMO Multi-energy microgrid operator

MES Multi-energy storage

MVA Mega volt-ampere

PF Power flow

PV Photovoltaic

TES Thermal energy storage

WT Wind turbine

B.Indices

s Scenario index

t Time step index

b, l Bus index

e Power transmission equipment index

γ Set of equipment

C. Constant variables

Bb/Bb Min/Max ES capacity [kWh]

Hγb/H
γ

b Min/Max γ thermal power [kW]

Pγb/P
γ

b Min/Max γ electrical power [kW]

Xb/Xb Min/Max TES temperature [◦C]
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ρ
tb
/ρtb Max down/up temperature variation [◦C]

ηCHPe
b /ηCHPth

b CHP electrical/thermal efficiency [%]

ηGB
b /η

EB
b GB/EB efficiency [%]

ηES
b Round-trip efficiency of ES [%]

CPEHP
stb EHP coefficient of performance [%]

CTE
e Max transmission equipment current [A]

D. Parameters

Eele
stb/X

DHW
stb Electricity/DHW load [kWh]

IGstb/PGstb Internal/PV heat gains [kWh]

Gbl/Bbl Conductance/Susceptance matrix [S]

Ostb/κt Binary/Down reserve indicator [∈(0,1)]

PPV
stb/P

WT
stb PV/WT electrical power [kW]

CB
b/C

TES
b Build/TES thermal capacitance [kWh/◦C]

RB
b/R

TES
b Build/TES thermal resistance [◦C/kW]

TA
tb/T

E
st Adjusted/Environmental temperature [◦C]

Λ
RES

Max call length of reserve [h]

ρs/ρRES Scenario/reserve call probability [%]

∆t Time interval [h]

εI
t/ε

E
t Day-ahead import/export price [£/kWh]

πI
st/π

E
st Imbalance export/import price [£/kWh]

δt/σt Gas/Down reserve availability price [£/kWh]

ξd
t/ξ

s
t Temperature deficit/surplus penalties [£/◦Ch]

E. Variables

BES
stb/X

TES
stb ES/TES energy level [kWh]

FtBstb/Hd
B
stb Build heat storage footroom/headroom [kW]

DI
t/D

E
t Day-ahead energy import/export [kW]

GGB
stb/G

I
st Gas consumed by GB/MEM [kW]
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HGB
stb/H

CHP
stb GB/CHP thermal power [kW]

XI
stb/X

LOSS
stb TES heat import/loss [kWh]

XSH
stb Space heating demand [kWh]

IIst/I
E
st Imbalance energy import/export [kW]

PM
stb/P

M
st Imported power location/MEM level [kW]

Pγstb/R
γ
stb γ electrical power/down reserve [kW]

Rloc
stb/R

MEM
s Down reserve location/MEM level [kW]

R
MEM_a
st Auxiliary down reserve MEM level [kW]

Tstb Build temperature [◦C]

Td
stb/T

s
stb Temperature deficit/surplus [◦C]

T
R_d
stb/T

R_s
stb Temperature deficit/surplus of reserve [◦C]

Γstb Internal/PV gain vent [%]

vstb Voltage magnitude at buses [p.u.]

θstb Voltage angle at buses [◦]

cste Transmission equipment current [A]

1. Introduction

1.1. Motivation

Flexibility is the potential and ability to continuously balance the electricity gen-

eration and demand in a cost-effective manner that is important in urban economies,

while simultaneously maintaining acceptable service quality to the consumers [1].

The demand for flexibility in multi-energy microgrid (MEM), which can be a city or a

part of a city, is expected to increase as the application of electric heating/transport

in cities, and variable/clean generations grow. However, it is achieved at a compro-

mise between profits and costs [1]. The equipment used in MEM are divided into

two categories of resources (including gas boiler (GB), electro-thermal resources

such as combined heat and power (CHP), electrical heat pump (EHP), electrical

boiler (EB)) and multi-energy storages (such as thermal energy storage (TES), elec-

trical storage (ES) and building fabric). Scheduling these equipment power and

also demand response models are the appropriate tools for increasing the flexibil-
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ity [2]. It is noteworthy that increasing the use of low carbon resources such as

EHP and high-efficiency distributed resources such as CHP in the green buildings

of smart cities is very important to create a green structure. Also, further expan-

sion of low carbon high-efficiency resources on a larger scale can prevent climate

change. Moreover, the demand response synchronizes the load demand locally,

making it more convenient to control local generations, eliminate local network ca-

pacity limitations and balance the generation with load [3]. Alongside, MEM that

includes equipment and demand response sources makes it possible for MEM to

participate in both energy/reserve market and provide a safe margin for improving

the consumers thermal comfort [2, 4, 5]. To contribute towards the energy/reserve

market, provision of consumers thermal comfort and increase in flexibility (service

quality improvement), all of MEM parameters must be controlled [6]. To achieve

controllability, for instance, the power of equipment and especially the electrical

parameters (EPs) must be measurable and limited to their standard range. Here

EPs include voltage magnitude and angle, and current in all power transmission

equipment such as transformers and lines, resulting from the power flow (PF). If

the EPs are not within the standard range, in addition to degrading service qual-

ity, it may damage the MEM equipment, resulting in a partial or full stopping of

MEM function, and this leads to unsustainable performance [7]. As a result, the

control of EPs makes it possible for MEM to sustainability operate over time and

develop a sustainable city. The research work related to flexibility improvement are

classified into two groups: 1) management of MEM power to increase the flexibil-

ity, which provides maximized revenue without implementing the PF. Thus, EPs do

not have standard values and the resulting models are not capable to be applied to

a realistic MEM technically, 2) management of MEM power which uses PF strate-

gies. Although, some of these works also optimize the revenue, but some parts of

MEM revenue (e.g. reserve revenue) are lost. In addition, these works miss the

other parts (e.g. thermal comfort). Therefore, EPs are within the standard range,

however, these models do not operate economically in MEM and flexibility is not

maximized.
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1.2. Literature review

So far, various research studies have been carried out for maximizing the MEM

flexibility considering the equipment power scheduling specially focused on de-

mand response. Cesena and Mancarella [7] and Coelho et al. [8] present a frame-

work for scheduling of microgrid equipment to increase the flexibility. But, equip-

ment reserve and its impact on consumers thermal comfort (service quality reduc-

tion) and also thermal storage of building fabric are not considered. Moreover, tem-

perature profile in thermal load is not modeled separately, which does not analyze

the building occupants behavior completely and ignores the impact of its probabili-

ties in MEM power management (selling energy to the upstream network is not in-

vestigated in [8], therefore, the optimized MEM revenue is not obtained). Also, the

method proposed by Gazijahani et al. [9] deals with the simultaneous scheduling of

energy and reserve of microgrid equipment in the market, and the results of which

show the reduction of microgrid cost and minimization of pollutant emissions that

improves air quality in cities. Due to the probabilities and inherent intermittence

of renewable sources, a conditional value-at-risk method is used to reduce the risk

of probabilities, however, the consumers thermal comfort and the thermal storage

of building fabric are lost. The probabilistic strategies for optimal MEM scheduling

so that the MEMO can optimally participate in the three markets of electricity, gas

and heat are provided by Lekvan et al. [10] and Ding et al. [11]. Although at-

tention has been paid to new high-efficiency technologies (including power-to-gas

units, electric vehicles parking lots and MESs) and demand response programs, but,

consumers thermal comfort, reserve generation and EPs are lost. The total cost in

[10] and [11] is decreased by 14.2% and 3.51%, respectively (CO2 emissions is

also reduced by 2.36% in [11]). Nasiri et al. [12] present a decentralized approach

that uses storage flexibility to achieve optimal market clearing at the regional and

local levels for a multi-energy network. In this approach, the linepack model is

used to model the gas pipes in the energy hub and also a linear energy hub model

is used for multi-energy network modeling, while participation in the imbalanced

and reserve market, as well as demand response are not considered. In order to im-

prove the efficiency and reliability of new smart cities, Fontenot et al. [13] provide
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a control framework to integrate residential and commercial buildings and their

internal resources and storages with the distribution network. Applying this model

to several standard networks shows that active power losses and building costs are

minimized, while voltage regulation and consumer comfort are increased. In this

framework, the probabilities of load, environmental parameters and heat gain are

considered, while the production of reserve is not considered. Li et al. [14] pre-

sented two centralized/decentralized frameworks with the aim of maximizing social

welfare and minimizing the cost of each player. The result of these frameworks is

the optimal dispatch of resources and storage units as well as the determination

of the optimal demand response in each of the energy systems. Compared to the

centralized framework, the decentralized framework performs better in terms of

privacy and dispatches the resources at a lower cost, while carbon emissions value

is higher. But these frameworks do not model EPs, reserve generation and thermal

comfort. The strategies for aggregating power in the distribution level for combin-

ing the flexibility of large and small distributed energy sources, and modeling and

quantifying the flexibility of aggregated power are addressed in [6, 15–19]. Chen

et al. used a distributed model predictive control framework to implement commu-

nications between the distribution network and the upstream network [6], where

they mainly address an unbalanced network. Muller et al. use a scalable method

in [15] and price aggregated flexibility based on zonotopic sets. This model also

allows the aggregator to aggregate the flexibility of a large number of systems at

the same time. In addition, control decisions at the aggregated level are distributed

among each system in a way that are economically and computationally optimal.

The purpose of this method is to reduce costs and provide optimal ancillary services.

Yazdani-Damavandi et al. use a multi-layer method for aggregating flexibility, the

layers of which include the market, the aggregators of local systems, local systems,

as well as loads [16]. The aggregators who participate in the market as a prosumer

in this method, in addition to maximizing profits, can reduce their operational risk.

The model presented by Majzoobi and Khodaei [17], balances the power changes

created by prosumers by power scheduling using aggregated flexibility potential.

Moreover, this model eliminates the need for additional investment and considers
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ramp constraints. The power aggregator proposed by Yazdani-Damavandi et al.

[18] for local systems can participate in the retail markets and provide higher inte-

gration. This two-layer model has the ability to maximize the profits of aggregators

as well as the profits of each local system, and the relationship between the various

parts of this model is based on price signals. Lu et al. investigate an aggrega-

tion strategy of electrical vehicles flexibility to help the distribution network reduce

the impact of probabilities [19]. The aggregators provided in this model allow the

distribution network to deal with a smaller number of actors. The robust optimiza-

tion in this model allows optimal scheduling in the presence of any uncertainties

of vehicles average performance. To facilitate the voltage profile and congestion, a

flexibility exchange strategy by Liao and Milanovic proposed several factors to min-

imize the variation of network variables, especially the participation of consumers

or aggregators [20]. This strategy is implemented after another model, which con-

sidered maximizing the flexibility without considering the voltage profile and cur-

rent, e.g. [2]. The energy flexibility on the distribution buses provided by flexible

loads and controllable inverters based photovoltaic (PV) generation systems (for

providing reactive power flexibility) is optimized by Oikonomou et al. [21]. The

contribution of each distribution bus in providing the flexibility is determined by

the presented index. The TES investigated by Anwar et al. [22] shifts the time of

energy consumption, increases demand response potential and thermal comfort of

each building, and as a result the flexibility in multi-time scale. Romanchenko et al.

[23] performed a techno-economic investigation for the use of thermal load flexibil-

ity (by allowing temperature deviations from the set temperature in the buildings)

along with the flexibility created by the TES utilization, the result of which is min-

imum thermal load and cost. They also showed that the increase in temperature

was more widespread in multi-family buildings and the decrease in temperature

was more widespread in single-family buildings, and the amount of temperature

deviations are reduced using TES. But the EPs constraints and the reserve market

are not taken into account. Also, according to the works done by Correa-Florez et

al. [24] and Iria et al. [25], the equipment power can be optimized from an ag-

gregator’s standpoint to participate in day-ahead and local flexibility markets. The
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objective is to minimize day-ahead operation cost for the aggregator and result in

optimized bidding for wholesale and local markets (imbalanced market and electric

vehicles are included in [25] as well). The impact of electric vehicles on the energy

management of microgrids with respect to the growth of power consumption due

to the electric vehicles penetration expansion in smart cities is also investigated by

Ahmad et al. [26]. For determining the optimal switching time between generator

and pump-mode for the pumped energy storages, the proposed strategy by Liang

et al. [27] is specially useful, improving the flexibility and frequency regulation.

The water distribution system is optimized by Oikonomou and Parvania [28] and

feasible flexible capacity is calculated for the power system operator. The demand

response flexibility (based on weather forecast and other data) without depending

on smart meter data or detailed consumer surveys can be estimated according to

the research implemented by Wang et al. [29]. Furthermore, a direct load control

strategy proposed by Tascikaraoglu et al. [30], obtains flexibility from residential

heating, ventilation and air conditioning units and optimal management of storage

systems with the aim of minimizing energy demand during the demand response

event and minimize consumers discomfort. Guo et al. [31] investigate the micro-

grid equipment scheduling taking into account the flexibility of demand response

and plug-in electric vehicles and the results demonstrate a reduction of 3.57% and

3.4% respectively for the cost and emission of pollutants. Also, the real electric ve-

hicles model is improved by using the ac-power flow and Wohler curve, as well as

the probabilities are considered in several scenarios based on fuzzy decision making

approaches. The model presented by Zeng et al. uses demand response flexibility

(based on a price based approach) in MEM planning and scheduling, and with a

generalized elasticity strategy, considers consumer behavior in response to price

changes [32]. However, the reserve production and consumers thermal comfort

are not taken into account in [31, 32] (in addition, heating network and EPs con-

straints are lost in [31] and [32], respectively). Baldi et al. presented another

feedback-based method for load management using smart zoning and according to

occupancy patterns [33], which in addition to utilizing renewable resources, im-

proves consumers thermal comfort. Ma et al. presented a model which investigates
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the impact of environmental parameters including porous pavement and plant tran-

spiration [34]. The results of this model show that the relationship between temper-

ature and ambient temperature and also the relationship between Predicted Mean

Vote and humidity increases with increasing building height, and as a result, very

tall buildings in the cities do not provide adequate thermal comfort. On the other

hand, increasing the space of the building can improve the temperature and the

Predicted Mean Vote, thus increasing the thermal comfort. Park and Chang [35]

integrated a smart window ventilation system and a central heating, ventilation

and air conditioning system into a commercial building, and investigated its im-

pact on indoor air quality and thermal comfort using computational fluid dynamics

strategies. The use of smart window ventilation system only improves air quality

and thermal comfort in winter, while leading to poor air quality in summer. The

investigations performed in [34, 35] do not consider EPs and reserve generation.

Korkas et al. in [36], present an energy management system in a microgrid that is

connected to the upstream network and includes a heterogeneous occupancy sched-

ule (created due to domestic, commercial and industrial consumers). This system

aims to reduce cost and maximize thermal comfort using the potential of occupancy

schedule and intermittent power of PV. In addition, a bi-level control algorithm is

provided by Korkas et al. in [5] for joint management of scalable and robust de-

mand response as well as optimization of thermal comfort under heterogeneous

conditions. This algorithm reduces energy costs compared to previous demand re-

sponse strategies, and renewable sources are integrated more efficiently. However,

Refs. [5, 33, 36] do not consider participation in the reserve market and EPs, as a

result of which they lose revenue from reserve sales and the amounts of EPs may

not be standard. The reactive power flexibility obtained by tools such as transform-

ers tap is used by Ding et al. [37] to reduce network loss to maintain EPs within

the standard range. The reactive power modeling is performed using the conic

relaxation strategy. This two-stage model coordinates both types of discrete and

continuous reactive power compensators to provide optimal reactive power for any

wind power uncertainty. Quantifying the gas network flexibility that can be pro-

vided for the power system, as well as the constraints it can impose on the power
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system is done by Clegg and Mancarella [38]. Because the gas network also pro-

vides heat, different heating scenarios are investigated in this flexibility. Moreover,

the impacts of gas network inflexibility on local generation and reserve constraints

have been checked. Consumers flexibility can be estimated based on offline data

for providing day-ahead and real-time ancillary services, which is proved by Zotti

et al. [39], given consumers elasticity and technical differences between differ-

ent types of loads. A chance-constrained model is used to consider the impact of

probabilities. In addition, this model is such that it does not require real-time com-

munication to be implemented, and therefore the cost of infrastructure is reduced.

Furthermore, Heydarian et al. introduced a techno-economic flexibility index [40]

that quantifies the flexibility of generation technologies according to the level of

stable minimum generation, performance range, minimum up/down times, and

ramp up/down capability. A multi-agent framework is presented by Rahman and

Oo [41] to manage microgrid power using distributed power resources equipped

with power electronic inverter-interfaced. Electrical vehicles and especially their

vehicle-to-home mode have also been considered to ensure the sustainable perfor-

mance of the microgrid with the uncertainty of the renewable resources and loads.

Khan et al. [42] have introduced a distributed multi-agent energy management sys-

tem that, unlike centralized energy management systems, can satisfy criteria such as

adaptability. However, the heating network and its loads have not been taken into

consideration in [41, 42] and the consumers thermal comfort has been neglected.

Good and Mancarella compared the amount of flexibility and revenue growth that

each of the equipment can generate in MEM, considering demand response and ef-

fect of reserve call on consumers thermal comfort [2]. But the main problem is that

in this model, sometimes the voltage is in the non-standard range and congestion

occurs in some network transmission equipment.

1.3. Contributions

To the best knowledge of the authors, there is no systematic model that max-

imizes the flexibility of an MEM participating in the energy and reserve market,

while its EPs are also monitored. Furthermore, some of the models presented in
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Section 1.2 do not control the thermal comfort of consumers living in buildings

located in MEM. Table 1 provides an at-a-glance view of the previous papers and

shows their defects. Given the above, several gaps have been identified in the ex-

isting literature, and are listed as follows:

1. Although there are a lot of power management models which aggregate the

flexibility from different resources. However, there is lack of a model that

systematically considers EPs constraints in flexibility issue at the same time

with participation in reserve market (e.g. [7]). Also, the relationship between

equipment power and power input from the market with the EPs amount per

hour has not been studied.

2. The developed works on flexibility consider the impact of reserve commitment

on consumers thermal comfort, but there is no comprehensive model that

considers thermal comfort at the same time as EPs and studies changes in

thermal comfort alongside EPs.

This paper presents an MEM power management model using PF that not only

considers the EPs for sustainable performance of MEM, but also maximizes the flex-

ibility to create a flexible and sustainable city. The multi-energy model allows using

different flexibility resources (including MESs, energy vector/equipment substitu-

tion and end-user service curtailment). Based on the literature discussed, the major

contributions of this paper are as follows:

1. Consideration of EPs constraints for setting them in a standard range, and

check their changes hour by hour according to the equipment power changes,

market price signals, as well as the level of reserve

2. Presenting a comprehensive multi-energy model including reserve commit-

ment effect on thermal comfort (as a service) alongside the EPs to manage

the MEM power optimally for balancing power (in the presence of uncertain-

ties of renewable resources, loads and market prices), creating robust thermal

comfort for consumers and increasing the consumers services quality, as well

as investigating the interaction of thermal comfort and EPs values in MEM
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Table 1: A comparative summary of this study and previous papers

Ref. EPs Electricity market Thermal Network Storage Demand Thermal load

Day-ahead Imbalanced Reserve comfort response Temperature DHW

[7] Ø Ø No No No electricity/gas/heat ES/TES No as a single load

[8] Ø Ø No No No electricity/gas/heat ES/TES Ø as a single load

[10] No Ø No No No electricity/gas/heat ES/TES/electrical vehicle Ø as a single load

[11] No Ø No No No electricity/gas/heat ES/TES/electrical vehicle Ø as a single load

[15] No Ø No No No electricity/heat ES No Ø No

[16] No wholesale market No No electricity/gas/heat ES/TES No as a single load

[17] No Ø No No No electricity ES No No No

[18] No Ø No No No electricity/gas/heat TES No as a single load

[20] Ø No No No No electricity Ø Ø No No

[22] No Ø No Ø Ø electricity/heat ES/TES Ø Ø No

[24] No Ø Ø No No electricity/heat ES/TES No as a single load

[25] No Ø Ø Ø Ø electricity/heat No Ø Ø No

[26] No No No No No electricity electrical vehicle Ø No No

[27] No No No Ø No electricity pumped energy storage No No No

[28] No No No No No electricity No Ø No No

[29] No No No No No electricity No Ø No No

[30] Ø No No No Ø electricity/heat ES Ø Ø No

[33] No No No No Ø electricity/heat No Ø Ø No

[36] No Ø No No Ø electricity/heat No Ø Ø No

[5] No No No No Ø electricity/heat ES Ø Ø No

[37] Ø No No No No electricity ES No No No

[38] No No No Ø No electricity/gas/heat No No Ø No

[40] Ø Ø No Ø No electricity bulk energy storage Ø No No

[2] No Ø Ø Ø Ø electricity/gas/heat ES/TES/building fabric Ø Ø Ø

[23] No No No No Ø electricity/heat TES Ø Ø Ø

[12] Ø Ø No No No electricity/gas/heat ES/TES No as a single load

[13] Ø No No No Ø electricity/heat ES Ø Ø No

[14] No Ø No No No electricity/heat ES/TES Ø as a single load

[34] No No No No Ø electricity/heat No No Ø No

[35] No No No No Ø electricity/heat No No Ø No

This study Ø Ø Ø Ø Ø electricity/gas/heat ES/TES/building fabric Ø Ø Ø
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2. Model and problem formulation

2.1. Power exchange of different equipment

Each building in the MEM has a set of equipment and multi-energy microgrid

operator (MEMO) manages them to observe MEM constraints. Figure 1 shows the

energy deal of equipment under the MEMO control in terms of energy type (elec-

tricity, gas and heat). The heat from resources must first be stored in the TES to

supply the thermal loads. The operational constraints of each of these equipment

are described in detail in Section 2.4 and 2.5. Also, the operational equations of the

buildings and the relationship between the power of the equipment and the building

loads as well as the markets are explained in Section 2.6 and 2.8, respectively.

Heat Loss

Gas HeatElectricity

WT
PV

X SH
stb X stb

Gas Market
Energy and Reserve Market

GB

Estb
TES

DHW

EHP

Junction

ES
Junction

CHPJunction

EB

MEMO

Junction

PDF created with pdfFactory Pro trial version www.pdffactory.com

Figure 1: The connection between equipment based on the type of energy in the building.

2.2. Flowchart of the proposed model

The proposed model is shown schematically in Figure 2. The procedure given

in Figure 2 is implemented by MEMO, which is a unit in MEM that manages its

performance. After receiving the input data, MEMO executes a scenario reduction

algorithm. The proposed nonlinear optimization model (due to nonlinear EPs con-

straints in Section 2.9) is solved using a solver named IPOPT, which is a nonlinear

computational (non-heuristic) optimization solver (IPOPT is described in detail in

[43]). In this step, the non-EPs constraints are modeled and calculated according to
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the structure required for IPOPT solver. Then, in each scenario, the link data are sent

to OpenDSS in a 24-hour time series. After performing PF calculations, MATLAB re-

ceives the values of vstb, θstb and cste and uses them to models EPs constraints

in the appropriate form to the solver. Finally, the objective function is calculated

and then, the solver is used. This solver calculates the error quantity for the con-

straints as well as the objective function in each iteration. If these error quantity

are less than the predetermined threshold, the optimal result is obtained, otherwise

the values of the variables in the next iteration must be checked. The novelties of

our paper are parts A, B and C of the flowchart. The EPs constraints (1st novelty

in Section 1), which need PF calculation, are modelled in part A by OpenDSS (see

Eqs. (34)-(39)). The objective function also minimizes the thermal discomfort (2nd

novelty) in Part B (Eq. (1)). The other constraints which are named as non-EPs con-

straints, including reserve and thermal comfort (2nd and part of 1st novelty) are

modeled in part C using MATLAB (see Eqs. (2)-(33)). The link data, which are the

values of electrical load and power of CHP, EHP, EB, ES, PV and wind turbine (WT),

are written in the CSV file and are transferred from MATLAB to OpenDSS in each

iteration. It should be noted that the proposed optimization model is a two-stage

model that optimizes the performance of each MEM equipment (Eqs. (2)-(29)) at

the lower stage and the total MEM performance (Eq. (1) and Eqs. (30)-(39)) at the

upper stage (Figure 2).

2.3. Objective function

The objective function of the proposed model in Eq. (1), optimizes the MEM

profit. Terms 1 and 2 model energy purchasing/selling in the day-ahead market,

respectively. Purchasing/selling energy in the imbalanced market is modeled in

terms 3 and 4, respectively . Therefore, the proposed model, by modeling the day-

ahead and imbalanced markets separately (unlike some papers in Table 1 that do

not consider the imbalanced market), allows the study of the impact of each mar-

ket, such as probabilities of the imbalanced market price. MEMO purchases gas

(term 5) and sells the provided reserve in reserve market (term 6). Also, the tem-

perature deviation from the set temperature of building is penalized (terms 7 and

15



Results

Perform scenario reduction algorithm-Section 3.1

Select initial value for variables

The variables quantity are 
converged to the optimal 

solution?

Read link data from .csv file

Calculation of PF-Eqs. (34), (35) and (38)

Read ,,vstb θstb cste

Calculation of objective function-Eq. (1)

Yes

Report optimization result (variables and ite)

Calculation of non-EPs constraints-Eqs. (2)-(29)

Write link data in .csv file

Buildings 
parameters Loads Renewable 

generations Markets price

Data collection

equipment generation Buy/sale of energy sale price of energy

O
pe

nD
SS

 
m

od
ul

e

Part B: 2nd 
contribution

Part C: 1st 
and 2nd 

contribution

N
on

lin
ea

r o
pt

im
iza

tio
n 

pr
oc

es
s

M
AT

LA
B 

m
od

ul
e

ite=1

• IPOPT solver updates the 
variables based on IPOPT 
rules

• ite=ite+1

No

s=1, t=1

Select scenario s

Select time t

t < Nt

s < Ns

Yes

Yes

No

No

s=s+1

t=t+1

Calculation of Eps constraints-Eqs. (36), (37) and (39)

Calculation of non-EPs constraints-Eqs. (30)-(33) Lo
w

er
 st

ag
e

U
pp

er
 st

ag
e

Use IPOPT solver to check the current variables quantity

Part A: 1st 
contribution

PDF created with pdfFactory Pro trial version www.pdffactory.com

Figure 2: Flowchart of the proposed model.
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8) which is paid by MEMO to the consumer for failure to provide consumers ther-

mal comfort (2nd novelty). Similarly, temperature deviation due to reserve call is

investigated with the probability of reserve call (ρRES) in terms 9 and 10. Consid-

ering the impact of tax and other tariffs on the imported electricity price, make it

different compared to exported electricity price. The probability of occurrence of

each scenario is determined by parameter ρs.

Min
{∑Ns

s=1

[
ρs
∑Nt

t=1

(
εI
tD

I
t∆t− ε

E
tD

E
t∆t+ π

I
stI

I
st∆t

−πE
stI

E
st∆t+ δtG

I
st∆t− σtR

MEM_a
st ∆t+

∑Nb

b=1 ∆t

(
ξs
tT

s
stb

+ξd
tT

d
stb + ρ

RESξs
tT

R_s
stb + ρ

RESξd
tT

R_d
stb

(1)

2.4. Resources constraints

Eqs. (2)-(5) determine resources limits in MEM.

HGB
b 6 HGB

stb 6 H
GB
b ∀stb, HGB

stb = GGB
stbη

GB
b (2)

HCHP
b 6 HCHP

stb 6 H
CHP
b ∀stb, HCHP

stb =
PCHP
stbη

CHPth
b

ηCHPe
b

(3)

PEHP
b 6 PEHP

stb 6 P
EHP
b ∀stb (4)

HEB
b 6 PEB

stbη
EB
b 6 H

EB
b ∀stb (5)

2.5. Storage equipment

The limits of energy stored in MESs are determined in Eqs. (6)-(7). Eq. (8)

determines the allowed PES
stb which is positive or negative when ES is charging or

discharging, respectively. Eqs. (10)-(11) respectively show stored energy in TES

and ES at next time-step, depends on their energy value and imported energy (12)

at the current time-step. The energy stored in TES also relies on its energy loss

(9) in the building and thermal load (including building temperature provision and

domestic hot water (DHW)).

(Xb − Tstb)C
TES
b 6 XTES

stb 6
(
Xb − Tstb

)
CTES
b ∀stb (6)

Bb 6 BES
stb 6 Bb ∀stb (7)

PES
b 6 PES

stb 6 P
ES
b ∀stb (8)
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XLOSS
stb =

(
XTES

stb

CTES
b

− Tstb

)
∆t

RTES
b

∀stb (9)

XTES
s(t+1)b = XTES

stb + X
I
stb − X

LOSS
stb − XSH

stb − X
DHW
stb ∀stb (10)

Bs(t+1)b = BES
stb +

(
PES
stb

ηES
b

)
∆t ∀stb (11)

(
HGB
stb +H

CHP
stb + PEHP

stbCPEHP
stb + P

EB
stbη

EB
b

)
∆t = XI

stb ∀stb (12)

To ensure zero distortion in the obtained results, the value of energy stored at

initial time-step in MESs must be set equal to the last time-step.

Xs0b = XsNtb ∀sb (13)

Bs0b = BsNtb ∀sb (14)

2.6. Building equations

Eqs. (15) and (16) show that the building temperature must stay within the

allowed band, which is determined by ρ
tb

and ρtb (zero at all conditions and can

be set to nonzero values when the model fails to converge for a particular MEM

condition), where Td
stb and T s

stb enable thermal comfort capability. These param-

eters are used when model fails to meet thermal comfort constraints. In Eq. (17),

which defines building temperature, the role of PV heat and consumers depends

on consumers actions (for instance opening doors) that is defined by Γstb. In fact,

Ostb, TA
tb and Γstb model the behavior of consumers living in MEM. To ensure the

achieved results are not distorted, the building temperature at the initial time-step

must be set as equal to the last time-step by Eq. (19) [44].

Ostb (Tstb − T
s
stb) 6 Ostb

(
TA
tb + ρtb

)
∀stb (15)

Ostb

(
TA
tb − ρtb

)
6 Ostb

(
Tstb + T

d
stb

)
∀stb (16)

Ts(t+1)b = Tstb +

(
XSH
stb + (1 − Γstb) (IGstb + PGstb)

−
(
Tstb − T

E
tb

)
∆tRB

b
−1

+ XLOSS
stb C

B
b
−1 ∀stb

(17)

XSH
stb > 0 ∀stb (18)

Ts0b = TsNtb ∀sb (19)
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2.7. Reserve modelling

2.7.1. The resources of reserve

The reserve commitment of equipment (part of 1st novelty) is limited by Eqs. (20)-

(24). Based on Eqs. (21) and (22), the reserve of EHP and EB cannot be greater than

the footroom. Whereas, CHP reserve stays below its headroom, given by Eq. (23).

ES reserve cannot be greater than up-limit of its discharge power by Eq. (24).

Rloc
stb = REHP

stb + R
EB
stb + R

CHP
stb + RES

stb ∀stb (20)

0 6 REHP
stb 6 PEHP

stb − P
EHP
b ∀stb (21)

0 6 REB
stb 6 PEB

stb −
HEB
b

ηEB
b

∀stb (22)

0 6 RCHP
stb 6

H
CHP
b ηCHPe

b

ηCHPth
b

− PCHP
stb ∀stb (23)

0 6 RES
stb 6 P

ES
b + PES

stb ∀stb (24)

2.7.2. Reserve commitment and thermal comfort

The robust thermal comfort (2nd novelty) means that the proposed model is

able to provide adjusted temperature to the consumers even during reserve call in

any of the possible scenarios considered for probabilistic parameters. Due to the

complexity of the problem and due to the low impact of air velocity and humidity

in this problem, only air temperature is considered in the assessment of thermal

comfort. The building temperature (Tstb) closer to the adjusted temperature (TA
tb)

by consumers, increases consumers satisfaction and thus enhances the thermal com-

fort. Therefore, in the proposed model, air quality control and management which

is the parameter of air temperature in MEM buildings, is also discussed. To this

end, it is essential to have enough energy in TES and building fabric, or to have

enough heat sources on stand-by (Eqs.(25)-(26)). Eq. (25) confines the resources

reserve by the TES and building fabric footroom, and the GB up-limit. The CHP

heat produced with its reserve must also be able to store in TES and building fab-

ric or replace with reduced GB heat, given in Eq. (26). Eqs. (25)-(26) exist only

when the building is actively occupied, which is indicated by the parameter Ostb.
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Eqs. (27)-(28) determine the building fabric storage footroom/headroom, respec-

tively, where TR_d
stb and TR_s

stb permit reduction in thermal comfort during a reserve

call. ES reserve up-limit is set by Eq. (29) in such a way to deal during reserve call

without any problem [44].

Ostb
(
REHP
stbCPEHP

stb + R
EB
stbη

EB
b − RCHP

stbη
CHPth
b /ηCHPe

b

)
6 Ostb

(
XTES
stb

CTES
b

+Tstb−Xb

)
CTES

b +FtB
stb

Λ
RES


+
(
H

GB
b −HGB

stb

)
∀stb

(25)

OstbR
CHP
stbη

CHPth
b /ηCHPe

b 6 Ostb(
Xb−

XTES
stb

CTES
b

−Tstb

)
CTES

b +HdB
stb

Λ
RES +HGB

stb

 ∀stb
(26)

0 6 FtBstb = Ostb

(
Tstb −

(
TA
tb − ρtb

)
+ TR_d

stb

)
CB
b ∀stb (27)

0 6 HdB
stb = Ostb

((
TA
tb + ρtb

)
− Tstb + T

R_s
stb

)
CB
b ∀stb (28)

RES
stb 6 BES

stb/Λ
RES ∀stb (29)

2.8. Power, gas and reserve balance

As per the power balance, the produced and consumed electrical powers in the

entire MEM must be equal, given by Eq. (30). On the other hand, Eq. (31) defines

a gas balance.

DI
t −D

E
t + I

I
st − I

E
st =

∑Nb

b=1(
Eele

stb

∆t
+ PEHP

stb + P
EB
stb

−PCHP
stb − PPV

stb − P
WT
stb + P

ES
stb) ∀st

(30)

GI
st =

Nb∑
b=1

(
PCHP
stb

ηCHPe
b

+GGB
stb) ∀st (31)

DI
t, D

E
t, I

I
st, I

E
st, G

I
st > 0 ∀st (32)

The provided reserve by MEM (RMEM
s ) must be the same, at all times during

reserve call (Eq. (33)) [44], whereas the produced reserve by each building equip-

ment can vary by scenario and time-step. This improves the optimization value and

thermal comfort in each building, where RMEM_a
st makes the reserve in a proper form

for the objective function.
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κtR
MEM
s = κt

Nb∑
b=1

Rloc
stb ∀st, κtR

MEM_a
st = κt

Nb∑
b=1

Rloc
stb ∀st (33)

2.9. EPs constraints

These constraints (Eqs. (34), (35) and (38)) calculate the EPs based on equip-

ment power (including PCHP
stb , PEHP

stb, PEB
stb, PES

stb, PPV
stb, PWT

stb), Eele
stb and MEM proper-

ties (e.g. line impedance), which are PF equations and implemented by OpenDSS.

Afterwards, Eqs. (36), (37) and (39) limit the EPs to their standard range, satisfying

the 1st novelty.

2.9.1. Voltage profile

The standard range of the voltage magnitude and angle are defined in Eq. (36)

and (37), respectively. Being in standard range, improves the service quality for

consumers and thus, increases the flexibility.

PM
stb =


DI
t −D

E
t + I

I
st − I

E
st b = 250

0 otherwise

∀stb,PM
st =

∑Nb

b=1 P
M
stb

(34)

PM
stb + P

CHP
stb − PEHP

stb − P
EB
stb + P

PV
stb + P

WT
stb

−PES
stb − E

ele
stb =

∑Nb

l=1 vstbvstl

[
Gbl cos (θstb − θstl)

+Bbl sin (θstb − θstl) ∀stbl

(35)

0.95 6 vstb 6 1.05 ∀stb (36)

−180 6 θstb 6 180 ∀stb (37)

2.9.2. Congestion

Eq. (39) prevents the current from violating the allowed values in each power

transmission equipment and congestion occurrence. It is worth mentioning that

congestion damages power transmission equipment and disrupts the MEM perfor-

mance. As a result, it can stop services to consumers, resulting in decreased flexi-

bility.
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cste =

[
(vstb cos θstb − vstl cos θstl) + i(vstb sin θstb

−vstl sin θstl) [Gbl + iBbl] ∀stble, e is from b to l.
(38)

0 6 cste 6 C
TE
e ∀ste (39)

3. Case study applications

A conceptual simulation study is conducted to demonstrate the ability of pro-

posed model. The MEM under study (is based on the UK [45]), comprises of 720

well-insulated residential detached buildings and 237 buses with domestic, com-

mercial and industrial loads, connected to the upstream network at a point by 850

MVA limit, as shown in Figure 3. The main objective is to maximize the MEM flexi-

bility using equipment power and imported power scheduling, while EPs limitation

are also considered, compared through several case studies (given in Table 2). Case

study 0 (CS0) is considered as a reference for comparing the other. CS1 considers

EPs constraints to observe the limitation of voltage profile and congestion. In CS2

and CS3, the reserve market is also taken into consideration to increase the flexi-

bility and MEM revenue by reserve production. CS3 includes the EPs constraints as

well. Table 3 shows the parameters used in these case studies.
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Figure 3: Single line diagram of the MEM under study.
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Table 2: Case studies definition

Case Markets Voltage Congestion

study regulation

CS0 (reference) Energy No No

CS1 Energy Yes Yes

CS2 Energy/Reserve No No

CS3 Energy/Reserve Yes Yes

Table 3: Parameters used in case studies

Parameters

GB H
GB
b =24, ηGB

b =75, b=226,228

CHP ηCHPth
b =72, ηCHPe

b =24, H
CHP
b =4.9, b=1-Nb

TES CTES
b =0.35, RTES

b =568, Xb=55, Xb=80, b=1-Nb

ES ηES
b =90, P

ES
b =65.85, Bb=109.75, b=226

PV Maximum power=275 kW, b=227

WT Maximum power=869.1 kW, b=228

MEM TA
tb=21, TE

tb=-4, CBuild
b =13.89, RBuild

b =5.63, ξd
t/ξ

s
t=1000

3.1. Probabilistic parameters (scenario generation)

Day-ahead and reserve market prices [46] as well as the gas price [47] are taken

according to UK market rules. Because of the uncertain price of the imbalanced

market, all possible prices should be considered in a number of scenarios and are

based on the previous seasons prices [46]. The day-ahead market is a market in

which the price is significant for the next 24 hours and the buy/sell contract for

energy is determined based on this price. However, in the imbalanced market,

the price for the next 24 hours is not clear and the shortage or excess of energy

is compensated. To reduce the volume and increase the speed of computations,

the simultaneous backward reduction algorithm [48] used for imbalanced market

price takes four scenarios for winter, spring, summer and autumn, respectively. In

addition, it determines the probability of occurrence of each scenario (ρs). The sce-
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Figure 4: Electricity, reserve and gas prices on a winter day.

narios corresponding to these four selected scenarios are then considered for other

probabilistic parameters including occupancy, environmental conditions (tempera-

ture, as well as PV and WT generation), electrical load and DHW profiles using their

past data. As a result, the application of the simultaneous backward reduction al-

gorithm to consider probabilities has converted the proposed model into a decision

making system that supports existing uncertainties. These four scenarios (Ns=4

which is considered in Eq. (1)) are investigated to create robust thermal comfort in

the proposed model (Section 2.7.2). The prices for a typical winter day are shown

in Figure 4.

3.2. Results

3.2.1. Equipment power and thermal comfort

The thermal comfort is shown for case studies with and without EPs constraints

in Figures 5(b) and 5(a), respectively. The EPs constraints reduce the thermal com-

fort, which however, is an expected result. It is because the new constraints (EPs)

added to the MEM restrict it to operate optimally. However, the amount of thermal

comfort reduction is unnoticeable by consumers. As a result, compared to some

previous works such as [8, 12, 24] which did not consider thermal comfort, in this

model, the amount of temperature deviation is in a range that does not significantly

reduce consumer satisfaction. Comparison between CS2 and CS0, or CS3 and CS1
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(a) CS0 and CS2
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(b) CS1 and CS3

Figure 5: Temperature deviation at bus 226 on a winter day.

in Figure 5 shows that in addition to being robust with respect to thermal comfort,

reserve increases it. Therefore, reserve consideration has increased thermal comfort

compared to model such as [8, 36] that have not modeled reserve generation.

Figure 6 shows electrical load, DHW profile, equipment power, imported power

to MEM from market and imported gas. All the case studies show that the equip-

ment power and imported power is scheduled to maximize the revenue and avoid

the MEM constraints. Figure 6(a) shows a part of electrical load is supplied by

equipment and the rest of load is imported from the energy markets. The thermal

load (adjusted temperature and environmental temperature are constant, conse-
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(b) CS0
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(c) CS1
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(d) CS1
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(e) CS2
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(f) CS2
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(g) CS3
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(h) CS3
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Figure 6: On a winter day, imported electrical power from energy markets, power of equipment, im-

ported gas, reserve and load.
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quently, XSH
stb is constant (Eq. (17)) and only DHW consumption varies) during the

day is provided only by CHPs and GBs. Because of this and also the lack of con-

straint of imported gas and flat gas price, their generated power curve follows DHW

consumption. Thus, imported gas also follows DHW consumption and there is no

motivation to shift gas consumption time. CHPs heat is more in contrast to GBs

heat, because CHPs are the only source of electricity in MEM and must supply a

part of electrical load. In the early hours of the morning, CHPs heat is more than

DHW consumption to supply electrical load and thus, it increases the TESs energy

of each building. Here, it is assumed the buildings are actively occupied all the

hours. In DHW peak hours (such as 07:00-11:00), TESs are discharged, but they

are charged again in low DHW consumption hours (13:00-18:00) to be discharged

over the evening DHW peak (18:00-22:00). At the final day hours (23:00-24:00),

CHPs and GBs heat is increased in order to equalize the initial and final energy of

TESs. It is important to mention that because of more electrical power of CHPs, im-

ported power is reduced. The ES power is very low and it is charged significantly at

23:00-24:00, when CHPs power is increased (Figure 6(b)). Comparing Figures 6(c)

and 6(a), at 01:00-07:00, 13:00-17:00, and 22:00-24:00 periods, CHPs produce

more electrical power to compensate the voltage drop and eliminate the conges-

tion (Figure 7(a) and Figure 8), thus, imported power is reduced. The extra heat

produced by CHPs is stored in TESs and building fabric, increasing thus the TESs

energy. Also, the temperature deviation (comparing Figure 5(b) with Figure 5(a))

is increased and reaches up to 1.6 ◦C, which in CS0 was below 0.02◦C. Because of

the increased CHPs power at noted hours, more gas is imported and gas revenue

decreases (Table 4). Figure 6(d) is the same as Figure 6(b) and ES energy does not

vary significantly.

Comparing Figure 6(e) with Figure 6(a), in the early hours of the day (01:00-

06:00), CHPs power decreases to increase its reserve (Eq. (23)). At 13:00, due to

lower energy sale price (compared to reserve price), CHPs power is reduced for in-

creasing its reserve. Also, in 17:00-19:00 period, energy purchase price is high and

imported power is lower. Consequently, CHPs power cannot be reduced. The CHPs

power increases compared to CS0 at this period to charge ES and increase its reserve

27



(Eqs. (24) and (29)), as shown in Figure 6(f). Increasing the number of CHPs and

ESs can increase the level of MEM reserve. GBs heat compensate the rest of thermal

load, which is not supplied by CHPs. The availability of more CHPs power in most

of the hours reduces the imported power, As a result, electricity revenue is increased

(Table 4). Comparing Figure 6(f) and Figure 6(b), TESs energy is reduced as they

are more involved in supplying thermal load. Thus, CHPs and GBs heats are lower

and the dependence on them is reduced. Also, gas revenue increases (Table 4).

More TESs involvement is due to GBs heat limitation. Figure 5(a) shows tempera-

ture deviation is very low compared to CS0, whilst the MEM provides reserve. The

reserve has a fixed value of 459.8 kW at all hours of the day. Comparing Figure 6(g)

with Figure 6(e), at the 01:00-07:00, 13:00-17:00, and 22:00-24:00, CHPs power

increases to compensate voltage drop and eliminate the congestion (Figure 7(b)

and Figure 8), and reduces the imported power. The rise in CHPs heat, increase

the energy stored in TESs and building fabric. As a result, temperature deviation

is more (Figure 5) in contrast to CS2. Because of maintaining the initial and final

TESs energy (Eq. (13)), at DHW peak (07:00-12:00 and 18:00-21:00), TESs are

discharged and CHPs heat is reduced. Consequently, imported power increases and

its revenue decreases compared to CS2 (Table 4). Observing the limitations of volt-

age profile and congestion in CS3 does not allow the CHPs power to decrease for

supplying more reserve or transmitted for charging ES to increase ES reserve. Thus,

MEM reserve decreases ((reduced 16.2% compared to CS2), Figure 6(h) compared

to Figure 6(f)). It is worth noting that the imported gas is increased, and gas rev-

enue is reduced.

3.2.2. EPs

Based on Figure 7(a), bus 228 of Figure 3 has voltage drop in CS0 for most of

hours in the day. The gray area shows the standard voltage range, which is between

0.95p.u. and 1.05p.u.. The reason of voltage drop at 00:00-06:00 and 23:00-24:00

(electrical load off-peak hours) is the low DHW, thus, CHPs cannot produce the re-

quired power. Comparing CS1 and CS0, given EPs constraints, the voltage of bus

228 is set within standard range, and is achieved by scheduling the CHPs and im-
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ported power (Figure 6(c)). As of Figure 7(b), in CS2 a voltage drop has occurred

at bus 228 outside the standard range as it was in CS0. Comparing CS3 and CS2,

the voltage profile is improved even with reserve commitment considering the EPs

constraints. Comparing CS2 to CS0, shows that the reserve has helped in improv-

ing voltage at some hours, but at other hours voltage regulation is jeopardized. It

is because the reserve commitment in CS2 changes the voltage profile by changing

the equipment power and imported power for optimized reserve commitment (Fig-

ure 6(e)). But comparing CS3 and CS1, when reserve commitment is alongside the

EPs constraints, it can improve the voltage profile at all the hours. The improved

voltage profile in CS1 and CS3 results in consumers service quality enhancement

and consequently, the flexibility is enhanced. Figure 8 demonstrates the line current

between buses 226 and 227, as shown in Figure 3, is more than its rated current

(1000 A [45]), implying that it is in the non-standard range. Given the conges-

tion improvement in CS1 (Eqs. (38) and (39)), the congestion in the noted line is

eliminated by changing the CHPs and imported powers (Figure 6(c)). Consider-

ing reserve commitment in CS2 compared to CS0, the current is changed only at

10:00-13:00 period. The current in CS3 shows that even with reserve commitment,

applying EPs constraints set the current in standard range and congestion is elimi-

nated. As it was observed, the proposed model maintains the voltage and current

profiles in the standard range by considering the EPs constraints (in CS1 and CS3)

in comparison with some models in Table 1 (such as the models provided by Good

and Mancarella [2] and Iria et al. [25]), which do not consider the EPs (as modeled

in CS0 and CS2). Therefore, the results obtained for CS1 and CS3 in Figure 7 and

Figure 8 show that the EPs are within the standard range and according to Section 1,

the city has a sustainable performance using the proposed model.

3.2.3. Cash flow results

Table 4 shows the revenue as per case study for the winter day. In CS2, a revenue

is added from selling the reserve and the imported power falloffs, increasing the

electricity revenue compared to CS0. In addition, because of reducing CHPs and

GBs heat totally, gas revenue is also increased. Thus, the total revenue and as a
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(b) CS2 and CS3

Figure 7: The voltage magnitude at 250, 226 and 228 on a winter day.
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Figure 8: Current in line 226 to 227 on a winter day.

result, the flexibility is enhanced. This is the ability of the proposed model to uses

the reserve flexibility for improving the types of revenue compared to the models

presented by Coelho et al. [8] and Korkas et al. [36], which do not consider the

reserve (Table 1). However, the total revenue of CS1 and CS3 dropped compared

to CS0. Because the EPs constraints limit the optimal performance of equipment

as well as the imported power. In these case studies, the MEMO may have to buy

or sell electricity, when electricity price is high or low, respectively. In addition,

shifting the time of consumption and storing may not be feasible considering the EPs

constraints. Therefore, given the EPs constraints, although the service quality and

thus flexibility increases, but MEMO revenue decreases. As it is noted, flexibility

is not cost free. Reserve commitment, however, decreases the revenue reduction

because of observing the EPs constraints (decreases 10% the total revenue reduction

compared to case studies that do not include reserve commitment). Thus, according

to the results for CS2 and CS3, MEM participation in the reserve market improves

the urban economics.

Results demonstrate that the scheduling of equipment power and also the im-

ported power from markets improve the voltage profile and congestion. Overall,

unlike the models presented by Coelho et al. [8], Correa-Florez et al. [24] and

Korkas et al. [36] (Table 1) which did not model the reserve generation, reserve
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Table 4: Cash flow results, case study on a winter day

Case studies

CS0 CS1 CS2 CS3

Gas revenue -113.99 -119.57 -104.28 -119.05

Reserve revenue 0.00 0.00 331.08 277.45

Electricity revenue 52721.00 34627.96 62759.00 47632.00

Total revenue 52606.82 34508.39 62985.65 47790.71

Note: Revenues are in £/day

commitment (which does not compromise consumers thermal comfort) improves

thermal comfort, flexibility (increases revenue and service quality such as more

standard voltage for consumers appliances). Although EPs constraints considered

in this model, unlike the models presented by Good and Mancarella [2], Lekvan

et al. [10], Anwar et al. [22] and Iria et al. [25] which do not consider these

constraints, improve flexibility (service quality), but revenue, as well as thermal

comfort are reduced. However, their decrease is low and voltage profile and con-

gestion improvement are more valuable for supplying the loads and multi-energy

services, sustainability.

4. Conclusion

In this paper, a detailed and comprehensive two-stage multi-energy stochas-

tic optimization model has been presented for MEM power management to opti-

mize the flexibility. The MEM considered in the proposed model could be a city or

part of it. The buses voltage are maintained within standard range and congestion

is avoided using the EPs constraints. Also, the produced reserve by equipment is

managed in such a way that the consumers thermal comfort is not degraded during

reserve call. The reduction in MEM revenue which is the result of EPs constraints

consideration, is decreased 10% by reserve commitment. Moreover, the current

could be reduced to 50% during the congestion. The various case studies on a dis-

tribution network illustrated practical application of the model. The most important
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results of the proposed model are:

1. Optimized flexibility and compliance with EPs limitation.

2. EPs constraints and voltage regulation have reduced MEM revenue and the

thermal comfort slightly, but increasing the flexibility significantly.

3. Reserve consideration has increased MEM revenue, flexibility and thermal

comfort.

These have resulted in the sustainability of MEM performance and also maxi-

mized flexibility. Therefore, the application of the proposed model has created a

sustainable city with improved urban economics.
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